Commit Graph

1391 Commits

Author SHA1 Message Date
Roman Gushchin 18b2db3b03 mm: Convert page kmemcg type to a page memcg flag
PageKmemcg flag is currently defined as a page type (like buddy, offline,
table and guard).  Semantically it means that the page was accounted as a
kernel memory by the page allocator and has to be uncharged on the
release.

As a side effect of defining the flag as a page type, the accounted page
can't be mapped to userspace (look at page_has_type() and comments above).
In particular, this blocks the accounting of vmalloc-backed memory used
by some bpf maps, because these maps do map the memory to userspace.

One option is to fix it by complicating the access to page->mapcount,
which provides some free bits for page->page_type.

But it's way better to move this flag into page->memcg_data flags.
Indeed, the flag makes no sense without enabled memory cgroups and memory
cgroup pointer set in particular.

This commit replaces PageKmemcg() and __SetPageKmemcg() with
PageMemcgKmem() and an open-coded OR operation setting the memcg pointer
with the MEMCG_DATA_KMEM bit.  __ClearPageKmemcg() can be simple deleted,
as the whole memcg_data is zeroed at once.

As a bonus, on !CONFIG_MEMCG build the PageMemcgKmem() check will be
compiled out.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-5-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-5-guro@fb.com
2020-12-02 18:28:06 -08:00
Roman Gushchin 270c6a7146 mm: memcontrol/slab: Use helpers to access slab page's memcg_data
To gather all direct accesses to struct page's memcg_data field in one
place, let's introduce 3 new helpers to use in the slab accounting code:

  struct obj_cgroup **page_objcgs(struct page *page);
  struct obj_cgroup **page_objcgs_check(struct page *page);
  bool set_page_objcgs(struct page *page, struct obj_cgroup **objcgs);

They are similar to the corresponding API for generic pages, except that
the setter can return false, indicating that the value has been already
set from a different thread.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: https://lkml.kernel.org/r/20201027001657.3398190-3-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-3-guro@fb.com
2020-12-02 18:28:06 -08:00
Roman Gushchin bcfe06bf26 mm: memcontrol: Use helpers to read page's memcg data
Patch series "mm: allow mapping accounted kernel pages to userspace", v6.

Currently a non-slab kernel page which has been charged to a memory cgroup
can't be mapped to userspace.  The underlying reason is simple: PageKmemcg
flag is defined as a page type (like buddy, offline, etc), so it takes a
bit from a page->mapped counter.  Pages with a type set can't be mapped to
userspace.

But in general the kmemcg flag has nothing to do with mapping to
userspace.  It only means that the page has been accounted by the page
allocator, so it has to be properly uncharged on release.

Some bpf maps are mapping the vmalloc-based memory to userspace, and their
memory can't be accounted because of this implementation detail.

This patchset removes this limitation by moving the PageKmemcg flag into
one of the free bits of the page->mem_cgroup pointer.  Also it formalizes
accesses to the page->mem_cgroup and page->obj_cgroups using new helpers,
adds several checks and removes a couple of obsolete functions.  As the
result the code became more robust with fewer open-coded bit tricks.

This patch (of 4):

Currently there are many open-coded reads of the page->mem_cgroup pointer,
as well as a couple of read helpers, which are barely used.

It creates an obstacle on a way to reuse some bits of the pointer for
storing additional bits of information.  In fact, we already do this for
slab pages, where the last bit indicates that a pointer has an attached
vector of objcg pointers instead of a regular memcg pointer.

This commits uses 2 existing helpers and introduces a new helper to
converts all read sides to calls of these helpers:
  struct mem_cgroup *page_memcg(struct page *page);
  struct mem_cgroup *page_memcg_rcu(struct page *page);
  struct mem_cgroup *page_memcg_check(struct page *page);

page_memcg_check() is intended to be used in cases when the page can be a
slab page and have a memcg pointer pointing at objcg vector.  It does
check the lowest bit, and if set, returns NULL.  page_memcg() contains a
VM_BUG_ON_PAGE() check for the page not being a slab page.

To make sure nobody uses a direct access, struct page's
mem_cgroup/obj_cgroups is converted to unsigned long memcg_data.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/20201027001657.3398190-1-guro@fb.com
Link: https://lkml.kernel.org/r/20201027001657.3398190-2-guro@fb.com
Link: https://lore.kernel.org/bpf/20201201215900.3569844-2-guro@fb.com
2020-12-02 18:28:05 -08:00
Muchun Song 8faeb1ffd7 mm: memcg/slab: fix root memcg vmstats
If we reparent the slab objects to the root memcg, when we free the slab
object, we need to update the per-memcg vmstats to keep it correct for
the root memcg.  Now this at least affects the vmstat of
NR_KERNEL_STACK_KB for !CONFIG_VMAP_STACK when the thread stack size is
smaller than the PAGE_SIZE.

David said:
 "I assume that without this fix that the root memcg's vmstat would
  always be inflated if we reparented"

Fixes: ec9f02384f ("mm: workingset: fix vmstat counters for shadow nodes")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: <stable@vger.kernel.org>	[5.3+]
Link: https://lkml.kernel.org/r/20201110031015.15715-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-22 10:48:22 -08:00
Roman Gushchin 8de15e920d mm: memcg: link page counters to root if use_hierarchy is false
Richard reported a warning which can be reproduced by running the LTP
madvise6 test (cgroup v1 in the non-hierarchical mode should be used):

  WARNING: CPU: 0 PID: 12 at mm/page_counter.c:57 page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156)
  Modules linked in:
  CPU: 0 PID: 12 Comm: kworker/0:1 Not tainted 5.9.0-rc7-22-default #77
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-48-gd9c812d-rebuilt.opensuse.org 04/01/2014
  Workqueue: events drain_local_stock
  RIP: 0010:page_counter_uncharge (mm/page_counter.c:57 mm/page_counter.c:50 mm/page_counter.c:156)
  Call Trace:
    __memcg_kmem_uncharge (mm/memcontrol.c:3022)
    drain_obj_stock (./include/linux/rcupdate.h:689 mm/memcontrol.c:3114)
    drain_local_stock (mm/memcontrol.c:2255)
    process_one_work (./arch/x86/include/asm/jump_label.h:25 ./include/linux/jump_label.h:200 ./include/trace/events/workqueue.h:108 kernel/workqueue.c:2274)
    worker_thread (./include/linux/list.h:282 kernel/workqueue.c:2416)
    kthread (kernel/kthread.c:292)
    ret_from_fork (arch/x86/entry/entry_64.S:300)

The problem occurs because in the non-hierarchical mode non-root page
counters are not linked to root page counters, so the charge is not
propagated to the root memory cgroup.

After the removal of the original memory cgroup and reparenting of the
object cgroup, the root cgroup might be uncharged by draining a objcg
stock, for example.  It leads to an eventual underflow of the charge and
triggers a warning.

Fix it by linking all page counters to corresponding root page counters
in the non-hierarchical mode.

Please note, that in the non-hierarchical mode all objcgs are always
reparented to the root memory cgroup, even if the hierarchy has more
than 1 level.  This patch doesn't change it.

The patch also doesn't affect how the hierarchical mode is working,
which is the only sane and truly supported mode now.

Thanks to Richard for reporting, debugging and providing an alternative
version of the fix!

Fixes: bf4f059954 ("mm: memcg/slab: obj_cgroup API")
Reported-by: <ltp@lists.linux.it>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201026231326.3212225-1-guro@fb.com
Debugged-by: Richard Palethorpe <rpalethorpe@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02 12:14:18 -08:00
zhongjiang-ali 7de2e9f195 mm: memcontrol: correct the NR_ANON_THPS counter of hierarchical memcg
memcg_page_state will get the specified number in hierarchical memcg, It
should multiply by HPAGE_PMD_NR rather than an page if the item is
NR_ANON_THPS.

[akpm@linux-foundation.org: fix printk warning]
[akpm@linux-foundation.org: use u64 cast, per Michal]

Fixes: 468c398233 ("mm: memcontrol: switch to native NR_ANON_THPS counter")
Signed-off-by: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: https://lkml.kernel.org/r/1603722395-72443-1-git-send-email-zhongjiang-ali@linux.alibaba.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02 12:14:18 -08:00
Roman Gushchin 4127c6504f mm: kmem: enable kernel memcg accounting from interrupt contexts
If a memcg to charge can be determined (using remote charging API), there
are no reasons to exclude allocations made from an interrupt context from
the accounting.

Such allocations will pass even if the resulting memcg size will exceed
the hard limit, but it will affect the application of the memory pressure
and an inability to put the workload under the limit will eventually
trigger the OOM.

To use active_memcg() helper, memcg_kmem_bypass() is moved back to
memcontrol.c.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin 37d5985c00 mm: kmem: prepare remote memcg charging infra for interrupt contexts
Remote memcg charging API uses current->active_memcg to store the
currently active memory cgroup, which overwrites the memory cgroup of the
current process.  It works well for normal contexts, but doesn't work for
interrupt contexts: indeed, if an interrupt occurs during the execution of
a section with an active memcg set, all allocations inside the interrupt
will be charged to the active memcg set (given that we'll enable
accounting for allocations from an interrupt context).  But because the
interrupt might have no relation to the active memcg set outside, it's
obviously wrong from the accounting prospective.

To resolve this problem, let's add a global percpu int_active_memcg
variable, which will be used to store an active memory cgroup which will
be used from interrupt contexts.  set_active_memcg() will transparently
use current->active_memcg or int_active_memcg depending on the context.

To make the read part simple and transparent for the caller, let's
introduce two new functions:
  - struct mem_cgroup *active_memcg(void),
  - struct mem_cgroup *get_active_memcg(void).

They are returning the active memcg if it's set, hiding all implementation
details: where to get it depending on the current context.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin 67f0286498 mm: kmem: remove redundant checks from get_obj_cgroup_from_current()
There are checks for current->mm and current->active_memcg in
get_obj_cgroup_from_current(), but these checks are redundant:
memcg_kmem_bypass() called just above performs same checks.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin 279c3393e2 mm: kmem: move memcg_kmem_bypass() calls to get_mem/obj_cgroup_from_current()
Patch series "mm: kmem: kernel memory accounting in an interrupt context".

This patchset implements memcg-based memory accounting of allocations made
from an interrupt context.

Historically, such allocations were passed unaccounted mostly because
charging the memory cgroup of the current process wasn't an option.  Also
performance reasons were likely a reason too.

The remote charging API allows to temporarily overwrite the currently
active memory cgroup, so that all memory allocations are accounted towards
some specified memory cgroup instead of the memory cgroup of the current
process.

This patchset extends the remote charging API so that it can be used from
an interrupt context.  Then it removes the fence that prevented the
accounting of allocations made from an interrupt context.  It also
contains a couple of optimizations/code refactorings.

This patchset doesn't directly enable accounting for any specific
allocations, but prepares the code base for it.  The bpf memory accounting
will likely be the first user of it: a typical example is a bpf program
parsing an incoming network packet, which allocates an entry in hashmap
map to store some information.

This patch (of 4):

Currently memcg_kmem_bypass() is called before obtaining the current
memory/obj cgroup using get_mem/obj_cgroup_from_current().  Moving
memcg_kmem_bypass() into get_mem/obj_cgroup_from_current() reduces the
number of call sites and allows further code simplifications.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200827225843.1270629-1-guro@fb.com
Link: http://lkml.kernel.org/r/20200827225843.1270629-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Roman Gushchin b87d8cefe4 mm, memcg: rework remote charging API to support nesting
Currently the remote memcg charging API consists of two functions:
memalloc_use_memcg() and memalloc_unuse_memcg(), which set and clear the
memcg value, which overwrites the memcg of the current task.

  memalloc_use_memcg(target_memcg);
  <...>
  memalloc_unuse_memcg();

It works perfectly for allocations performed from a normal context,
however an attempt to call it from an interrupt context or just nest two
remote charging blocks will lead to an incorrect accounting.  On exit from
the inner block the active memcg will be cleared instead of being
restored.

  memalloc_use_memcg(target_memcg);

  memalloc_use_memcg(target_memcg_2);
    <...>
    memalloc_unuse_memcg();

    Error: allocation here are charged to the memcg of the current
    process instead of target_memcg.

  memalloc_unuse_memcg();

This patch extends the remote charging API by switching to a single
function: struct mem_cgroup *set_active_memcg(struct mem_cgroup *memcg),
which sets the new value and returns the old one.  So a remote charging
block will look like:

  old_memcg = set_active_memcg(target_memcg);
  <...>
  set_active_memcg(old_memcg);

This patch is heavily based on the patch by Johannes Weiner, which can be
found here: https://lkml.org/lkml/2020/5/28/806 .

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dan Schatzberg <dschatzberg@fb.com>
Link: https://lkml.kernel.org/r/20200821212056.3769116-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18 09:27:09 -07:00
Ralph Campbell 9a137153fc mm/memcg: fix device private memcg accounting
The code in mc_handle_swap_pte() checks for non_swap_entry() and returns
NULL before checking is_device_private_entry() so device private pages are
never handled.  Fix this by checking for non_swap_entry() after handling
device private swap PTEs.

I assume the memory cgroup accounting would be off somehow when moving
a process to another memory cgroup.  Currently, the device private page
is charged like a normal anonymous page when allocated and is uncharged
when the page is freed so I think that path is OK.

Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Link: https://lkml.kernel.org/r/20201009215952.2726-1-rcampbell@nvidia.com
xFixes: c733a82874 ("mm/memcontrol: support MEMORY_DEVICE_PRIVATE")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:31 -07:00
Miaohe Lin 7a52d4d88a mm: memcontrol: reword obsolete comment of mem_cgroup_unmark_under_oom()
Since commit 79dfdaccd1 ("memcg: make oom_lock 0 and 1 based rather than
counter"), the mem_cgroup_unmark_under_oom() is added and the comment of
the mem_cgroup_oom_unlock() is moved here.  But this comment make no sense
here because mem_cgroup_oom_lock() does not operate on under_oom field.
So we reword the comment as this would be helpful.  [Thanks Michal Hocko
for rewording this comment.]

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/20200930095336.21323-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Muchun Song 5f9a4f4a70 mm: memcontrol: add the missing numa_stat interface for cgroup v2
In the cgroup v1, we have a numa_stat interface.  This is useful for
providing visibility into the numa locality information within an memcg
since the pages are allowed to be allocated from any physical node.  One
of the use cases is evaluating application performance by combining this
information with the application's CPU allocation.  But the cgroup v2 does
not.  So this patch adds the missing information.

Suggested-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lkml.kernel.org/r/20200916100030.71698-2-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long bd0b230fe1 mm/memcg: unify swap and memsw page counters
The swap page counter is v2 only while memsw is v1 only.  As v1 and v2
controllers cannot be active at the same time, there is no point to keep
both swap and memsw page counters in mem_cgroup.  The previous patch has
made sure that memsw page counter is updated and accessed only when in v1
code paths.  So it is now safe to alias the v1 memsw page counter to v2
swap page counter.  This saves 14 long's in the size of mem_cgroup.  This
is a saving of 112 bytes for 64-bit archs.

While at it, also document which page counters are used in v1 and/or v2.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-4-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long 8d387a5f17 mm/memcg: simplify mem_cgroup_get_max()
mem_cgroup_get_max() used to get memory+swap max from both the v1 memsw
and v2 memory+swap page counters & return the maximum of these 2 values.
This is redundant and it is more efficient to just get either the v1 or
the v2 values depending on which one is currently in use.

[longman@redhat.com: v4]
  Link: https://lkml.kernel.org/r/20200914150928.7841-1-longman@redhat.com

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-3-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Waiman Long f9f84ec56f mm/memcg: clean up obsolete enum charge_type
Patch series "mm/memcg: Miscellaneous cleanups and streamlining", v2.

This patch (of 3):

Since commit 0a31bc97c8 ("mm: memcontrol: rewrite uncharge API") and
commit 00501b531c ("mm: memcontrol: rewrite charge API") in v3.17, the
enum charge_type was no longer used anywhere.  However, the enum itself
was not removed at that time.  Remove the obsolete enum charge_type now.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: https://lkml.kernel.org/r/20200914024452.19167-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20200914024452.19167-2-longman@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Miaohe Lin 05bdc520b3 mm: memcontrol: correct the comment of mem_cgroup_iter()
Since commit bbec2e1517 ("mm: rename page_counter's count/limit into
usage/max"), the arg @reclaim has no priority field anymore.

Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/20200913094129.44558-1-linmiaohe@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Roman Gushchin 19b629c979 mm: memcg/slab: fix racy access to page->mem_cgroup in mem_cgroup_from_obj()
mem_cgroup_from_obj() checks the lowest bit of the page->mem_cgroup
pointer to determine if the page has an attached obj_cgroup vector instead
of a regular memcg pointer.  If it's not set, it simple returns the
page->mem_cgroup value as a struct mem_cgroup pointer.

The commit 10befea91b ("mm: memcg/slab: use a single set of kmem_caches
for all allocations") changed the moment when this bit is set: if
previously it was set on the allocation of the slab page, now it can be
set well after, when the first accounted object is allocated on this page.

It opened a race: if page->mem_cgroup is set concurrently after the first
page_has_obj_cgroups(page) check, a pointer to the obj_cgroups array can
be returned as a memory cgroup pointer.

A simple check for page->mem_cgroup pointer for NULL before the
page_has_obj_cgroups() check fixes the race.  Indeed, if the pointer is
not NULL, it's either a simple mem_cgroup pointer or a pointer to
obj_cgroup vector.  The pointer can be asynchronously changed from NULL to
(obj_cgroup_vec | 0x1UL), but can't be changed from a valid memcg pointer
to objcg vector or back.

If the object passed to mem_cgroup_from_obj() is a slab object and
page->mem_cgroup is NULL, it means that the object is not accounted, so
the function must return NULL.

I've discovered the race looking at the code, so far I haven't seen it in
the wild.

Fixes: 10befea91b ("mm: memcg/slab: use a single set of kmem_caches for all allocations")
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: https://lkml.kernel.org/r/20200910022435.2773735-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Gustavo A. R. Silva 61e604e636 mm: memcontrol: use the preferred form for passing the size of a structure type
Use the preferred form for passing the size of a structure type.  The
alternative form where the structure type is spelled out hurts readability
and introduces an opportunity for a bug when the object type is changed
but the corresponding object identifier to which the sizeof operator is
applied is not.

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/773e013ff2f07fe2a0b47153f14dea054c0c04f1.1596214831.git.gustavoars@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Gustavo A. R. Silva e90342e6d2 mm: memcontrol: use flex_array_size() helper in memcpy()
Make use of the flex_array_size() helper to calculate the size of a
flexible array member within an enclosing structure.

This helper offers defense-in-depth against potential integer overflows,
while at the same time makes it explicitly clear that we are dealing with
a flexible array member.

Also, remove unnecessary braces.

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: https://lkml.kernel.org/r/ddd60dae2d9aea1ccdd2be66634815c93696125e.1596214831.git.gustavoars@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:30 -07:00
Matthew Wilcox (Oracle) f5df8635c5 mm: use find_get_incore_page in memcontrol
The current code does not protect against swapoff of the underlying
swap device, so this is a bug fix as well as a worthwhile reduction in
code complexity.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Auld <matthew.auld@intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Link: https://lkml.kernel.org/r/20200910183318.20139-3-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:29 -07:00
Linus Torvalds 3ad11d7ac8 block-5.10-2020-10-12
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl+EWUgQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpnoxEADCVSNBRkpV0OVkOEC3wf8EGhXhk01Jnjtl
 u5Mg2V55hcgJ0thQxBV/V28XyqmsEBrmAVi0Yf8Vr9Qbq4Ze08Wae4ChS4rEOyh1
 jTcGYWx5aJB3ChLvV/HI0nWQ3bkj03mMrL3SW8rhhf5DTyKHsVeTenpx42Qu/FKf
 fRzi09FSr3Pjd0B+EX6gunwJnlyXQC5Fa4AA0GhnXJzAznANXxHkkcXu8a6Yw75x
 e28CfhIBliORsK8sRHLoUnPpeTe1vtxCBhBMsE+gJAj9ZUOWMzvNFIPP4FvfawDy
 6cCQo2m1azJ/IdZZCDjFUWyjh+wxdKMp+NNryEcoV+VlqIoc3n98rFwrSL+GIq5Z
 WVwEwq+AcwoMCsD29Lu1ytL2PQ/RVqcJP5UheMrbL4vzefNfJFumQVZLIcX0k943
 8dFL2QHL+H/hM9Dx5y5rjeiWkAlq75v4xPKVjh/DHb4nehddCqn/+DD5HDhNANHf
 c1kmmEuYhvLpIaC4DHjE6DwLh8TPKahJjwsGuBOTr7D93NUQD+OOWsIhX6mNISIl
 FFhP8cd0/ZZVV//9j+q+5B4BaJsT+ZtwmrelKFnPdwPSnh+3iu8zPRRWO+8P8fRC
 YvddxuJAmE6BLmsAYrdz6Xb/wqfyV44cEiyivF0oBQfnhbtnXwDnkDWSfJD1bvCm
 ZwfpDh2+Tg==
 =LzyE
 -----END PGP SIGNATURE-----

Merge tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - Series of merge handling cleanups (Baolin, Christoph)

 - Series of blk-throttle fixes and cleanups (Baolin)

 - Series cleaning up BDI, seperating the block device from the
   backing_dev_info (Christoph)

 - Removal of bdget() as a generic API (Christoph)

 - Removal of blkdev_get() as a generic API (Christoph)

 - Cleanup of is-partition checks (Christoph)

 - Series reworking disk revalidation (Christoph)

 - Series cleaning up bio flags (Christoph)

 - bio crypt fixes (Eric)

 - IO stats inflight tweak (Gabriel)

 - blk-mq tags fixes (Hannes)

 - Buffer invalidation fixes (Jan)

 - Allow soft limits for zone append (Johannes)

 - Shared tag set improvements (John, Kashyap)

 - Allow IOPRIO_CLASS_RT for CAP_SYS_NICE (Khazhismel)

 - DM no-wait support (Mike, Konstantin)

 - Request allocation improvements (Ming)

 - Allow md/dm/bcache to use IO stat helpers (Song)

 - Series improving blk-iocost (Tejun)

 - Various cleanups (Geert, Damien, Danny, Julia, Tetsuo, Tian, Wang,
   Xianting, Yang, Yufen, yangerkun)

* tag 'block-5.10-2020-10-12' of git://git.kernel.dk/linux-block: (191 commits)
  block: fix uapi blkzoned.h comments
  blk-mq: move cancel of hctx->run_work to the front of blk_exit_queue
  blk-mq: get rid of the dead flush handle code path
  block: get rid of unnecessary local variable
  block: fix comment and add lockdep assert
  blk-mq: use helper function to test hw stopped
  block: use helper function to test queue register
  block: remove redundant mq check
  block: invoke blk_mq_exit_sched no matter whether have .exit_sched
  percpu_ref: don't refer to ref->data if it isn't allocated
  block: ratelimit handle_bad_sector() message
  blk-throttle: Re-use the throtl_set_slice_end()
  blk-throttle: Open code __throtl_de/enqueue_tg()
  blk-throttle: Move service tree validation out of the throtl_rb_first()
  blk-throttle: Move the list operation after list validation
  blk-throttle: Fix IO hang for a corner case
  blk-throttle: Avoid tracking latency if low limit is invalid
  blk-throttle: Avoid getting the current time if tg->last_finish_time is 0
  blk-throttle: Remove a meaningless parameter for throtl_downgrade_state()
  block: Remove redundant 'return' statement
  ...
2020-10-13 12:12:44 -07:00
Muchun Song 8d3fe09d8d mm: memcontrol: fix missing suffix of workingset_restore
We forget to add the suffix to the workingset_restore string, so fix it.

And also update the documentation of cgroup-v2.rst.

Fixes: 170b04b7ae ("mm/workingset: prepare the workingset detection infrastructure for anon LRU")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Link: https://lkml.kernel.org/r/20200916100030.71698-1-songmuchun@bytedance.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26 10:33:57 -07:00
Christoph Hellwig f56753ac2a bdi: replace BDI_CAP_NO_{WRITEBACK,ACCT_DIRTY} with a single flag
Replace the two negative flags that are always used together with a
single positive flag that indicates the writeback capability instead
of two related non-capabilities.  Also remove the pointless wrappers
to just check the flag.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-09-24 13:43:39 -06:00
Michal Hocko f1796544a0 memcg: fix use-after-free in uncharge_batch
syzbot has reported an use-after-free in the uncharge_batch path

  BUG: KASAN: use-after-free in instrument_atomic_write include/linux/instrumented.h:71 [inline]
  BUG: KASAN: use-after-free in atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline]
  BUG: KASAN: use-after-free in atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline]
  BUG: KASAN: use-after-free in page_counter_cancel mm/page_counter.c:54 [inline]
  BUG: KASAN: use-after-free in page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155
  Write of size 8 at addr ffff8880371c0148 by task syz-executor.0/9304

  CPU: 0 PID: 9304 Comm: syz-executor.0 Not tainted 5.8.0-syzkaller #0
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Call Trace:
    __dump_stack lib/dump_stack.c:77 [inline]
    dump_stack+0x1f0/0x31e lib/dump_stack.c:118
    print_address_description+0x66/0x620 mm/kasan/report.c:383
    __kasan_report mm/kasan/report.c:513 [inline]
    kasan_report+0x132/0x1d0 mm/kasan/report.c:530
    check_memory_region_inline mm/kasan/generic.c:183 [inline]
    check_memory_region+0x2b5/0x2f0 mm/kasan/generic.c:192
    instrument_atomic_write include/linux/instrumented.h:71 [inline]
    atomic64_sub_return include/asm-generic/atomic-instrumented.h:970 [inline]
    atomic_long_sub_return include/asm-generic/atomic-long.h:113 [inline]
    page_counter_cancel mm/page_counter.c:54 [inline]
    page_counter_uncharge+0x3d/0xc0 mm/page_counter.c:155
    uncharge_batch+0x6c/0x350 mm/memcontrol.c:6764
    uncharge_page+0x115/0x430 mm/memcontrol.c:6796
    uncharge_list mm/memcontrol.c:6835 [inline]
    mem_cgroup_uncharge_list+0x70/0xe0 mm/memcontrol.c:6877
    release_pages+0x13a2/0x1550 mm/swap.c:911
    tlb_batch_pages_flush mm/mmu_gather.c:49 [inline]
    tlb_flush_mmu_free mm/mmu_gather.c:242 [inline]
    tlb_flush_mmu+0x780/0x910 mm/mmu_gather.c:249
    tlb_finish_mmu+0xcb/0x200 mm/mmu_gather.c:328
    exit_mmap+0x296/0x550 mm/mmap.c:3185
    __mmput+0x113/0x370 kernel/fork.c:1076
    exit_mm+0x4cd/0x550 kernel/exit.c:483
    do_exit+0x576/0x1f20 kernel/exit.c:793
    do_group_exit+0x161/0x2d0 kernel/exit.c:903
    get_signal+0x139b/0x1d30 kernel/signal.c:2743
    arch_do_signal+0x33/0x610 arch/x86/kernel/signal.c:811
    exit_to_user_mode_loop kernel/entry/common.c:135 [inline]
    exit_to_user_mode_prepare+0x8d/0x1b0 kernel/entry/common.c:166
    syscall_exit_to_user_mode+0x5e/0x1a0 kernel/entry/common.c:241
    entry_SYSCALL_64_after_hwframe+0x44/0xa9

Commit 1a3e1f4096 ("mm: memcontrol: decouple reference counting from
page accounting") reworked the memcg lifetime to be bound the the struct
page rather than charges.  It also removed the css_put_many from
uncharge_batch and that is causing the above splat.

uncharge_batch() is supposed to uncharge accumulated charges for all
pages freed from the same memcg.  The queuing is done by uncharge_page
which however drops the memcg reference after it adds charges to the
batch.  If the current page happens to be the last one holding the
reference for its memcg then the memcg is OK to go and the next page to
be freed will trigger batched uncharge which needs to access the memcg
which is gone already.

Fix the issue by taking a reference for the memcg in the current batch.

Fixes: 1a3e1f4096 ("mm: memcontrol: decouple reference counting from page accounting")
Reported-by: syzbot+b305848212deec86eabe@syzkaller.appspotmail.com
Reported-by: syzbot+b5ea6fb6f139c8b9482b@syzkaller.appspotmail.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Hugh Dickins <hughd@google.com>
Link: https://lkml.kernel.org/r/20200820090341.GC5033@dhcp22.suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-05 12:14:29 -07:00
Matthew Wilcox (Oracle) 6c357848b4 mm: replace hpage_nr_pages with thp_nr_pages
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.

[akpm@linux-foundation.org: fix mm/migrate.c]

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Johannes Weiner 9f45717924 mm: memcontrol: fix warning when allocating the root cgroup
Commit 3e38e0aaca ("mm: memcg: charge memcg percpu memory to the
parent cgroup") adds memory tracking to the memcg kernel structures
themselves to make cgroups liable for the memory they are consuming
through the allocation of child groups (which can be significant).

This code is a bit awkward as it's spread out through several functions:
The outermost function does memalloc_use_memcg(parent) to set up
current->active_memcg, which designates which cgroup to charge, and the
inner functions pass GFP_ACCOUNT to request charging for specific
allocations.  To make sure this dependency is satisfied at all times -
to make sure we don't randomly charge whoever is calling the functions -
the inner functions warn on !current->active_memcg.

However, this triggers a false warning when the root memcg itself is
allocated.  No parent exists in this case, and so current->active_memcg
is rightfully NULL.  It's a false positive, not indicative of a bug.

Delete the warnings for now, we can revisit this later.

Fixes: 3e38e0aaca ("mm: memcg: charge memcg percpu memory to the parent cgroup")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-13 12:15:21 -07:00
Randy Dunlap ac5ddd0fce mm/memcontrol.c: delete duplicated words
Drop the repeated word "down".

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Link: http://lkml.kernel.org/r/20200801173822.14973-6-rdunlap@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:58 -07:00
Joonsoo Kim 170b04b7ae mm/workingset: prepare the workingset detection infrastructure for anon LRU
To prepare the workingset detection for anon LRU, this patch splits
workingset event counters for refault, activate and restore into anon and
file variants, as well as the refaults counter in struct lruvec.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/1595490560-15117-4-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Roman Gushchin 3e38e0aaca mm: memcg: charge memcg percpu memory to the parent cgroup
Memory cgroups are using large chunks of percpu memory to store vmstat
data.  Yet this memory is not accounted at all, so in the case when there
are many (dying) cgroups, it's not exactly clear where all the memory is.

Because the size of memory cgroup internal structures can dramatically
exceed the size of object or page which is pinning it in the memory, it's
not a good idea to simply ignore it.  It actually breaks the isolation
between cgroups.

Let's account the consumed percpu memory to the parent cgroup.

[guro@fb.com: add WARN_ON_ONCE()s, per Johannes]
  Link: http://lkml.kernel.org/r/20200811170611.GB1507044@carbon.DHCP.thefacebook.com

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Waiman Long <longman@redhat.com>
Cc: Bixuan Cui <cuibixuan@huawei.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200623184515.4132564-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Roman Gushchin 772616b031 mm: memcg/percpu: per-memcg percpu memory statistics
Percpu memory can represent a noticeable chunk of the total memory
consumption, especially on big machines with many CPUs.  Let's track
percpu memory usage for each memcg and display it in memory.stat.

A percpu allocation is usually scattered over multiple pages (and nodes),
and can be significantly smaller than a page.  So let's add a byte-sized
counter on the memcg level: MEMCG_PERCPU_B.  Byte-sized vmstat infra
created for slabs can be perfectly reused for percpu case.

[guro@fb.com: v3]
  Link: http://lkml.kernel.org/r/20200623184515.4132564-4-guro@fb.com

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Tobin C. Harding <tobin@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Waiman Long <longman@redhat.com>
Cc: Bixuan Cui <cuibixuan@huawei.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Link: http://lkml.kernel.org/r/20200608230819.832349-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:55 -07:00
Johannes Weiner e22c6ed90a mm: memcontrol: don't count limit-setting reclaim as memory pressure
When an outside process lowers one of the memory limits of a cgroup (or
uses the force_empty knob in cgroup1), direct reclaim is performed in the
context of the write(), in order to directly enforce the new limit and
have it being met by the time the write() returns.

Currently, this reclaim activity is accounted as memory pressure in the
cgroup that the writer(!) belongs to.  This is unexpected.  It
specifically causes problems for senpai
(https://github.com/facebookincubator/senpai), which is an agent that
routinely adjusts the memory limits and performs associated reclaim work
in tens or even hundreds of cgroups running on the host.  The cgroup that
senpai is running in itself will report elevated levels of memory
pressure, even though it itself is under no memory shortage or any sort of
distress.

Move the psi annotation from the central cgroup reclaim function to
callsites in the allocation context, and thereby no longer count any
limit-setting reclaim as memory pressure.  If the newly set limit causes
the workload inside the cgroup into direct reclaim, that of course will
continue to count as memory pressure.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200728135210.379885-2-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:26 -07:00
Johannes Weiner 19ce33acbb mm: memcontrol: restore proper dirty throttling when memory.high changes
Commit 8c8c383c04 ("mm: memcontrol: try harder to set a new
memory.high") inadvertently removed a callback to recalculate the
writeback cache size in light of a newly configured memory.high limit.

Without letting the writeback cache know about a potentially heavily
reduced limit, it may permit too many dirty pages, which can cause
unnecessary reclaim latencies or even avoidable OOM situations.

This was spotted while reading the code, it hasn't knowingly caused any
problems in practice so far.

Fixes: 8c8c383c04 ("mm: memcontrol: try harder to set a new memory.high")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200728135210.379885-1-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:26 -07:00
Yafang Shao 1378b37d03 memcg, oom: check memcg margin for parallel oom
Memcg oom killer invocation is synchronized by the global oom_lock and
tasks are sleeping on the lock while somebody is selecting the victim or
potentially race with the oom_reaper is releasing the victim's memory.
This can result in a pointless oom killer invocation because a waiter
might be racing with the oom_reaper

        P1              oom_reaper              P2
                        oom_reap_task           mutex_lock(oom_lock)
                                                out_of_memory # no victim because we have one already
                        __oom_reap_task_mm      mute_unlock(oom_lock)
 mutex_lock(oom_lock)
                        set MMF_OOM_SKIP
 select_bad_process
 # finds a new victim

The page allocator prevents from this race by trying to allocate after the
lock can be acquired (in __alloc_pages_may_oom) which acts as a last
minute check.  Moreover page allocator simply doesn't block on the
oom_lock and simply retries the whole reclaim process.

Memcg oom killer should do the last minute check as well.  Call
mem_cgroup_margin to do that.  Trylock on the oom_lock could be done as
well but this doesn't seem to be necessary at this stage.

[mhocko@kernel.org: commit log]

Suggested-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/1594735034-19190-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down 45c7f7e1ef mm, memcg: decouple e{low,min} state mutations from protection checks
mem_cgroup_protected currently is both used to set effective low and min
and return a mem_cgroup_protection based on the result.  As a user, this
can be a little unexpected: it appears to be a simple predicate function,
if not for the big warning in the comment above about the order in which
it must be executed.

This change makes it so that we separate the state mutations from the
actual protection checks, which makes it more obvious where we need to be
careful mutating internal state, and where we are simply checking and
don't need to worry about that.

[mhocko@suse.com - don't check protection on root memcgs]

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Link: http://lkml.kernel.org/r/ff3f915097fcee9f6d7041c084ef92d16aaeb56a.1594638158.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Yafang Shao 22f7496f0b mm, memcg: avoid stale protection values when cgroup is above protection
Patch series "mm, memcg: memory.{low,min} reclaim fix & cleanup", v4.

This series contains a fix for a edge case in my earlier protection
calculation patches, and a patch to make the area overall a little more
robust to hopefully help avoid this in future.

This patch (of 2):

A cgroup can have both memory protection and a memory limit to isolate it
from its siblings in both directions - for example, to prevent it from
being shrunk below 2G under high pressure from outside, but also from
growing beyond 4G under low pressure.

Commit 9783aa9917 ("mm, memcg: proportional memory.{low,min} reclaim")
implemented proportional scan pressure so that multiple siblings in excess
of their protection settings don't get reclaimed equally but instead in
accordance to their unprotected portion.

During limit reclaim, this proportionality shouldn't apply of course:
there is no competition, all pressure is from within the cgroup and should
be applied as such.  Reclaim should operate at full efficiency.

However, mem_cgroup_protected() never expected anybody to look at the
effective protection values when it indicated that the cgroup is above its
protection.  As a result, a query during limit reclaim may return stale
protection values that were calculated by a previous reclaim cycle in
which the cgroup did have siblings.

When this happens, reclaim is unnecessarily hesitant and potentially slow
to meet the desired limit.  In theory this could lead to premature OOM
kills, although it's not obvious this has occurred in practice.

Workaround the problem by special casing reclaim roots in
mem_cgroup_protection.  These memcgs are never participating in the
reclaim protection because the reclaim is internal.

We have to ignore effective protection values for reclaim roots because
mem_cgroup_protected might be called from racing reclaim contexts with
different roots.  Calculation is relying on root -> leaf tree traversal
therefore top-down reclaim protection invariants should hold.  The only
exception is the reclaim root which should have effective protection set
to 0 but that would be problematic for the following setup:

 Let's have global and A's reclaim in parallel:
  |
  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
  |\
  | C (low = 1G, usage = 2.5G)
  B (low = 1G, usage = 0.5G)

 for A reclaim we have
 B.elow = B.low
 C.elow = C.low

 For the global reclaim
 A.elow = A.low
 B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
 C.elow = min(C.usage, C.low)

 With the effective values resetting we have A reclaim
 A.elow = 0
 B.elow = B.low
 C.elow = C.low

 and global reclaim could see the above and then
 B.elow = C.elow = 0 because children_low_usage > A.elow

Which means that protected memcgs would get reclaimed.

In future we would like to make mem_cgroup_protected more robust against
racing reclaim contexts but that is likely more complex solution than this
simple workaround.

[hannes@cmpxchg.org - large part of the changelog]
[mhocko@suse.com - workaround explanation]
[chris@chrisdown.name - retitle]

Fixes: 9783aa9917 ("mm, memcg: proportional memory.{low,min} reclaim")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/cover.1594638158.git.chris@chrisdown.name
Link: http://lkml.kernel.org/r/044fb8ecffd001c7905d27c0c2ad998069fdc396.1594638158.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down d977aa939f mm, memcg: unify reclaim retry limits with page allocator
Reclaim retries have been set to 5 since the beginning of time in
commit 66e1707bc3 ("Memory controller: add per cgroup LRU and
reclaim").  However, we now have a generally agreed-upon standard for
page reclaim: MAX_RECLAIM_RETRIES (currently 16), added many years later
in commit 0a0337e0d1 ("mm, oom: rework oom detection").

In the absence of a compelling reason to declare an OOM earlier in memcg
context than page allocator context, it seems reasonable to supplant
MEM_CGROUP_RECLAIM_RETRIES with MAX_RECLAIM_RETRIES, making the page
allocator and memcg internals more similar in semantics when reclaim
fails to produce results, avoiding premature OOMs or throttling.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/da557856c9c7654308eaff4eedc1952a95e8df5f.1594640214.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Chris Down b3ff92916a mm, memcg: reclaim more aggressively before high allocator throttling
Patch series "mm, memcg: reclaim harder before high throttling", v2.

This patch (of 2):

In Facebook production, we've seen cases where cgroups have been put into
allocator throttling even when they appear to have a lot of slack file
caches which should be trivially reclaimable.

Looking more closely, the problem is that we only try a single cgroup
reclaim walk for each return to usermode before calculating whether or not
we should throttle.  This single attempt doesn't produce enough pressure
to shrink for cgroups with a rapidly growing amount of file caches prior
to entering allocator throttling.

As an example, we see that threads in an affected cgroup are stuck in
allocator throttling:

    # for i in $(cat cgroup.threads); do
    >     grep over_high "/proc/$i/stack"
    > done
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150
    [<0>] mem_cgroup_handle_over_high+0x10b/0x150

...however, there is no I/O pressure reported by PSI, despite a lot of
slack file pages:

    # cat memory.pressure
    some avg10=78.50 avg60=84.99 avg300=84.53 total=5702440903
    full avg10=78.50 avg60=84.99 avg300=84.53 total=5702116959
    # cat io.pressure
    some avg10=0.00 avg60=0.00 avg300=0.00 total=78051391
    full avg10=0.00 avg60=0.00 avg300=0.00 total=78049640
    # grep _file memory.stat
    inactive_file 1370939392
    active_file 661635072

This patch changes the behaviour to retry reclaim either until the current
task goes below the 10ms grace period, or we are making no reclaim
progress at all.  In the latter case, we enter reclaim throttling as
before.

To a user, there's no intuitive reason for the reclaim behaviour to differ
from hitting memory.high as part of a new allocation, as opposed to
hitting memory.high because someone lowered its value.  As such this also
brings an added benefit: it unifies the reclaim behaviour between the two.

There's precedent for this behaviour: we already do reclaim retries when
writing to memory.{high,max}, in max reclaim, and in the page allocator
itself.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/cover.1594640214.git.chris@chrisdown.name
Link: http://lkml.kernel.org/r/a4e23b59e9ef499b575ae73a8120ee089b7d3373.1594640214.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 536d3bf261 mm: memcontrol: avoid workload stalls when lowering memory.high
Memory.high limit is implemented in a way such that the kernel penalizes
all threads which are allocating a memory over the limit.  Forcing all
threads into the synchronous reclaim and adding some artificial delays
allows to slow down the memory consumption and potentially give some time
for userspace oom handlers/resource control agents to react.

It works nicely if the memory usage is hitting the limit from below,
however it works sub-optimal if a user adjusts memory.high to a value way
below the current memory usage.  It basically forces all workload threads
(doing any memory allocations) into the synchronous reclaim and sleep.
This makes the workload completely unresponsive for a long period of time
and can also lead to a system-wide contention on lru locks.  It can happen
even if the workload is not actually tight on memory and has, for example,
a ton of cold pagecache.

In the current implementation writing to memory.high causes an atomic
update of page counter's high value followed by an attempt to reclaim
enough memory to fit into the new limit.  To fix the problem described
above, all we need is to change the order of execution: try to push the
memory usage under the limit first, and only then set the new high limit.

Reported-by: Domas Mituzas <domas@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Link: http://lkml.kernel.org/r/20200709194718.189231-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Shakeel Butt 991e767385 mm: memcontrol: account kernel stack per node
Currently the kernel stack is being accounted per-zone.  There is no need
to do that.  In addition due to being per-zone, memcg has to keep a
separate MEMCG_KERNEL_STACK_KB.  Make the stat per-node and deprecate
MEMCG_KERNEL_STACK_KB as memcg_stat_item is an extension of
node_stat_item.  In addition localize the kernel stack stats updates to
account_kernel_stack().

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200630161539.1759185-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 10befea91b mm: memcg/slab: use a single set of kmem_caches for all allocations
Instead of having two sets of kmem_caches: one for system-wide and
non-accounted allocations and the second one shared by all accounted
allocations, we can use just one.

The idea is simple: space for obj_cgroup metadata can be allocated on
demand and filled only for accounted allocations.

It allows to remove a bunch of code which is required to handle kmem_cache
clones for accounted allocations.  There is no more need to create them,
accumulate statistics, propagate attributes, etc.  It's a quite
significant simplification.

Also, because the total number of slab_caches is reduced almost twice (not
all kmem_caches have a memcg clone), some additional memory savings are
expected.  On my devvm it additionally saves about 3.5% of slab memory.

[guro@fb.com: fix build on MIPS]
  Link: http://lkml.kernel.org/r/20200717214810.3733082-1-guro@fb.com

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-18-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 272911a4ad mm: memcg/slab: remove memcg_kmem_get_cache()
The memcg_kmem_get_cache() function became really trivial, so let's just
inline it into the single call point: memcg_slab_pre_alloc_hook().

It will make the code less bulky and can also help the compiler to
generate a better code.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-15-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin d797b7d054 mm: memcg/slab: simplify memcg cache creation
Because the number of non-root kmem_caches doesn't depend on the number of
memory cgroups anymore and is generally not very big, there is no more
need for a dedicated workqueue.

Also, as there is no more need to pass any arguments to the
memcg_create_kmem_cache() except the root kmem_cache, it's possible to
just embed the work structure into the kmem_cache and avoid the dynamic
allocation of the work structure.

This will also simplify the synchronization: for each root kmem_cache
there is only one work.  So there will be no more concurrent attempts to
create a non-root kmem_cache for a root kmem_cache: the second and all
following attempts to queue the work will fail.

On the kmem_cache destruction path there is no more need to call the
expensive flush_workqueue() and wait for all pending works to be finished.
Instead, cancel_work_sync() can be used to cancel/wait for only one work.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-14-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 9855609bde mm: memcg/slab: use a single set of kmem_caches for all accounted allocations
This is fairly big but mostly red patch, which makes all accounted slab
allocations use a single set of kmem_caches instead of creating a separate
set for each memory cgroup.

Because the number of non-root kmem_caches is now capped by the number of
root kmem_caches, there is no need to shrink or destroy them prematurely.
They can be perfectly destroyed together with their root counterparts.
This allows to dramatically simplify the management of non-root
kmem_caches and delete a ton of code.

This patch performs the following changes:
1) introduces memcg_params.memcg_cache pointer to represent the
   kmem_cache which will be used for all non-root allocations
2) reuses the existing memcg kmem_cache creation mechanism
   to create memcg kmem_cache on the first allocation attempt
3) memcg kmem_caches are named <kmemcache_name>-memcg,
   e.g. dentry-memcg
4) simplifies memcg_kmem_get_cache() to just return memcg kmem_cache
   or schedule it's creation and return the root cache
5) removes almost all non-root kmem_cache management code
   (separate refcounter, reparenting, shrinking, etc)
6) makes slab debugfs to display root_mem_cgroup css id and never
   show :dead and :deact flags in the memcg_slabinfo attribute.

Following patches in the series will simplify the kmem_cache creation.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-13-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:25 -07:00
Roman Gushchin 0f876e4dc5 mm: memcg/slab: move memcg_kmem_bypass() to memcontrol.h
To make the memcg_kmem_bypass() function available outside of the
memcontrol.c, let's move it to memcontrol.h.  The function is small and
nicely fits into static inline sort of functions.

It will be used from the slab code.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-12-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin 4330a26bc4 mm: memcg/slab: deprecate memory.kmem.slabinfo
Deprecate memory.kmem.slabinfo.

An empty file will be presented if corresponding config options are
enabled.

The interface is implementation dependent, isn't present in cgroup v2, and
is generally useful only for core mm debugging purposes.  In other words,
it doesn't provide any value for the absolute majority of users.

A drgn-based replacement can be found in
tools/cgroup/memcg_slabinfo.py.  It does support cgroup v1 and v2,
mimics memory.kmem.slabinfo output and also allows to get any
additional information without a need to recompile the kernel.

If a drgn-based solution is too slow for a task, a bpf-based tracing tool
can be used, which can easily keep track of all slab allocations belonging
to a memory cgroup.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-11-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin 964d4bd370 mm: memcg/slab: save obj_cgroup for non-root slab objects
Store the obj_cgroup pointer in the corresponding place of
page->obj_cgroups for each allocated non-root slab object.  Make sure that
each allocated object holds a reference to obj_cgroup.

Objcg pointer is obtained from the memcg->objcg dereferencing in
memcg_kmem_get_cache() and passed from pre_alloc_hook to post_alloc_hook.
Then in case of successful allocation(s) it's getting stored in the
page->obj_cgroups vector.

The objcg obtaining part look a bit bulky now, but it will be simplified
by next commits in the series.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-9-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin 286e04b8ed mm: memcg/slab: allocate obj_cgroups for non-root slab pages
Allocate and release memory to store obj_cgroup pointers for each non-root
slab page. Reuse page->mem_cgroup pointer to store a pointer to the
allocated space.

This commit temporarily increases the memory footprint of the kernel memory
accounting. To store obj_cgroup pointers we'll need a place for an
objcg_pointer for each allocated object. However, the following patches
in the series will enable sharing of slab pages between memory cgroups,
which will dramatically increase the total slab utilization. And the final
memory footprint will be significantly smaller than before.

To distinguish between obj_cgroups and memcg pointers in case when it's
not obvious which one is used (as in page_cgroup_ino()), let's always set
the lowest bit in the obj_cgroup case. The original obj_cgroups
pointer is marked to be ignored by kmemleak, which otherwise would
report a memory leak for each allocated vector.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-8-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin bf4f059954 mm: memcg/slab: obj_cgroup API
Obj_cgroup API provides an ability to account sub-page sized kernel
objects, which potentially outlive the original memory cgroup.

The top-level API consists of the following functions:
  bool obj_cgroup_tryget(struct obj_cgroup *objcg);
  void obj_cgroup_get(struct obj_cgroup *objcg);
  void obj_cgroup_put(struct obj_cgroup *objcg);

  int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
  void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);

  struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg);
  struct obj_cgroup *get_obj_cgroup_from_current(void);

Object cgroup is basically a pointer to a memory cgroup with a per-cpu
reference counter.  It substitutes a memory cgroup in places where it's
necessary to charge a custom amount of bytes instead of pages.

All charged memory rounded down to pages is charged to the corresponding
memory cgroup using __memcg_kmem_charge().

It implements reparenting: on memcg offlining it's getting reattached to
the parent memory cgroup.  Each online memory cgroup has an associated
active object cgroup to handle new allocations and the list of all
attached object cgroups.  On offlining of a cgroup this list is reparented
and for each object cgroup in the list the memcg pointer is swapped to the
parent memory cgroup.  It prevents long-living objects from pinning the
original memory cgroup in the memory.

The implementation is based on byte-sized per-cpu stocks.  A sub-page
sized leftover is stored in an atomic field, which is a part of obj_cgroup
object.  So on cgroup offlining the leftover is automatically reparented.

memcg->objcg is rcu protected.  objcg->memcg is a raw pointer, which is
always pointing at a memory cgroup, but can be atomically swapped to the
parent memory cgroup.  So a user must ensure the lifetime of the
cgroup, e.g.  grab rcu_read_lock or css_set_lock.

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200623174037.3951353-7-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Johannes Weiner 1a3e1f4096 mm: memcontrol: decouple reference counting from page accounting
The reference counting of a memcg is currently coupled directly to how
many 4k pages are charged to it.  This doesn't work well with Roman's new
slab controller, which maintains pools of objects and doesn't want to keep
an extra balance sheet for the pages backing those objects.

This unusual refcounting design (reference counts usually track pointers
to an object) is only for historical reasons: memcg used to not take any
css references and simply stalled offlining until all charges had been
reparented and the page counters had dropped to zero.  When we got rid of
the reparenting requirement, the simple mechanical translation was to take
a reference for every charge.

More historical context can be found in commit e8ea14cc6e ("mm:
memcontrol: take a css reference for each charged page"), commit
64f2199389 ("mm: memcontrol: remove obsolete kmemcg pinning tricks") and
commit b2052564e6 ("mm: memcontrol: continue cache reclaim from offlined
groups").

The new slab controller exposes the limitations in this scheme, so let's
switch it to a more idiomatic reference counting model based on actual
kernel pointers to the memcg:

- The per-cpu stock holds a reference to the memcg its caching

- User pages hold a reference for their page->mem_cgroup. Transparent
  huge pages will no longer acquire tail references in advance, we'll
  get them if needed during the split.

- Kernel pages hold a reference for their page->mem_cgroup

- Pages allocated in the root cgroup will acquire and release css
  references for simplicity. css_get() and css_put() optimize that.

- The current memcg_charge_slab() already hacked around the per-charge
  references; this change gets rid of that as well.

- tcp accounting will handle reference in mem_cgroup_sk_{alloc,free}

Roman:
1) Rebased on top of the current mm tree: added css_get() in
   mem_cgroup_charge(), dropped mem_cgroup_try_charge() part
2) I've reformatted commit references in the commit log to make
   checkpatch.pl happy.

[hughd@google.com: remove css_put_many() from __mem_cgroup_clear_mc()]
  Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007302011450.2347@eggly.anvils

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20200623174037.3951353-6-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin d42f3245c7 mm: memcg: convert vmstat slab counters to bytes
In order to prepare for per-object slab memory accounting, convert
NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE vmstat items to bytes.

To make it obvious, rename them to NR_SLAB_RECLAIMABLE_B and
NR_SLAB_UNRECLAIMABLE_B (similar to NR_KERNEL_STACK_KB).

Internally global and per-node counters are stored in pages, however memcg
and lruvec counters are stored in bytes.  This scheme may look weird, but
only for now.  As soon as slab pages will be shared between multiple
cgroups, global and node counters will reflect the total number of slab
pages.  However memcg and lruvec counters will be used for per-memcg slab
memory tracking, which will take separate kernel objects in the account.
Keeping global and node counters in pages helps to avoid additional
overhead.

The size of slab memory shouldn't exceed 4Gb on 32-bit machines, so it
will fit into atomic_long_t we use for vmstats.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin ea426c2a7d mm: memcg: prepare for byte-sized vmstat items
To implement per-object slab memory accounting, we need to convert slab
vmstat counters to bytes.  Actually, out of 4 levels of counters: global,
per-node, per-memcg and per-lruvec only two last levels will require
byte-sized counters.  It's because global and per-node counters will be
counting the number of slab pages, and per-memcg and per-lruvec will be
counting the amount of memory taken by charged slab objects.

Converting all vmstat counters to bytes or even all slab counters to bytes
would introduce an additional overhead.  So instead let's store global and
per-node counters in pages, and memcg and lruvec counters in bytes.

To make the API clean all access helpers (both on the read and write
sides) are dealing with bytes.

To avoid back-and-forth conversions a new flavor of read-side helpers is
introduced, which always returns values in pages: node_page_state_pages()
and global_node_page_state_pages().

Actually new helpers are just reading raw values.  Old helpers are simple
wrappers, which will complain on an attempt to read byte value, because at
the moment no one actually needs bytes.

Thanks to Johannes Weiner for the idea of having the byte-sized API on top
of the page-sized internal storage.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-3-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin eedc4e5a14 mm: memcg: factor out memcg- and lruvec-level changes out of __mod_lruvec_state()
Patch series "The new cgroup slab memory controller", v7.

The patchset moves the accounting from the page level to the object level.
It allows to share slab pages between memory cgroups.  This leads to a
significant win in the slab utilization (up to 45%) and the corresponding
drop in the total kernel memory footprint.  The reduced number of
unmovable slab pages should also have a positive effect on the memory
fragmentation.

The patchset makes the slab accounting code simpler: there is no more need
in the complicated dynamic creation and destruction of per-cgroup slab
caches, all memory cgroups use a global set of shared slab caches.  The
lifetime of slab caches is not more connected to the lifetime of memory
cgroups.

The more precise accounting does require more CPU, however in practice the
difference seems to be negligible.  We've been using the new slab
controller in Facebook production for several months with different
workloads and haven't seen any noticeable regressions.  What we've seen
were memory savings in order of 1 GB per host (it varied heavily depending
on the actual workload, size of RAM, number of CPUs, memory pressure,
etc).

The third version of the patchset added yet another step towards the
simplification of the code: sharing of slab caches between accounted and
non-accounted allocations.  It comes with significant upsides (most
noticeable, a complete elimination of dynamic slab caches creation) but
not without some regression risks, so this change sits on top of the
patchset and is not completely merged in.  So in the unlikely event of a
noticeable performance regression it can be reverted separately.

The slab memory accounting works in exactly the same way for SLAB and
SLUB.  With both allocators the new controller shows significant memory
savings, with SLUB the difference is bigger.  On my 16-core desktop
machine running Fedora 32 the size of the slab memory measured after the
start of the system was lower by 58% and 38% with SLUB and SLAB
correspondingly.

As an estimation of a potential CPU overhead, below are results of
slab_bulk_test01 test, kindly provided by Jesper D.  Brouer.  He also
helped with the evaluation of results.

The test can be found here: https://github.com/netoptimizer/prototype-kernel/
The smallest number in each row should be picked for a comparison.

SLUB-patched - bulk-API
 - SLUB-patched : bulk_quick_reuse objects=1 : 187 -  90 - 224  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=2 : 110 -  53 - 133  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=3 :  88 -  95 -  42  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=4 :  91 -  85 -  36  cycles(tsc)
 - SLUB-patched : bulk_quick_reuse objects=8 :  32 -  66 -  32  cycles(tsc)

SLUB-original -  bulk-API
 - SLUB-original: bulk_quick_reuse objects=1 :  87 -  87 - 142  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=2 :  52 -  53 -  53  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=3 :  42 -  42 -  91  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=4 :  91 -  37 -  37  cycles(tsc)
 - SLUB-original: bulk_quick_reuse objects=8 :  31 -  79 -  76  cycles(tsc)

SLAB-patched -  bulk-API
 - SLAB-patched : bulk_quick_reuse objects=1 :  67 -  67 - 140  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=2 :  55 -  46 -  46  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=3 :  93 -  94 -  39  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=4 :  35 -  88 -  85  cycles(tsc)
 - SLAB-patched : bulk_quick_reuse objects=8 :  30 -  30 -  30  cycles(tsc)

SLAB-original-  bulk-API
 - SLAB-original: bulk_quick_reuse objects=1 : 143 - 136 -  67  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=2 :  45 -  46 -  46  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=3 :  38 -  39 -  39  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=4 :  35 -  87 -  87  cycles(tsc)
 - SLAB-original: bulk_quick_reuse objects=8 :  29 -  66 -  30  cycles(tsc)

This patch (of 19):

To convert memcg and lruvec slab counters to bytes there must be a way to
change these counters without touching node counters.  Factor out
__mod_memcg_lruvec_state() out of __mod_lruvec_state().

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200623174037.3951353-1-guro@fb.com
Link: http://lkml.kernel.org/r/20200623174037.3951353-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Roman Gushchin d648bcc7fe mm: kmem: make memcg_kmem_enabled() irreversible
Historically the kernel memory accounting was an opt-in feature, which
could be enabled for individual cgroups.  But now it's not true, and it's
on by default both on cgroup v1 and cgroup v2.  And as long as a user has
at least one non-root memory cgroup, the kernel memory accounting is on.
So in most setups it's either always on (if memory cgroups are in use and
kmem accounting is not disabled), either always off (otherwise).

memcg_kmem_enabled() is used in many places to guard the kernel memory
accounting code.  If memcg_kmem_enabled() can reverse from returning true
to returning false (as now), we can't rely on it on release paths and have
to check if it was on before.

If we'll make memcg_kmem_enabled() irreversible (always returning true
after returning it for the first time), it'll make the general logic more
simple and robust.  It also will allow to guard some checks which
otherwise would stay unguarded.

Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200702180926.1330769-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:24 -07:00
Linus Torvalds 99ea1521a0 Remove uninitialized_var() macro for v5.9-rc1
- Clean up non-trivial uses of uninitialized_var()
 - Update documentation and checkpatch for uninitialized_var() removal
 - Treewide removal of uninitialized_var()
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAl8oYLQWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJsfjEACvf0D3WL3H7sLHtZ2HeMwOgAzq
 il08t6vUscINQwiIIK3Be43ok3uQ1Q+bj8sr2gSYTwunV2IYHFferzgzhyMMno3o
 XBIGd1E+v1E4DGBOiRXJvacBivKrfvrdZ7AWiGlVBKfg2E0fL1aQbe9AYJ6eJSbp
 UGqkBkE207dugS5SQcwrlk1tWKUL089lhDAPd7iy/5RK76OsLRCJFzIerLHF2ZK2
 BwvA+NWXVQI6pNZ0aRtEtbbxwEU4X+2J/uaXH5kJDszMwRrgBT2qoedVu5LXFPi8
 +B84IzM2lii1HAFbrFlRyL/EMueVFzieN40EOB6O8wt60Y4iCy5wOUzAdZwFuSTI
 h0xT3JI8BWtpB3W+ryas9cl9GoOHHtPA8dShuV+Y+Q2bWe1Fs6kTl2Z4m4zKq56z
 63wQCdveFOkqiCLZb8s6FhnS11wKtAX4czvXRXaUPgdVQS1Ibyba851CRHIEY+9I
 AbtogoPN8FXzLsJn7pIxHR4ADz+eZ0dQ18f2hhQpP6/co65bYizNP5H3h+t9hGHG
 k3r2k8T+jpFPaddpZMvRvIVD8O2HvJZQTyY6Vvneuv6pnQWtr2DqPFn2YooRnzoa
 dbBMtpon+vYz6OWokC5QNWLqHWqvY9TmMfcVFUXE4AFse8vh4wJ8jJCNOFVp8On+
 drhmmImUr1YylrtVOw==
 =xHmk
 -----END PGP SIGNATURE-----

Merge tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull uninitialized_var() macro removal from Kees Cook:
 "This is long overdue, and has hidden too many bugs over the years. The
  series has several "by hand" fixes, and then a trivial treewide
  replacement.

   - Clean up non-trivial uses of uninitialized_var()

   - Update documentation and checkpatch for uninitialized_var() removal

   - Treewide removal of uninitialized_var()"

* tag 'uninit-macro-v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  compiler: Remove uninitialized_var() macro
  treewide: Remove uninitialized_var() usage
  checkpatch: Remove awareness of uninitialized_var() macro
  mm/debug_vm_pgtable: Remove uninitialized_var() usage
  f2fs: Eliminate usage of uninitialized_var() macro
  media: sur40: Remove uninitialized_var() usage
  KVM: PPC: Book3S PR: Remove uninitialized_var() usage
  clk: spear: Remove uninitialized_var() usage
  clk: st: Remove uninitialized_var() usage
  spi: davinci: Remove uninitialized_var() usage
  ide: Remove uninitialized_var() usage
  rtlwifi: rtl8192cu: Remove uninitialized_var() usage
  b43: Remove uninitialized_var() usage
  drbd: Remove uninitialized_var() usage
  x86/mm/numa: Remove uninitialized_var() usage
  docs: deprecated.rst: Add uninitialized_var()
2020-08-04 13:49:43 -07:00
Hugh Dickins 8d22a93510 mm/memcg: fix refcount error while moving and swapping
It was hard to keep a test running, moving tasks between memcgs with
move_charge_at_immigrate, while swapping: mem_cgroup_id_get_many()'s
refcount is discovered to be 0 (supposedly impossible), so it is then
forced to REFCOUNT_SATURATED, and after thousands of warnings in quick
succession, the test is at last put out of misery by being OOM killed.

This is because of the way moved_swap accounting was saved up until the
task move gets completed in __mem_cgroup_clear_mc(), deferred from when
mem_cgroup_move_swap_account() actually exchanged old and new ids.
Concurrent activity can free up swap quicker than the task is scanned,
bringing id refcount down 0 (which should only be possible when
offlining).

Just skip that optimization: do that part of the accounting immediately.

Fixes: 615d66c37c ("mm: memcontrol: fix memcg id ref counter on swap charge move")
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.2007071431050.4726@eggly.anvils
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Bhupesh Sharma 82ff165cd3 mm/memcontrol: fix OOPS inside mem_cgroup_get_nr_swap_pages()
Prabhakar reported an OOPS inside mem_cgroup_get_nr_swap_pages()
function in a corner case seen on some arm64 boards when kdump kernel
runs with "cgroup_disable=memory" passed to the kdump kernel via
bootargs.

The root-cause behind the same is that currently mem_cgroup_swap_init()
function is implemented as a subsys_initcall() call instead of a
core_initcall(), this means 'cgroup_memory_noswap' still remains set to
the default value (false) even when memcg is disabled via
"cgroup_disable=memory" boot parameter.

This may result in premature OOPS inside mem_cgroup_get_nr_swap_pages()
function in corner cases:

  Unable to handle kernel NULL pointer dereference at virtual address 0000000000000188
  Mem abort info:
    ESR = 0x96000006
    EC = 0x25: DABT (current EL), IL = 32 bits
    SET = 0, FnV = 0
    EA = 0, S1PTW = 0
  Data abort info:
    ISV = 0, ISS = 0x00000006
    CM = 0, WnR = 0
  [0000000000000188] user address but active_mm is swapper
  Internal error: Oops: 96000006 [#1] SMP
  Modules linked in:
  <..snip..>
  Call trace:
    mem_cgroup_get_nr_swap_pages+0x9c/0xf4
    shrink_lruvec+0x404/0x4f8
    shrink_node+0x1a8/0x688
    do_try_to_free_pages+0xe8/0x448
    try_to_free_pages+0x110/0x230
    __alloc_pages_slowpath.constprop.106+0x2b8/0xb48
    __alloc_pages_nodemask+0x2ac/0x2f8
    alloc_page_interleave+0x20/0x90
    alloc_pages_current+0xdc/0xf8
    atomic_pool_expand+0x60/0x210
    __dma_atomic_pool_init+0x50/0xa4
    dma_atomic_pool_init+0xac/0x158
    do_one_initcall+0x50/0x218
    kernel_init_freeable+0x22c/0x2d0
    kernel_init+0x18/0x110
    ret_from_fork+0x10/0x18
  Code: aa1403e3 91106000 97f82a27 14000011 (f940c663)
  ---[ end trace 9795948475817de4 ]---
  Kernel panic - not syncing: Fatal exception
  Rebooting in 10 seconds..

Fixes: eccb52e788 ("mm: memcontrol: prepare swap controller setup for integration")
Reported-by: Prabhakar Kushwaha <pkushwaha@marvell.com>
Signed-off-by: Bhupesh Sharma <bhsharma@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: James Morse <james.morse@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Link: http://lkml.kernel.org/r/1593641660-13254-2-git-send-email-bhsharma@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-07-24 12:42:41 -07:00
Kees Cook 3f649ab728 treewide: Remove uninitialized_var() usage
Using uninitialized_var() is dangerous as it papers over real bugs[1]
(or can in the future), and suppresses unrelated compiler warnings
(e.g. "unused variable"). If the compiler thinks it is uninitialized,
either simply initialize the variable or make compiler changes.

In preparation for removing[2] the[3] macro[4], remove all remaining
needless uses with the following script:

git grep '\buninitialized_var\b' | cut -d: -f1 | sort -u | \
	xargs perl -pi -e \
		's/\buninitialized_var\(([^\)]+)\)/\1/g;
		 s:\s*/\* (GCC be quiet|to make compiler happy) \*/$::g;'

drivers/video/fbdev/riva/riva_hw.c was manually tweaked to avoid
pathological white-space.

No outstanding warnings were found building allmodconfig with GCC 9.3.0
for x86_64, i386, arm64, arm, powerpc, powerpc64le, s390x, mips, sparc64,
alpha, and m68k.

[1] https://lore.kernel.org/lkml/20200603174714.192027-1-glider@google.com/
[2] https://lore.kernel.org/lkml/CA+55aFw+Vbj0i=1TGqCR5vQkCzWJ0QxK6CernOU6eedsudAixw@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CA+55aFwgbgqhbp1fkxvRKEpzyR5J8n1vKT1VZdz9knmPuXhOeg@mail.gmail.com/
[4] https://lore.kernel.org/lkml/CA+55aFz2500WfbKXAx8s67wrm9=yVJu65TpLgN_ybYNv0VEOKA@mail.gmail.com/

Reviewed-by: Leon Romanovsky <leonro@mellanox.com> # drivers/infiniband and mlx4/mlx5
Acked-by: Jason Gunthorpe <jgg@mellanox.com> # IB
Acked-by: Kalle Valo <kvalo@codeaurora.org> # wireless drivers
Reviewed-by: Chao Yu <yuchao0@huawei.com> # erofs
Signed-off-by: Kees Cook <keescook@chromium.org>
2020-07-16 12:35:15 -07:00
Chris Down 03960e3318 mm/memcontrol.c: prevent missed memory.low load tears
Looks like one of these got missed when massaging in f86b810c26 ("mm,
memcg: prevent memory.low load/store tearing") with other linux-mm
changes.

Link: http://lkml.kernel.org/r/20200612174437.GA391453@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Reported-by: Michal Koutny <mkoutny@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Muchun Song 3a98990ae2 mm/memcontrol.c: add missed css_put()
We should put the css reference when memory allocation failed.

Link: http://lkml.kernel.org/r/20200614122653.98829-1-songmuchun@bytedance.com
Fixes: f0a3a24b53 ("mm: memcg/slab: rework non-root kmem_cache lifecycle management")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Johannes Weiner cd324edce5 mm: memcontrol: handle div0 crash race condition in memory.low
Tejun reports seeing rare div0 crashes in memory.low stress testing:

  RIP: 0010:mem_cgroup_calculate_protection+0xed/0x150
  Code: 0f 46 d1 4c 39 d8 72 57 f6 05 16 d6 42 01 40 74 1f 4c 39 d8 76 1a 4c 39 d1 76 15 4c 29 d1 4c 29 d8 4d 29 d9 31 d2 48 0f af c1 <49> f7 f1 49 01 c2 4c 89 96 38 01 00 00 5d c3 48 0f af c7 31 d2 49
  RSP: 0018:ffffa14e01d6fcd0 EFLAGS: 00010246
  RAX: 000000000243e384 RBX: 0000000000000000 RCX: 0000000000008f4b
  RDX: 0000000000000000 RSI: ffff8b89bee84000 RDI: 0000000000000000
  RBP: ffffa14e01d6fcd0 R08: ffff8b89ca7d40f8 R09: 0000000000000000
  R10: 0000000000000000 R11: 00000000006422f7 R12: 0000000000000000
  R13: ffff8b89d9617000 R14: ffff8b89bee84000 R15: ffffa14e01d6fdb8
  FS:  0000000000000000(0000) GS:ffff8b8a1f1c0000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f93b1fc175b CR3: 000000016100a000 CR4: 0000000000340ea0
  Call Trace:
    shrink_node+0x1e5/0x6c0
    balance_pgdat+0x32d/0x5f0
    kswapd+0x1d7/0x3d0
    kthread+0x11c/0x160
    ret_from_fork+0x1f/0x30

This happens when parent_usage == siblings_protected.

We check that usage is bigger than protected, which should imply
parent_usage being bigger than siblings_protected.  However, we don't
read (or even update) these values atomically, and they can be out of
sync as the memory state changes under us.  A bit of fluctuation around
the target protection isn't a big deal, but we need to handle the div0
case.

Check the parent state explicitly to make sure we have a reasonable
positive value for the divisor.

Link: http://lkml.kernel.org/r/20200615140658.601684-1-hannes@cmpxchg.org
Fixes: 8a931f8013 ("mm: memcontrol: recursive memory.low protection")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:37 -07:00
Michel Lespinasse c1e8d7c6a7 mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Michel Lespinasse d8ed45c5dc mmap locking API: use coccinelle to convert mmap_sem rwsem call sites
This change converts the existing mmap_sem rwsem calls to use the new mmap
locking API instead.

The change is generated using coccinelle with the following rule:

// spatch --sp-file mmap_lock_api.cocci --in-place --include-headers --dir .

@@
expression mm;
@@
(
-init_rwsem
+mmap_init_lock
|
-down_write
+mmap_write_lock
|
-down_write_killable
+mmap_write_lock_killable
|
-down_write_trylock
+mmap_write_trylock
|
-up_write
+mmap_write_unlock
|
-downgrade_write
+mmap_write_downgrade
|
-down_read
+mmap_read_lock
|
-down_read_killable
+mmap_read_lock_killable
|
-down_read_trylock
+mmap_read_trylock
|
-up_read
+mmap_read_unlock
)
-(&mm->mmap_sem)
+(mm)

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-5-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Ethon Paul b8f2935f72 mm, memcg: fix some typos in memcontrol.c
There are some typos in comment, fix them.

s/responsiblity/responsibility
s/oflline/offline

Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20200411064246.15781-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:24 -07:00
Johannes Weiner 1431d4d11a mm: base LRU balancing on an explicit cost model
Currently, scan pressure between the anon and file LRU lists is balanced
based on a mixture of reclaim efficiency and a somewhat vague notion of
"value" of having certain pages in memory over others.  That concept of
value is problematic, because it has caused us to count any event that
remotely makes one LRU list more or less preferrable for reclaim, even
when these events are not directly comparable and impose very different
costs on the system.  One example is referenced file pages that we still
deactivate and referenced anonymous pages that we actually rotate back to
the head of the list.

There is also conceptual overlap with the LRU algorithm itself.  By
rotating recently used pages instead of reclaiming them, the algorithm
already biases the applied scan pressure based on page value.  Thus, when
rebalancing scan pressure due to rotations, we should think of reclaim
cost, and leave assessing the page value to the LRU algorithm.

Lastly, considering both value-increasing as well as value-decreasing
events can sometimes cause the same type of event to be counted twice,
i.e.  how rotating a page increases the LRU value, while reclaiming it
succesfully decreases the value.  In itself this will balance out fine,
but it quietly skews the impact of events that are only recorded once.

The abstract metric of "value", the murky relationship with the LRU
algorithm, and accounting both negative and positive events make the
current pressure balancing model hard to reason about and modify.

This patch switches to a balancing model of accounting the concrete,
actually observed cost of reclaiming one LRU over another.  For now, that
cost includes pages that are scanned but rotated back to the list head.
Subsequent patches will add consideration for IO caused by refaulting of
recently evicted pages.

Replace struct zone_reclaim_stat with two cost counters in the lruvec, and
make everything that affects cost go through a new lru_note_cost()
function.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200520232525.798933-9-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner a0b5b4147f mm: memcontrol: update page->mem_cgroup stability rules
The previous patches have simplified the access rules around
page->mem_cgroup somewhat:

1. We never change page->mem_cgroup while the page is isolated by
   somebody else.  This was by far the biggest exception to our rules and
   it didn't stop at lock_page() or lock_page_memcg().

2. We charge pages before they get put into page tables now, so the
   somewhat fishy rule about "can be in page table as long as it's still
   locked" is now gone and boiled down to having an exclusive reference to
   the page.

Document the new rules.  Any of the following will stabilize the
page->mem_cgroup association:

- the page lock
- LRU isolation
- lock_page_memcg()
- exclusive access to the page

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-20-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner d9eb1ea2bf mm: memcontrol: delete unused lrucare handling
Swapin faults were the last event to charge pages after they had already
been put on the LRU list.  Now that we charge directly on swapin, the
lrucare portion of the charge code is unused.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-19-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner 2d1c498072 mm: memcontrol: make swap tracking an integral part of memory control
Without swap page tracking, users that are otherwise memory controlled can
easily escape their containment and allocate significant amounts of memory
that they're not being charged for.  That's because swap does readahead,
but without the cgroup records of who owned the page at swapout, readahead
pages don't get charged until somebody actually faults them into their
page table and we can identify an owner task.  This can be maliciously
exploited with MADV_WILLNEED, which triggers arbitrary readahead
allocations without charging the pages.

Make swap swap page tracking an integral part of memcg and remove the
Kconfig options.  In the first place, it was only made configurable to
allow users to save some memory.  But the overhead of tracking cgroup
ownership per swap page is minimal - 2 byte per page, or 512k per 1G of
swap, or 0.04%.  Saving that at the expense of broken containment
semantics is not something we should present as a coequal option.

The swapaccount=0 boot option will continue to exist, and it will
eliminate the page_counter overhead and hide the swap control files, but
it won't disable swap slot ownership tracking.

This patch makes sure we always have the cgroup records at swapin time;
the next patch will fix the actual bug by charging readahead swap pages at
swapin time rather than at fault time.

v2: fix double swap charge bug in cgroup1/cgroup2 code gating

[hannes@cmpxchg.org: fix crash with cgroup_disable=memory]
  Link: http://lkml.kernel.org/r/20200521215855.GB815153@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Link: http://lkml.kernel.org/r/20200508183105.225460-16-hannes@cmpxchg.org
Debugged-by: Hugh Dickins <hughd@google.com>
Debugged-by: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner eccb52e788 mm: memcontrol: prepare swap controller setup for integration
A few cleanups to streamline the swap controller setup:

- Replace the do_swap_account flag with cgroup_memory_noswap. This
  brings it in line with other functionality that is usually available
  unless explicitly opted out of - nosocket, nokmem.

- Remove the really_do_swap_account flag that stores the boot option
  and is later used to switch the do_swap_account. It's not clear why
  this indirection is/was necessary. Use do_swap_account directly.

- Minor coding style polishing

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-15-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner f0e45fb4da mm: memcontrol: drop unused try/commit/cancel charge API
There are no more users. RIP in peace.

[arnd@arndb.de: fix an unused-function warning]
  Link: http://lkml.kernel.org/r/20200528095640.151454-1-arnd@arndb.de
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-14-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:48 -07:00
Johannes Weiner 468c398233 mm: memcontrol: switch to native NR_ANON_THPS counter
With rmap memcg locking already in place for NR_ANON_MAPPED, it's just a
small step to remove the MEMCG_RSS_HUGE wart and switch memcg to the
native NR_ANON_THPS accounting sites.

[hannes@cmpxchg.org: fixes]
  Link: http://lkml.kernel.org/r/20200512121750.GA397968@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>	[build-tested]
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-12-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner be5d0a74c6 mm: memcontrol: switch to native NR_ANON_MAPPED counter
Memcg maintains a private MEMCG_RSS counter.  This divergence from the
generic VM accounting means unnecessary code overhead, and creates a
dependency for memcg that page->mapping is set up at the time of charging,
so that page types can be told apart.

Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counter of NR_ANON_MAPPED.  We use
lock_page_memcg() to stabilize page->mem_cgroup during rmap changes, the
same way we do for NR_FILE_MAPPED.

With the previous patch removing MEMCG_CACHE and the private NR_SHMEM
counter, this patch finally eliminates the need to have page->mapping set
up at charge time.  However, we need to have page->mem_cgroup set up by
the time rmap runs and does the accounting, so switch the commit and the
rmap callbacks around.

v2: fix temporary accounting bug by switching rmap<->commit (Joonsoo)

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-11-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 0d1c20722a mm: memcontrol: switch to native NR_FILE_PAGES and NR_SHMEM counters
Memcg maintains private MEMCG_CACHE and NR_SHMEM counters.  This
divergence from the generic VM accounting means unnecessary code overhead,
and creates a dependency for memcg that page->mapping is set up at the
time of charging, so that page types can be told apart.

Convert the generic accounting sites to mod_lruvec_page_state and friends
to maintain the per-cgroup vmstat counters of NR_FILE_PAGES and NR_SHMEM.
The page is already locked in these places, so page->mem_cgroup is stable;
we only need minimal tweaks of two mem_cgroup_migrate() calls to ensure
it's set up in time.

Then replace MEMCG_CACHE with NR_FILE_PAGES and delete the private
NR_SHMEM accounting sites.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-10-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 9da7b52168 mm: memcontrol: prepare cgroup vmstat infrastructure for native anon counters
Anonymous compound pages can be mapped by ptes, which means that if we
want to track NR_MAPPED_ANON, NR_ANON_THPS on a per-cgroup basis, we have
to be prepared to see tail pages in our accounting functions.

Make mod_lruvec_page_state() and lock_page_memcg() deal with tail pages
correctly, namely by redirecting to the head page which has the
page->mem_cgroup set up.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-9-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 49e50d277b mm: memcontrol: prepare move_account for removal of private page type counters
When memcg uses the generic vmstat counters, it doesn't need to do
anything at charging and uncharging time.  It does, however, need to
migrate counts when pages move to a different cgroup in move_account.

Prepare the move_account function for the arrival of NR_FILE_PAGES,
NR_ANON_MAPPED, NR_ANON_THPS etc.  by having a branch for files and a
branch for anon, which can then divided into sub-branches.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-8-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 9f762dbe19 mm: memcontrol: prepare uncharging for removal of private page type counters
The uncharge batching code adds up the anon, file, kmem counts to
determine the total number of pages to uncharge and references to drop.
But the next patches will remove the anon and file counters.

Maintain an aggregate nr_pages in the uncharge_gather struct.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-7-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 3fea5a499d mm: memcontrol: convert page cache to a new mem_cgroup_charge() API
The try/commit/cancel protocol that memcg uses dates back to when pages
used to be uncharged upon removal from the page cache, and thus couldn't
be committed before the insertion had succeeded.  Nowadays, pages are
uncharged when they are physically freed; it doesn't matter whether the
insertion was successful or not.  For the page cache, the transaction
dance has become unnecessary.

Introduce a mem_cgroup_charge() function that simply charges a newly
allocated page to a cgroup and sets up page->mem_cgroup in one single
step.  If the insertion fails, the caller doesn't have to do anything but
free/put the page.

Then switch the page cache over to this new API.

Subsequent patches will also convert anon pages, but it needs a bit more
prep work.  Right now, memcg depends on page->mapping being already set up
at the time of charging, so that it can maintain its own MEMCG_CACHE and
MEMCG_RSS counters.  For anon, page->mapping is set under the same pte
lock under which the page is publishd, so a single charge point that can
block doesn't work there just yet.

The following prep patches will replace the private memcg counters with
the generic vmstat counters, thus removing the page->mapping dependency,
then complete the transition to the new single-point charge API and delete
the old transactional scheme.

v2: leave shmem swapcache when charging fails to avoid double IO (Joonsoo)
v3: rebase on preceeding shmem simplification patch

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-6-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 6caa6a0703 mm: memcontrol: move out cgroup swaprate throttling
The cgroup swaprate throttling is about matching new anon allocations to
the rate of available IO when that is being throttled.  It's the io
controller hooking into the VM, rather than a memory controller thing.

Rename mem_cgroup_throttle_swaprate() to cgroup_throttle_swaprate(), and
drop the @memcg argument which is only used to check whether the preceding
page charge has succeeded and the fault is proceeding.

We could decouple the call from mem_cgroup_try_charge() here as well, but
that would cause unnecessary churn: the following patches convert all
callsites to a new charge API and we'll decouple as we go along.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-5-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner 3fba69a56e mm: memcontrol: drop @compound parameter from memcg charging API
The memcg charging API carries a boolean @compound parameter that tells
whether the page we're dealing with is a hugepage.
mem_cgroup_commit_charge() has another boolean @lrucare that indicates
whether the page needs LRU locking or not while charging.  The majority of
callsites know those parameters at compile time, which results in a lot of
naked "false, false" argument lists.  This makes for cryptic code and is a
breeding ground for subtle mistakes.

Thankfully, the huge page state can be inferred from the page itself and
doesn't need to be passed along.  This is safe because charging completes
before the page is published and somebody may split it.

Simplify the callsites by removing @compound, and let memcg infer the
state by using hpage_nr_pages() unconditionally.  That function does
PageTransHuge() to identify huge pages, which also helpfully asserts that
nobody passes in tail pages by accident.

The following patches will introduce a new charging API, best not to carry
over unnecessary weight.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Johannes Weiner abb242f571 mm: memcontrol: fix stat-corrupting race in charge moving
The move_lock is a per-memcg lock, but the VM accounting code that needs
to acquire it comes from the page and follows page->mem_cgroup under RCU
protection.  That means that the page becomes unlocked not when we drop
the move_lock, but when we update page->mem_cgroup.  And that assignment
doesn't imply any memory ordering.  If that pointer write gets reordered
against the reads of the page state - page_mapped, PageDirty etc.  the
state may change while we rely on it being stable and we can end up
corrupting the counters.

Place an SMP memory barrier to make sure we're done with all page state by
the time the new page->mem_cgroup becomes visible.

Also replace the open-coded move_lock with a lock_page_memcg() to make it
more obvious what we're serializing against.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200508183105.225460-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:47 -07:00
Shakeel Butt dd8657b6c1 mm/memcg: optimize memory.numa_stat like memory.stat
Currently reading memory.numa_stat traverses the underlying memcg tree
multiple times to accumulate the stats to present the hierarchical view of
the memcg tree.  However the kernel already maintains the hierarchical
view of the stats and use it in memory.stat.  Just use the same mechanism
in memory.numa_stat as well.

I ran a simple benchmark which reads root_mem_cgroup's memory.numa_stat
file in the presense of 10000 memcgs.  The results are:

Without the patch:
$ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null

real    0m0.700s
user    0m0.001s
sys     0m0.697s

With the patch:
$ time cat /dev/cgroup/memory/memory.numa_stat > /dev/null

real    0m0.001s
user    0m0.001s
sys     0m0.000s

[akpm@linux-foundation.org: avoid forcing out-of-line code generation]
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200304022058.248270-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:42 -07:00
Zefan Li 50d53d7c72 memcg: fix memcg_kmem_bypass() for remote memcg charging
While trying to use remote memcg charging in an out-of-tree kernel
module I found it's not working, because the current thread is a
workqueue thread.

As we will probably encounter this issue in the future as the users of
memalloc_use_memcg() grow, and it's nothing wrong for this usage, it's
better we fix it now.

Signed-off-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1d202a12-26fe-0012-ea14-f025ddcd044a@huawei.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski 4b82ab4f28 mm/memcg: automatically penalize tasks with high swap use
Add a memory.swap.high knob, which can be used to protect the system
from SWAP exhaustion.  The mechanism used for penalizing is similar to
memory.high penalty (sleep on return to user space).

That is not to say that the knob itself is equivalent to memory.high.
The objective is more to protect the system from potentially buggy tasks
consuming a lot of swap and impacting other tasks, or even bringing the
whole system to stand still with complete SWAP exhaustion.  Hopefully
without the need to find per-task hard limits.

Slowing misbehaving tasks down gradually allows user space oom killers
or other protection mechanisms to react.  oomd and earlyoom already do
killing based on swap exhaustion, and memory.swap.high protection will
help implement such userspace oom policies more reliably.

We can use one counter for number of pages allocated under pressure to
save struct task space and avoid two separate hierarchy walks on the hot
path.  The exact overage is calculated on return to user space, anyway.

Take the new high limit into account when determining if swap is "full".
Borrowing the explanation from Johannes:

  The idea behind "swap full" is that as long as the workload has plenty
  of swap space available and it's not changing its memory contents, it
  makes sense to generously hold on to copies of data in the swap device,
  even after the swapin.  A later reclaim cycle can drop the page without
  any IO.  Trading disk space for IO.

  But the only two ways to reclaim a swap slot is when they're faulted
  in and the references go away, or by scanning the virtual address space
  like swapoff does - which is very expensive (one could argue it's too
  expensive even for swapoff, it's often more practical to just reboot).

  So at some point in the fill level, we have to start freeing up swap
  slots on fault/swapin.  Otherwise we could eventually run out of swap
  slots while they're filled with copies of data that is also in RAM.

  We don't want to OOM a workload because its available swap space is
  filled with redundant cache.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Link: http://lkml.kernel.org/r/20200527195846.102707-5-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski d1663a907b mm/memcg: move cgroup high memory limit setting into struct page_counter
High memory limit is currently recorded directly in struct mem_cgroup.
We are about to add a high limit for swap, move the field to struct
page_counter and add some helpers.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-4-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski ff144e69f7 mm/memcg: move penalty delay clamping out of calculate_high_delay()
We will want to call calculate_high_delay() twice - once for memory and
once for swap, and we should apply the clamp value to sum of the
penalties.  Clamping has to be applied outside of calculate_high_delay().

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Down <chris@chrisdown.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-3-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Jakub Kicinski 8a5dbc657e mm/memcg: prepare for swap over-high accounting and penalty calculation
Patch series "memcg: Slow down swap allocation as the available space
gets depleted", v6.

Tejun describes the problem as follows:

When swap runs out, there's an abrupt change in system behavior - the
anonymous memory suddenly becomes unmanageable which readily breaks any
sort of memory isolation and can bring down the whole system.  To avoid
that, oomd [1] monitors free swap space and triggers kills when it drops
below the specific threshold (e.g.  15%).

While this works, it's far from ideal:

 - Depending on IO performance and total swap size, a given
   headroom might not be enough or too much.

 - oomd has to monitor swap depletion in addition to the usual
   pressure metrics and it currently doesn't consider memory.swap.max.

Solve this by adapting parts of the approach that memory.high uses -
slow down allocation as the resource gets depleted turning the depletion
behavior from abrupt cliff one to gradual degradation observable through
memory pressure metric.

[1] https://github.com/facebookincubator/oomd

This patch (of 4):

Slice the memory overage calculation logic a little bit so we can reuse
it to apply a similar penalty to the swap.  The logic which accesses the
memory-specific fields (use and high values) has to be taken out of
calculate_high_delay().

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20200527195846.102707-1-kuba@kernel.org
Link: http://lkml.kernel.org/r/20200527195846.102707-2-kuba@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Shakeel Butt 54b512e96d memcg: expose root cgroup's memory.stat
One way to measure the efficiency of memory reclaim is to look at the
ratio (pgscan+pfrefill)/pgsteal.  However at the moment these stats are
not updated consistently at the system level and the ratio of these are
not very meaningful.  The pgsteal and pgscan are updated for only global
reclaim while pgrefill gets updated for global as well as cgroup
reclaim.

Please note that this difference is only for system level vmstats.  The
cgroup stats returned by memory.stat are actually consistent.  The
cgroup's pgsteal contains number of reclaimed pages for global as well
as cgroup reclaim.  So, one way to get the system level stats is to get
these stats from root's memory.stat, so, expose memory.stat for the root
cgroup.

From Johannes Weiner:
	There are subtle differences between /proc/vmstat and
	memory.stat, and cgroup-aware code that wants to watch the full
	hierarchy currently has to know about these intricacies and
	translate semantics back and forth.

	Generally having the fully recursive memory.stat at the root
	level could help a broader range of usecases.

Why not fix the stats by including both the global and cgroup reclaim
activity instead of exposing root cgroup's memory.stat? The reason is
the benefit of having metrics exposing the activity that happens purely
due to machine capacity rather than localized activity that happens due
to the limits throughout the cgroup tree.  Additionally there are
userspace tools like sysstat(sar) which reads these stats to inform
about the system level reclaim activity.  So, we should not break such
use-cases.

Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200508170630.94406-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Kaixu Xia 1c4448edb7 mm: memcontrol: simplify value comparison between count and limit
When the variables count and limit have the same value(count == limit),
the result of min(margin, limit - count) statement should be 0 and the
variable margin is set to 0.  So in this case, the min() statement is
not necessary and we can directly set the variable margin to 0.

Signed-off-by: Kaixu Xia <kaixuxia@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/1587479661-27237-1-git-send-email-kaixuxia@tencent.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
Yafang Shao a6f5576bb1 mm, memcg: add workingset_restore in memory.stat
There's a new workingset counter introduced in commit 1899ad18c6 ("mm:
workingset: tell cache transitions from workingset thrashing").  With
the help of this counter we can know the workingset is transitioning or
thrashing.  To leverage the benifit of this counter to memcg, we should
introduce it into memory.stat.  Then we could know the workingset of the
workload inside a memcg better.

Bellow is the verification of this new counter in memory.stat.  Read a
file into the memory and then read it again to make these pages be
active.  The size of this file is 1G.  (memory.max is greater than file
size) The counters in memory.stat will be

	inactive_file 0
	active_file 1073639424

	workingset_refault 0
	workingset_activate 0
	workingset_restore 0
	workingset_nodereclaim 0

Trigger the memcg reclaim by setting a lower value to memory.high, and
then some pages will be demoted into inactive list, and then some pages
in the inactive list will be evicted into the storage.

	inactive_file 498094080
	active_file 310063104

	workingset_refault 0
	workingset_activate 0
	workingset_restore 0
	workingset_nodereclaim 0

Then recover the memory.high and read the file into memory again.  As a
result of it, the transitioning will occur.  Bellow is the result of
this transitioning,

	inactive_file 498094080
	active_file 575397888

	workingset_refault 64746
	workingset_activate 64746
	workingset_restore 64746
	workingset_nodereclaim 0

Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Link: http://lkml.kernel.org/r/20200504153522.11553-1-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:09 -07:00
NeilBrown 8d92890bd6 mm/writeback: discard NR_UNSTABLE_NFS, use NR_WRITEBACK instead
After an NFS page has been written it is considered "unstable" until a
COMMIT request succeeds.  If the COMMIT fails, the page will be
re-written.

These "unstable" pages are currently accounted as "reclaimable", either
in WB_RECLAIMABLE, or in NR_UNSTABLE_NFS which is included in a
'reclaimable' count.  This might have made sense when sending the COMMIT
required a separate action by the VFS/MM (e.g.  releasepage() used to
send a COMMIT).  However now that all writes generated by ->writepages()
will automatically be followed by a COMMIT (since commit 919e3bd9a8
("NFS: Ensure we commit after writeback is complete")) it makes more
sense to treat them as writeback pages.

So this patch removes NR_UNSTABLE_NFS and accounts unstable pages in
NR_WRITEBACK and WB_WRITEBACK.

A particular effect of this change is that when
wb_check_background_flush() calls wb_over_bg_threshold(), the latter
will report 'true' a lot less often as the 'unstable' pages are no
longer considered 'dirty' (as there is nothing that writeback can do
about them anyway).

Currently wb_check_background_flush() will trigger writeback to NFS even
when there are relatively few dirty pages (if there are lots of unstable
pages), this can result in small writes going to the server (10s of
Kilobytes rather than a Megabyte) which hurts throughput.  With this
patch, there are fewer writes which are each larger on average.

Where the NR_UNSTABLE_NFS count was included in statistics
virtual-files, the entry is retained, but the value is hard-coded as
zero.  static trace points and warning printks which mentioned this
counter no longer report it.

[akpm@linux-foundation.org: re-layout comment]
[akpm@linux-foundation.org: fix printk warning]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Acked-by: Michal Hocko <mhocko@suse.com>	[mm]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Link: http://lkml.kernel.org/r/87d06j7gqa.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-02 10:59:08 -07:00
Yafang Shao 11d6761218 mm, memcg: fix error return value of mem_cgroup_css_alloc()
When I run my memcg testcase which creates lots of memcgs, I found
there're unexpected out of memory logs while there're still enough
available free memory.  The error log is

  mkdir: cannot create directory 'foo.65533': Cannot allocate memory

The reason is when we try to create more than MEM_CGROUP_ID_MAX memcgs,
an -ENOMEM errno will be set by mem_cgroup_css_alloc(), but the right
errno should be -ENOSPC "No space left on device", which is an
appropriate errno for userspace's failed mkdir.

As the errno really misled me, we should make it right.  After this
patch, the error log will be

  mkdir: cannot create directory 'foo.65533': No space left on device

[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
[akpm@linux-foundation.org: s/EBUSY/ENOSPC/, per Michal]
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200407063621.GA18914@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/1586192163-20099-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-07 19:27:20 -07:00
Jakub Kicinski 9b8b17541f mm, memcg: do not high throttle allocators based on wraparound
If a cgroup violates its memory.high constraints, we may end up unduly
penalising it.  For example, for the following hierarchy:

  A:   max high, 20 usage
  A/B: 9 high, 10 usage
  A/C: max high, 10 usage

We would end up doing the following calculation below when calculating
high delay for A/B:

  A/B: 10 - 9 = 1...
  A:   20 - PAGE_COUNTER_MAX = 21, so set max_overage to 21.

This gets worse with higher disparities in usage in the parent.

I have no idea how this disappeared from the final version of the patch,
but it is certainly Not Good(tm).  This wasn't obvious in testing because,
for a simple cgroup hierarchy with only one child, the result is usually
roughly the same.  It's only in more complex hierarchies that things go
really awry (although still, the effects are limited to a maximum of 2
seconds in schedule_timeout_killable at a maximum).

[chris@chrisdown.name: changelog]
Fixes: e26733e0d0 ("mm, memcg: throttle allocators based on ancestral memory.high")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>	[5.4.x]
Link: http://lkml.kernel.org/r/20200331152424.GA1019937@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-10 15:36:20 -07:00
Joe Perches e4a9bc5896 mm: use fallthrough;
Convert the various /* fallthrough */ comments to the pseudo-keyword
fallthrough;

Done via script:
https://lore.kernel.org/lkml/b56602fcf79f849e733e7b521bb0e17895d390fa.1582230379.git.joe@perches.com/

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Link: http://lkml.kernel.org/r/f62fea5d10eb0ccfc05d87c242a620c261219b66.camel@perches.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:41 -07:00
Chris Down 4bf173072c mm, memcg: bypass high reclaim iteration for cgroup hierarchy root
The root of the hierarchy cannot have high set, so we will never reclaim
based on it.  This makes that clearer and avoids another entry.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/20200312164137.GA1753625@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:37 -07:00
Roman Gushchin 48fe267c50 mm: memcg: make memory.oom.group tolerable to task migration
If a task is getting moved out of the OOMing cgroup, it might result in
unexpected OOM killings if memory.oom.group is used anywhere in the cgroup
tree.

Imagine the following example:

          A (oom.group = 1)
         / \
  (OOM) B   C

Let's say B's memory.max is exceeded and it's OOMing.  The OOM killer
selects a task in B as a victim, but someone asynchronously moves the task
into C.  mem_cgroup_get_oom_group() will iterate over all ancestors of C
up to the root cgroup.  In theory it had to stop at the oom_domain level -
the memory cgroup which is OOMing.  But because B is not an ancestor of C,
it's not happening.  Instead it chooses A (because it's oom.group is set),
and kills all tasks in A.  This behavior is wrong because the OOM happened
in B, so there is no reason to kill anything outside.

Fix this by checking it the memory cgroup to which the task belongs is a
descendant of the oom_domain.  If not, memory.oom.group should be ignored,
and the OOM killer should kill only the victim task.

Reported-by: Dan Schatzberg <dschatzberg@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Link: http://lkml.kernel.org/r/20200316223510.3176148-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down b3a7822e5e mm, memcg: prevent mem_cgroup_protected store tearing
The read side of this is all protected, but we can still tear if multiple
iterations of mem_cgroup_protected are going at the same time.

There's some intentional racing in mem_cgroup_protected which is ok, but
load/store tearing should be avoided.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/d1e9fbc0379fe8db475d82c8b6fbe048876e12ae.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down 32d087cdd9 mm, memcg: prevent memory.swap.max load tearing
The write side of this is xchg()/smp_mb(), so that's all good.  Just a few
sites missing a READ_ONCE.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/bbec2c3d822217334855c8877a9d28b2a6d395fb.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down c3d5320086 mm, memcg: prevent memory.min load/store tearing
This can be set concurrently with reads, which may cause the wrong value
to be propagated.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/e809b4e6b0c1626dac6945970de06409a180ee65.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:29 -07:00
Chris Down 15b42562d4 mm, memcg: prevent memory.max load tearing
This one is a bit more nuanced because we have memcg_max_mutex, which is
mostly just used for enforcing invariants, but we still need to READ_ONCE
since (despite its name) it doesn't really protect memory.max access.

On write (page_counter_set_max() and memory_max_write()) we use xchg(),
which uses smp_mb(), so that's already fine.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/50a31e5f39f8ae6c8fb73966ba1455f0924e8f44.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Chris Down f6f989c5ce mm, memcg: prevent memory.high load/store tearing
A mem_cgroup's high attribute can be concurrently set at the same time as
we are trying to read it -- for example, if we are in memory_high_write at
the same time as we are trying to do high reclaim.

Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/2f66f7038ed1d4688e59de72b627ae0ea52efa83.1584034301.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Vincenzo Frascino c1514c0aac mm/memcontrol.c: make mem_cgroup_id_get_many() __maybe_unused
mem_cgroup_id_get_many() is currently used only when MMU or MEMCG_SWAP
configuration options are enabled.  Having them disabled triggers the
following warning at compile time:

  linux/mm/memcontrol.c:4797:13: warning: `mem_cgroup_id_get_many' defined but not used [-Wunused-function]
   static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)

Make mem_cgroup_id_get_many() __maybe_unused to address the issue.

Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200305164354.48147-1-vincenzo.frascino@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Shakeel Butt 8965aa28cd memcg: css_tryget_online cleanups
Currently multiple locations in memcg code, css_tryget_online() is being
used. However it doesn't matter whether the cgroup is online for the
callers. Online used to matter when we had reparenting on offlining and
we needed a way to prevent new ones from showing up.

The failure case for couple of these css_tryget_online usage is to
fallback to root_mem_cgroup which kind of make bypassing the memcg
limits possible for some workloads. For example creating an inotify
group in a subcontainer and then deleting that container after moving the
process to a different container will make all the event objects
allocated for that group to the root_mem_cgroup. So, using
css_tryget_online() is dangerous for such cases.

Two locations still use the online version. The swapin of offlined
memcg's pages and the memcg kmem cache creation. The kmem cache indeed
needs the online version as the kernel does the reparenting of memcg
kmem caches. For the swapin case, it has been left for later as the
fallback is not really that concerning.

With swap accounting enabled, if the memcg of the swapped out page is
not online then the memcg extracted from the given 'mm' will be charged
and if 'mm' is NULL then root memcg will be charged.  However I could
not find a code path where the given 'mm' will be NULL for swap-in
case.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200302203109.179417-1-shakeelb@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Johannes Weiner 8a931f8013 mm: memcontrol: recursive memory.low protection
Right now, the effective protection of any given cgroup is capped by its
own explicit memory.low setting, regardless of what the parent says.  The
reasons for this are mostly historical and ease of implementation: to make
delegation of memory.low safe, effective protection is the min() of all
memory.low up the tree.

Unfortunately, this limitation makes it impossible to protect an entire
subtree from another without forcing the user to make explicit protection
allocations all the way to the leaf cgroups - something that is highly
undesirable in real life scenarios.

Consider memory in a data center host.  At the cgroup top level, we have a
distinction between system management software and the actual workload the
system is executing.  Both branches are further subdivided into individual
services, job components etc.

We want to protect the workload as a whole from the system management
software, but that doesn't mean we want to protect and prioritize
individual workload wrt each other.  Their memory demand can vary over
time, and we'd want the VM to simply cache the hottest data within the
workload subtree.  Yet, the current memory.low limitations force us to
allocate a fixed amount of protection to each workload component in order
to get protection from system management software in general.  This
results in very inefficient resource distribution.

Another concern with mandating downward allocation is that, as the
complexity of the cgroup tree grows, it gets harder for the lower levels
to be informed about decisions made at the host-level.  Consider a
container inside a namespace that in turn creates its own nested tree of
cgroups to run multiple workloads.  It'd be extremely difficult to
configure memory.low parameters in those leaf cgroups that on one hand
balance pressure among siblings as the container desires, while also
reflecting the host-level protection from e.g.  rpm upgrades, that lie
beyond one or more delegation and namespacing points in the tree.

It's highly unusual from a cgroup interface POV that nested levels have to
be aware of and reflect decisions made at higher levels for them to be
effective.

To enable such use cases and scale configurability for complex trees, this
patch implements a resource inheritance model for memory that is similar
to how the CPU and the IO controller implement work-conserving resource
allocations: a share of a resource allocated to a subree always applies to
the entire subtree recursively, while allowing, but not mandating,
children to further specify distribution rules.

That means that if protection is explicitly allocated among siblings,
those configured shares are being followed during page reclaim just like
they are now.  However, if the memory.low set at a higher level is not
fully claimed by the children in that subtree, the "floating" remainder is
applied to each cgroup in the tree in proportion to its size.  Since
reclaim pressure is applied in proportion to size as well, each child in
that tree gets the same boost, and the effect is neutral among siblings -
with respect to each other, they behave as if no memory control was
enabled at all, and the VM simply balances the memory demands optimally
within the subtree.  But collectively those cgroups enjoy a boost over the
cgroups in neighboring trees.

E.g.  a leaf cgroup with a memory.low setting of 0 no longer means that
it's not getting a share of the hierarchically assigned resource, just
that it doesn't claim a fixed amount of it to protect from its siblings.

This allows us to recursively protect one subtree (workload) from another
(system management), while letting subgroups compete freely among each
other - without having to assign fixed shares to each leaf, and without
nested groups having to echo higher-level settings.

The floating protection composes naturally with fixed protection.
Consider the following example tree:

		A            A: low = 2G
               / \          A1: low = 1G
              A1 A2         A2: low = 0G

As outside pressure is applied to this tree, A1 will enjoy a fixed
protection from A2 of 1G, but the remaining, unclaimed 1G from A is split
evenly among A1 and A2, coming out to 1.5G and 0.5G.

There is a slight risk of regressing theoretical setups where the
top-level cgroups don't know about the true budgeting and set bogusly high
"bypass" values that are meaningfully allocated down the tree.  Such
setups would rely on unclaimed protection to be discarded, and
distributing it would change the intended behavior.  Be safe and hide the
new behavior behind a mount option, 'memory_recursiveprot'.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-4-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Johannes Weiner bc50bcc6e0 mm: memcontrol: clean up and document effective low/min calculations
The effective protection of any given cgroup is a somewhat complicated
construct that depends on the ancestor's configuration, siblings'
configurations, as well as current memory utilization in all these groups.
It's done this way to satisfy hierarchical delegation requirements while
also making the configuration semantics flexible and expressive in complex
real life scenarios.

Unfortunately, all the rules and requirements are sparsely documented, and
the code is a little too clever in merging different scenarios into a
single min() expression.  This makes it hard to reason about the
implementation and avoid breaking semantics when making changes to it.

This patch documents each semantic rule individually and splits out the
handling of the overcommit case from the regular case.

Michal Koutný also points out that the points of equilibrium as described
in the existing example scenarios aren't actually accurate.  Delete these
examples for now to avoid confusion.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-3-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Johannes Weiner 503970e423 mm: memcontrol: fix memory.low proportional distribution
Patch series "mm: memcontrol: recursive memory.low protection", v3.

The current memory.low (and memory.min) semantics require protection to be
assigned to a cgroup in an untinterrupted chain from the top-level cgroup
all the way to the leaf.

In practice, we want to protect entire cgroup subtrees from each other
(system management software vs.  workload), but we would like the VM to
balance memory optimally *within* each subtree, without having to make
explicit weight allocations among individual components.  The current
semantics make that impossible.

They also introduce unmanageable complexity into more advanced resource
trees.  For example:

          host root
          `- system.slice
             `- rpm upgrades
             `- logging
          `- workload.slice
             `- a container
                `- system.slice
                `- workload.slice
                   `- job A
                      `- component 1
                      `- component 2
                   `- job B

At a host-level perspective, we would like to protect the outer
workload.slice subtree as a whole from rpm upgrades, logging etc.  But for
that to be effective, right now we'd have to propagate it down through the
container, the inner workload.slice, into the job cgroup and ultimately
the component cgroups where memory is actually, physically allocated.
This may cross several tree delegation points and namespace boundaries,
which make such a setup near impossible.

CPU and IO on the other hand are already distributed recursively.  The
user would simply configure allowances at the host level, and they would
apply to the entire subtree without any downward propagation.

To enable the above-mentioned usecases and bring memory in line with other
resource controllers, this patch series extends memory.low/min such that
settings apply recursively to the entire subtree.  Users can still assign
explicit shares in subgroups, but if they don't, any ancestral protection
will be distributed such that children compete freely amongst each other -
as if no memory control were enabled inside the subtree - but enjoy
protection from neighboring trees.

In the above example, the user would then be able to configure shares of
CPU, IO and memory at the host level to comprehensively protect and
isolate the workload.slice as a whole from system.slice activity.

Patch #1 fixes an existing bug that can give a cgroup tree more protection
than it should receive as per ancestor configuration.

Patch #2 simplifies and documents the existing code to make it easier to
reason about the changes in the next patch.

Patch #3 finally implements recursive memory protection semantics.

Because of a risk of regressing legacy setups, the new semantics are
hidden behind a cgroup2 mount option, 'memory_recursiveprot'.

More details in patch #3.

This patch (of 3):

When memory.low is overcommitted - i.e.  the children claim more
protection than their shared ancestor grants them - the allowance is
distributed in proportion to how much each sibling uses their own declared
protection:

	low_usage = min(memory.low, memory.current)
	elow = parent_elow * (low_usage / siblings_low_usage)

However, siblings_low_usage is not the sum of all low_usages. It sums
up the usages of *only those cgroups that are within their memory.low*
That means that low_usage can be *bigger* than siblings_low_usage, and
consequently the total protection afforded to the children can be
bigger than what the ancestor grants the subtree.

Consider three groups where two are in excess of their protection:

  A/memory.low = 10G
  A/A1/memory.low = 10G, memory.current = 20G
  A/A2/memory.low = 10G, memory.current = 20G
  A/A3/memory.low = 10G, memory.current =  8G
  siblings_low_usage = 8G (only A3 contributes)

  A1/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G
  A2/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(8G) = 12.5G -> 10G
  A3/elow = parent_elow(10G) * low_usage(8G) / siblings_low_usage(8G) = 10.0G

  (the 12.5G are capped to the explicit memory.low setting of 10G)

With that, the sum of all awarded protection below A is 30G, when A
only grants 10G for the entire subtree.

What does this mean in practice? A1 and A2 would still be in excess of
their 10G allowance and would be reclaimed, whereas A3 would not. As
they eventually drop below their protection setting, they would be
counted in siblings_low_usage again and the error would right itself.

When reclaim was applied in a binary fashion (cgroup is reclaimed when
it's above its protection, otherwise it's skipped) this would actually
work out just fine. However, since 1bc63fb127 ("mm, memcg: make scan
aggression always exclude protection"), reclaim pressure is scaled to
how much a cgroup is above its protection. As a result this
calculation error unduly skews pressure away from A1 and A2 toward the
rest of the system.

But why did we do it like this in the first place?

The reasoning behind exempting groups in excess from
siblings_low_usage was to go after them first during reclaim in an
overcommitted subtree:

  A/memory.low = 2G, memory.current = 4G
  A/A1/memory.low = 3G, memory.current = 2G
  A/A2/memory.low = 1G, memory.current = 2G

  siblings_low_usage = 2G (only A1 contributes)
  A1/elow = parent_elow(2G) * low_usage(2G) / siblings_low_usage(2G) = 2G
  A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G

While the children combined are overcomitting A and are technically
both at fault, A2 is actively declaring unprotected memory and we
would like to reclaim that first.

However, while this sounds like a noble goal on the face of it, it
doesn't make much difference in actual memory distribution: Because A
is overcommitted, reclaim will not stop once A2 gets pushed back to
within its allowance; we'll have to reclaim A1 either way. The end
result is still that protection is distributed proportionally, with A1
getting 3/4 (1.5G) and A2 getting 1/4 (0.5G) of A's allowance.

[ If A weren't overcommitted, it wouldn't make a difference since each
  cgroup would just get the protection it declares:

  A/memory.low = 2G, memory.current = 3G
  A/A1/memory.low = 1G, memory.current = 1G
  A/A2/memory.low = 1G, memory.current = 2G

  With the current calculation:

  siblings_low_usage = 1G (only A1 contributes)
  A1/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(1G) = 2G -> 1G
  A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(1G) = 2G -> 1G

  Including excess groups in siblings_low_usage:

  siblings_low_usage = 2G
  A1/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G -> 1G
  A2/elow = parent_elow(2G) * low_usage(1G) / siblings_low_usage(2G) = 1G -> 1G ]

Simplify the calculation and fix the proportional reclaim bug by
including excess cgroups in siblings_low_usage.

After this patch, the effective memory.low distribution from the
example above would be as follows:

  A/memory.low = 10G
  A/A1/memory.low = 10G, memory.current = 20G
  A/A2/memory.low = 10G, memory.current = 20G
  A/A3/memory.low = 10G, memory.current =  8G
  siblings_low_usage = 28G

  A1/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(28G) = 3.5G
  A2/elow = parent_elow(10G) * low_usage(10G) / siblings_low_usage(28G) = 3.5G
  A3/elow = parent_elow(10G) * low_usage(8G) / siblings_low_usage(28G) = 2.8G

Fixes: 1bc63fb127 ("mm, memcg: make scan aggression always exclude protection")
Fixes: 230671533d ("mm: memory.low hierarchical behavior")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Koutný <mkoutny@suse.com>
Link: http://lkml.kernel.org/r/20200227195606.46212-2-hannes@cmpxchg.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 4b13f64de2 mm: kmem: rename (__)memcg_kmem_(un)charge_memcg() to __memcg_kmem_(un)charge()
Drop the _memcg suffix from (__)memcg_kmem_(un)charge functions.  It's
shorter and more obvious.

These are the most basic functions which are just (un)charging the given
cgroup with the given amount of pages.

Also fix up the corresponding comments.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-7-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 92d0510c35 mm: kmem: switch to nr_pages in (__)memcg_kmem_charge_memcg()
These functions are charging the given number of kernel pages to the given
memory cgroup.  The number doesn't have to be a power of two.  Let's make
them to take the unsigned int nr_pages as an argument instead of the page
order.

It makes them look consistent with the corresponding uncharge functions
and functions like: mem_cgroup_charge_skmem(memcg, nr_pages).

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-5-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin f4b00eab50 mm: kmem: rename memcg_kmem_(un)charge() into memcg_kmem_(un)charge_page()
Rename (__)memcg_kmem_(un)charge() into (__)memcg_kmem_(un)charge_page()
to better reflect what they are actually doing:

1) call __memcg_kmem_(un)charge_memcg() to actually charge or uncharge
   the current memcg

2) set or clear the PageKmemcg flag

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-4-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 10eaec2f63 mm: kmem: cleanup (__)memcg_kmem_charge_memcg() arguments
Patch series "mm: memcg: kmem API cleanup", v2.

This patchset aims to clean up the kernel memory charging API.  It doesn't
bring any functional changes, just removes unused arguments, renames some
functions and fixes some comments.

Currently it's not obvious which functions are most basic
(memcg_kmem_(un)charge_memcg()) and which are based on them
(memcg_kmem_(un)charge()).  The patchset renames these functions and
removes unused arguments:

TL;DR:
was:
  memcg_kmem_charge_memcg(page, gfp, order, memcg)
  memcg_kmem_uncharge_memcg(memcg, nr_pages)
  memcg_kmem_charge(page, gfp, order)
  memcg_kmem_uncharge(page, order)

now:
  memcg_kmem_charge(memcg, gfp, nr_pages)
  memcg_kmem_uncharge(memcg, nr_pages)
  memcg_kmem_charge_page(page, gfp, order)
  memcg_kmem_uncharge_page(page, order)

This patch (of 6):

The first argument of memcg_kmem_charge_memcg() and
__memcg_kmem_charge_memcg() is the page pointer and it's not used.  Let's
drop it.

Memcg pointer is passed as the last argument.  Move it to the first place
for consistency with other memcg functions, e.g.
__memcg_kmem_uncharge_memcg() or try_charge().

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200109202659.752357-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 4f103c6363 mm: memcg/slab: use mem_cgroup_from_obj()
Sometimes we need to get a memcg pointer from a charged kernel object.
The right way to get it depends on whether it's a proper slab object or
it's backed by raw pages (e.g.  it's a vmalloc alloction).  In the first
case the kmem_cache->memcg_params.memcg indirection should be used; in
other cases it's just page->mem_cgroup.

To simplify this task and hide the implementation details let's use the
mem_cgroup_from_obj() helper, which takes a pointer to any kernel object
and returns a valid memcg pointer or NULL.

Passing a kernel address rather than a pointer to a page will allow to use
this helper for per-object (rather than per-page) tracked objects in the
future.

The caller is still responsible to ensure that the returned memcg isn't
going away underneath: take the rcu read lock, cgroup mutex etc; depending
on the context.

mem_cgroup_from_kmem() defined in mm/list_lru.c is now obsolete and can be
removed.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/20200117203609.3146239-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Kirill Tkhai 86daf94efb mm/memcontrol.c: allocate shrinker_map on appropriate NUMA node
The shrinker_map may be touched from any cpu (e.g., a bit there may be set
by a task running everywhere) but kswapd is always bound to specific node.
So allocate shrinker_map from the related NUMA node to respect its NUMA
locality.  Also, this follows generic way we use for allocation of memcg's
per-node data.

Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Link: http://lkml.kernel.org/r/fff0e636-4c36-ed10-281c-8cdb0687c839@virtuozzo.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Yafang Shao a87425a36f mm, memcg: fix build error around the usage of kmem_caches
When I manually set default n to MEMCG_KMEM in init/Kconfig, bellow error
occurs,

  mm/slab_common.c: In function 'memcg_slab_start':
  mm/slab_common.c:1530:30: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    return seq_list_start(&memcg->kmem_caches, *pos);
                                ^
  mm/slab_common.c: In function 'memcg_slab_next':
  mm/slab_common.c:1537:32: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    return seq_list_next(p, &memcg->kmem_caches, pos);
                                  ^
  mm/slab_common.c: In function 'memcg_slab_show':
  mm/slab_common.c:1551:16: error: 'struct mem_cgroup' has no member named
  'kmem_caches'
    if (p == memcg->kmem_caches.next)
                  ^
    CC      arch/x86/xen/smp.o
  mm/slab_common.c: In function 'memcg_slab_start':
  mm/slab_common.c:1531:1: warning: control reaches end of non-void function
  [-Wreturn-type]
   }
   ^
  mm/slab_common.c: In function 'memcg_slab_next':
  mm/slab_common.c:1538:1: warning: control reaches end of non-void function
  [-Wreturn-type]
   }
   ^

That's because kmem_caches is defined only when CONFIG_MEMCG_KMEM is set,
while memcg_slab_start() will use it no matter CONFIG_MEMCG_KMEM is defined
or not.

By the way, the reason I mannuly undefined CONFIG_MEMCG_KMEM is to verify
whether my some other code change is still stable when CONFIG_MEMCG_KMEM is
not set. Unfortunately, the existing code has been already unstable since
v4.11.

Fixes: bc2791f857 ("slab: link memcg kmem_caches on their associated memory cgroup")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Link: http://lkml.kernel.org/r/1580970260-2045-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-02 09:35:28 -07:00
Roman Gushchin 8380ce4790 mm: fork: fix kernel_stack memcg stats for various stack implementations
Depending on CONFIG_VMAP_STACK and the THREAD_SIZE / PAGE_SIZE ratio the
space for task stacks can be allocated using __vmalloc_node_range(),
alloc_pages_node() and kmem_cache_alloc_node().

In the first and the second cases page->mem_cgroup pointer is set, but
in the third it's not: memcg membership of a slab page should be
determined using the memcg_from_slab_page() function, which looks at
page->slab_cache->memcg_params.memcg .  In this case, using
mod_memcg_page_state() (as in account_kernel_stack()) is incorrect:
page->mem_cgroup pointer is NULL even for pages charged to a non-root
memory cgroup.

It can lead to kernel_stack per-memcg counters permanently showing 0 on
some architectures (depending on the configuration).

In order to fix it, let's introduce a mod_memcg_obj_state() helper,
which takes a pointer to a kernel object as a first argument, uses
mem_cgroup_from_obj() to get a RCU-protected memcg pointer and calls
mod_memcg_state().  It allows to handle all possible configurations
(CONFIG_VMAP_STACK and various THREAD_SIZE/PAGE_SIZE values) without
spilling any memcg/kmem specifics into fork.c .

Note: This is a special version of the patch created for stable
backports.  It contains code from the following two patches:
  - mm: memcg/slab: introduce mem_cgroup_from_obj()
  - mm: fork: fix kernel_stack memcg stats for various stack implementations

[guro@fb.com: introduce mem_cgroup_from_obj()]
  Link: http://lkml.kernel.org/r/20200324004221.GA36662@carbon.dhcp.thefacebook.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Bharata B Rao <bharata@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200303233550.251375-1-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-29 09:47:05 -07:00
Chris Down e26733e0d0 mm, memcg: throttle allocators based on ancestral memory.high
Prior to this commit, we only directly check the affected cgroup's
memory.high against its usage.  However, it's possible that we are being
reclaimed as a result of hitting an ancestor memory.high and should be
penalised based on that, instead.

This patch changes memory.high overage throttling to use the largest
overage in its ancestors when considering how many penalty jiffies to
charge.  This makes sure that we penalise poorly behaving cgroups in the
same way regardless of at what level of the hierarchy memory.high was
breached.

Fixes: 0e4b01df86 ("mm, memcg: throttle allocators when failing reclaim over memory.high")
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>	[5.4.x+]
Link: http://lkml.kernel.org/r/8cd132f84bd7e16cdb8fde3378cdbf05ba00d387.1584036142.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-21 18:56:06 -07:00
Chris Down d397a45fc7 mm, memcg: fix corruption on 64-bit divisor in memory.high throttling
Commit 0e4b01df86 had a bunch of fixups to use the right division
method.  However, it seems that after all that it still wasn't right --
div_u64 takes a 32-bit divisor.

The headroom is still large (2^32 pages), so on mundane systems you
won't hit this, but this should definitely be fixed.

Fixes: 0e4b01df86 ("mm, memcg: throttle allocators when failing reclaim over memory.high")
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: <stable@vger.kernel.org>	[5.4.x+]
Link: http://lkml.kernel.org/r/80780887060514967d414b3cd91f9a316a16ab98.1584036142.git.chris@chrisdown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-21 18:56:06 -07:00
Chunguang Xu 7d36665a58 memcg: fix NULL pointer dereference in __mem_cgroup_usage_unregister_event
An eventfd monitors multiple memory thresholds of the cgroup, closes them,
the kernel deletes all events related to this eventfd.  Before all events
are deleted, another eventfd monitors the memory threshold of this cgroup,
leading to a crash:

  BUG: kernel NULL pointer dereference, address: 0000000000000004
  #PF: supervisor write access in kernel mode
  #PF: error_code(0x0002) - not-present page
  PGD 800000033058e067 P4D 800000033058e067 PUD 3355ce067 PMD 0
  Oops: 0002 [#1] SMP PTI
  CPU: 2 PID: 14012 Comm: kworker/2:6 Kdump: loaded Not tainted 5.6.0-rc4 #3
  Hardware name: LENOVO 20AWS01K00/20AWS01K00, BIOS GLET70WW (2.24 ) 05/21/2014
  Workqueue: events memcg_event_remove
  RIP: 0010:__mem_cgroup_usage_unregister_event+0xb3/0x190
  RSP: 0018:ffffb47e01c4fe18 EFLAGS: 00010202
  RAX: 0000000000000001 RBX: ffff8bb223a8a000 RCX: 0000000000000001
  RDX: 0000000000000001 RSI: ffff8bb22fb83540 RDI: 0000000000000001
  RBP: ffffb47e01c4fe48 R08: 0000000000000000 R09: 0000000000000010
  R10: 000000000000000c R11: 071c71c71c71c71c R12: ffff8bb226aba880
  R13: ffff8bb223a8a480 R14: 0000000000000000 R15: 0000000000000000
  FS:  0000000000000000(0000) GS:ffff8bb242680000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000000004 CR3: 000000032c29c003 CR4: 00000000001606e0
  Call Trace:
    memcg_event_remove+0x32/0x90
    process_one_work+0x172/0x380
    worker_thread+0x49/0x3f0
    kthread+0xf8/0x130
    ret_from_fork+0x35/0x40
  CR2: 0000000000000004

We can reproduce this problem in the following ways:

1. We create a new cgroup subdirectory and a new eventfd, and then we
   monitor multiple memory thresholds of the cgroup through this eventfd.

2.  closing this eventfd, and __mem_cgroup_usage_unregister_event ()
   will be called multiple times to delete all events related to this
   eventfd.

The first time __mem_cgroup_usage_unregister_event() is called, the
kernel will clear all items related to this eventfd in thresholds->
primary.

Since there is currently only one eventfd, thresholds-> primary becomes
empty, so the kernel will set thresholds-> primary and hresholds-> spare
to NULL.  If at this time, the user creates a new eventfd and monitor
the memory threshold of this cgroup, kernel will re-initialize
thresholds-> primary.

Then when __mem_cgroup_usage_unregister_event () is called for the
second time, because thresholds-> primary is not empty, the system will
access thresholds-> spare, but thresholds-> spare is NULL, which will
trigger a crash.

In general, the longer it takes to delete all events related to this
eventfd, the easier it is to trigger this problem.

The solution is to check whether the thresholds associated with the
eventfd has been cleared when deleting the event.  If so, we do nothing.

[akpm@linux-foundation.org: fix comment, per Kirill]
Fixes: 907860ed38 ("cgroups: make cftype.unregister_event() void-returning")
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/077a6f67-aefa-4591-efec-f2f3af2b0b02@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-21 18:56:06 -07:00
Shakeel Butt d752a49865 net: memcg: late association of sock to memcg
If a TCP socket is allocated in IRQ context or cloned from unassociated
(i.e. not associated to a memcg) in IRQ context then it will remain
unassociated for its whole life. Almost half of the TCPs created on the
system are created in IRQ context, so, memory used by such sockets will
not be accounted by the memcg.

This issue is more widespread in cgroup v1 where network memory
accounting is opt-in but it can happen in cgroup v2 if the source socket
for the cloning was created in root memcg.

To fix the issue, just do the association of the sockets at the accept()
time in the process context and then force charge the memory buffer
already used and reserved by the socket.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-10 15:33:05 -07:00
Shakeel Butt e876ecc67d cgroup: memcg: net: do not associate sock with unrelated cgroup
We are testing network memory accounting in our setup and noticed
inconsistent network memory usage and often unrelated cgroups network
usage correlates with testing workload. On further inspection, it
seems like mem_cgroup_sk_alloc() and cgroup_sk_alloc() are broken in
irq context specially for cgroup v1.

mem_cgroup_sk_alloc() and cgroup_sk_alloc() can be called in irq context
and kind of assumes that this can only happen from sk_clone_lock()
and the source sock object has already associated cgroup. However in
cgroup v1, where network memory accounting is opt-in, the source sock
can be unassociated with any cgroup and the new cloned sock can get
associated with unrelated interrupted cgroup.

Cgroup v2 can also suffer if the source sock object was created by
process in the root cgroup or if sk_alloc() is called in irq context.
The fix is to just do nothing in interrupt.

WARNING: Please note that about half of the TCP sockets are allocated
from the IRQ context, so, memory used by such sockets will not be
accouted by the memcg.

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:

CPU: 70 PID: 12720 Comm: ssh Tainted:  5.6.0-smp-DEV #1
Hardware name: ...
Call Trace:
 <IRQ>
 dump_stack+0x57/0x75
 mem_cgroup_sk_alloc+0xe9/0xf0
 sk_clone_lock+0x2a7/0x420
 inet_csk_clone_lock+0x1b/0x110
 tcp_create_openreq_child+0x23/0x3b0
 tcp_v6_syn_recv_sock+0x88/0x730
 tcp_check_req+0x429/0x560
 tcp_v6_rcv+0x72d/0xa40
 ip6_protocol_deliver_rcu+0xc9/0x400
 ip6_input+0x44/0xd0
 ? ip6_protocol_deliver_rcu+0x400/0x400
 ip6_rcv_finish+0x71/0x80
 ipv6_rcv+0x5b/0xe0
 ? ip6_sublist_rcv+0x2e0/0x2e0
 process_backlog+0x108/0x1e0
 net_rx_action+0x26b/0x460
 __do_softirq+0x104/0x2a6
 do_softirq_own_stack+0x2a/0x40
 </IRQ>
 do_softirq.part.19+0x40/0x50
 __local_bh_enable_ip+0x51/0x60
 ip6_finish_output2+0x23d/0x520
 ? ip6table_mangle_hook+0x55/0x160
 __ip6_finish_output+0xa1/0x100
 ip6_finish_output+0x30/0xd0
 ip6_output+0x73/0x120
 ? __ip6_finish_output+0x100/0x100
 ip6_xmit+0x2e3/0x600
 ? ipv6_anycast_cleanup+0x50/0x50
 ? inet6_csk_route_socket+0x136/0x1e0
 ? skb_free_head+0x1e/0x30
 inet6_csk_xmit+0x95/0xf0
 __tcp_transmit_skb+0x5b4/0xb20
 __tcp_send_ack.part.60+0xa3/0x110
 tcp_send_ack+0x1d/0x20
 tcp_rcv_state_process+0xe64/0xe80
 ? tcp_v6_connect+0x5d1/0x5f0
 tcp_v6_do_rcv+0x1b1/0x3f0
 ? tcp_v6_do_rcv+0x1b1/0x3f0
 __release_sock+0x7f/0xd0
 release_sock+0x30/0xa0
 __inet_stream_connect+0x1c3/0x3b0
 ? prepare_to_wait+0xb0/0xb0
 inet_stream_connect+0x3b/0x60
 __sys_connect+0x101/0x120
 ? __sys_getsockopt+0x11b/0x140
 __x64_sys_connect+0x1a/0x20
 do_syscall_64+0x51/0x200
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

The stack trace of mem_cgroup_sk_alloc() from IRQ-context:
Fixes: 2d75807383 ("mm: memcontrol: consolidate cgroup socket tracking")
Fixes: d979a39d72 ("cgroup: duplicate cgroup reference when cloning sockets")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2020-03-10 15:33:05 -07:00
Vasily Averin 75866af62b mm/memcontrol.c: lost css_put in memcg_expand_shrinker_maps()
for_each_mem_cgroup() increases css reference counter for memory cgroup
and requires to use mem_cgroup_iter_break() if the walk is cancelled.

Link: http://lkml.kernel.org/r/c98414fb-7e1f-da0f-867a-9340ec4bd30b@virtuozzo.com
Fixes: 0a4465d340 ("mm, memcg: assign memcg-aware shrinkers bitmap to memcg")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-21 11:22:15 -08:00
Kaitao Cheng 92855270ff mm/memcontrol.c: cleanup some useless code
Compound pages handling in mem_cgroup_migrate is more convoluted than
necessary.  The state is duplicated in compound variable and the same
could be achieved by PageTransHuge check which is trivial and
hpage_nr_pages is already PageTransHuge aware.

It is much simpler to just use hpage_nr_pages for nr_pages and replace
the local variable by PageTransHuge check directly

Link: http://lkml.kernel.org/r/20191210160450.3395-1-pilgrimtao@gmail.com
Signed-off-by: Kaitao Cheng <pilgrimtao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:38 -08:00
Wei Yang fac0516b55 mm: thp: don't need care deferred split queue in memcg charge move path
If compound is true, this means it is a PMD mapped THP.  Which implies
the page is not linked to any defer list.  So the first code chunk will
not be executed.

Also with this reason, it would not be proper to add this page to a
defer list.  So the second code chunk is not correct.

Based on this, we should remove the defer list related code.

[yang.shi@linux.alibaba.com: better patch title]
Link: http://lkml.kernel.org/r/20200117233836.3434-1-richardw.yang@linux.intel.com
Fixes: 87eaceb3fa ("mm: thp: make deferred split shrinker memcg aware")
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>    [5.4+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:36 -08:00
Roman Gushchin 4a87e2a25d mm: memcg/slab: fix percpu slab vmstats flushing
Currently slab percpu vmstats are flushed twice: during the memcg
offlining and just before freeing the memcg structure.  Each time percpu
counters are summed, added to the atomic counterparts and propagated up
by the cgroup tree.

The second flushing is required due to how recursive vmstats are
implemented: counters are batched in percpu variables on a local level,
and once a percpu value is crossing some predefined threshold, it spills
over to atomic values on the local and each ascendant levels.  It means
that without flushing some numbers cached in percpu variables will be
dropped on floor each time a cgroup is destroyed.  And with uptime the
error on upper levels might become noticeable.

The first flushing aims to make counters on ancestor levels more
precise.  Dying cgroups may resume in the dying state for a long time.
After kmem_cache reparenting which is performed during the offlining
slab counters of the dying cgroup don't have any chances to be updated,
because any slab operations will be performed on the parent level.  It
means that the inaccuracy caused by percpu batching will not decrease up
to the final destruction of the cgroup.  By the original idea flushing
slab counters during the offlining should minimize the visible
inaccuracy of slab counters on the parent level.

The problem is that percpu counters are not zeroed after the first
flushing.  So every cached percpu value is summed twice.  It creates a
small error (up to 32 pages per cpu, but usually less) which accumulates
on parent cgroup level.  After creating and destroying of thousands of
child cgroups, slab counter on parent level can be way off the real
value.

For now, let's just stop flushing slab counters on memcg offlining.  It
can't be done correctly without scheduling a work on each cpu: reading
and zeroing it during css offlining can race with an asynchronous
update, which doesn't expect values to be changed underneath.

With this change, slab counters on parent level will become eventually
consistent.  Once all dying children are gone, values are correct.  And
if not, the error is capped by 32 * NR_CPUS pages per dying cgroup.

It's not perfect, as slab are reparented, so any updates after the
reparenting will happen on the parent level.  It means that if a slab
page was allocated, a counter on child level was bumped, then the page
was reparented and freed, the annihilation of positive and negative
counter values will not happen until the child cgroup is released.  It
makes slab counters different from others, and it might want us to
implement flushing in a correct form again.  But it's also a question of
performance: scheduling a work on each cpu isn't free, and it's an open
question if the benefit of having more accurate counters is worth it.

We might also consider flushing all counters on offlining, not only slab
counters.

So let's fix the main problem now: make the slab counters eventually
consistent, so at least the error won't grow with uptime (or more
precisely the number of created and destroyed cgroups).  And think about
the accuracy of counters separately.

Link: http://lkml.kernel.org/r/20191220042728.1045881-1-guro@fb.com
Fixes: bee07b33db ("mm: memcontrol: flush percpu slab vmstats on kmem offlining")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-13 18:19:02 -08:00
Konstantin Khlebnikov ebc5d83d04 mm/memcontrol: use vmstat names for printing statistics
Use common names from vmstat array when possible.  This gives not much
difference in code size for now, but should help in keeping interfaces
consistent.

  add/remove: 0/2 grow/shrink: 2/0 up/down: 70/-72 (-2)
  Function                                     old     new   delta
  memory_stat_format                           984    1050     +66
  memcg_stat_show                              957     961      +4
  memcg1_event_names                            32       -     -32
  mem_cgroup_lru_names                          40       -     -40
  Total: Before=14485337, After=14485335, chg -0.00%

Link: http://lkml.kernel.org/r/157113012508.453.80391533767219371.stgit@buzz
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-04 19:44:11 -08:00
Johannes Weiner 867e5e1de1 mm: clean up and clarify lruvec lookup procedure
There is a per-memcg lruvec and a NUMA node lruvec.  Which one is being
used is somewhat confusing right now, and it's easy to make mistakes -
especially when it comes to global reclaim.

How it works: when memory cgroups are enabled, we always use the
root_mem_cgroup's per-node lruvecs.  When memory cgroups are not compiled
in or disabled at runtime, we use pgdat->lruvec.

Document that in a comment.

Due to the way the reclaim code is generalized, all lookups use the
mem_cgroup_lruvec() helper function, and nobody should have to find the
right lruvec manually right now.  But to avoid future mistakes, rename the
pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper
that suggests it's a commonly accessed member.

While in this area, swap the mem_cgroup_lruvec() argument order.  The name
suggests a memcg operation, yet it takes a pgdat first and a memcg second.
I have to double take every time I call this.  Fix that.

Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:06 -08:00
Shakeel Butt fa40d1ee9f mm: vmscan: memcontrol: remove mem_cgroup_select_victim_node()
Since commit 1ba6fc9af3 ("mm: vmscan: do not share cgroup iteration
between reclaimers"), the memcg reclaim does not bail out earlier based
on sc->nr_reclaimed and will traverse all the nodes.  All the
reclaimable pages of the memcg on all the nodes will be scanned relative
to the reclaim priority.  So, there is no need to maintain state
regarding which node to start the memcg reclaim from.

This patch effectively reverts the commit 889976dbcb ("memcg: reclaim
memory from nodes in round-robin order") and commit 453a9bf347
("memcg: fix numa scan information update to be triggered by memory
event").

[shakeelb@google.com: v2]
  Link: http://lkml.kernel.org/r/20191030204232.139424-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20191029234753.224143-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Johannes Weiner 8c8c383c04 mm: memcontrol: try harder to set a new memory.high
Setting a memory.high limit below the usage makes almost no effort to
shrink the cgroup to the new target size.

While memory.high is a "soft" limit that isn't supposed to cause OOM
situations, we should still try harder to meet a user request through
persistent reclaim.

For example, after setting a 10M memory.high on an 800M cgroup full of
file cache, the usage shrinks to about 350M:

  + cat /cgroup/workingset/memory.current
  841568256
  + echo 10M
  + cat /cgroup/workingset/memory.current
  355729408

This isn't exactly what the user would expect to happen. Setting the
value a few more times eventually whittles the usage down to what we
are asking for:

  + echo 10M
  + cat /cgroup/workingset/memory.current
  104181760
  + echo 10M
  + cat /cgroup/workingset/memory.current
  31801344
  + echo 10M
  + cat /cgroup/workingset/memory.current
  10440704

To improve this, add reclaim retry loops to the memory.high write()
callback, similar to what we do for memory.max, to make a reasonable
effort that the usage meets the requested size after the call returns.

Afterwards, a single write() to memory.high is enough in all but extreme
cases:

  + cat /cgroup/workingset/memory.current
  841609216
  + echo 10M
  + cat /cgroup/workingset/memory.current
  10182656

790M is not a reasonable reclaim target to ask of a single reclaim
invocation.  And it wouldn't be reasonable to optimize the reclaim code
for it.  So asking for the full size but retrying is not a bad choice
here: we express our intent, and benefit if reclaim becomes better at
handling larger requests, but we also acknowledge that some of the
deltas we can encounter in memory_high_write() are just too ridiculously
big for a single reclaim invocation to manage.

Link: http://lkml.kernel.org/r/20191022201518.341216-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Johannes Weiner 7249c9f01d mm: memcontrol: remove dead code from memory_max_write()
When the reclaim loop in memory_max_write() is ^C'd or similar, we set err
to -EINTR.  But we don't return err.  Once the limit is set, we always
return success (nbytes).  Delete the dead code.

Link: http://lkml.kernel.org/r/20191022201518.341216-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Yafang Shao 9da83f3fc7 mm, memcg: clean up reclaim iter array
The mem_cgroup_reclaim_cookie is only used in memcg softlimit reclaim now,
and the priority of the reclaim is always 0.  We don't need to define the
iter in struct mem_cgroup_per_node as an array any more.  That could make
the code more clear and save some space.

Link: http://lkml.kernel.org/r/1569897728-1686-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 06:29:18 -08:00
Linus Torvalds 168829ad09 Merge branch 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Ingo Molnar:
 "The main changes in this cycle were:

   - A comprehensive rewrite of the robust/PI futex code's exit handling
     to fix various exit races. (Thomas Gleixner et al)

   - Rework the generic REFCOUNT_FULL implementation using
     atomic_fetch_* operations so that the performance impact of the
     cmpxchg() loops is mitigated for common refcount operations.

     With these performance improvements the generic implementation of
     refcount_t should be good enough for everybody - and this got
     confirmed by performance testing, so remove ARCH_HAS_REFCOUNT and
     REFCOUNT_FULL entirely, leaving the generic implementation enabled
     unconditionally. (Will Deacon)

   - Other misc changes, fixes, cleanups"

* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
  lkdtm: Remove references to CONFIG_REFCOUNT_FULL
  locking/refcount: Remove unused 'refcount_error_report()' function
  locking/refcount: Consolidate implementations of refcount_t
  locking/refcount: Consolidate REFCOUNT_{MAX,SATURATED} definitions
  locking/refcount: Move saturation warnings out of line
  locking/refcount: Improve performance of generic REFCOUNT_FULL code
  locking/refcount: Move the bulk of the REFCOUNT_FULL implementation into the <linux/refcount.h> header
  locking/refcount: Remove unused refcount_*_checked() variants
  locking/refcount: Ensure integer operands are treated as signed
  locking/refcount: Define constants for saturation and max refcount values
  futex: Prevent exit livelock
  futex: Provide distinct return value when owner is exiting
  futex: Add mutex around futex exit
  futex: Provide state handling for exec() as well
  futex: Sanitize exit state handling
  futex: Mark the begin of futex exit explicitly
  futex: Set task::futex_state to DEAD right after handling futex exit
  futex: Split futex_mm_release() for exit/exec
  exit/exec: Seperate mm_release()
  futex: Replace PF_EXITPIDONE with a state
  ...
2019-11-26 16:02:40 -08:00
Roman Gushchin 00d484f354 mm: memcg: switch to css_tryget() in get_mem_cgroup_from_mm()
We've encountered a rcu stall in get_mem_cgroup_from_mm():

  rcu: INFO: rcu_sched self-detected stall on CPU
  rcu: 33-....: (21000 ticks this GP) idle=6c6/1/0x4000000000000002 softirq=35441/35441 fqs=5017
  (t=21031 jiffies g=324821 q=95837) NMI backtrace for cpu 33
  <...>
  RIP: 0010:get_mem_cgroup_from_mm+0x2f/0x90
  <...>
   __memcg_kmem_charge+0x55/0x140
   __alloc_pages_nodemask+0x267/0x320
   pipe_write+0x1ad/0x400
   new_sync_write+0x127/0x1c0
   __kernel_write+0x4f/0xf0
   dump_emit+0x91/0xc0
   writenote+0xa0/0xc0
   elf_core_dump+0x11af/0x1430
   do_coredump+0xc65/0xee0
   get_signal+0x132/0x7c0
   do_signal+0x36/0x640
   exit_to_usermode_loop+0x61/0xd0
   do_syscall_64+0xd4/0x100
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

The problem is caused by an exiting task which is associated with an
offline memcg.  We're iterating over and over in the do {} while
(!css_tryget_online()) loop, but obviously the memcg won't become online
and the exiting task won't be migrated to a live memcg.

Let's fix it by switching from css_tryget_online() to css_tryget().

As css_tryget_online() cannot guarantee that the memcg won't go offline,
the check is usually useless, except some rare cases when for example it
determines if something should be presented to a user.

A similar problem is described by commit 18fa84a2db ("cgroup: Use
css_tryget() instead of css_tryget_online() in task_get_css()").

Johannes:

: The bug aside, it doesn't matter whether the cgroup is online for the
: callers.  It used to matter when offlining needed to evacuate all charges
: from the memcg, and so needed to prevent new ones from showing up, but we
: don't care now.

Link: http://lkml.kernel.org/r/20191106225131.3543616-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Shakeel Butt <shakeeb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutn <mkoutny@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15 18:34:00 -08:00
Johannes Weiner 869712fd3d mm: memcontrol: fix network errors from failing __GFP_ATOMIC charges
While upgrading from 4.16 to 5.2, we noticed these allocation errors in
the log of the new kernel:

  SLUB: Unable to allocate memory on node -1, gfp=0xa20(GFP_ATOMIC)
    cache: tw_sock_TCPv6(960:helper-logs), object size: 232, buffer size: 240, default order: 1, min order: 0
    node 0: slabs: 5, objs: 170, free: 0

        slab_out_of_memory+1
        ___slab_alloc+969
        __slab_alloc+14
        kmem_cache_alloc+346
        inet_twsk_alloc+60
        tcp_time_wait+46
        tcp_fin+206
        tcp_data_queue+2034
        tcp_rcv_state_process+784
        tcp_v6_do_rcv+405
        __release_sock+118
        tcp_close+385
        inet_release+46
        __sock_release+55
        sock_close+17
        __fput+170
        task_work_run+127
        exit_to_usermode_loop+191
        do_syscall_64+212
        entry_SYSCALL_64_after_hwframe+68

accompanied by an increase in machines going completely radio silent
under memory pressure.

One thing that changed since 4.16 is e699e2c6a6 ("net, mm: account
sock objects to kmemcg"), which made these slab caches subject to cgroup
memory accounting and control.

The problem with that is that cgroups, unlike the page allocator, do not
maintain dedicated atomic reserves.  As a cgroup's usage hovers at its
limit, atomic allocations - such as done during network rx - can fail
consistently for extended periods of time.  The kernel is not able to
operate under these conditions.

We don't want to revert the culprit patch, because it indeed tracks a
potentially substantial amount of memory used by a cgroup.

We also don't want to implement dedicated atomic reserves for cgroups.
There is no point in keeping a fixed margin of unused bytes in the
cgroup's memory budget to accomodate a consumer that is impossible to
predict - we'd be wasting memory and get into configuration headaches,
not unlike what we have going with min_free_kbytes.  We do this for
physical mem because we have to, but cgroups are an accounting game.

Instead, account these privileged allocations to the cgroup, but let
them bypass the configured limit if they have to.  This way, we get the
benefits of accounting the consumed memory and have it exert pressure on
the rest of the cgroup, but like with the page allocator, we shift the
burden of reclaimining on behalf of atomic allocations onto the regular
allocations that can block.

Link: http://lkml.kernel.org/r/20191022233708.365764-1-hannes@cmpxchg.org
Fixes: e699e2c6a6 ("net, mm: account sock objects to kmemcg")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>	[4.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:47:50 -08:00
Roman Gushchin 221ec5c0a4 mm: slab: make page_cgroup_ino() to recognize non-compound slab pages properly
page_cgroup_ino() doesn't return a valid memcg pointer for non-compound
slab pages, because it depends on PgHead AND PgSlab flags to be set to
determine the memory cgroup from the kmem_cache.  It's correct for
compound pages, but not for generic small pages.  Those don't have PgHead
set, so it ends up returning zero.

Fix this by replacing the condition to PageSlab() && !PageTail().

Before this patch:
  [root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab
  0x0000000000000080	        38        0  _______S___________________________________	slab

After this patch:
  [root@localhost ~]# ./page-types -c /sys/fs/cgroup/user.slice/user-0.slice/user@0.service/ | grep slab
  0x0000000000000080	       147        0  _______S___________________________________	slab

Also, hwpoison_filter_task() uses output of page_cgroup_ino() in order
to filter error injection events based on memcg.  So if
page_cgroup_ino() fails to return memcg pointer, we just fail to inject
memory error.  Considering that hwpoison filter is for testing, affected
users are limited and the impact should be marginal.

[n-horiguchi@ah.jp.nec.com: changelog additions]
Link: http://lkml.kernel.org/r/20191031012151.2722280-1-guro@fb.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:47:50 -08:00
Shakeel Butt 7961eee397 mm: memcontrol: fix NULL-ptr deref in percpu stats flush
__mem_cgroup_free() can be called on the failure path in
mem_cgroup_alloc().  However memcg_flush_percpu_vmstats() and
memcg_flush_percpu_vmevents() which are called from __mem_cgroup_free()
access the fields of memcg which can potentially be null if called from
failure path from mem_cgroup_alloc().  Indeed syzbot has reported the
following crash:

	kasan: CONFIG_KASAN_INLINE enabled
	kasan: GPF could be caused by NULL-ptr deref or user memory access
	general protection fault: 0000 [#1] PREEMPT SMP KASAN
	CPU: 0 PID: 30393 Comm: syz-executor.1 Not tainted 5.4.0-rc2+ #0
	Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
	RIP: 0010:memcg_flush_percpu_vmstats+0x4ae/0x930 mm/memcontrol.c:3436
	Code: 05 41 89 c0 41 0f b6 04 24 41 38 c7 7c 08 84 c0 0f 85 5d 03 00 00 44 3b 05 33 d5 12 08 0f 83 e2 00 00 00 4c 89 f0 48 c1 e8 03 <42> 80 3c 28 00 0f 85 91 03 00 00 48 8b 85 10 fe ff ff 48 8b b0 90
	RSP: 0018:ffff888095c27980 EFLAGS: 00010206
	RAX: 0000000000000012 RBX: ffff888095c27b28 RCX: ffffc90008192000
	RDX: 0000000000040000 RSI: ffffffff8340fae7 RDI: 0000000000000007
	RBP: ffff888095c27be0 R08: 0000000000000000 R09: ffffed1013f0da33
	R10: ffffed1013f0da32 R11: ffff88809f86d197 R12: fffffbfff138b760
	R13: dffffc0000000000 R14: 0000000000000090 R15: 0000000000000007
	FS:  00007f5027170700(0000) GS:ffff8880ae800000(0000) knlGS:0000000000000000
	CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
	CR2: 0000000000710158 CR3: 00000000a7b18000 CR4: 00000000001406f0
	DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
	DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
	Call Trace:
	__mem_cgroup_free+0x1a/0x190 mm/memcontrol.c:5021
	mem_cgroup_free mm/memcontrol.c:5033 [inline]
	mem_cgroup_css_alloc+0x3a1/0x1ae0 mm/memcontrol.c:5160
	css_create kernel/cgroup/cgroup.c:5156 [inline]
	cgroup_apply_control_enable+0x44d/0xc40 kernel/cgroup/cgroup.c:3119
	cgroup_mkdir+0x899/0x11b0 kernel/cgroup/cgroup.c:5401
	kernfs_iop_mkdir+0x14d/0x1d0 fs/kernfs/dir.c:1124
	vfs_mkdir+0x42e/0x670 fs/namei.c:3807
	do_mkdirat+0x234/0x2a0 fs/namei.c:3830
	__do_sys_mkdir fs/namei.c:3846 [inline]
	__se_sys_mkdir fs/namei.c:3844 [inline]
	__x64_sys_mkdir+0x5c/0x80 fs/namei.c:3844
	do_syscall_64+0xfa/0x760 arch/x86/entry/common.c:290
	entry_SYSCALL_64_after_hwframe+0x49/0xbe

Fixing this by moving the flush to mem_cgroup_free as there is no need
to flush anything if we see failure in mem_cgroup_alloc().

Link: http://lkml.kernel.org/r/20191018165231.249872-1-shakeelb@google.com
Fixes: bb65f89b7d ("mm: memcontrol: flush percpu vmevents before releasing memcg")
Fixes: c350a99ea2 ("mm: memcontrol: flush percpu vmstats before releasing memcg")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: syzbot+515d5bcfe179cdf049b2@syzkaller.appspotmail.com
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:28:58 -08:00
Konstantin Khlebnikov ae8af4388d mm/memcontrol: update lruvec counters in mem_cgroup_move_account
Mapped, dirty and writeback pages are also counted in per-lruvec stats.
These counters needs update when page is moved between cgroups.

Currently is nobody *consuming* the lruvec versions of these counters and
that there is no user-visible effect.

Link: http://lkml.kernel.org/r/157112699975.7360.1062614888388489788.stgit@buzz
Fixes: 00f3ca2c2d ("mm: memcontrol: per-lruvec stats infrastructure")
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19 06:32:32 -04:00
Qian Cai 5facae4f35 locking/lockdep: Remove unused @nested argument from lock_release()
Since the following commit:

  b4adfe8e05 ("locking/lockdep: Remove unused argument in __lock_release")

@nested is no longer used in lock_release(), so remove it from all
lock_release() calls and friends.

Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: airlied@linux.ie
Cc: akpm@linux-foundation.org
Cc: alexander.levin@microsoft.com
Cc: daniel@iogearbox.net
Cc: davem@davemloft.net
Cc: dri-devel@lists.freedesktop.org
Cc: duyuyang@gmail.com
Cc: gregkh@linuxfoundation.org
Cc: hannes@cmpxchg.org
Cc: intel-gfx@lists.freedesktop.org
Cc: jack@suse.com
Cc: jlbec@evilplan.or
Cc: joonas.lahtinen@linux.intel.com
Cc: joseph.qi@linux.alibaba.com
Cc: jslaby@suse.com
Cc: juri.lelli@redhat.com
Cc: maarten.lankhorst@linux.intel.com
Cc: mark@fasheh.com
Cc: mhocko@kernel.org
Cc: mripard@kernel.org
Cc: ocfs2-devel@oss.oracle.com
Cc: rodrigo.vivi@intel.com
Cc: sean@poorly.run
Cc: st@kernel.org
Cc: tj@kernel.org
Cc: tytso@mit.edu
Cc: vdavydov.dev@gmail.com
Cc: vincent.guittot@linaro.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1568909380-32199-1-git-send-email-cai@lca.pw
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-10-09 12:46:10 +02:00
Chris Down 9783aa9917 mm, memcg: proportional memory.{low,min} reclaim
cgroup v2 introduces two memory protection thresholds: memory.low
(best-effort) and memory.min (hard protection).  While they generally do
what they say on the tin, there is a limitation in their implementation
that makes them difficult to use effectively: that cliff behaviour often
manifests when they become eligible for reclaim.  This patch implements
more intuitive and usable behaviour, where we gradually mount more
reclaim pressure as cgroups further and further exceed their protection
thresholds.

This cliff edge behaviour happens because we only choose whether or not
to reclaim based on whether the memcg is within its protection limits
(see the use of mem_cgroup_protected in shrink_node), but we don't vary
our reclaim behaviour based on this information.  Imagine the following
timeline, with the numbers the lruvec size in this zone:

1. memory.low=1000000, memory.current=999999. 0 pages may be scanned.
2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned.
3. memory.low=1000000, memory.current=1000001. 1000001* pages may be
   scanned. (?!)

* Of course, we won't usually scan all available pages in the zone even
  without this patch because of scan control priority, over-reclaim
  protection, etc.  However, as shown by the tests at the end, these
  techniques don't sufficiently throttle such an extreme change in input,
  so cliff-like behaviour isn't really averted by their existence alone.

Here's an example of how this plays out in practice.  At Facebook, we are
trying to protect various workloads from "system" software, like
configuration management tools, metric collectors, etc (see this[0] case
study).  In order to find a suitable memory.low value, we start by
determining the expected memory range within which the workload will be
comfortable operating.  This isn't an exact science -- memory usage deemed
"comfortable" will vary over time due to user behaviour, differences in
composition of work, etc, etc.  As such we need to ballpark memory.low,
but doing this is currently problematic:

1. If we end up setting it too low for the workload, it won't have
   *any* effect (see discussion above).  The group will receive the full
   weight of reclaim and won't have any priority while competing with the
   less important system software, as if we had no memory.low configured
   at all.

2. Because of this behaviour, we end up erring on the side of setting
   it too high, such that the comfort range is reliably covered.  However,
   protected memory is completely unavailable to the rest of the system,
   so we might cause undue memory and IO pressure there when we *know* we
   have some elasticity in the workload.

3. Even if we get the value totally right, smack in the middle of the
   comfort zone, we get extreme jumps between no pressure and full
   pressure that cause unpredictable pressure spikes in the workload due
   to the current binary reclaim behaviour.

With this patch, we can set it to our ballpark estimation without too much
worry.  Any undesirable behaviour, such as too much or too little reclaim
pressure on the workload or system will be proportional to how far our
estimation is off.  This means we can set memory.low much more
conservatively and thus waste less resources *without* the risk of the
workload falling off a cliff if we overshoot.

As a more abstract technical description, this unintuitive behaviour
results in having to give high-priority workloads a large protection
buffer on top of their expected usage to function reliably, as otherwise
we have abrupt periods of dramatically increased memory pressure which
hamper performance.  Having to set these thresholds so high wastes
resources and generally works against the principle of work conservation.
In addition, having proportional memory reclaim behaviour has other
benefits.  Most notably, before this patch it's basically mandatory to set
memory.low to a higher than desirable value because otherwise as soon as
you exceed memory.low, all protection is lost, and all pages are eligible
to scan again.  By contrast, having a gradual ramp in reclaim pressure
means that you now still get some protection when thresholds are exceeded,
which means that one can now be more comfortable setting memory.low to
lower values without worrying that all protection will be lost.  This is
important because workingset size is really hard to know exactly,
especially with variable workloads, so at least getting *some* protection
if your workingset size grows larger than you expect increases user
confidence in setting memory.low without a huge buffer on top being
needed.

Thanks a lot to Johannes Weiner and Tejun Heo for their advice and
assistance in thinking about how to make this work better.

In testing these changes, I intended to verify that:

1. Changes in page scanning become gradual and proportional instead of
   binary.

   To test this, I experimented stepping further and further down
   memory.low protection on a workload that floats around 19G workingset
   when under memory.low protection, watching page scan rates for the
   workload cgroup:

   +------------+-----------------+--------------------+--------------+
   | memory.low | test (pgscan/s) | control (pgscan/s) | % of control |
   +------------+-----------------+--------------------+--------------+
   |        21G |               0 |                  0 | N/A          |
   |        17G |             867 |               3799 | 23%          |
   |        12G |            1203 |               3543 | 34%          |
   |         8G |            2534 |               3979 | 64%          |
   |         4G |            3980 |               4147 | 96%          |
   |          0 |            3799 |               3980 | 95%          |
   +------------+-----------------+--------------------+--------------+

   As you can see, the test kernel (with a kernel containing this
   patch) ramps up page scanning significantly more gradually than the
   control kernel (without this patch).

2. More gradual ramp up in reclaim aggression doesn't result in
   premature OOMs.

   To test this, I wrote a script that slowly increments the number of
   pages held by stress(1)'s --vm-keep mode until a production system
   entered severe overall memory contention.  This script runs in a highly
   protected slice taking up the majority of available system memory.
   Watching vmstat revealed that page scanning continued essentially
   nominally between test and control, without causing forward reclaim
   progress to become arrested.

[0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project

[akpm@linux-foundation.org: reflow block comments to fit in 80 cols]
[chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection]
  Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name
Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-07 15:47:20 -07:00
Michal Hocko e55d9d9bfb memcg, kmem: do not fail __GFP_NOFAIL charges
Thomas has noticed the following NULL ptr dereference when using cgroup
v1 kmem limit:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
PGD 0
P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 16923 Comm: gtk-update-icon Not tainted 4.19.51 #42
Hardware name: Gigabyte Technology Co., Ltd. Z97X-Gaming G1/Z97X-Gaming G1, BIOS F9 07/31/2015
RIP: 0010:create_empty_buffers+0x24/0x100
Code: cd 0f 1f 44 00 00 0f 1f 44 00 00 41 54 49 89 d4 ba 01 00 00 00 55 53 48 89 fb e8 97 fe ff ff 48 89 c5 48 89 c2 eb 03 48 89 ca <48> 8b 4a 08 4c 09 22 48 85 c9 75 f1 48 89 6a 08 48 8b 43 18 48 8d
RSP: 0018:ffff927ac1b37bf8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: fffff2d4429fd740 RCX: 0000000100097149
RDX: 0000000000000000 RSI: 0000000000000082 RDI: ffff9075a99fbe00
RBP: 0000000000000000 R08: fffff2d440949cc8 R09: 00000000000960c0
R10: 0000000000000002 R11: 0000000000000000 R12: 0000000000000000
R13: ffff907601f18360 R14: 0000000000002000 R15: 0000000000001000
FS:  00007fb55b288bc0(0000) GS:ffff90761f8c0000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000008 CR3: 000000007aebc002 CR4: 00000000001606e0
Call Trace:
 create_page_buffers+0x4d/0x60
 __block_write_begin_int+0x8e/0x5a0
 ? ext4_inode_attach_jinode.part.82+0xb0/0xb0
 ? jbd2__journal_start+0xd7/0x1f0
 ext4_da_write_begin+0x112/0x3d0
 generic_perform_write+0xf1/0x1b0
 ? file_update_time+0x70/0x140
 __generic_file_write_iter+0x141/0x1a0
 ext4_file_write_iter+0xef/0x3b0
 __vfs_write+0x17e/0x1e0
 vfs_write+0xa5/0x1a0
 ksys_write+0x57/0xd0
 do_syscall_64+0x55/0x160
 entry_SYSCALL_64_after_hwframe+0x44/0xa9

Tetsuo then noticed that this is because the __memcg_kmem_charge_memcg
fails __GFP_NOFAIL charge when the kmem limit is reached.  This is a wrong
behavior because nofail allocations are not allowed to fail.  Normal
charge path simply forces the charge even if that means to cross the
limit.  Kmem accounting should be doing the same.

Link: http://lkml.kernel.org/r/20190906125608.32129-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Thomas Lindroth <thomas.lindroth@gmail.com>
Debugged-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-25 17:51:39 -07:00
Yang Shi 87eaceb3fa mm: thp: make deferred split shrinker memcg aware
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration.  For example the below test would
run into premature OOM easily:

$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000

transhuge-stress comes from kernel selftest.

It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.

Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue.  The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg.  When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.

Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.

[yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai]
  Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:11 -07:00
Yang Shi 0a432dcbeb mm: shrinker: make shrinker not depend on memcg kmem
Currently shrinker is just allocated and can work when memcg kmem is
enabled.  But, THP deferred split shrinker is not slab shrinker, it
doesn't make too much sense to have such shrinker depend on memcg kmem.
It should be able to reclaim THP even though memcg kmem is disabled.

Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker.
When memcg kmem is disabled, just such shrinkers can be called in
shrinking memcg slab.

[yang.shi@linux.alibaba.com: add comment]
  Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:11 -07:00
Michal Hocko 0158115f70 memcg, kmem: deprecate kmem.limit_in_bytes
Cgroup v1 memcg controller has exposed a dedicated kmem limit to users
which turned out to be really a bad idea because there are paths which
cannot shrink the kernel memory usage enough to get below the limit (e.g.
because the accounted memory is not reclaimable).  There are cases when
the failure is even not allowed (e.g.  __GFP_NOFAIL).  This means that the
kmem limit is in excess to the hard limit without any way to shrink and
thus completely useless.  OOM killer cannot be invoked to handle the
situation because that would lead to a premature oom killing.

As a result many places might see ENOMEM returning from kmalloc and result
in unexpected errors.  E.g.  a global OOM killer when there is a lot of
free memory because ENOMEM is translated into VM_FAULT_OOM in #PF path and
therefore pagefault_out_of_memory would result in OOM killer.

Please note that the kernel memory is still accounted to the overall limit
along with the user memory so removing the kmem specific limit should
still allow to contain kernel memory consumption.  Unlike the kmem one,
though, it invokes memory reclaim and targeted memcg oom killing if
necessary.

Start the deprecation process by crying to the kernel log.  Let's see
whether there are relevant usecases and simply return to EINVAL in the
second stage if nobody complains in few releases.

[akpm@linux-foundation.org: tweak documentation text]
Link: http://lkml.kernel.org/r/20190911151612.GI4023@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:10 -07:00
Qian Cai 4d0e3230a5 mm/memcontrol.c: fix a -Wunused-function warning
mem_cgroup_id_get() was introduced in commit 73f576c04b ("mm:memcontrol:
fix cgroup creation failure after many small jobs").

Later, it no longer has any user since the commits,

1f47b61fb4 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup")
58fa2a5512 ("mm: memcontrol: add sanity checks for memcg->id.ref on get/put")

so safe to remove it.

Link: http://lkml.kernel.org/r/1568648453-5482-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:10 -07:00
Roman Gushchin e1a366be5c mm: memcontrol: switch to rcu protection in drain_all_stock()
Commit 72f0184c8a ("mm, memcg: remove hotplug locking from try_charge")
introduced css_tryget()/css_put() calls in drain_all_stock(), which are
supposed to protect the target memory cgroup from being released during
the mem_cgroup_is_descendant() call.

However, it's not completely safe.  In theory, memcg can go away between
reading stock->cached pointer and calling css_tryget().

This can happen if drain_all_stock() races with drain_local_stock()
performed on the remote cpu as a result of a work, scheduled by the
previous invocation of drain_all_stock().

The race is a bit theoretical and there are few chances to trigger it, but
the current code looks a bit confusing, so it makes sense to fix it
anyway.  The code looks like as if css_tryget() and css_put() are used to
protect stocks drainage.  It's not necessary because stocked pages are
holding references to the cached cgroup.  And it obviously won't work for
works, scheduled on other cpus.

So, let's read the stock->cached pointer and evaluate the memory cgroup
inside a rcu read section, and get rid of css_tryget()/css_put() calls.

Link: http://lkml.kernel.org/r/20190802192241.3253165-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:08 -07:00
Chris Down 0e4b01df86 mm, memcg: throttle allocators when failing reclaim over memory.high
We're trying to use memory.high to limit workloads, but have found that
containment can frequently fail completely and cause OOM situations
outside of the cgroup.  This happens especially with swap space -- either
when none is configured, or swap is full.  These failures often also don't
have enough warning to allow one to react, whether for a human or for a
daemon monitoring PSI.

Here is output from a simple program showing how long it takes in usec
(column 2) to allocate a megabyte of anonymous memory (column 1) when a
cgroup is already beyond its memory high setting, and no swap is
available:

    [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
    > --wait -t timeout 300 /root/mdf
    [...]
    95  1035
    96  1038
    97  1000
    98  1036
    99  1048
    100 1590
    101 1968
    102 1776
    103 1863
    104 1757
    105 1921
    106 1893
    107 1760
    108 1748
    109 1843
    110 1716
    111 1924
    112 1776
    113 1831
    114 1766
    115 1836
    116 1588
    117 1912
    118 1802
    119 1857
    120 1731
    [...]
    [System OOM in 2-3 seconds]

The delay does go up extremely marginally past the 100MB memory.high
threshold, as now we spend time scanning before returning to usermode, but
it's nowhere near enough to contain growth.  It also doesn't get worse the
more pages you have, since it only considers nr_pages.

The current situation goes against both the expectations of users of
memory.high, and our intentions as cgroup v2 developers.  In
cgroup-v2.txt, we claim that we will throttle and only under "extreme
conditions" will memory.high protection be breached.  Likewise, cgroup v2
users generally also expect that memory.high should throttle workloads as
they exceed their high threshold.  However, as seen above, this isn't
always how it works in practice -- even on banal setups like those with no
swap, or where swap has become exhausted, we can end up with memory.high
being breached and us having no weapons left in our arsenal to combat
runaway growth with, since reclaim is futile.

It's also hard for system monitoring software or users to tell how bad the
situation is, as "high" events for the memcg may in some cases be benign,
and in others be catastrophic.  The current status quo is that we fail
containment in a way that doesn't provide any advance warning that things
are about to go horribly wrong (for example, we are about to invoke the
kernel OOM killer).

This patch introduces explicit throttling when reclaim is failing to keep
memcg size contained at the memory.high setting.  It does so by applying
an exponential delay curve derived from the memcg's overage compared to
memory.high.  In the normal case where the memcg is either below or only
marginally over its memory.high setting, no throttling will be performed.

This composes well with system health monitoring and remediation, as these
allocator delays are factored into PSI's memory pressure calculations.
This both creates a mechanism system administrators or applications
consuming the PSI interface to trivially see that the memcg in question is
struggling and use that to make more reasonable decisions, and permits
them enough time to act.  Either of these can act with significantly more
nuance than that we can provide using the system OOM killer.

This is a similar idea to memory.oom_control in cgroup v1 which would put
the cgroup to sleep if the threshold was violated, but it's also
significantly improved as it results in visible memory pressure, and also
doesn't schedule indefinitely, which previously made tracing and other
introspection difficult (ie.  it's clamped at 2*HZ per allocation through
MEMCG_MAX_HIGH_DELAY_JIFFIES).

Contrast the previous results with a kernel with this patch:

    [root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
    > --wait -t timeout 300 /root/mdf
    [...]
    95  1002
    96  1000
    97  1002
    98  1003
    99  1000
    100 1043
    101 84724
    102 330628
    103 610511
    104 1016265
    105 1503969
    106 2391692
    107 2872061
    108 3248003
    109 4791904
    110 5759832
    111 6912509
    112 8127818
    113 9472203
    114 12287622
    115 12480079
    116 14144008
    117 15808029
    118 16384500
    119 16383242
    120 16384979
    [...]

As you can see, in the normal case, memory allocation takes around 1000
usec.  However, as we exceed our memory.high, things start to increase
exponentially, but fairly leniently at first.  Our first megabyte over
memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then the
next is almost an entire second.  This gets worse until we reach our
eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte.
However, this is still making forward progress, so permits tracing or
further analysis with programs like GDB.

We use an exponential curve for our delay penalty for a few reasons:

1. We run mem_cgroup_handle_over_high to potentially do reclaim after
   we've already performed allocations, which means that temporarily
   going over memory.high by a small amount may be perfectly legitimate,
   even for compliant workloads. We don't want to unduly penalise such
   cases.
2. An exponential curve (as opposed to a static or linear delay) allows
   ramping up memory pressure stats more gradually, which can be useful
   to work out that you have set memory.high too low, without destroying
   application performance entirely.

This patch expands on earlier work by Johannes Weiner. Thanks!

[akpm@linux-foundation.org: fix max() warning]
[akpm@linux-foundation.org: fix __udivdi3 ref on 32-bit]
[akpm@linux-foundation.org: fix it even more]
[chris@chrisdown.name: fix 64-bit divide even more]
Link: http://lkml.kernel.org/r/20190723180700.GA29459@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:08 -07:00
Matthew Wilcox (Oracle) d8c6546b1a mm: introduce compound_nr()
Replace 1 << compound_order(page) with compound_nr(page).  Minor
improvements in readability.

Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:08 -07:00
Linus Torvalds 84da111de0 hmm related patches for 5.4
This is more cleanup and consolidation of the hmm APIs and the very
 strongly related mmu_notifier interfaces. Many places across the tree
 using these interfaces are touched in the process. Beyond that a cleanup
 to the page walker API and a few memremap related changes round out the
 series:
 
 - General improvement of hmm_range_fault() and related APIs, more
   documentation, bug fixes from testing, API simplification &
   consolidation, and unused API removal
 
 - Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and
   make them internal kconfig selects
 
 - Hoist a lot of code related to mmu notifier attachment out of drivers by
   using a refcount get/put attachment idiom and remove the convoluted
   mmu_notifier_unregister_no_release() and related APIs.
 
 - General API improvement for the migrate_vma API and revision of its only
   user in nouveau
 
 - Annotate mmu_notifiers with lockdep and sleeping region debugging
 
 Two series unrelated to HMM or mmu_notifiers came along due to
 dependencies:
 
 - Allow pagemap's memremap_pages family of APIs to work without providing
   a struct device
 
 - Make walk_page_range() and related use a constant structure for function
   pointers
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g
 mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA
 Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS
 6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g
 tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX
 nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v
 wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH
 yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh
 EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF
 Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a
 kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l
 olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0=
 =FRGg
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma

Pull hmm updates from Jason Gunthorpe:
 "This is more cleanup and consolidation of the hmm APIs and the very
  strongly related mmu_notifier interfaces. Many places across the tree
  using these interfaces are touched in the process. Beyond that a
  cleanup to the page walker API and a few memremap related changes
  round out the series:

   - General improvement of hmm_range_fault() and related APIs, more
     documentation, bug fixes from testing, API simplification &
     consolidation, and unused API removal

   - Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
     and make them internal kconfig selects

   - Hoist a lot of code related to mmu notifier attachment out of
     drivers by using a refcount get/put attachment idiom and remove the
     convoluted mmu_notifier_unregister_no_release() and related APIs.

   - General API improvement for the migrate_vma API and revision of its
     only user in nouveau

   - Annotate mmu_notifiers with lockdep and sleeping region debugging

  Two series unrelated to HMM or mmu_notifiers came along due to
  dependencies:

   - Allow pagemap's memremap_pages family of APIs to work without
     providing a struct device

   - Make walk_page_range() and related use a constant structure for
     function pointers"

* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
  libnvdimm: Enable unit test infrastructure compile checks
  mm, notifier: Catch sleeping/blocking for !blockable
  kernel.h: Add non_block_start/end()
  drm/radeon: guard against calling an unpaired radeon_mn_unregister()
  csky: add missing brackets in a macro for tlb.h
  pagewalk: use lockdep_assert_held for locking validation
  pagewalk: separate function pointers from iterator data
  mm: split out a new pagewalk.h header from mm.h
  mm/mmu_notifiers: annotate with might_sleep()
  mm/mmu_notifiers: prime lockdep
  mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
  mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
  mm/hmm: hmm_range_fault() infinite loop
  mm/hmm: hmm_range_fault() NULL pointer bug
  mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
  mm/mmu_notifiers: remove unregister_no_release
  RDMA/odp: remove ib_ucontext from ib_umem
  RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
  RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
  RDMA/mlx5: Use ib_umem_start instead of umem.address
  ...
2019-09-21 10:07:42 -07:00
Linus Torvalds 7ad67ca553 for-5.4/block-2019-09-16
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl1/no0QHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpmo9EACFXMbdNmEEUMyRSdOkVLlr7ZlTyQi1tLpB
 YESDPxdBfybzpi0qa8JSaysGIfvSkSjmSAqBqrWPmASOSOL6CK4bbA4fTYbgPplk
 XeHUdgGiG34oCQUn8Xil5reYaTm7I6LQWnWTpVa5fIhAyUYaGJL+987ykoGmpQmB
 Dvf3YSc+8H0RTp9PCMVd6UCGPkZbVlLImGad3PF5ULvTEaE4RCXC2aiAgh0p1l5A
 J2CkRZ+/mio3zN2O4YN7VdPGfr1Wo1iZ834xbIGLegv1miHXagFk7jwTcC7zIt5t
 oSnJnqIg3iCe7SpWt4Bkzw/zy/2UqaspifbCMgw8vychlViVRUHFO5h85Yboo7kQ
 OMLEQPcwjm6dTHv5h1iXF9LW1O7NoiYmmgvApU9uOo1HUrl1X7PZ3JEfUsVHxkOO
 T4D5igf0Krsl1eAbiwEUQzy7vFZ8PlRHqrHgK+fkyotzHu1BJR7OQkYygEfGFOB/
 EfMxplGDpmibYGuWCwDX2bPAmLV3SPUQENReHrfPJRDt5TD1UkFpVGv/PLLhbr0p
 cLYI78DKpDSigBpVMmwq5nTYpnex33eyDTTA8C0sakcsdzdmU5qv30y3wm4nTiep
 f6gZo6IMXwRg/rCgVVrd9SKQAr/8wEzVlsDW3qyi2pVT8sHIgm0tFv7paihXGdDV
 xsKgmTrQQQ==
 =Qt+h
 -----END PGP SIGNATURE-----

Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block

Pull block updates from Jens Axboe:

 - Two NVMe pull requests:
     - ana log parse fix from Anton
     - nvme quirks support for Apple devices from Ben
     - fix missing bio completion tracing for multipath stack devices
       from Hannes and Mikhail
     - IP TOS settings for nvme rdma and tcp transports from Israel
     - rq_dma_dir cleanups from Israel
     - tracing for Get LBA Status command from Minwoo
     - Some nvme-tcp cleanups from Minwoo, Potnuri and Myself
     - Some consolidation between the fabrics transports for handling
       the CAP register
     - reset race with ns scanning fix for fabrics (move fabrics
       commands to a dedicated request queue with a different lifetime
       from the admin request queue)."
     - controller reset and namespace scan races fixes
     - nvme discovery log change uevent support
     - naming improvements from Keith
     - multiple discovery controllers reject fix from James
     - some regular cleanups from various people

 - Series fixing (and re-fixing) null_blk debug printing and nr_devices
   checks (André)

 - A few pull requests from Song, with fixes from Andy, Guoqing,
   Guilherme, Neil, Nigel, and Yufen.

 - REQ_OP_ZONE_RESET_ALL support (Chaitanya)

 - Bio merge handling unification (Christoph)

 - Pick default elevator correctly for devices with special needs
   (Damien)

 - Block stats fixes (Hou)

 - Timeout and support devices nbd fixes (Mike)

 - Series fixing races around elevator switching and device add/remove
   (Ming)

 - sed-opal cleanups (Revanth)

 - Per device weight support for BFQ (Fam)

 - Support for blk-iocost, a new model that can properly account cost of
   IO workloads. (Tejun)

 - blk-cgroup writeback fixes (Tejun)

 - paride queue init fixes (zhengbin)

 - blk_set_runtime_active() cleanup (Stanley)

 - Block segment mapping optimizations (Bart)

 - lightnvm fixes (Hans/Minwoo/YueHaibing)

 - Various little fixes and cleanups

* tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits)
  null_blk: format pr_* logs with pr_fmt
  null_blk: match the type of parameter nr_devices
  null_blk: do not fail the module load with zero devices
  block: also check RQF_STATS in blk_mq_need_time_stamp()
  block: make rq sector size accessible for block stats
  bfq: Fix bfq linkage error
  raid5: use bio_end_sector in r5_next_bio
  raid5: remove STRIPE_OPS_REQ_PENDING
  md: add feature flag MD_FEATURE_RAID0_LAYOUT
  md/raid0: avoid RAID0 data corruption due to layout confusion.
  raid5: don't set STRIPE_HANDLE to stripe which is in batch list
  raid5: don't increment read_errors on EILSEQ return
  nvmet: fix a wrong error status returned in error log page
  nvme: send discovery log page change events to userspace
  nvme: add uevent variables for controller devices
  nvme: enable aen regardless of the presence of I/O queues
  nvme-fabrics: allow discovery subsystems accept a kato
  nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery()
  nvme: Remove redundant assignment of cq vector
  nvme: Assign subsys instance from first ctrl
  ...
2019-09-17 16:57:47 -07:00
Christoph Hellwig 7b86ac3371 pagewalk: separate function pointers from iterator data
The mm_walk structure currently mixed data and code.  Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.

Based on patch from Linus Torvalds.

Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-09-07 04:28:04 -03:00
Christoph Hellwig a520110e4a mm: split out a new pagewalk.h header from mm.h
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.

Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-09-07 04:28:04 -03:00
Shakeel Butt 6c1c280805 mm: memcontrol: fix percpu vmstats and vmevents flush
Instead of using raw_cpu_read() use per_cpu() to read the actual data of
the corresponding cpu otherwise we will be reading the data of the
current cpu for the number of online CPUs.

Link: http://lkml.kernel.org/r/20190829203110.129263-1-shakeelb@google.com
Fixes: bb65f89b7d ("mm: memcontrol: flush percpu vmevents before releasing memcg")
Fixes: c350a99ea2 ("mm: memcontrol: flush percpu vmstats before releasing memcg")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-30 18:00:50 -07:00