On the r2p* and r3p* versions of the Cortex-A9, a speculative memory
access may cause a page table walk which starts prior to an ASID switch
but completes afterwards. This can populate the micro-TLB with a stale
entry which may be hit with the new ASID.
This workaround places two dsb instructions in the mm switching code so
that no page table walks can cross the ASID switch.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
PL310 implements the Clean & Invalidate by Way L2 cache maintenance
operation (offset 0x7FC). This operation runs in background so that
PL310 can handle normal accesses while it is in progress. Under very
rare circumstances, due to this erratum, write data can be lost when
PL310 treats a cacheable write transaction during a Clean & Invalidate
by Way operation.
Workaround:
Disable Write-Back and Cache Linefill (Debug Control Register)
Clean & Invalidate by Way (0x7FC)
Re-enable Write-Back and Cache Linefill (Debug Control Register)
This patch also removes any OMAP dependency on PL310 Errata's
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move to SOC_SOC_IMX3X.
Leave ARCH_MX31/35 definitions there, in case some place prevent multi-soc
single image.
Signed-off-by: Richard Zhao <richard.zhao@freescale.com>
Acked-by: Marc Kleine-Budde <mkl@pengutronix.de>
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Move L1_CACHE_SHIFT related options together, rather than spreading them
across two separate Kconfig files.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
In commit e616c59140, highmem support was
deactivated for SMP platforms without hardware TLB ops broadcast because
usage of kmap_high_get() requires that IRQs be disabled when kmap_lock
is locked which is incompatible with the IPI mechanism used by the
software TLB ops broadcast invoked through flush_all_zero_pkmaps().
The reason for kmap_high_get() is to ensure that the currently kmap'd
page usage count does not decrease to zero while we're using its
existing virtual mapping in an atomic context. With a VIVT cache this
is essential to do due to cache coherency issues, but with a VIPT cache
this is only an optimization so not to pay the price of establishing a
second mapping if an existing one can be used. However, on VIPT
platforms without hardware TLB maintenance we can give up on that
optimization in order to be able to use highmem.
From ARMv7 onwards the TLB ops are broadcasted in hardware, so let's
disable ARCH_NEEDS_KMAP_HIGH_GET only when CONFIG_SMP and
CONFIG_CPU_TLB_V6 are defined.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Tested-by: Saeed Bishara <saeed.bishara@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Achieve better usage of the DMA coherent region by doing top-down
allocation rather than bottom up. If we ask for a 128kB allocation,
this will be aligned to 128kB and satisfied from the very bottom
address. If we then ask for a 600kB allocation, this will be aligned
to 1MB, and we will have a 896kB hole.
Performing top-down allocation resolves this by allocating the 128kB
at the very top, and then the 600kB can come in below it without any
unnecessary wastage.
This problem was reported by Janusz Krzysztofik, who had 2 x 128kB +
1 x 640kB allocations which wouldn't fit into 1MB.
Tested-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This adds core support for saving and restoring CPU coprocessor
registers for suspend/resume support. This contains support for suspend
with ARM920, ARM926, SA11x0, PXA25x, PXA27x, PXA3xx, V6 and V7 CPUs.
Tested on Assabet and Tegra 2.
Tested-by: Colin Cross <ccross@android.com>
Tested-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch changes the Kconfig and Makefile for the new ARCH_EXYNOS4.
It also updates arch/arm/Kconfig, Makeifile and arch/arm/mm/Kconfig
to include support for the new ARCH_EXYNOS4.
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Add pud_offset() et.al. between the pgd and pmd code in preparation of
using pgtable-nopud.h rather than 4level-fixup.h.
This incorporates a fix from Jamie Iles <jamie@jamieiles.com> for
uaccess_with_memcpy.c.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On versions of the Cortex-A9 prior to r3p0, an interrupted ICIALLUIS
operation may prevent the completion of a following broadcasted
operation if the second operation is received by a CPU before the
ICIALLUIS has completed, potentially leading to corrupted entries in
the cache or TLB.
This workaround sets a bit in the diagnostic register of the Cortex-A9,
causing CP15 maintenance operations to be uninterruptible.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The effect of cache sync operation is to drain the store buffer and
wait for all internal buffers to be empty. In normal conditions, store
buffer is able to merge the normal memory writes within its 32-byte
data buffers. Due to this erratum present in r3p0, the effect of cache
sync operation on the store buffer still remains when the operation
completes. This means that the store buffer is always asked to drain
and this prevents it from merging any further writes.
This can severely affect performance on the write traffic esp. on
Normal memory NC one.
The proposed workaround is to replace the normal offset of cache sync
operation(0x730) by another offset targeting an unmapped PL310
register 0x740.
Signed-off-by: srinidhi kasagar <srinidhi.kasagar@stericsson.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The unsigned long datatype is not sufficient for mapping physical addresses
>= 4GB.
This patch ensures that the phys_addr_t datatype is used to represent physical
addresses when converting from a PFN.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For the Kernel to support 2 level and 3 level page tables, physical
addresses (and also page table entries) need to be 32 or 64-bits depending
upon the configuration.
This patch uses the %08llx conversion specifier for physical addresses
and page table entries, ensuring that they are cast to (long long) so
that common code can be used regardless of the datatype widths.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
With LPAE we no longer have software bits in a separate Linux PTE and
the early_pte_alloc() function should pass PTE_HWTABLE_OFF +
PTE_HWTABLE_SIZE to early_alloc() to avoid allocating extra memory.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
SWP emulation requires that CPU domain support is disabled in order to
work safely. Make that explicit in the kernel configuration to prevent
illegal configurations being generated.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
OMAP2 (armv6) and MX3 turn off support for the V6K instructions, which
when they include support for SMP kernels means that the resulting
kernel is unsafe on SMP and can result in corrupted filesystems as we
end up using unsafe bitops.
Re-enable the use of V6K instructions on such kernels, and let such
kernels running on V6 CPUs eat undefined instruction faults which will
be much safer than filesystem corruption. Next merge window we can fix
this properly (as it requires a much bigger set of changes.)
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Limit DMA_CACHE_RWFO to only v6k SMP CPUs - V6 CPUs aren't SMP capable,
so the read/write for ownership work-around doesn't apply to them.
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Now that we build a v6+v6k+v7 kernel with -march=armv6k for everything,
we don't need to disable swp emulation to work around the build problem
with OMAP.
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
CPU_32v6K controls whether we use the ARMv6K extension instructions in
the kernel, and in some places whether we use SMP-safe code sequences
(eg, bitops.)
MX3 prevents the selection of this option to ensure that it is not
enabled for their CPU, which is ARMv6 only. Now that we've split the
CPU_V6 option, V6K support won't be offered for MX3 anymore.
OMAP prevents the selection of this option in an attempt to produce a
kernel which runs on architectures from ARMv6 to ARMv7 MPCore. We now
achieve this in a different way (see the previous patches).
As such, we no longer need to offer this as a configuration option to
the user.
Tested-by: Tony Lindgren <tony@atomide.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Rather than turning off CPU domain switching when the build architecture
includes ARMv6K, thereby causing problems for ARMv6-supporting kernels,
turn it on when it's required to support a CPU architecture.
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Acked-by: Tony Lindgren <tony@atomide.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
If CONFIG_CPU_V6 is enabled, then the kernel must support ARMv6 CPUs
which don't have the V6K extensions implemented. Always use the
dummy store-exclusive method to ensure that the exclusive monitors are
cleared.
If CONFIG_CPU_V6 is not set, but CONFIG_CPU_32v6K is enabled, then we
have the K extensions available on all CPUs we're building support for,
so we can use the new clear-exclusive instruction.
Acked-by: Tony Lindgren <tony@atomide.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Make Dove platforms select the new V6K CPU option.
Tested-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Introduce a CPU_V6K configuration option for platforms to select if they
have a V6K CPU core. This allows us to identify whether we need to
support ARMv6 CPUs without the V6K SMP extensions at build time.
Currently CPU_V6K is just an alias for CPU_V6, and all places which
reference CPU_V6 are replaced by (CPU_V6 || CPU_V6K).
Select CPU_V6K from platforms which are known to be V6K-only.
Acked-by: Tony Lindgren <tony@atomide.com>
Tested-by: Sourav Poddar <sourav.poddar@ti.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Disable the initrd if the passed address already overlaps the reserved
region. This avoids oopses on Netwinders when NeTTrom tells the kernel
that an initrd is located at mem+4MB, but this overlaps the BSS,
resulting in the kernels in-use BSS being freed.
This should be applied to v2.6.37-stable.
Cc: <stable@kernel.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'fixes' of master.kernel.org:/home/rmk/linux-2.6-arm:
ARM: fix missing branch in __error_a
ARM: fix /proc/$PID/stack on SMP
ARM: Fix build regression on SA11x0, PXA, and H720x targets
ARM: 6625/1: use memblock memory regions for "System RAM" I/O resources
ARM: fix wrongly patched constants
ARM: 6624/1: fix dependency for CONFIG_SMP_ON_UP
ARM: 6623/1: Thumb-2: Fix out-of-range offset for Thumb-2 in proc-v7.S
ARM: 6622/1: fix dma_unmap_sg() documentation
ARM: 6621/1: bitops: remove condition code clobber for CLZ
ARM: 6620/1: Change misleading warning when CONFIG_CMDLINE_FORCE is used
ARM: 6619/1: nommu: avoid mapping vectors page when !CONFIG_MMU
ARM: sched_clock: make minsec argument to clocks_calc_mult_shift() zero
ARM: sched_clock: allow init_sched_clock() to be called early
ARM: integrator: fix compile warning in cpu.c
ARM: 6616/1: Fix ep93xx-fb init/exit annotations
ARM: twd: fix display of twd frequency
ARM: udelay: prevent math rounding resulting in short udelays
* 'omap-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap-2.6: (27 commits)
omap4: Fix ULPI PHY init for ES1.0 SDP
omap3: beaglexm: fix power on of DVI
omap3: igep3: Add omap_reserve functionality
omap3: beaglexm: fix DVI reset GPIO
omap3: beaglexm: fix EHCI power up GPIO dir
omap3: igep2: Add keypad support
omap3: igep3: Fix IGEP module second MMC channel power supply
omap3: igep3: Add USB EHCI support for IGEP module
omap3: clocks: Fix build error 'CK_3430ES2' undeclared here
arm: omap4: pandaboard: turn on PHY reference clock at init
omap2plus: prm: Trvial build break fix for undefined reference to 'omap2_prm_read_mod_reg'
omap2plus: voltage: Trivial linking fix for 'EINVAL' undeclared
omap2plus: voltage: Trivial linking fix 'undefined reference'
omap2plus: voltage: Trivial warning fix 'no return statement'
omap2plus: clockdomain: Trivial fix for build break because of clktrctrl_mask
arm: omap: gpio: don't access irq_desc array directly
omap2+: pm_bus: make functions used as pointers as static
OMAP: GPIO: fix _set_gpio_triggering() for OMAP2+
OMAP2+: TWL: include pm header for init protos
OMAP2+: TWL: make conversion routines static
...
Fix up conflicts in arch/arm/mach-omap2/board-omap3beagle.c ("DVI reset
GPIO" vs "use generic DPI panel driver")
Commit d30e45e (ARM: pgtable: switch order of Linux vs hardware page tables)
introduced a pre-increment addressing offset which is out of range for
Thumb-2. Thumb-2 only permits offsets <256. So split the intruction in
two for Thumb-2.
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
pte alloc routines must wait for split_huge_page if the pmd is not present
and not null (i.e. pmd_trans_splitting). The additional branches are
optimized away at compile time by pmd_trans_splitting if the config option
is off. However we must pass the vma down in order to know the anon_vma
lock to wait for.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kerneldoc for this function is at odds with the DMA-API
document, which holds, so fix it.
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This option uses LDREXB/STREXB to emulate SWPB but these instructions
are not supported on all the ARMv6 processors.
Reported-by: Anand Gadiyar <gadiyar@ti.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leif Lindholm <Leif.Lindholm@arm.com>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Add ARM support for the DMA debug infrastructure, which allows the
DMA API usage to be debugged.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Replace the page_to_dma() and dma_to_page() macros with their PFN
equivalents. This allows us to map parts of memory which do not have
a struct page allocated to them to bus addresses. This will be used
internally by dma_alloc_coherent()/dma_alloc_writecombine().
Build tested on Versatile, OMAP1, IOP13xx and KS8695.
Tested-by: Janusz Krzysztofik <jkrzyszt@tis.icnet.pl>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Conflicts:
MAINTAINERS
arch/arm/mach-omap2/pm24xx.c
drivers/scsi/bfa/bfa_fcpim.c
Needed to update to apply fixes for which the old branch was too
outdated.
The hardware page tables use an XN bit 'execute never'. Historically,
we've had a Linux 'execute allow' bit, in the positive sense. Get rid
of this artifact as future hardware will continue to have the XN sense.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
FIRST_USER_PGD_NR is now unnecessary, as this has been replaced by
FIRST_USER_ADDRESS except in the architecture code. Fix up the last
usage of FIRST_USER_PGD_NR, and remove the definition.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Remove some knowledge of our 2-level page table layout from the
identity mapping code - we assume that a step size of PGDIR_SIZE will
allow us to step over all entries. While this is true today, it won't
be true in the near future.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We have two places where we create identity mappings - one when we bring
secondary CPUs online, and one where we setup some mappings for soft-
reboot. Combine these two into a single implementation. Also collect
the identity mapping deletion function.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This switches the ordering of the Linux vs hardware page tables in
each page, thereby eliminating some of the arithmetic in the page
table walks. As we now place the Linux page table at the beginning
of the page, we can deal with the offset in the pgt by simply masking
it away, along with the other control bits.
This also makes the arithmetic all be positive, rather than a mixture.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since commit 3e4d3af501 "mm: stack based kmap_atomic()", it is actively
wrong to rely on fixed kmap type indices (namely KM_L2_CACHE) as
kmap_atomic() totally ignores them and a concurrent instance of it may
happily reuse any slot for any purpose. Because kmap_atomic() is now
able to deal with reentrancy, we can get rid of the ad hoc mapping here.
While the code is made much simpler, there is a needless cache flush
introduced by the usage of __kunmap_atomic(). It is not clear if the
performance difference to remove that is worth the cost in code
maintenance (I don't think there are that many highmem users on that
platform anyway) but that should be reconsidered when/if someone cares
enough to do some measurements.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Since commit 3e4d3af501 "mm: stack based kmap_atomic()", it is actively
wrong to rely on fixed kmap type indices (namely KM_L2_CACHE) as
kmap_atomic() totally ignores them and a concurrent instance of it may
happily reuse any slot for any purpose. Because kmap_atomic() is now
able to deal with reentrancy, we can get rid of the ad hoc mapping here,
and we even don't have to disable IRQs anymore (highmem case).
While the code is made much simpler, there is a needless cache flush
introduced by the usage of __kunmap_atomic(). It is not clear if the
performance difference to remove that is worth the cost in code
maintenance (I don't think there are that many highmem users on that
platform if at all anyway).
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Since commit 3e4d3af501 "mm: stack based kmap_atomic()", it is no longer
necessary to carry an ad hoc version of kmap_atomic() added in commit
7e5a69e83b "ARM: 6007/1: fix highmem with VIPT cache and DMA" to cope
with reentrancy.
In fact, it is now actively wrong to rely on fixed kmap type indices
(namely KM_L1_CACHE) as kmap_atomic() totally ignores them now and a
concurrent instance of it may reuse any slot for any purpose.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Since CPU_PJ4 is shared between PXA95x and MMP2, select CPU_PJ4 in MMP2
configuration.
Signed-off-by: Haojian Zhuang <haojian.zhuang@marvell.com>
Signed-off-by: Eric Miao <eric.y.miao@gmail.com>
The core of PXA955 is PJ4. Add new PJ4 support. And add new macro
CONFIG_PXA95x.
Signed-off-by: Haojian Zhuang <haojian.zhuang@marvell.com>
Signed-off-by: Eric Miao <eric.y.miao@gmail.com>
Cache ownership must be acquired by reading/writing data from the
cache line to make cache operation have the desired effect on the
SMP MPCore CPU. However, the ownership is never acquired in the
v6_dma_inv_range function when cleaning the first line and
flushing the last one, in case the address is not aligned
to D_CACHE_LINE_SIZE boundary.
Fix this by reading/writing data if needed, before performing
cache operations.
While at it, fix v6_dma_flush_range to prevent RWFO outside
the buffer.
Cc: stable@kernel.org
Signed-off-by: Valentine Barshak <vbarshak@mvista.com>
Signed-off-by: George G. Davis <gdavis@mvista.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The current implementation of the v7_coherent_*_range function assumes
that the D and I cache lines have the same size, which is incorrect
architecturally. This patch adds the icache_line_size macro which reads
the CTR register. The main loop in v7_coherent_*_range is split in two
independent loops or the D and I caches. This also has the performance
advantage that the DSB is moved outside the main loop.
Reported-by: Kevin Sapp <ksapp@quicinc.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The current implementation of the dcache_line_size macro reads the L1
cache size from the CCSIDR register. This, however, is not guaranteed to
be the smallest cache line in the cache hierarchy. The patch changes to
the macro to use the more architecturally correct CTR register.
Reported-by: Kevin Sapp <ksapp@quicinc.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Directives such as .long and .word do not magically cause the
assembler location counter to become aligned in gas. As a result,
using these directives in code sections can result in misaligned
data words when building a Thumb-2 kernel (CONFIG_THUMB2_KERNEL).
This is a Bad Thing, since the ABI permits the compiler to assume
that fundamental types of word size or above are word- aligned when
accessing them from C. If the data is not really word-aligned,
this can cause impaired performance and stray alignment faults in
some circumstances.
In general, the following rules should be applied when using data
word declaration directives inside code sections:
* .quad and .double:
.align 3
* .long, .word, .single, .float:
.align (or .align 2)
* .short:
No explicit alignment required, since Thumb-2
instructions are always 2 or 4 bytes in size.
immediately after an instruction.
In this specific case, we can achieve the desired alignment by
forcing a 32-bit branch instruction using the W() macro, since the
assembler location counter is already 32-bit aligned in this case.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Dave Martin <dave.martin@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Remove knowledge of the 2-level wrapping in pgd_free(), and use the
pXd_none_or_clear_bad() macros when checking the entries.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Adding KERN_WARNING in the middle of strings now produces those tokens
in the output, rather than accepting the level as was once the case.
Fix this in the one reported case. There might be more...
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch adds initial support for Renesas SH-Mobile AG5.
At this point the AG5 CPU support is limited to the ARM
core, SCIF serial and a CMT timer together with L2 cache
and the GIC. The AG5EVM board also supports Ethernet.
Future patches will add support for GPIO, INTCS, CPGA
and platform data / driver updates for devices such as
IIC, LCDC, FSI, KEYSC, CEU and SDHI among others.
The code in entry-macro.S will be cleaned up when the
ARM IRQ demux code improvements have been merged.
Depends on the AG5EVM mach-type recently registered but
not yet present in arch/arm/tools/mach-types.
As the AG5EVM board comes with 512MiB memory it is
recommended to turn on HIGHMEM.
Many thanks to Yoshii-san for initial bring up.
Signed-off-by: Magnus Damm <damm@opensource.se>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
It's enough to include the asm/smp_plat.h once in arch/arm/mm/flush.c
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
An out by one bug meant that the DMA coherent allocator was aligning
to one more bit than it should, causing it to run out of available
memory quicker. Fix this.
Reported-by: Petr Štetiar <ynezz@true.cz>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The SWP instruction was deprecated in the ARMv6 architecture,
superseded by the LDREX/STREX family of instructions for
load-linked/store-conditional operations. The ARMv7 multiprocessing
extensions mandate that SWP/SWPB instructions are treated as undefined
from reset, with the ability to enable them through the System Control
Register SW bit.
This patch adds the alternative solution to emulate the SWP and SWPB
instructions using LDREX/STREX sequences, and log statistics to
/proc/cpu/swp_emulation. To correctly deal with copy-on-write, it also
modifies cpu_v7_set_pte_ext to change the mappings to priviliged RO when
user RO.
Signed-off-by: Leif Lindholm <leif.lindholm@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch removes the domain switching functionality via the set_fs and
__switch_to functions on cores that have a TLS register.
Currently, the ioremap and vmalloc areas share the same level 1 page
tables and therefore have the same domain (DOMAIN_KERNEL). When the
kernel domain is modified from Client to Manager (via the __set_fs or in
the __switch_to function), the XN (eXecute Never) bit is overridden and
newer CPUs can speculatively prefetch the ioremap'ed memory.
Linux performs the kernel domain switching to allow user-specific
functions (copy_to/from_user, get/put_user etc.) to access kernel
memory. In order for these functions to work with the kernel domain set
to Client, the patch modifies the LDRT/STRT and related instructions to
the LDR/STR ones.
The user pages access rights are also modified for kernel read-only
access rather than read/write so that the copy-on-write mechanism still
works. CPU_USE_DOMAINS gets disabled only if the hardware has a TLS register
(CPU_32v6K is defined) since writing the TLS value to the high vectors page
isn't possible.
The user addresses passed to the kernel are checked by the access_ok()
function so that they do not point to the kernel space.
Tested-by: Anton Vorontsov <cbouatmailru@gmail.com>
Cc: Tony Lindgren <tony@atomide.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (215 commits)
ARM: memblock: setup lowmem mappings using memblock
ARM: memblock: move meminfo into find_limits directly
ARM: memblock: convert free_highpages() to use memblock
ARM: move freeing of highmem pages out of mem_init()
ARM: memblock: convert memory detail printing to use memblock
ARM: memblock: use memblock to free memory into arm_bootmem_init()
ARM: memblock: use memblock when initializing memory allocators
ARM: ensure membank array is always sorted
ARM: 6466/1: implement flush_icache_all for the rest of the CPUs
ARM: 6464/2: fix spinlock recursion in adjust_pte()
ARM: fix memblock breakage
ARM: 6465/1: Fix data abort accessing proc_info from __lookup_processor_type
ARM: 6460/1: ixp2000: fix type of ixp2000_timer_interrupt
ARM: 6449/1: Fix for compiler warning of uninitialized variable.
ARM: 6445/1: fixup TCM memory types
ARM: imx: Add wake functionality to GPIO
ARM: mx5: Add gpio-keys to mx51 babbage board
ARM: imx: Add gpio-keys to plat-mxc
mx31_3ds: Fix spi registration
mx31_3ds: Fix the logic for detecting the debug board
...
Use memblock information to setup lowmem mappings rather than the
membank array.
This allows platforms to manipulate the memblock information during
initialization to reserve (and remove) memory from the kernel's view
of memory - and thus allowing platforms to setup their own private
mappings for this memory without causing problems with multiple
aliasing mappings:
size = min(size, SZ_2M);
base = memblock_alloc(size, min(align, SZ_2M));
memblock_free(base, size);
memblock_remove(base, size);
This is needed because multiple mappings of regions with differing
attributes (sharability, type, cache) are not permitted with ARMv6
and above.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
bootmem_init() no longer makes several uses of the membank
information, so move this into the one remaining called function
which does use it.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Free the high pages using the memblock memory lists - and more
importantly, exclude any memblock allocations in highmem from the
free'd memory.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This was missing from the noMMU code, so there was the possibility
of things not working as expected if out of order memory information
was passed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 81d11955bf ("ARM: 6405/1: Handle __flush_icache_all for
CONFIG_SMP_ON_UP") added a new function to struct cpu_cache_fns:
flush_icache_all(). It also implemented this for v6 and v7 but not
for v5 and backwards. Without the function pointer in place, we
will be calling wrong cache functions.
For example with ep93xx we get following:
Unable to handle kernel paging request at virtual address ee070f38
pgd = c0004000
[ee070f38] *pgd=00000000
Internal error: Oops: 80000005 [#1] PREEMPT
last sysfs file:
Modules linked in:
CPU: 0 Not tainted (2.6.36+ #1)
PC is at 0xee070f38
LR is at __dma_alloc+0x11c/0x2d0
pc : [<ee070f38>] lr : [<c0032c8c>] psr: 60000013
sp : c581bde0 ip : 00000000 fp : c0472000
r10: c0472000 r9 : 000000d0 r8 : 00020000
r7 : 0001ffff r6 : 00000000 r5 : c0472400 r4 : c5980000
r3 : c03ab7e0 r2 : 00000000 r1 : c59a0000 r0 : c5980000
Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment kernel
Control: c000717f Table: c0004000 DAC: 00000017
Process swapper (pid: 1, stack limit = 0xc581a270)
[<c0032c8c>] (__dma_alloc+0x11c/0x2d0)
[<c0032e5c>] (dma_alloc_writecombine+0x1c/0x24)
[<c0204148>] (ep93xx_pcm_preallocate_dma_buffer+0x44/0x60)
[<c02041c0>] (ep93xx_pcm_new+0x5c/0x88)
[<c01ff188>] (snd_soc_instantiate_cards+0x8a8/0xbc0)
[<c01ff59c>] (soc_probe+0xfc/0x134)
[<c01adafc>] (platform_drv_probe+0x18/0x1c)
[<c01acca4>] (driver_probe_device+0xb0/0x16c)
[<c01ac284>] (bus_for_each_drv+0x48/0x84)
[<c01ace90>] (device_attach+0x50/0x68)
[<c01ac0f8>] (bus_probe_device+0x24/0x44)
[<c01aad7c>] (device_add+0x2fc/0x44c)
[<c01adfa8>] (platform_device_add+0x104/0x15c)
[<c0015eb8>] (simone_init+0x60/0x94)
[<c0021410>] (do_one_initcall+0xd0/0x1a4)
__dma_alloc() calls (inlined) __dma_alloc_buffer() which ends up
calling dmac_flush_range(). Now since the entries in the
arm920_cache_fns are shifted by one, we jump into address 0xee070f38
which is actually next instruction after the arm920_cache_fns
structure.
So implement flush_icache_all() for the rest of the supported CPUs
using a generic 'invalidate I cache' instruction.
Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When running following code in a machine which has VIVT caches and
USE_SPLIT_PTLOCKS is not defined:
fd = open("/etc/passwd", O_RDONLY);
addr = mmap(NULL, 4096, PROT_READ, MAP_SHARED, fd, 0);
addr2 = mmap(NULL, 4096, PROT_READ, MAP_SHARED, fd, 0);
v = *((int *)addr);
we will hang in spinlock recursion in the page fault handler:
BUG: spinlock recursion on CPU#0, mmap_test/717
lock: c5e295d8, .magic: dead4ead, .owner: mmap_test/717,
.owner_cpu: 0
[<c0026604>] (unwind_backtrace+0x0/0xec)
[<c014ee48>] (do_raw_spin_lock+0x40/0x140)
[<c0027f68>] (update_mmu_cache+0x208/0x250)
[<c0079db4>] (__do_fault+0x320/0x3ec)
[<c007af7c>] (handle_mm_fault+0x2f0/0x6d8)
[<c0027834>] (do_page_fault+0xdc/0x1cc)
[<c00202d0>] (do_DataAbort+0x34/0x94)
This comes from the fact that when USE_SPLIT_PTLOCKS is not defined,
the only lock protecting the page tables is mm->page_table_lock
which is already locked before update_mmu_cache() is called.
Signed-off-by: Mika Westerberg <mika.westerberg@iki.fi>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Christoph reported a nice splat which illustrated a race in the new stack
based kmap_atomic implementation.
The problem is that we pop our stack slot before we're completely done
resetting its state -- in particular clearing the PTE (sometimes that's
CONFIG_DEBUG_HIGHMEM). If an interrupt happens before we actually clear
the PTE used for the last slot, that interrupt can reuse the slot in a
dirty state, which triggers a BUG in kmap_atomic().
Fix this by introducing kmap_atomic_idx() which reports the current slot
index without actually releasing it and use that to find the PTE and delay
the _pop() until after we're completely done.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Christoph Hellwig <hch@infradead.org>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Will says:
| Commit e63075a3 removed the explicit MEMBLOCK_REAL_LIMIT #define
| and introduced the requirement that arch code calls
| memblock_set_current_limit to ensure that the __va macro can
| be used on physical addresses returned from memblock_alloc.
Unfortunately, ARM was missed out of this change. Fix this.
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
After Santosh's fixup of the generic MT_MEMORY and
MT_MEMORY_NONCACHED I add this fix to the TCM memory types.
The main change is that the ITCM memory is L_PTE_WRITE and
DOMAIN_KERNEL which works just fine. The changed to the DTCM
is just cosmetic to fit with surrounding code.
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Rickard Andersson <rickard.andersson@stericsson.com>
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since we no longer need to provide KM_type, the whole pte_*map_nested()
API is now redundant, remove it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Keep the current interface but ignore the KM_type and use a stack based
approach.
The advantage is that we get rid of crappy code like:
#define __KM_PTE \
(in_nmi() ? KM_NMI_PTE : \
in_irq() ? KM_IRQ_PTE : \
KM_PTE0)
and in general can stop worrying about what context we're in and what kmap
slots might be appropriate for that.
The downside is that FRV kmap_atomic() gets more expensive.
For now we use a CPP trick suggested by Andrew:
#define kmap_atomic(page, args...) __kmap_atomic(page)
to avoid having to touch all kmap_atomic() users in a single patch.
[ not compiled on:
- mn10300: the arch doesn't actually build with highmem to begin with ]
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix up drivers/gpu/drm/i915/intel_overlay.c]
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the big buffers which are in excess of cache size, the maintaince
operations by PA are very slow. For such buffers the maintainace
operations can be speeded up by using the WAY based method.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
The cache size is needed for to optimise range based
maintainance operations
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Add flush_all, inv_all and disable functions to the l2x0 code. These
functions are called from kexec code to prevent random crashes in the
new kernel.
Platforms like OMAP which control L2 enable/disable via SMI mode can
override the outer_cache.disable() function to implement their own.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
With this L2 cache controller, the cache maintenance by PA and sync
operations are atomic and do not require a "wait" loop. This patch
conditionally defines the cache_wait() function.
Since L2x0 cache controllers do not work with ARMv7 CPUs, the patch
automatically enables CACHE_PL310 when only CPU_V7 is defined.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* 'core-memblock-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (74 commits)
x86-64: Only set max_pfn_mapped to 512 MiB if we enter via head_64.S
xen: Cope with unmapped pages when initializing kernel pagetable
memblock, bootmem: Round pfn properly for memory and reserved regions
memblock: Annotate memblock functions with __init_memblock
memblock: Allow memblock_init to be called early
memblock/arm: Fix memblock_region_is_memory() typo
x86, memblock: Remove __memblock_x86_find_in_range_size()
memblock: Fix wraparound in find_region()
x86-32, memblock: Make add_highpages honor early reserved ranges
x86, memblock: Fix crashkernel allocation
arm, memblock: Fix the sparsemem build
memblock: Fix section mismatch warnings
powerpc, memblock: Fix memblock API change fallout
memblock, microblaze: Fix memblock API change fallout
x86: Remove old bootmem code
x86, memblock: Use memblock_memory_size()/memblock_free_memory_size() to get correct dma_reserve
x86: Remove not used early_res code
x86, memblock: Replace e820_/_early string with memblock_
x86: Use memblock to replace early_res
x86, memblock: Use memblock_debug to control debug message print out
...
Fix up trivial conflicts in arch/x86/kernel/setup.c and kernel/Makefile
... but produce a big warning about the problem as encouragement
for people to fix their drivers.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We need to round memory regions correctly -- specifically, we need to
round reserved region in the more expansive direction (lower limit
down, upper limit up) whereas usable memory regions need to be rounded
in the more restrictive direction (lower limit up, upper limit down).
This introduces two set of inlines:
memblock_region_memory_base_pfn()
memblock_region_memory_end_pfn()
memblock_region_reserved_base_pfn()
memblock_region_reserved_end_pfn()
Although they are antisymmetric (and therefore are technically
duplicates) the use of the different inlines explicitly documents the
programmer's intention.
The lack of proper rounding caused a bug on ARM, which was then found
to also affect other architectures.
Reported-by: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4CB4CDFD.4020105@kernel.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
When hotplug CPU is enabled, we need to keep the list of supported CPUs,
their setup functions, and __lookup_processor_type in place so that we
can find and initialize secondary CPUs. Move these into the __CPUINIT
section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 14eff18126 added proper
detection for ARM11MPCore/Cortex-A9 instead of detecting them
as ARMv7. However, it was missing the HWCAP_TLS flags.
HWCAP_TLS is needed if support for earlier ARMv6 is compiled
into the same kernel. Without HWCAP_TLS flags the userspace
won't work unless nosmp is specified:
Kernel panic - not syncing: Attempted to kill init!
CPU0: stopping
<c005d5e4>] (unwind_backtrace+0x0/0xec) from [<c004c2f8>] (do_IPI+0xfc/0x184)
<c004c2f8>] (do_IPI+0xfc/0x184) from [<c03f25bc>] (__irq_svc+0x9c/0x160)
Exception stack(0xc0565f80 to 0xc0565fc8)
5f80: 00000001 c05772a0 00000000 00003a61 c0564000 c05cf500 c003603c c0578600
5fa0: 80033ef0 410fc091 0000001f 00000000 00000000 c0565fc8 c00b91f8 c0057cb4
5fc0: 20000013 ffffffff
[<c03f25bc>] (__irq_svc+0x9c/0x160) from [<c0057cb4>] (default_idle+0x30/0x38)
[<c0057cb4>] (default_idle+0x30/0x38) from [<c005829c>] (cpu_idle+0x9c/0xf8)
[<c005829c>] (cpu_idle+0x9c/0xf8) from [<c0008d48>] (start_kernel+0x2a4/0x300)
[<c0008d48>] (start_kernel+0x2a4/0x300) from [<80008084>] (0x80008084)
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
copy_to_user_page can be used by access_process_vm to write to an
executable page of a process using a mapping acquired by kmap.
For systems with I-cache aliasing, flushing the I-cache using the
Kernel mapping may leave stale data in the I-cache if the user
mapping is of a different colour.
This patch introduces a flush_icache_alias function to flush.c,
which calls flush_icache_range with a mapping of the specified
colour. flush_ptrace_access is then modified to call this new
function instead of coherent_kern_range in the case of an aliasing
I-cache and a non-aliasing D-cache.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Do this by adding flush_icache_all to cache_fns for ARMv6 and 7.
As flush_icache_all may neeed to be called from flush_kern_cache_all,
add it as the first entry in the cache_fns.
Note that now we can remove the ARM_ERRATA_411920 dependency
to !SMP so it can be selected on UP ARMv6 processors, such
as omap2.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Anand Gadiyar <gadiyar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
UP systems do not implement all the instructions that SMP systems have,
so in order to boot a SMP kernel on a UP system, we need to rewrite
parts of the kernel.
Do this using an 'alternatives' scheme, where the kernel code and data
is modified prior to initialization to replace the SMP instructions,
thereby rendering the problematical code ineffectual. We use the linker
to generate a list of 32-bit word locations and their replacement values,
and run through these replacements when we detect a UP system.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The commit f1a2481c0 sets up the default flags for MT_MEMORY and
MT_MEMORY_NONCACHED memory types. L_PTE_USER flag is wrongly
set as default for these entries so remove it. Also adding
the 'L_PTE_WRITE' flag so that these pages become read-write
instead of just being read-only
[this stops them being exposed to userspace, which is the main
concern here --rmk]
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On the r2p0, r2p1 and r2p2 versions of the Cortex-A9, data corruption
can occur under very rare conditions due to a store buffer optimisation.
This workaround sets a bit in the diagnostic register of the Cortex-A9,
disabling the optimisation and preventing the problem from occurring.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There are very few legitimate use cases, if any, for directly accessing
system RAM through /dev/mem. So let's mimic what they do on x86 and
forbid it when CONFIG_STRICT_DEVMEM is turned on.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
This patch populates the L1 entries for MT_MEMORY and MT_MEMORY_NONCACHED
types so that at boot-up, we can map memories outside system memory
at page level granularity
Previously the mapping was limiting to section level, which creates
unnecessary additional mapping for which physical memory may not
present. On the newer ARM with speculation, this is dangerous and can
result in untraceable aborts.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When the policy for user space is to ignore misaligned accesses from user
space, the processor then performs a documented rotation on the accessed
data. This is the result of the access being trapped, and the kernel
disabling the alignment trap before returning to user space again.
In kernel space we always want misaligned accesses to be fixed up. This
is enforced by always re-enabling the alignment trap on every entry into
kernel space from user space. No such re-enabling is performed when an
exception occurs while already in kernel space as the alignment trap is
always supposed to be enabled in that case.
There is however a small race window when a misaligned access in user
space is trapped and the alignment trap disabled, but the CPU didn't
return to user space just yet. Any exception would be entered from kernel
space at that point and the kernel would then execute with the alignment
trap disabled.
Thanks to Maxime Bizon <mbizon@freebox.fr> for providing a test module
that made this issue reproducible.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARMv7 onwards requires that there are no aliases to the same physical
location using different memory types (i.e. Normal vs Strongly Ordered).
Access to SO mappings when the unaligned accesses are handled in
hardware is also Unpredictable (pgprot_noncached() mappings in user
space).
The /dev/mem driver requires uncached mappings with O_SYNC. The patch
implements the phys_mem_access_prot() function which generates Strongly
Ordered memory attributes if !pfn_valid() (independent of O_SYNC) and
Normal Noncacheable (writecombine) if O_SYNC.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARMv7 processors like Cortex-A9 broadcast the cache maintenance
operations in hardware. This patch allows the
flush_dcache_page/update_mmu_cache pair to work in lazy flushing mode
similar to the UP case.
Note that cache flushing on SMP systems now takes place via the
set_pte_at() call (__sync_icache_dcache) and there is no race with other
CPUs executing code from the new PTE before the cache flushing took
place.
Tested-by: Rabin Vincent <rabin.vincent@stericsson.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On SMP systems, there is a small chance of a PTE becoming visible to a
different CPU before the current cache maintenance operations in
update_mmu_cache(). To avoid this, cache maintenance must be handled in
set_pte_at() (similar to IA-64 and PowerPC).
This patch provides a unified VIPT cache handling mechanism and
implements the __sync_icache_dcache() function for ARMv6 onwards
architectures. It is called from set_pte_at() and replaces the
update_mmu_cache(). The latter is still used on VIVT hardware where a
vm_area_struct is required.
Tested-by: Rabin Vincent <rabin.vincent@stericsson.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There are places in Linux where writes to newly allocated page cache
pages happen without a subsequent call to flush_dcache_page() (several
PIO drivers including USB HCD). This patch changes the meaning of
PG_arch_1 to be PG_dcache_clean and always flush the D-cache for a newly
mapped page in update_mmu_cache().
The patch also sets the PG_arch_1 bit in the DMA cache maintenance
function to avoid additional cache flushing in update_mmu_cache().
Tested-by: Rabin Vincent <rabin.vincent@stericsson.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit d73cd42 forced non-lazy cache flushing of highmem pages in
flush_dcache_page(). This isn't needed since __flush_dcache_page()
(called lazily from update_mmu_cache) can handle highmem pages (fixed by
commit 7e5a69e).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Setting of these bits can cause issues on other SMP SoC's not produced
by ARM.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Daniel Walker <dwalker@codeaurora.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On the r2p0, r2p1 and r2p2 versions of the Cortex-A9, data corruption
can occur if a shared cache line is replaced on one CPU as another CPU
is accessing it.
This workaround sets two bits in the diagnostic register of the Cortex-A9,
reducing the linefill issuing capabilities of the processor and
avoiding the erroneous behaviour.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On versions of the Cortex-A9 up to and including r2p2, under rare
circumstances, a DMB instruction between 2 write operations may not
ensure the correct visibility ordering of the 2 writes.
This workaround sets a bit in the diagnostic register of the Cortex-A9,
causing the DMB instruction to behave like a DSB, which functions
correctly on the affected cores.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Kconfig doesn't have any knowledge of specific v7 cores, so it is possible
to select errata workarounds that may cause inadvertent behaviour when
executed on a core other than those targetted by the fix.
This patch improves the variant and revision checking in proc-v7.S so
that the primary part number is also considered when applying errata
workarounds.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Stephen Rothwell reported this build failure:
arch/arm/mm/init.c: In function 'arm_memory_present':
arch/arm/mm/init.c:260: warning: ISO C90 forbids mixed declarations and code
Caused by commit 719c1514f2 ("memblock/arm: Use new accessors")
which forgot a closing brace on a new for_each_memblock() in
arm_memory_present().
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Russell King <linux@arm.linux.org.uk>
LKML-Reference: <4C91C544.5050907@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Dave Hylands reports:
| We've observed a problem with dma_alloc_writecombine when the system
| is under heavy load (heavy bus traffic). We've managed to reduce the
| problem to the following snippet, which is run from a kthread in a
| continuous loop:
|
| void *virtAddr;
| dma_addr_t physAddr;
| unsigned int numBytes = 256;
|
| for (;;) {
| virtAddr = dma_alloc_writecombine(NULL,
| numBytes, &physAddr, GFP_KERNEL);
| if (virtAddr == NULL) {
| printk(KERN_ERR "Running out of memory\n");
| break;
| }
|
| /* access DMA memory allocated */
| tmp = virtAddr;
| *tmp = 0x77;
|
| /* free DMA memory */
| dma_free_writecombine(NULL,
| numBytes, virtAddr, physAddr);
|
| ...sleep here...
| }
|
| By itself, the code will run forever with no issues. However, as we
| increase our bus traffic (typically using DMA) then the *tmp = 0x77
| line will eventually cause a page fault. If we add a small delay (a
| few microseconds) before the *tmp = 0x77, then we don't see a page
| fault, even under heavy load.
A dsb() is required after modifying the PTE entries to ensure that they
will always be visible. Add this dsb().
Reported-by: Dave Hylands <dhylands@gmail.com>
Tested-by: Dave Hylands <dhylands@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On ARM processors with hardware breakpoint and watchpoint support,
triggering these events results in a debug exception. These manifest
as prefetch and data aborts respectively.
arch/arm/mm/fault.c already provides hook_fault_code for hooking
into data aborts dependent on the DFSR. This patch adds a new function,
hook_ifault_code for hooking into prefetch aborts in the same manner.
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: S. Karthikeyan <informkarthik@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
CPU_32v6K is selected by CPU_V7 but it only depends on CPU_V6.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
kunmap_atomic() is currently at level -4 on Rusty's "Hard To Misuse"
list[1] ("Follow common convention and you'll get it wrong"), except in
some architectures when CONFIG_DEBUG_HIGHMEM is set[2][3].
kunmap() takes a pointer to a struct page; kunmap_atomic(), however, takes
takes a pointer to within the page itself. This seems to once in a while
trip people up (the convention they are following is the one from
kunmap()).
Make it much harder to misuse, by moving it to level 9 on Rusty's list[4]
("The compiler/linker won't let you get it wrong"). This is done by
refusing to build if the type of its first argument is a pointer to a
struct page.
The real kunmap_atomic() is renamed to kunmap_atomic_notypecheck()
(which is what you would call in case for some strange reason calling it
with a pointer to a struct page is not incorrect in your code).
The previous version of this patch was compile tested on x86-64.
[1] http://ozlabs.org/~rusty/index.cgi/tech/2008-04-01.html
[2] In these cases, it is at level 5, "Do it right or it will always
break at runtime."
[3] At least mips and powerpc look very similar, and sparc also seems to
share a common ancestor with both; there seems to be quite some
degree of copy-and-paste coding here. The include/asm/highmem.h file
for these three archs mention x86 CPUs at its top.
[4] http://ozlabs.org/~rusty/index.cgi/tech/2008-03-30.html
[5] As an aside, could someone tell me why mn10300 uses unsigned long as
the first parameter of kunmap_atomic() instead of void *?
Signed-off-by: Cesar Eduardo Barros <cesarb@cesarb.net>
Cc: Russell King <linux@arm.linux.org.uk> (arch/arm)
Cc: Ralf Baechle <ralf@linux-mips.org> (arch/mips)
Cc: David Howells <dhowells@redhat.com> (arch/frv, arch/mn10300)
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com> (arch/mn10300)
Cc: Kyle McMartin <kyle@mcmartin.ca> (arch/parisc)
Cc: Helge Deller <deller@gmx.de> (arch/parisc)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> (arch/parisc)
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> (arch/powerpc)
Cc: Paul Mackerras <paulus@samba.org> (arch/powerpc)
Cc: "David S. Miller" <davem@davemloft.net> (arch/sparc)
Cc: Thomas Gleixner <tglx@linutronix.de> (arch/x86)
Cc: Ingo Molnar <mingo@redhat.com> (arch/x86)
Cc: "H. Peter Anvin" <hpa@zytor.com> (arch/x86)
Cc: Arnd Bergmann <arnd@arndb.de> (include/asm-generic)
Cc: Rusty Russell <rusty@rustcorp.com.au> ("Hard To Misuse" list)
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
v2: Fixes from Mike Rapoport
- remove unused header files (mach/dma.h and mach/nand.h)
- remove tegra 1 references from Makefile.boot
v2: fixes from Russell King
- remove mach/io.h include from mach/iomap.h
- fix whitespace in Kconfig
v2: from Colin Cross
- fix invalid immediate in debug-macro.S
v3:
- allow selection of multiple boards
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Erik Gilling <konkers@android.com>
This patch adds the Kconfig and Makefile for the new S5PV310 SoC.
It also updates arch/arm Kconfig, Makefile and arch/arm/mm/Kconfig
to include support for the new S5PV310.
Signed-off-by: Changhwan Youn <chaos.youn@samsung.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
The implementation is pretty much similar. There is a -small- added
overhead by having another function call and the address shift.
If that becomes a concern, I suppose we could actually have memblock
itself expose a memblock_pfn_valid() which then ARM can use directly
with an appropriate #define...
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (291 commits)
ARM: AMBA: Add pclk support to AMBA bus infrastructure
ARM: 6278/2: fix regression in RealView after the introduction of pclk
ARM: 6277/1: mach-shmobile: Allow users to select HZ, default to 128
ARM: 6276/1: mach-shmobile: remove duplicate NR_IRQS_LEGACY
ARM: 6246/1: mmci: support larger MMCIDATALENGTH register
ARM: 6245/1: mmci: enable hardware flow control on Ux500 variants
ARM: 6244/1: mmci: add variant data and default MCICLOCK support
ARM: 6243/1: mmci: pass power_mode to the translate_vdd callback
ARM: 6274/1: add global control registers definition header file for nuc900
mx2_camera: fix type of dma buffer virtual address pointer
mx2_camera: Add soc_camera support for i.MX25/i.MX27
arm/imx/gpio: add spinlock protection
ARM: Add support for the LPC32XX arch
ARM: LPC32XX: Arch config menu supoport and makefiles
ARM: LPC32XX: Phytec 3250 platform support
ARM: LPC32XX: Misc support functions
ARM: LPC32XX: Serial support code
ARM: LPC32XX: System suspend support
ARM: LPC32XX: GPIO, timer, and IRQ drivers
ARM: LPC32XX: Clock driver
...
smp_processor_id() must not be called from a preemptible context (this
is checked by CONFIG_DEBUG_PREEMPT). kmap_high_l1_vipt() was doing so.
This lead to a problem where the wrong per_cpu kmap_high_l1_vipt_depth
could be incremented, causing a BUG_ON(*depth <= 0); in
kunmap_high_l1_vipt().
The solution is to move the call to smp_processor_id() after the call
to preempt_disable().
Originally by: Andrew Howe <ahowe@nvidia.com>
Signed-off-by: Gary King <gking@nvidia.com>
Acked-by: Nicolas Pitre <nico.as.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch is in preparation for a subsequent patch which adds barriers
to the I/O accessors. Since the mandatory barriers may do an L2 cache
sync, this patch avoids a recursive call into l2x0_cache_sync() via the
write*() accessors and wmb() and a call into l2x0_cache_sync() with the
l2x0_lock held.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
All implementations of cpu_proc_fin() start by disabling interrupts
and then flush caches. Rather than have every processors proc_fin()
implementation do this, move it out into generic code - and move the
cache flush past setup_mm_for_reboot() (so it can benefit from having
caches still enabled.)
This allows cpu_proc_fin() to become independent of the L1/L2 cache
types, and eventually move the L2 cache flushing into the L2 support
code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Statuses 3 (0b00011) and 6 (0x00110) of DFSR are Access Flags faults on
ARMv6K and ARMv7. Let's patch fsr_info[] at runtime if we are on ARMv7
or later.
Unfortunately, we don't have runtime check for 'K' extension, so we
can't check for it.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On ARM one Linux PGD entry contains two hardware entries (see page
tables layout in pgtable.h). We normally guarantee that we always
fill both L1 entries. But create_mapping() doesn't follow the rule.
It can create inidividual L1 entries, so here we have to call
pmd_none() check in do_translation_fault() for the entry really
corresponded to address, not for the first of pair.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add one more parameter to hook_fault_code() to be able to set 'code'
field of struct fsr_info.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
POSIX specify to use signal SIGBUS with code BUS_ADRALN for invalid
address alignment.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The DMA coherent remap area is used to provide an uncached mapping
of memory for coherency with DMA engines. Currently, we look for
any free hole which our allocation will fit in with page alignment.
However, this can lead to fragmentation of the area, and allows small
allocations to cross L1 entry boundaries. This is undesirable as we
want to move towards allocating sections of memory.
Align allocations according to the size, limiting the alignment between
the page and section sizes.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We don't need our own implementation of this, use the generic
library implementation instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This changes the TCM handling so that a fixed area is reserved at
0xfffe0000-0xfffeffff for TCM. This areas is used by XScale but
XScale does not have TCM so the mechanisms are mutually exclusive.
This change is needed to make TCM detection more dynamic while
still being able to compile code into it, and is a must for the
unified ARM goals: the current TCM allocation at different places
in memory for each machine would be a nightmare if you want to
compile a single image for more than one machine with TCM so it
has to be nailed down in one place.
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
If TCM is in use, we should display it in the virtual memory
layout along with everything else.
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The earlier TCM memory regions were mapped as MT_MEMORY_UNCACHED
which doesn't really work on platforms supporting the new v6
features like the NX bit. Add unique MT_MEMORY_[I|D]TCM types
instead.
Cc: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add a common early allocator function, in preparation for switching
over to LMB. When we do, this function will need to do a little more
than just allocating memory; we need it zero initialized too.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Move the platform specific bootmem memory reservations out of
arch/arm/mm/mmu.c into their respective platform files.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Everything should now be using sparsemem rather than discontigmem, so
remove the code supporting discontigmem from ARM.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Rather than storing the minimum size of the vmalloc area, store the
maximum permitted address of the vmalloc area instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The TLS register is only available on ARM1136 r1p0 and later.
Set HWCAP_TLS flags if hardware TLS is available and test for
it if CONFIG_CPU_32v6K is not set for V6.
Note that we set the TLS instruction in __kuser_get_tls
dynamically as suggested by Jamie Lokier <jamie@shareable.org>.
Also the __switch_to code is optimized out in most cases as
suggested by Nicolas Pitre <nico@fluxnic.net>.
Reviewed-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On i.MX35 the L2X0_AUX_CTRL register does not have sensible reset
default values. Allow them to be overwritten with the aux_val/aux_mask
arguments passed to l2x0_init().
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
RealView boards with certain revisions of the L210/L220 cache controller
may have issues (hardware deadlock) with the mandatory barriers (DSB
followed by an L2 cache sync) when ARM_DMA_MEM_BUFFERABLE is enabled.
The patch disables ARM_DMA_MEM_BUFFERABLE for these boards.
Tested-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit f4d6477f introduced a workaround for the lack of hardware
broadcasting of the cache maintenance operations on ARM11MPCore.
However, the workaround is only valid on CPUs that do not do speculative
loads into the D-cache.
This patch adds a Kconfig option with the corresponding help to make the
above clear. When the DMA_CACHE_RWFO option is disabled, the kernel
behaviour is that prior to the f4d6477f commit. This also allows ARMv6
UP processors with speculative loads to work correctly.
For other processors, a different workaround may be needed.
Cc: Ronen Shitrit <rshitrit@marvell.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
A recent patch for DMA cache maintenance on ARM11MPCore added a write
for ownership trick to the v6_dma_inv_range() function. Such operation
destroys data already present in the buffer. However, this function is
used with with dma_sync_single_for_device() which is supposed to
preserve the existing data transfered into the buffer. This patch adds a
combination of read/write for ownership to preserve the original data.
Reported-by: Ronen Shitrit <rshitrit@marvell.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This macro is not defined when !CONFIG_MMU so this patch moves the
CONSISTENT_* definitions to the CONFIG_MMU section.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARMv6 and above have a restriction whereby aliasing virtual:physical
mappings must not have differing memory type and sharability
attributes. Strictly, this covers the memory type (strongly ordered,
device, memory), cache attributes (uncached, write combine, write
through, write back read alloc, write back write alloc) and the
shared bit.
However, using ioremap() and its variants on system RAM results in
mappings which differ in these attributes from the main system RAM
mapping. Other architectures which similar restrictions approch this
problem in the same way - they do not permit ioremap on main system
RAM.
Make ARM behave in the same way, with a WARN_ON() such that users can
be traced and an alternative approach found.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The VM subsystem assumes that there are valid memmap entries to
the bank end aligned to MAX_ORDER_NR_PAGES. It will try and read
these page structs, and so we cannot free any memmap entries that
it may inspect.
Signed-off-by: Michael Bohan <mbohan@codeaurora.org>
Signed-off-by: Daniel Walker <dwalker@codeaurora.org>
When functions incoming parameters are not in input operands list gcc
4.5 does not load the parameters into registers before calling this
function but the inline assembly assumes valid addresses inside this
function. This breaks the code because r0 and r1 are invalid when
execution enters v4wb_copy_user_page ()
Also the constant needs to be used as third input operand so account
for that as well.
Tested on qemu arm.
CC: <stable@kernel.org>
Signed-off-by: Khem Raj <raj.khem@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Instruction faults on pre-ARMv6 CPUs are interpreted as
a 'translation fault', but do_translation_fault doesn't
handle well if user mode trying to run instruction above
TASK_SIZE, and result in the infinite retry of that
instruction.
CC: <stable@kernel.org>
Signed-off-by: Anfei Zhou <anfei.zhou@gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When CONFIG_DEBUG_HIGHMEM is used, the fixmap entry used for a highmem page
by kmap_atomic() is always cleared by kunmap_atomic(). This helps find
bad usages such as dereferences after the unmap, or overflow into the
adjacent fixmap areas.
But this debugging aid is completely bypassed when a kmap for the same
page already exists as the kmap is reused instead. ON VIVT systems we
have no choice but to reuse that kmap due to cache coherency issues,
but on non VIVT systems we should always force the fixmap usage when
debugging is active.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This fixes a bug in mm/init.c when freeing the TCM compile memory,
this was being referred to as a char * which is incorrect: this
will dereference the pointer and feed in the value at the location
instead of the address to it. Change it to a plain char and use
&(char) to reference it.
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Cc: <stable@kernel.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch fixes the flush_cache_all for ARMv7 SMP.It was
missing from commit b8349b569a
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@kernel.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm: (224 commits)
ARM: remove 'select GENERIC_TIME'
ARM: 6136/1: ARCH_REQUIRE_GPIOLIB selects GENERIC_GPIO
ARM: 6074/1: oprofile: convert from sysdev to platform device
ARM: 6073/1: oprofile: remove old files and update KConfig
ARM: 6072/1: oprofile: use perf-events framework as backend
ARM: 6071/1: perf-events: allow modules to query the number of hardware counters
ARM: 6070/1: perf-events: add support for xscale PMUs
ARM: 6069/1: perf-events: use numeric ID to identify PMU
ARM: 6064/1: pmu: register IRQs at runtime
ARM: Optionally allow ARMv6 to use 'normal, bufferable' memory for DMA
ARM: 6134/1: Handle instruction cache maintenance fault properly
ARM: nwfpe: allow debugging output to be configured at runtime
ARM: rename mach_cpu_disable() to platform_cpu_disable()
ARM: 6132/1: PL330: Add common core driver
ARM: 6094/1: Extend cache-l2x0 to support the 16-way PL310
ARM: Move memory mapping into mmu.c
ARM: Ensure meminfo is sorted prior to sanity_check_meminfo
ARM: Remove useless linux/bootmem.h includes
ARM: convert /proc/cpu/aligment to seq_file
arm: use asm-generic/scatterlist.h
...
Provide a configuration option to allow the ARMv6 to use normal
bufferable memory for coherent DMA. This option is forced to 'y'
for ARMv7, and offered as a configuration option on ARMv6.
Enabling this option requires drivers to have the necessary barriers
to ensure that data in DMA coherent memory is visible prior to the
DMA operation commencing.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Between "clean D line..." and "invalidate I line" operations in
v7_coherent_user_range(), the memory page may get swapped out.
And the fault on "invalidate I line" could not be properly handled
causing the oops.
In ARMv6 "external abort on linefetch" replaced by "instruction cache
maintenance fault". Let's handle it as translation fault. It fixes the
issue.
I'm not sure if it's reasonable to check arch version in run-time.
Let's do it in compile time for now.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Siarhei Siamashka <siarhei.siamashka@nokia.com>
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The L310 cache controller's interface is almost identical
to the L210. One major difference is that the PL310 can
have up to 16 ways.
This change uses the cache's part ID and the Associativity
bits in the AUX_CTRL register to determine the number of ways.
Also, this version prints out the CACHE_ID and AUX_CTRL registers.
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Jason S. McMullan <jason.mcmullan@netronome.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Convert code away from ->read_proc/->write_proc interfaces. Switch to
proc_create()/proc_create_data() which makes addition of proc entries
reliable wrt NULL ->proc_fops, NULL ->data and so on.
Problem with ->read_proc et al is described here commit
786d7e1612 "Fix rmmod/read/write races in
/proc entries"
This patch is part of an effort to remove the old simple procfs PAGE_SIZE
buffer interface.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Enable Tauros2 L2 in mmp2. Tauros2 L2 is shared in Marvell ARM cores.
Signed-off-by: Haojian Zhuang <haojian.zhuang@marvell.com>
Signed-off-by: Eric Miao <eric.y.miao@gmail.com>
The standard I-cache Invalidate All (ICIALLU) and Branch Predication
Invalidate All (BPIALL) operations are not automatically broadcast to
the other CPUs in an ARMv7 MP system. The patch adds the Inner Shareable
variants, ICIALLUIS and BPIALLIS, if ARMv7 and SMP.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The Snoop Control Unit on the ARM11MPCore hardware does not detect the
cache operations and the dma_cache_maint*() functions may leave stale
cache entries on other CPUs. The solution implemented in this patch
performs a Read or Write For Ownership in the ARMv6 DMA cache
maintenance functions. These LDR/STR instructions change the cache line
state to shared or exclusive so that the cache maintenance operation has
the desired effect.
Tested-by: George G. Davis <gdavis@mvista.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 7959722 introduced calls to copy_(to|from)_user_page() from
access_process_vm() in mm/nommu.c. The copy_to_user_page() was not
implemented on noMMU ARM.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 31aa8fd6 introduced the __arm_ioremap_caller() function but the
nommu.c version did not have the _caller suffix.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The show_mem() and mem_init() function are assuming that the page map is
contiguous and calculates the start and end page of a bank using (map +
pfn). This fails with SPARSEMEM where pfn_to_page() must be used.
Tested-by: Will Deacon <Will.Deacon@arm.com>
Tested-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Handle incorrectly reported permission faults for qsd8650. On
permission faults, retry MVA to PA conversion. If retry detects
translation fault. Report as translation fault.
Cc: Jamie Lokier <jamie@shareable.org>
Signed-off-by: Dave Estes <cestes@quicinc.com>
Fix compiler error in copypage-fs.c
missing struct vm_area_struct *vma in function
fa_copy_user_highpage
Signed-off-by: Hans Ulli Kroll <ulli.kroll@googlemail.com>
/tmp/ccJ3ssZW.s: Assembler messages:
/tmp/ccJ3ssZW.s:1952: Error: can't resolve `.text' {.text section} - `.LFB1077'
This is caused because:
.section .data
.section .text
.section .text
.previous
does not return us to the .text section, but the .data section; this
makes use of .previous dangerous if the ordering of previous sections
is not known.
Fix up the other users of .previous; .pushsection and .popsection are
a safer pairing to use than .section and .previous.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This enables the l2x0 support and ensures that the secondary
CPU can see the page table and secondary data at this point.
Signed-off-by: srinidhi kasagar <srinidhi.kasagar@stericsson.com>
Acked-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This cache flush occurs when we first insert a page into the page
tables, where a page did not exist previously. There can be no
cache lines associated with this virtual mapping, so this cache
flush is redundant.
Tested-by: Mike Rapoport <mike@compulab.co.il>
Tested-by: Mikael Pettersson <mikpe at it.uu.se>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
When crash happens in interrupt context there is no userspace context.
We always use current->active_mm in those cases.
Signed-off-by: Mika Westerberg <ext-mika.1.westerberg@nokia.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The VIVT cache of a highmem page is always flushed before the page
is unmapped. This cache flush is explicit through flush_cache_kmaps()
in flush_all_zero_pkmaps(), or through __cpuc_flush_dcache_area() in
kunmap_atomic(). There is also an implicit flush of those highmem pages
that were part of a process that just terminated making those pages free
as the whole VIVT cache has to be flushed on every task switch. Hence
unmapped highmem pages need no cache maintenance in that case.
However unmapped pages may still be cached with a VIPT cache because the
cache is tagged with physical addresses. There is no need for a whole
cache flush during task switching for that reason, and despite the
explicit cache flushes in flush_all_zero_pkmaps() and kunmap_atomic(),
some highmem pages that were mapped in user space end up still cached
even when they become unmapped.
So, we do have to perform cache maintenance on those unmapped highmem
pages in the context of DMA when using a VIPT cache. Unfortunately,
it is not possible to perform that cache maintenance using physical
addresses as all the L1 cache maintenance coprocessor functions accept
virtual addresses only. Therefore we have no choice but to set up a
temporary virtual mapping for that purpose.
And of course the explicit cache flushing when unmapping a highmem page
on a system with a VIPT cache now can go, which should increase
performance.
While at it, because the code in __flush_dcache_page() has to be modified
anyway, let's also make sure the mapped highmem pages are pinned with
kmap_high_get() for the duration of the cache maintenance operation.
Because kunmap() does unmap highmem pages lazily, it was reported by
Gary King <GKing@nvidia.com> that those pages ended up being unmapped
during cache maintenance on SMP causing segmentation faults.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Write combining/cached device mappings are not setting the shared bit,
which could potentially cause problems on SMP systems since the cache
lines won't participate in the cache coherency protocol.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
The mandatory barriers (mb, rmb, wmb) are used even on uniprocessor
systems for things like ordering Normal Non-cacheable memory accesses
with DMA transfer (via Device memory writes). The current implementation
uses dmb() for mb() and friends but this is not sufficient. The DMB only
ensures the relative ordering of the observability of accesses by other
processors or devices acting as masters. In case of DMA transfers
started by writes to device memory, the relative ordering is not ensured
because accesses to slave ports of a device are not considered
observable by the DMB definition.
A DSB is required for the data to reach the main memory (even if mapped
as Normal Non-cacheable) before the device receives the notification to
begin the transfer. Furthermore, some L2 cache controllers (like L2x0 or
PL310) buffer stores to Normal Non-cacheable memory and this would need
to be drained with the outer_sync() function call.
The patch also allows platforms to define their own mandatory barriers
implementation by selecting CONFIG_ARCH_HAS_BARRIERS and providing a
mach/barriers.h file.
Note that the SMP barriers are unchanged (being DMBs as before) since
they are only guaranteed to work with Normal Cacheable memory.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The L2x0 cache controllers need to explicitly drain their write buffer
even for Normal Noncacheable memory accesses.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch introduces the outer_cache_fns.sync function pointer together
with the OUTER_CACHE_SYNC config option that can be used to drain the
write buffer of the outer cache.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add ARM_L1_CACHE_SHIFT_6 to arch/arm/Kconfig to allow CPUs with
L1 cache lines which are 64bytes to indicate this without having to
alter the arch/arm/mm/Kconfig entry each time.
Update the mm Kconfig so that ARM_L1_CACHE_SHIFT default value
uses this and change OMAP3 and S5PC1XX to select ARM_L1_CACHE_SHIFT_6.
Acked-by: Ben Dooks <ben-linux@fluff.org>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
update_mmu_cache() is called with the page table for the faulted-in
page still mapped. We need to modify the PTE for this page to ensure
coherency with other shared mappings when multiple shared mappings
exist within a MM.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On VIVT ARM, when we have multiple shared mappings of the same file
in the same MM, we need to ensure that we have coherency across all
copies. We do this via make_coherent() by making the pages
uncacheable.
This used to work fine, until we allowed highmem with highpte - we
now have a page table which is mapped as required, and is not available
for modification via update_mmu_cache().
Ralf Beache suggested getting rid of the PTE value passed to
update_mmu_cache():
On MIPS update_mmu_cache() calls __update_tlb() which walks pagetables
to construct a pointer to the pte again. Passing a pte_t * is much
more elegant. Maybe we might even replace the pte argument with the
pte_t?
Ben Herrenschmidt would also like the pte pointer for PowerPC:
Passing the ptep in there is exactly what I want. I want that
-instead- of the PTE value, because I have issue on some ppc cases,
for I$/D$ coherency, where set_pte_at() may decide to mask out the
_PAGE_EXEC.
So, pass in the mapped page table pointer into update_mmu_cache(), and
remove the PTE value, updating all implementations and call sites to
suit.
Includes a fix from Stephen Rothwell:
sparc: fix fallout from update_mmu_cache API change
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Some glibc versions intentionally create lots of alignment faults in
their gconv code, which if not fixed up, results in segfaults during
boot. This can prevent systems booting properly.
There is no clear hard-configurable default for this; the desired
default depends on the nature of the userspace which is going to be
booted.
So, provide a way for the alignment fault handler to be configured via
the kernel command line.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Andreas Fenkart <andreas.fenkart@streamunlimited.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Makes it consistent with VMALLOC_START
Tested-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Andreas Fenkart <andreas.fenkart@streamunlimited.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Adds DMA area to 'virtual memory map' startup message
Tested-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Andreas Fenkart <andreas.fenkart@streamunlimited.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Code based on parisc and x86_32.
Tested-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Andreas Fenkart <andreas.fenkart@streamunlimited.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch implements the work-around for the errata 588369.The secure
API is used to alter L2 debug register because of trust-zone.
This version updated with comments from Russell and Catalin and
generated against 2.6.33-rc6 mainline kernel. Detail
comments can be found:
http://www.spinics.net/lists/linux-omap/msg23431.html
Signed-off-by: Woodruff Richard <r-woodruff2@ti.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch adds L2 Cache support for OMAP4. External L2 cache
is used in OMAP4
CC: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch adds the cache maintainance by line helper functions.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Otherwise the kernel built with both CPU_V6 and CPU_V7 will not
boot on omap2.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The current ASID allocation algorithm doesn't ensure the notification
of the other CPUs when the ASID rolls over. This may lead to two
processes using the same ASID (but different generation) or multiple
threads of the same process using different ASIDs.
This patch adds the broadcasting of the ASID rollover event to the
other CPUs. To avoid a race on multiple CPUs modifying "cpu_last_asid"
during the handling of the broadcast, the ASID numbering now starts at
"smp_processor_id() + 1". At rollover, the cpu_last_asid will be set
to NR_CPUS.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The ARM setup code includes its own parser for early params, there's
also one in the generic init code.
This patch removes __early_init (and related code) from
arch/arm/kernel/setup.c, and changes users to the generic early_init
macro instead.
The generic macro takes a char * argument, rather than char **, so we
need to update the parser functions a little.
Signed-off-by: Jeremy Kerr <jeremy.kerr@canonical.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Always creating this directory avoids other users having to jump
through silly hoops when they want to share this directory.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This allows the procfs vmallocinfo file to show who created the ioremap
regions. Note: __builtin_return_address(0) doesn't do what's expected
if its used in an inline function, so we leave __arm_ioremap callers
in such places alone.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
ARMv6 and ARMv7 CPUs can perform speculative prefetching, which makes
DMA cache coherency handling slightly more interesting. Rather than
being able to rely upon the CPU not accessing the DMA buffer until DMA
has completed, we now must expect that the cache could be loaded with
possibly stale data from the DMA buffer.
Where DMA involves data being transferred to the device, we clean the
cache before handing it over for DMA, otherwise we invalidate the buffer
to get rid of potential writebacks. On DMA Completion, if data was
transferred from the device, we invalidate the buffer to get rid of
any stale speculative prefetches.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
These are now unused, and so can be removed.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
dma_cache_maint_contiguous is now simple enough to live inside
dma_cache_maint_page, so move it there.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
The DMA API has the notion of buffer ownership; make it explicit in the
ARM implementation of this API. This gives us a set of hooks to allow
us to deal with CPU cache issues arising from non-cache coherent DMA.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-By: Santosh Shilimkar <santosh.shilimkar@ti.com>
Tested-By: Jamie Iles <jamie@jamieiles.com>
The perf events subsystem allows counting of both hardware and
software events. This patch implements the bare minimum for software
performance events.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Jamie Iles <jamie.iles@picochip.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We already know the pfn for the page to be modified in make_coherent,
so let's stop recalculating it unnecessarily.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
update_mmu_cache() is called with a page table already mapped. We
call make_coherent(), which then calls adjust_pte() which wants to
map other page tables. This causes kmap_atomic() to BUG() because
the slot its trying to use is already taken.
Since do_adjust_pte() modifies the page tables, we are also missing
any form of locking, so we're risking corrupting the page tables.
Fix this by using pte_offset_map_nested(), and taking the pte page
table lock around do_adjust_pte().
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The comments in cacheflush.h should follow what's in
struct cpu_cache_fns. The comments for V6 and V7 are
unnecessary.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The comments in arm_machine_restart() suggest that cpu_proc_fin()
will clean and disable cache and turn off interrupts. This does
not seem to be implemented for proc-v7.S, implement it the same
way as for proc-v6.S.
This also makes kexec work for v7. Note that a related TLB and
branch traget flush patch is also needed to avoid kexec
"crc error".
Note that there are still some issues that seem to be related
to L2 cache being on and causing occasional uncompress "crc error"
with kexec. Anyways, this gets kexec mostly working on V7 for now.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We need to do that if we tinker with the MMU entries.
This fixes the occasional bug with kexec where the new
fails to uncompress with "crc error". Most likely at
least kexec on v6 and v7 need this fix.
Signed-off-by: Tony Lindgren <tony@atomide.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* master.kernel.org:/home/rmk/linux-2.6-arm:
ARM: Ensure ARMv6/7 mm files are built using appropriate assembler options
ARM: Fix wrong dmb
ARM: 5874/1: serial21285: fix disable_irq-from-interrupt-handler deadlock
ARM: 5873/1: ARM: Fix the reset logic for ARM RealView boards
ARM: 5872/1: ARM: include needed linux/cpu.h in asm/cpu.h
ARM: 5871/1: arch/arm: Fix build failure for lpd7a404_defconfig caused by missing includes
ARM: 5870/1: arch/arm: Fix build failure for defconfigs without CONFIG_ISA_DMA_API set
ARM: 5868/1: ARM: fix "BUG: using smp_processor_id() in preemptible code"
ARM: 5867/1: Update U300 defconfig
ARM: 5866/1: arm ptrace: use unsigned types for kernel pt_regs
[ARM] pxa: fix strange characters in zaurus gpio .desc
ARM: add missing recvmmsg syscall number
[ARM] pxa: fix compiler warnings of unused variable 'id' in cpu_is_pxa9*()
[ARM] pxa: update pwm_backlight->notify() to include missed 'struct device *'
[ARM] pxa: enable L2 if present in XSC3
[ARM] pxa: do not enable L2 after MMU is enabled
A kernel with both ARMv6 and ARMv7 selected results in build errors.
Fix this by specifying the proper architectures for these assembly
files.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Makes it consistent with the extern declaration, used when CONFIG_HIGHMEM
is set Removes redundant casts in printout messages
Signed-off-by: Andreas Fenkart <andreas.fenkart@streamunlimited.com>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check whether L2 is present or not in XSC3. If it's present, enable L2
immediately.
Disabling L2 after L2 is enabled that would result in unpredicatable behavior
of XSC3 processor.
Signed-off-by: Haojian Zhuang <haojian.zhuang@marvell.com>
Signed-off-by: Eric Miao <eric.y.miao@gmail.com>
Outer cache checked whether L2 is enabled or not. If L2 isn't enabled in XSC3,
it would enable L2. This operation is evil that would make system hang.
In XSC3 core document, these words are mentioned in below.
"Following reset, the L2 Unified Cache Enable bit is cleared. To enable the L2
Cache, software may set the bit to a '1' before or at the same time as enabling
the MMU. Enabling the L2 Cache after the MMU has been enabled or disabling the
L2 Cache after the L2 Cache has been enabled, may result in unpredictable
behavior of the processor."
When outer cache is initialized, the MMU is already enabled. We couldn't enable
L2 after MMU enabled.
Signed-off-by: Haojian Zhuang <haojian.zhuang@marvell.com>
Signed-off-by: Eric Miao <eric.y.miao@gmail.com>
PAGE_KERNEL should not be executable; any area marked executable can
be prefetched into the instruction cache. We don't want vmalloc areas
to be read in this way.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
It is unpredictable to have the same memory mapped using different
shared bit settings for ARMv6 and ARMv7 CPUs. Fix this for the CPU
write buffer bug test.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
26-bit ARM support was removed a long time ago, and this symbol has
been defined to be 'y' ever since. As it's never disabled anymore,
we can kill it without any side effects.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 2c9b9c849 added an argument to __cpuc_flush_dcache_page
and renamed it.
Update a caller of the old function to fix this build error:
CC arch/arm/mm/copypage-v6.o
arch/arm/mm/copypage-v6.c: In function 'v6_copy_user_highpage_nonaliasing':
arch/arm/mm/copypage-v6.c:51: error: implicit declaration of function '__cpuc_flush_dcache_page'
make[1]: *** [arch/arm/mm/copypage-v6.o] Error 1
make: *** [arch/arm/mm] Error 2
Reported-by: Jinsung Yang <jsgood.yang@samsung.com>
Signed-off-by: Anand Gadiyar <gadiyar@ti.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There is not enough users to warrant its existence, and it is actually
an obstacle to progress with the new DMA API which cannot cover this
case properly.
To keep backward compatibility, let's perform the necessary custom
cache maintenance locally in the only driver affected.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
There's no point having the hardware support background operations
if we issue a cache operation, and then wait for it to complete
before calculating the address of the next operation. We gain no
advantage in the cache controller stalling the bus until completion.
What we should be doing is using the 'wait' time productively by
calculating the address of the next operation, and only then waiting
for the previous operation to complete. This means that cache
operations can occur in parallel with the CPU calculating the next
address.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Taking the spinlock for every iteration is very expensive; instead,
batch iterations up into 4K blocks, releasing and reacquiring the
spinlock between each block.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Dirk Behme reported instability on ARM11 SMP (VIPT non-aliasing cache)
caused by the dynamic linker changing protection on text pages to write
GOT entries. The problem is due to an interaction between the write
faulting code providing new anonymous pages which are incoherent with
the I-cache due to write buffering, and the I-cache not having been
invalidated.
a4db94d plugs the hole with the data cache coherency. This patch
provides the other half of the fix by flushing the I-cache in
flush_cache_range() for VM_EXEC VMAs (which is what we have when the
region is being made executable again.) This ensures that the I-cache
will be up to date with the newly COW'd pages.
Note: if users are writing instructions, then they still need to use
the ARM sys_cacheflush API to ensure that the caches are correctly
synchronized.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
flush_cache_mm() is called in two cases:
1. when a process exits, just before the page tables are torn down.
We can allow the stale lines to evict themselves over time without
causing any harm.
2. when a process forks, and we've allocated a new ASID.
The instruction cache issues are dealt with as pages are brought
into the new process address space. Flushing the I-cache here is
therefore unnecessary.
However, we must keep the VIPT aliasing D-cache flush to ensure that
any dirty cache lines are not written back after the pages have been
reallocated for some other use - which would result in corruption.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The I and D caches for copy-on-write pages on processors with
write-allocate caches become incoherent causing problems on application
relying on CoW for text pages (dynamic linker relocating symbols in a
text page). This patch flushes the D-cache for such pages.
Cc: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Both call sites for __flush_dcache_page() end up calling
__flush_icache_all() themselves, so having __flush_dcache_page() do
this as well is wasteful. Remove the duplicated icache flushing.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
If running in non-secure mode accessing
some registers of l2x0 will fault. So
check if l2x0 is already enabled, if so
do not access those secure registers.
Signed-off-by: srinidhi kasagar <srinidhi.kasagar@stericsson.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The zero page is read-only, and has its cache state cleared during
boot. No further maintanence for this page is required.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
page_address() is a function call rather than a macro, and so:
if (page_address(page))
do_something(page_address(page));
results in two calls to this function. This is unnecessary; remove
the duplication.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We had two copies of the wrapper code for VIVT cache flushing - one in
asm/cacheflush.h and one in arch/arm/mm/flush.c. Reduce this down to
one common copy.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Support for the Tauros2 L2 cache controller as used with the PJ1
and PJ4 CPUs.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Nicolas Pitre <nico@marvell.com>
The Marvell Dove (88AP510) is a high-performance, highly integrated,
low power SoC with high-end ARM-compatible processor (known as PJ4),
graphics processing unit, high-definition video decoding acceleration
hardware, and a broad range of peripherals.
Signed-off-by: Lennert Buytenhek <buytenh@marvell.com>
Signed-off-by: Saeed Bishara <saeed@marvell.com>
Signed-off-by: Nicolas Pitre <nico@marvell.com>
On ARMv7, it is invalid to map the same physical address multiple times
with different memory types. Since system RAM is already mapped as
'memory', subsequent remapping of it must retain this attribute.
However, DMA memory maps it as "strongly ordered". Fix this by introducing
'pgprot_dmacoherent()' which provides the necessary page table bits for
DMA mappings.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
It's unnecessary; x86 doesn't do it, and ALSA doesn't require it
anymore.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
This entirely separates the DMA coherent buffer remapping code from
the allocation code, and gets rid of the duplicate copy in the !MMU
section.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
IXP23xx added support for dma_alloc_coherent() for DMA arches with an
exception in dma_alloc_coherent(). This is a subset of what goes on
in __dma_alloc(), and there is no reason why dma_alloc_writecombine()
should not be given the same treatment (except, maybe, that IXP23xx
doesn't use it.)
We can better deal with this by moving the arch_is_coherent() test
inside __dma_alloc() and killing the code duplication.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
No point wrapping the contents of this function with #ifdef CONFIG_MMU
when we can place it and the core_initcall() entirely within the
existing conditional block.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
We effectively have three implementations of dma_free_coherent() mixed up
in the code; the incoherent MMU, coherent MMU and noMMU versions.
The coherent MMU and noMMU versions are actually functionally identical.
The incoherent MMU version is almost the same, but with the additional
step of unmapping the secondary mapping.
Separate out this additional step into __dma_free_remap() and simplify
the resulting dma_free_coherent() code.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
The nommu version of dma_alloc_coherent was using kmalloc/kfree to manage
the memory. dma_alloc_coherent() is expected to work with a granularity
of a page, so this is wrong. Fix it by using the helper functions now
provided.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
The coherent architecture dma_alloc_coherent was using kmalloc/kfree to
manage the memory. dma_alloc_coherent() is expected to work with a
granularity of a page, so this is wrong. Fix it by using the helper
functions now provided.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Samsung S5PC1xx SoCs are based on ARM Coretex8, which has 64 bytes of L1
cache line size. Enable proper handling of L1 cache on these SoCs.
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
If running in non-secure mode, enabling this register will fault.
Signed-off-by: Tony Thompson <Anthony.Thompson@arm.com>
Acked-by: Srinidhi Kasagar <srinidhikasagar@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Mapping the same memory using two different attributes (memory
type, shareability, cacheability) is unpredictable. During boot,
we encounter a situation when we're updating the kernel's page
tables which can lead to dirty cache lines existing in the cache
which are subsequently missed. This causes stack corruption,
and therefore a crash.
Therefore, ensure that the shared and cacheability settings
matches the configuration that will be used later; this together
with the restriction in early_cachepolicy() ensures that we won't
create a mismatch during boot.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Errata 411920 indicates that any "invalidate entire instruction cache"
operation can fail if the right conditions are present. This is not
limited just to those operations in flush.c, but elsewhere. Place the
workaround in the already existing __flush_icache_all() function
instead.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This adds a better sched_clock() to the IOP platform,
implemented using its new clocksource support.
Tested on n2100, compile-tested for all plat-iop machines.
[dan.j.williams@intel.com: allow early cp6 access]
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
When SPARSEMEM_EXTREME is enabled, memory_present() wants to use bootmem
to allocate data structures. However, we call memory_present() after
declaring memory to bootmem, but before we've reserved areas.
This leads to sparsemem data structures being overwritten later in the
kernel's initialization (when slab initializes.)
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We were using GFP_DMA for masks other than 0xffffffff, which is
wrong when some masks are initialized to 0xffffffffffffffff.
This caused such masks to obtain memory from the precious DMA
pool.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Remove the URL listed for Maverick EP9312 since it is not available
and modify the help text appropriately.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Acked-by: Ryan Mallon <ryan@bluewatersys.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On ARM, update_mmu_cache() does dcache flush for a page only if
it has a kernel mapping (page_mapping(page) != NULL). The correct
behavior would be to force the flush based on dcache_dirty bit only.
One of the cases where present logic would be a problem is when
a RAM based block device[1] is used as a swap disk. In this case,
we would have in-memory data corruption as shown in steps below:
do_swap_page()
{
- Allocate a new page (if not already in swap cache)
- Issue read from swap disk
- Block driver issues flush_dcache_page()
- flush_dcache_page() simply sets PG_dcache_dirty bit and does not
actually issue a flush since this page has no user space mapping yet.
- Now, if swap disk is almost full, this newly read page is removed
from swap cache and corrsponding swap slot is freed.
- Map this page anonymously in user space.
- update_mmu_cache()
- Since this page does not have kernel mapping (its not in page/swap
cache and is mapped anonymously), it does not issue dcache flush
even if dcache_dirty bit is set by flush_dcache_page() above.
<user now gets stale data since dcache was never flushed>
}
Same problem exists on mips too.
[1] example:
- brd (RAM based block device)
- ramzswap (RAM based compressed swap device)
Signed-off-by: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Seemingly this support was missed when highmem was added, so
DEBUG_HIGHMEM wouldn't have checked the kmap_atomic type.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
If sparsemem is enabled, the start_pfn passed to the free_memmap()
function corresponds to an area of memory not known to the kernel and
pfn_to_page returns a wrong value. The (start_pfn - 1), however, is
known to the kernel.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This is needed because applications using the sys_cacheflush system call
can pass a memory range which isn't mapped yet even though the
corresponding vma is valid. The patch also adds unwinding annotations
for correct backtraces from the coherent_user_range() functions.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
According to the following in arch/arm/mm/fault.c page faults from
kernel mode are invalid if mmap_sem is already held and there is
no exception handler defined for the faulting instruction:
/*
* As per x86, we may deadlock here. However, since the kernel only
* validly references user space from well defined areas of the code,
* we can bug out early if this is from code which shouldn't.
*/
if (!down_read_trylock(&mm->mmap_sem)) {
if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
goto no_context;
Since mmap_sem can be held at arbitrary times by another thread this
also means that any page faults from kernel mode are invalid if no
exception handler is defined for them, regardless whether mmap_sem is
held at the time of fault.
To easier detect code that can trigger the above error, add a check
also for the case where mmap_sem is acquired. As this has an overhead
make it a VM debug check.
Signed-off-by: Imre Deak <imre.deak@nokia.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Steven Walter <stevenrwalter@gmail.com> writes:
> I've been tracking down an instance of userspace data corruption,
> and I believe I have found a window during fork where data can be
> lost. The corruption is occurring on an ARMv5 system with VIVT
> caches. Here's the scenario in question. Thread A is forking,
> Thread B is running in userspace:
>
> Thread A: flush_cache_mm() (dup_mmap)
> Thread B: writes to a page in the above mm
> Thread A: pte_wrprotect() the above page (copy_one_pte)
> Thread B: writes to the same page again
>
> During thread B's second write, he'll take a fault and enter the
> do_wp_page() case. We'll end up calling copy_page(), which notably
> uses the kernel virtual addresses for the old and new pages. This
> means that the new page does not necessarily have the data from the
> first write. Now there are two conflicting copies of the same
> cache-line in dcache. If the userspace cache-line flushes before
> the kernel cache-line, we lose the changes made during the first
> write. do_wp_page does call flush_dcache_page on the newly-copied
> page, but there's still a window where the CPU could flush the
> userspace cache-line before then.
Resolve this by flushing the user mapping before copying the page
on processors with a writeback VIVT cache.
Note: this does have a performance impact, and so needs further
consideration before being merged - can we optimize out some of
the cache flushes if, eg, we know that the page isn't yet mapped?
Thread: <e06498070903061426o5875ad13hc6328aa0d3f08ed7@mail.gmail.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Our copy_user_highpage() implementations may require cache maintainence.
Ensure that implementations have all necessary details to perform this
maintainence.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Currently, on ARMv6 and ARMv7, if an application tries to execute
code (or garbage) on non-executable page it hangs. It caused by
incorrect prefetch abort handling. Now every prefetch abort
processes as a translation fault.
To fix this we have to analyze instruction fault status register
to figure out reason why we've got the abort and process it
accordingly.
To make IFSR different from DFSR we set bit 31 which is reserved in
both IFSR and DFSR.
This patch also tries to protect from future hangs on unexpected
exceptions. An application will be killed if unexpected exception
type was received.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Instruction fault status register, IFSR, was introduced on ARMv6 to
provide status information about the last insturction fault. It
needed for proper prefetch abort handling.
Now we have three prefetch abort model:
* legacy - for CPUs before ARMv6. They doesn't provide neither
IFSR nor IFAR. We simulate IFSR with section translation fault
status for them to generalize code;
* ARMv6 - provides IFSR, but not IFAR;
* ARMv7 - provides both IFSR and IFAR.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Commit 1522ac3ec9
("Fix virtual to physical translation macro corner cases")
breaks the end of memory check in valid_phys_addr_range().
The modified expression results in the apparent /dev/mem size
being 2 bytes smaller than what it actually is.
This patch reworks the expression to correctly check the address,
while maintaining use of a valid address to __pa().
Signed-off-by: Greg Ungerer <gerg@uclinux.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We suffer an unfortunate combination of "features" which makes highmem
support on platforms without hardware TLB maintainence broadcast difficult:
- we need kmap_high_get() support for DMA cache coherence
- this requires kmap_high() to take a spinlock with IRQs disabled
- kmap_high() occasionally calls flush_all_zero_pkmaps() to clear
out old mappings
- flush_all_zero_pkmaps() calls flush_tlb_kernel_range(), which
on s/w IPI'd systems eventually calls smp_call_function_many()
- smp_call_function_many() must not be called with IRQs disabled:
WARNING: at kernel/smp.c:380 smp_call_function_many+0xc4/0x240()
Modules linked in:
Backtrace:
[<c00306f0>] (dump_backtrace+0x0/0x108) from [<c0286e6c>] (dump_stack+0x18/0x1c)
r6:c007cd18 r5:c02ff228 r4:0000017c
[<c0286e54>] (dump_stack+0x0/0x1c) from [<c0053e08>] (warn_slowpath_common+0x50/0x80)
[<c0053db8>] (warn_slowpath_common+0x0/0x80) from [<c0053e50>] (warn_slowpath_null+0x18/0x1c)
r7:00000003 r6:00000001 r5:c1ff4000 r4:c035fa34
[<c0053e38>] (warn_slowpath_null+0x0/0x1c) from [<c007cd18>] (smp_call_function_many+0xc4/0x240)
[<c007cc54>] (smp_call_function_many+0x0/0x240) from [<c007cec0>] (smp_call_function+0x2c/0x38)
[<c007ce94>] (smp_call_function+0x0/0x38) from [<c005980c>] (on_each_cpu+0x1c/0x38)
[<c00597f0>] (on_each_cpu+0x0/0x38) from [<c0031788>] (flush_tlb_kernel_range+0x50/0x58)
r6:00000001 r5:00000800 r4:c05f3590
[<c0031738>] (flush_tlb_kernel_range+0x0/0x58) from [<c009c600>] (flush_all_zero_pkmaps+0xc0/0xe8)
[<c009c540>] (flush_all_zero_pkmaps+0x0/0xe8) from [<c009c6b4>] (kmap_high+0x8c/0x1e0)
[<c009c628>] (kmap_high+0x0/0x1e0) from [<c00364a8>] (kmap+0x44/0x5c)
[<c0036464>] (kmap+0x0/0x5c) from [<c0109dfc>] (cramfs_readpage+0x3c/0x194)
[<c0109dc0>] (cramfs_readpage+0x0/0x194) from [<c0090c14>] (__do_page_cache_readahead+0x1f0/0x290)
[<c0090a24>] (__do_page_cache_readahead+0x0/0x290) from [<c0090ce4>] (ra_submit+0x30/0x38)
[<c0090cb4>] (ra_submit+0x0/0x38) from [<c0089384>] (filemap_fault+0x3dc/0x438)
r4:c1819988
[<c0088fa8>] (filemap_fault+0x0/0x438) from [<c009d21c>] (__do_fault+0x58/0x43c)
[<c009d1c4>] (__do_fault+0x0/0x43c) from [<c009e8cc>] (handle_mm_fault+0x104/0x318)
[<c009e7c8>] (handle_mm_fault+0x0/0x318) from [<c0033c98>] (do_page_fault+0x188/0x1e4)
[<c0033b10>] (do_page_fault+0x0/0x1e4) from [<c0033ddc>] (do_translation_fault+0x7c/0x84)
[<c0033d60>] (do_translation_fault+0x0/0x84) from [<c002b474>] (do_DataAbort+0x40/0xa4)
r8:c1ff5e20 r7:c0340120 r6:00000805 r5:c1ff5e54 r4:c03400d0
[<c002b434>] (do_DataAbort+0x0/0xa4) from [<c002bcac>] (__dabt_svc+0x4c/0x60)
...
So we disable highmem support on these systems.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Makes code futureproof against the impending change to mm->cpu_vm_mask.
It's also a chance to use the new cpumask_ ops which take a pointer
(the older ones are deprecated, but there's no hurry for arch code).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Commit 9617729941 ("Drop free_pages()")
modified nr_free_pages() to return 'unsigned long' instead of 'unsigned
int'. This made the casts to 'unsigned long' in most callers superfluous,
so remove them.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Geert Uytterhoeven <Geert.Uytterhoeven@sonycom.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Ingo Molnar <mingo@elte.hu>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Haavard Skinnemoen <hskinnemoen@atmel.com>
Cc: Mikael Starvik <starvik@axis.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Howells <dhowells@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <zankel@tensilica.com>
Cc: Michal Simek <monstr@monstr.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARMv6 introduces non-executable mappings, which can cause prefetch aborts
when an attempt is made to execute from such a mapping. Currently, this
causes us to loop in the page fault handler since we don't correctly
check for proper permissions.
Fix this by checking that VMAs have VM_EXEC set for prefetch aborts.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since we get notified separately about prefetch aborts, which may be
permission faults, we need to check for appropriate access permissions
when handling a fault. This patch prepares us for doing this by
separating out the access error checking.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This adds the TCM interface to Linux, when active, it will
detect and report TCM memories and sizes early in boot if
present, introduce generic TCM memory handling, provide a
generic TCM memory pool and select TCM memory for the U300
platform.
See the Documentation/arm/tcm.txt for documentation.
Signed-off-by: Linus Walleij <linus.walleij@stericsson.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Currently kernel believes that all ARM CPUs have L1_CACHE_SHIFT == 5.
It's not true at least for CPUs based on Cortex-A8.
List of CPUs with cache line size != 32 should be expanded later.
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Due to problems at cam.org, my nico@cam.org email address is no longer
valid. FRom now on, nico@fluxnic.net should be used instead.
Signed-off-by: Nicolas Pitre <nico@fluxnic.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On OMAP platforms, some people want to declare to segment up the memory
between the kernel and a separate application such that there is a hole
in the middle of the memory as far as Linux is concerned. However,
they want to be able to mmap() the hole.
This currently causes problems, because update_mmu_cache() thinks that
there are valid struct pages for the "hole". Fix this by making
pfn_valid() slightly more expensive, by checking whether the PFN is
contained within the meminfo array.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Tested-by: Khasim Syed Mohammed <khasim@ti.com>
Let's suppose a highmem page is kmap'd with kmap(). A pkmap entry is
used, the page mapped to it, and the virtual cache is dirtied. Then
kunmap() is used which does virtually nothing except for decrementing a
usage count.
Then, let's suppose the _same_ page gets mapped using kmap_atomic().
It is therefore mapped onto a fixmap entry instead, which has a
different virtual address unaware of the dirty cache data for that page
sitting in the pkmap mapping.
Fortunately it is easy to know if a pkmap mapping still exists for that
page and use it directly with kmap_atomic(), thanks to kmap_high_get().
And actual testing with a printk in the added code path shows that this
condition is actually met *extremely* frequently. Seems that we've been
quite lucky that things have worked so well with highmem so far.
Cc: stable@kernel.org
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
In xdr_partial_copy_from_skb() there is that sequence:
kaddr = kmap_atomic(*ppage, KM_SKB_SUNRPC_DATA);
[...]
flush_dcache_page(*ppage);
kunmap_atomic(kaddr, KM_SKB_SUNRPC_DATA);
Mixing flush_dcache_page() and kmap_atomic() is a bit odd,
especially since kunmap_atomic() must deal with cache issues
already. OTOH the non-highmem case must use flush_dcache_page()
as kunmap_atomic() becomes a no op with no cache maintenance.
Problem is that with highmem the implementation of kmap_atomic()
doesn't set page->virtual, and page_address(page) returns 0 in
that case. Here flush_dcache_page() calls __flush_dcache_page()
which calls __cpuc_flush_dcache_page(page_address(page)) resulting
in a kernel oops.
None of the kmap_atomic() implementations uses set_page_address().
Hence we can assume page_address() is always expected to return 0 in
that case. Let's conditionally call __cpuc_flush_dcache_page() only
when the page address is non zero, and perform that test only when
highmem is configured.
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Add the ARM implementation of highpte, which allows PTE tables to be
placed in highmem. Unfortunately, we do not offer highpte support
when support for L2 cache is enabled.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Currently, highmem is selectable, and you can request an increased
vmalloc area. However, none of this has any effect on the memory
layout since a patch in the highmem series was accidentally dropped.
Moreover, even if you did want highmem, all memory would still be
registered as lowmem, possibly resulting in overflow of the available
virtual mapping space.
The highmem boundary is determined by the highest allowed beginning
of the vmalloc area, which depends on its configurable minimum size
(see commit 60296c71f6 for details on
this).
We should create mappings and initialize bootmem only for low memory,
while the zone allocator must still be told about highmem.
Currently, memory nodes which are completely located in high memory
are not supported. This is not a huge limitation since systems
relying on highmem support are unlikely to have discontiguous memory
with large holes.
[ A similar patch was meant to be merged before commit 5f0fbf9eca
and be available in Linux v2.6.30, however some git rebase screw-up
of mine dropped the first commit of the series, and that goofage
escaped testing somehow as well. -- Nico ]
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Reviewed-by: Nicolas Pitre <nico@marvell.com>
The patch adds the necessary ifdefs around functions that only make
sense when the MMU is enabled.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>