We can get this from the ref we've passed in.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is just excessive information in the ref_head, and makes the code
complicated. It is a relic from when we had the heads and the refs in
the same tree, which is no longer the case. With this removal I've
cleaned up a bunch of the cruft around this old assumption as well.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need this to decide when to account pinned bytes.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
refcount_t type and corresponding API should be
used instead of atomic_t when the variable is used as
a reference counter. This allows to avoid accidental
refcounter overflows that might lead to use-after-free
situations.
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Hans Liljestrand <ishkamiel@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David Windsor <dwindsor@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Just as Filipe pointed out, the most time consuming parts of qgroup are
btrfs_qgroup_account_extents() and
btrfs_qgroup_prepare_account_extents().
Which both call btrfs_find_all_roots() to get old_roots and new_roots
ulist.
What makes things worse is, we're calling that expensive
btrfs_find_all_roots() at transaction committing time with
TRANS_STATE_COMMIT_DOING, which will blocks all incoming transaction.
Such behavior is necessary for @new_roots search as current
btrfs_find_all_roots() can't do it correctly so we do call it just
before switch commit roots.
However for @old_roots search, it's not necessary as such search is
based on commit_root, so it will always be correct and we can move it
out of transaction committing.
This patch moves the @old_roots search part out of
commit_transaction(), so in theory we can half the time qgroup time
consumption at commit_transaction().
But please note that, this won't speedup qgroup overall, the total time
consumption is still the same, just reduce the performance stall.
Cc: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All we need is @delayed_refs, all callers have get it ahead of calling
btrfs_find_delayed_ref_head since lock needs to be acquired firstly,
there is no reason to deference it again inside the function.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_add_delayed_data_ref is always called with a NULL extent_op,
so let's drop the argument.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This issue was found when I tried to delete a heavily reflinked file,
when deleting such files, other transaction operation will not have a
chance to make progress, for example, start_transaction() will blocked
in wait_current_trans(root) for long time, sometimes it even triggers
soft lockups, and the time taken to delete such heavily reflinked file
is also very large, often hundreds of seconds. Using perf top, it reports
that:
PerfTop: 7416 irqs/sec kernel:99.8% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
---------------------------------------------------------------------------------------
84.37% [btrfs] [k] __btrfs_run_delayed_refs.constprop.80
11.02% [kernel] [k] delay_tsc
0.79% [kernel] [k] _raw_spin_unlock_irq
0.78% [kernel] [k] _raw_spin_unlock_irqrestore
0.45% [kernel] [k] do_raw_spin_lock
0.18% [kernel] [k] __slab_alloc
It seems __btrfs_run_delayed_refs() took most cpu time, after some debug
work, I found it's select_delayed_ref() causing this issue, for a delayed
head, in our case, it'll be full of BTRFS_DROP_DELAYED_REF nodes, but
select_delayed_ref() will firstly try to iterate node list to find
BTRFS_ADD_DELAYED_REF nodes, obviously it's a disaster in this case, and
waste much time.
To fix this issue, we introduce a new ref_add_list in struct btrfs_delayed_ref_head,
then in select_delayed_ref(), if this list is not empty, we can directly use
nodes in this list. With this patch, it just took about 10~15 seconds to
delte the same file. Now using perf top, it reports that:
PerfTop: 2734 irqs/sec kernel:99.5% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs)
----------------------------------------------------------------------------------------
20.74% [kernel] [k] _raw_spin_unlock_irqrestore
16.33% [kernel] [k] __slab_alloc
5.41% [kernel] [k] lock_acquired
4.42% [kernel] [k] lock_acquire
4.05% [kernel] [k] lock_release
3.37% [kernel] [k] _raw_spin_unlock_irq
For normal files, this patch also gives help, at least we do not need to
iterate whole list to found BTRFS_ADD_DELAYED_REF nodes.
Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Rename btrfs_qgroup_insert_dirty_extent(_nolock) to
btrfs_qgroup_trace_extent(_nolock), according to the new
reserve/trace/account naming schema.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For many printks, we want to know which file system issued the message.
This patch converts most pr_* calls to use the btrfs_* versions instead.
In some cases, this means adding plumbing to allow call sites access to
an fs_info pointer.
fs/btrfs/check-integrity.c is left alone for another day.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a lot of random ints in btrfs_fs_info that can be put into flags. This
is mostly equivalent with the exception of how we deal with quota going on or
off, now instead we set a flag when we are turning it on or off and deal with
that appropriately, rather than just having a pending state that the current
quota_enabled gets set to. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Refactor btrfs_qgroup_insert_dirty_extent() function, to two functions:
1. btrfs_qgroup_insert_dirty_extent_nolock()
Almost the same with original code.
For delayed_ref usage, which has delayed refs locked.
Change the return value type to int, since caller never needs the
pointer, but only needs to know if they need to free the allocated
memory.
2. btrfs_qgroup_insert_dirty_extent()
The more encapsulated version.
Will do the delayed_refs lock, memory allocation, quota enabled check
and other things.
The original design is to keep exported functions to minimal, but since
more btrfs hacks exposed, like replacing path in balance, we need to
record dirty extents manually, so we have to add such functions.
Also, add comment for both functions, to info developers how to keep
qgroup correct when doing hacks.
Cc: Mark Fasheh <mfasheh@suse.de>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
No longer used as of commit 5846a3c268 ("btrfs: qgroup: Fix a race in
delayed_ref which leads to abort trans").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
When using trace events to debug a problem, it's impossible to determine
which file system generated a particular event. This patch adds a
macro to prefix standard information to the head of a trace event.
The extent_state alloc/free events are all that's left without an
fs_info available.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
BTRFS is using a variety of slab caches to satisfy internal needs.
Those slab caches are always allocated with the SLAB_RECLAIM_ACCOUNT,
meaning allocations from the caches are going to be accounted as
SReclaimable. At the same time btrfs is not registering any shrinkers
whatsoever, thus preventing memory from the slabs to be shrunk. This
means those caches are not in fact reclaimable.
To fix this remove the SLAB_RECLAIM_ACCOUNT on all caches apart from the
inode cache, since this one is being freed by the generic VFS super_block
shrinker. Also set the transaction related caches as SLAB_TEMPORARY,
to better document the lifetime of the objects (it just translates
to SLAB_RECLAIM_ACCOUNT).
Signed-off-by: Nikolay Borisov <n.borisov.lkml@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Cleanup.
kmem_cache_destroy has support NULL argument checking,
so drop the double null testing before calling it.
Signed-off-by: Kinglong Mee <kinglongmee@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_delayed_extent_op can be packed in a better way, it's 40 bytes now
and has 8 unused bytes. Reducing the level type to u8 makes it possible
to squeeze it to the padding byte after key. The bitfields were switched
to bool as there's space to store the full byte without increasing the
whole structure, besides that the generated assembly is smaller.
struct btrfs_delayed_extent_op {
struct btrfs_disk_key key; /* 0 17 */
u8 level; /* 17 1 */
bool update_key; /* 18 1 */
bool update_flags; /* 19 1 */
bool is_data; /* 20 1 */
/* XXX 3 bytes hole, try to pack */
u64 flags_to_set; /* 24 8 */
/* size: 32, cachelines: 1, members: 6 */
/* sum members: 29, holes: 1, sum holes: 3 */
/* last cacheline: 32 bytes */
};
The final size is 32 bytes which gives +26 object per slab page.
text data bss dec hex filename
938811 43670 23144 1005625 f5839 fs/btrfs/btrfs.ko.before
938747 43670 23144 1005561 f57f9 fs/btrfs/btrfs.ko.after
Signed-off-by: David Sterba <dsterba@suse.com>
Between btrfs_allocerved_file_extent() and
btrfs_add_delayed_qgroup_reserve(), there is a window that delayed_refs
are run and delayed ref head maybe freed before
btrfs_add_delayed_qgroup_reserve().
This will cause btrfs_dad_delayed_qgroup_reserve() to return -ENOENT,
and cause transaction to be aborted.
This patch will record qgroup reserve space info into delayed_ref_head
at btrfs_add_delayed_ref(), to eliminate the race window.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
In the kernel 4.2 merge window we had a big changes to the implementation
of delayed references and qgroups which made the no_quota field of delayed
references not used anymore. More specifically the no_quota field is not
used anymore as of:
commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented qgroup mechanism.")
Leaving the no_quota field actually prevents delayed references from
getting merged, which in turn cause the following BUG_ON(), at
fs/btrfs/extent-tree.c, to be hit when qgroups are enabled:
static int run_delayed_tree_ref(...)
{
(...)
BUG_ON(node->ref_mod != 1);
(...)
}
This happens on a scenario like the following:
1) Ref1 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
2) Ref2 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with Ref1 because Ref1->no_quota != Ref2->no_quota.
3) Ref3 bytenr X, action = BTRFS_ADD_DELAYED_REF, no_quota = 1, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref2 is incompatible
due to Ref2->no_quota != Ref3->no_quota.
4) Ref4 bytenr X, action = BTRFS_DROP_DELAYED_REF, no_quota = 0, added.
It's not merged with the reference at the tail of the list of refs
for bytenr X because the reference at the tail, Ref3 is incompatible
due to Ref3->no_quota != Ref4->no_quota.
5) We run delayed references, trigger merging of delayed references,
through __btrfs_run_delayed_refs() -> btrfs_merge_delayed_refs().
6) Ref1 and Ref3 are merged as Ref1->no_quota = Ref3->no_quota and
all other conditions are satisfied too. So Ref1 gets a ref_mod
value of 2.
7) Ref2 and Ref4 are merged as Ref2->no_quota = Ref4->no_quota and
all other conditions are satisfied too. So Ref2 gets a ref_mod
value of 2.
8) Ref1 and Ref2 aren't merged, because they have different values
for their no_quota field.
9) Delayed reference Ref1 is picked for running (select_delayed_ref()
always prefers references with an action == BTRFS_ADD_DELAYED_REF).
So run_delayed_tree_ref() is called for Ref1 which triggers the
BUG_ON because Ref1->red_mod != 1 (equals 2).
So fix this by removing the no_quota field, as it's not used anymore as
of commit 0ed4792af0 ("btrfs: qgroup: Switch to new extent-oriented
qgroup mechanism.").
The use of no_quota was also buggy in at least two places:
1) At delayed-refs.c:btrfs_add_delayed_tree_ref() - we were setting
no_quota to 0 instead of 1 when the following condition was true:
is_fstree(ref_root) || !fs_info->quota_enabled
2) At extent-tree.c:__btrfs_inc_extent_ref() - we were attempting to
reset a node's no_quota when the condition "!is_fstree(root_objectid)
|| !root->fs_info->quota_enabled" was true but we did it only in
an unused local stack variable, that is, we never reset the no_quota
value in the node itself.
This fixes the remainder of problems several people have been having when
running delayed references, mostly while a balance is running in parallel,
on a 4.2+ kernel.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Also, this fixes deadlock issue when using the clone ioctl with qgroups
enabled, as reported by Elias Probst in the mailing list. The deadlock
happens because after calling btrfs_insert_empty_item we have our path
holding a write lock on a leaf of the fs/subvol tree and then before
releasing the path we called check_ref() which did backref walking, when
qgroups are enabled, and tried to read lock the same leaf. The trace for
this case is the following:
INFO: task systemd-nspawn:6095 blocked for more than 120 seconds.
(...)
Call Trace:
[<ffffffff86999201>] schedule+0x74/0x83
[<ffffffff863ef64c>] btrfs_tree_read_lock+0xc0/0xea
[<ffffffff86137ed7>] ? wait_woken+0x74/0x74
[<ffffffff8639f0a7>] btrfs_search_old_slot+0x51a/0x810
[<ffffffff863a129b>] btrfs_next_old_leaf+0xdf/0x3ce
[<ffffffff86413a00>] ? ulist_add_merge+0x1b/0x127
[<ffffffff86411688>] __resolve_indirect_refs+0x62a/0x667
[<ffffffff863ef546>] ? btrfs_clear_lock_blocking_rw+0x78/0xbe
[<ffffffff864122d3>] find_parent_nodes+0xaf3/0xfc6
[<ffffffff86412838>] __btrfs_find_all_roots+0x92/0xf0
[<ffffffff864128f2>] btrfs_find_all_roots+0x45/0x65
[<ffffffff8639a75b>] ? btrfs_get_tree_mod_seq+0x2b/0x88
[<ffffffff863e852e>] check_ref+0x64/0xc4
[<ffffffff863e9e01>] btrfs_clone+0x66e/0xb5d
[<ffffffff863ea77f>] btrfs_ioctl_clone+0x48f/0x5bb
[<ffffffff86048a68>] ? native_sched_clock+0x28/0x77
[<ffffffff863ed9b0>] btrfs_ioctl+0xabc/0x25cb
(...)
The problem goes away by eleminating check_ref(), which no longer is
needed as its purpose was to get a value for the no_quota field of
a delayed reference (this patch removes the no_quota field as mentioned
earlier).
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Elias Probst <mail@eliasprobst.eu>
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
In the kernel 4.2 merge window we had a refactoring/rework of the delayed
references implementation in order to fix certain problems with qgroups.
However that rework introduced one more regression that leads to the
following trace when running delayed references for metadata:
[35908.064664] kernel BUG at fs/btrfs/extent-tree.c:1832!
[35908.065201] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
[35908.065201] Modules linked in: dm_flakey dm_mod btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc psmouse i2
[35908.065201] CPU: 14 PID: 15014 Comm: kworker/u32:9 Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1
[35908.065201] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014
[35908.065201] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs]
[35908.065201] task: ffff880114b7d780 ti: ffff88010c4c8000 task.ti: ffff88010c4c8000
[35908.065201] RIP: 0010:[<ffffffffa04928b5>] [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs]
[35908.065201] RSP: 0018:ffff88010c4cbb08 EFLAGS: 00010293
[35908.065201] RAX: 0000000000000000 RBX: ffff88008a661000 RCX: 0000000000000000
[35908.065201] RDX: ffffffffa04dd58f RSI: 0000000000000001 RDI: 0000000000000000
[35908.065201] RBP: ffff88010c4cbb40 R08: 0000000000001000 R09: ffff88010c4cb9f8
[35908.065201] R10: 0000000000000000 R11: 000000000000002c R12: 0000000000000000
[35908.065201] R13: ffff88020a74c578 R14: 0000000000000000 R15: 0000000000000000
[35908.065201] FS: 0000000000000000(0000) GS:ffff88023edc0000(0000) knlGS:0000000000000000
[35908.065201] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
[35908.065201] CR2: 00000000015e8708 CR3: 0000000102185000 CR4: 00000000000006e0
[35908.065201] Stack:
[35908.065201] ffff88010c4cbb18 0000000000000f37 ffff88020a74c578 ffff88015a408000
[35908.065201] ffff880154a44000 0000000000000000 0000000000000005 ffff88010c4cbbd8
[35908.065201] ffffffffa0492b9a 0000000000000005 0000000000000000 0000000000000000
[35908.065201] Call Trace:
[35908.065201] [<ffffffffa0492b9a>] __btrfs_inc_extent_ref+0x8b/0x208 [btrfs]
[35908.065201] [<ffffffffa0497117>] ? __btrfs_run_delayed_refs+0x4d4/0xd33 [btrfs]
[35908.065201] [<ffffffffa049773d>] __btrfs_run_delayed_refs+0xafa/0xd33 [btrfs]
[35908.065201] [<ffffffffa04a976a>] ? join_transaction.isra.10+0x25/0x41f [btrfs]
[35908.065201] [<ffffffffa04a97ed>] ? join_transaction.isra.10+0xa8/0x41f [btrfs]
[35908.065201] [<ffffffffa049914d>] btrfs_run_delayed_refs+0x75/0x1dd [btrfs]
[35908.065201] [<ffffffffa04992f1>] delayed_ref_async_start+0x3c/0x7b [btrfs]
[35908.065201] [<ffffffffa04d4b4f>] normal_work_helper+0x14c/0x32a [btrfs]
[35908.065201] [<ffffffffa04d4e93>] btrfs_extent_refs_helper+0x12/0x14 [btrfs]
[35908.065201] [<ffffffff81063b23>] process_one_work+0x24a/0x4ac
[35908.065201] [<ffffffff81064285>] worker_thread+0x206/0x2c2
[35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[35908.065201] [<ffffffff8106407f>] ? rescuer_thread+0x2cb/0x2cb
[35908.065201] [<ffffffff8106904d>] kthread+0xef/0xf7
[35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[35908.065201] [<ffffffff8147d10f>] ret_from_fork+0x3f/0x70
[35908.065201] [<ffffffff81068f5e>] ? kthread_parkme+0x24/0x24
[35908.065201] Code: 6a 01 41 56 41 54 ff 75 10 41 51 4d 89 c1 49 89 c8 48 8d 4d d0 e8 f6 f1 ff ff 48 83 c4 28 85 c0 75 2c 49 81 fc ff 00 00 00 77 02 <0f> 0b 4c 8b 45 30 8b 4d 28 45 31
[35908.065201] RIP [<ffffffffa04928b5>] insert_inline_extent_backref+0x52/0xb1 [btrfs]
[35908.065201] RSP <ffff88010c4cbb08>
[35908.310885] ---[ end trace fe4299baf0666457 ]---
This happens because the new delayed references code no longer merges
delayed references that have different sequence values. The following
steps are an example sequence leading to this issue:
1) Transaction N starts, fs_info->tree_mod_seq has value 0;
2) Extent buffer (btree node) A is allocated, delayed reference Ref1 for
bytenr A is created, with a value of 1 and a seq value of 0;
3) fs_info->tree_mod_seq is incremented to 1;
4) Extent buffer A is deleted through btrfs_del_items(), which calls
btrfs_del_leaf(), which in turn calls btrfs_free_tree_block(). The
later returns the metadata extent associated to extent buffer A to
the free space cache (the range is not pinned), because the extent
buffer was created in the current transaction (N) and writeback never
happened for the extent buffer (flag BTRFS_HEADER_FLAG_WRITTEN not set
in the extent buffer).
This creates the delayed reference Ref2 for bytenr A, with a value
of -1 and a seq value of 1;
5) Delayed reference Ref2 is not merged with Ref1 when we create it,
because they have different sequence numbers (decided at
add_delayed_ref_tail_merge());
6) fs_info->tree_mod_seq is incremented to 2;
7) Some task attempts to allocate a new extent buffer (done at
extent-tree.c:find_free_extent()), but due to heavy fragmentation
and running low on metadata space the clustered allocation fails
and we fall back to unclustered allocation, which finds the
extent at offset A, so a new extent buffer at offset A is allocated.
This creates delayed reference Ref3 for bytenr A, with a value of 1
and a seq value of 2;
8) Ref3 is not merged neither with Ref2 nor Ref1, again because they
all have different seq values;
9) We start running the delayed references (__btrfs_run_delayed_refs());
10) The delayed Ref1 is the first one being applied, which ends up
creating an inline extent backref in the extent tree;
10) Next the delayed reference Ref3 is selected for execution, and not
Ref2, because select_delayed_ref() always gives a preference for
positive references (that have an action of BTRFS_ADD_DELAYED_REF);
11) When running Ref3 we encounter alreay the inline extent backref
in the extent tree at insert_inline_extent_backref(), which makes
us hit the following BUG_ON:
BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
This is always true because owner corresponds to the level of the
extent buffer/btree node in the btree.
For the scenario described above we hit the BUG_ON because we never merge
references that have different seq values.
We used to do the merging before the 4.2 kernel, more specifically, before
the commmits:
c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
c43d160fcd ("btrfs: delayed-ref: Cleanup the unneeded functions.")
This issue became more exposed after the following change that was added
to 4.2 as well:
cffc3374e5 ("Btrfs: fix order by which delayed references are run")
Which in turn fixed another regression by the two commits previously
mentioned.
So fix this by bringing back the delayed reference merge code, with the
proper adaptations so that it operates against the new data structure
(linked list vs old red black tree implementation).
This issue was hit running fstest btrfs/063 in a loop. Several people have
reported this issue in the mailing list when running on kernels 4.2+.
Very special thanks to Stéphane Lesimple for helping debugging this issue
and testing this fix on his multi terabyte filesystem (which took more
than one day to balance alone, plus fsck, etc).
Fixes: c6fc245499 ("btrfs: delayed-ref: Use list to replace the ref_root in ref_head.")
Reported-by: Peter Becker <floyd.net@gmail.com>
Reported-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Tested-by: Stéphane Lesimple <stephane_btrfs@lesimple.fr>
Reported-by: Malte Schröder <malte@tnxip.de>
Reported-by: Derek Dongray <derek@valedon.co.uk>
Reported-by: Erkki Seppala <flux-btrfs@inside.org>
Cc: stable@vger.kernel.org # 4.2+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Add new function btrfs_add_delayed_qgroup_reserve() function to record
how much space is reserved for that extent.
As btrfs only accounts qgroup at run_delayed_refs() time, so newly
allocated extent should keep the reserved space until then.
So add needed function with related members to do it.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
There is a cut and paste error so instead of freeing "head_ref", we free
"ref" twice.
Fixes: 3368d001ba ('btrfs: qgroup: Record possible quota-related extent for qgroup.')
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
Add hook in add_delayed_ref_head() to record quota-related extent record
into delayed_ref_root->dirty_extent_record rb-tree for later qgroup
accounting.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
Cleanup the rb_tree merge/insert/update functions, since now we use list
instead of rb_tree now.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
This patch replace the rbtree used in ref_head to list.
This has the following advantage:
1) Easier merge logic.
With the new list implement, we only need to care merging the tail
ref_node with the new ref_node.
And this can be done quite easy at insert time, no need to do a
indicated merge at run_delayed_refs().
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
As we delete large extents, we end up doing huge amounts of COW in order
to delete the corresponding crcs. This adds accounting so that we keep
track of that space and flushing of delayed refs so that we don't build
up too much delayed crc work.
This helps limit the delayed work that must be done at commit time and
tries to avoid ENOSPC aborts because the crcs eat all the global
reserves.
Signed-off-by: Chris Mason <clm@fb.com>
Currently qgroups account for space by intercepting delayed ref updates to fs
trees. It does this by adding sequence numbers to delayed ref updates so that
it can figure out how the tree looked before the update so we can adjust the
counters properly. The problem with this is that it does not allow delayed refs
to be merged, so if you say are defragging an extent with 5k snapshots pointing
to it we will thrash the delayed ref lock because we need to go back and
manually merge these things together. Instead we want to process quota changes
when we know they are going to happen, like when we first allocate an extent, we
free a reference for an extent, we add new references etc. This patch
accomplishes this by only adding qgroup operations for real ref changes. We
only modify the sequence number when we need to lookup roots for bytenrs, this
reduces the amount of churn on the sequence number and allows us to merge
delayed refs as we add them most of the time. This patch encompasses a bunch of
architectural changes
1) qgroup ref operations: instead of tracking qgroup operations through the
delayed refs we simply add new ref operations whenever we notice that we need to
when we've modified the refs themselves.
2) tree mod seq: we no longer have this separation of major/minor counters.
this makes the sequence number stuff much more sane and we can remove some
locking that was needed to protect the counter.
3) delayed ref seq: we now read the tree mod seq number and use that as our
sequence. This means each new delayed ref doesn't have it's own unique sequence
number, rather whenever we go to lookup backrefs we inc the sequence number so
we can make sure to keep any new operations from screwing up our world view at
that given point. This allows us to merge delayed refs during runtime.
With all of these changes the delayed ref stuff is a little saner and the qgroup
accounting stuff no longer goes negative in some cases like it was before.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
While we update an existing ref head's extent_op, we're not holding
its spinlock, so while we're updating its extent_op contents (key,
flags) we can have a task running __btrfs_run_delayed_refs() that
holds the ref head's lock and sets its extent_op to NULL right after
the task updating the ref head just checked its extent_op was not NULL.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
The argument last wasn't used, all callers supplied a NULL value
for it. Also removed unnecessary intermediate storage of the result
of key comparisons.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
When we didn't find the exact ref head we were looking for, if
return_bigger != 0 we set a new search key to match either the
next node after the last one we found or the first one in the
ref heads rb tree, and then did another full tree search. For both
cases this ended up being pointless as we would end up returning
an entry we already had before repeating the search.
Signed-off-by: Filipe David Borba Manana <fdmanana@gmail.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Currently we have two rb-trees, one for delayed ref heads and one for all of the
delayed refs, including the delayed ref heads. When we process the delayed refs
we have to hold onto the delayed ref lock for all of the selecting and merging
and such, which results in quite a bit of lock contention. This was solved by
having a waitqueue and only one flusher at a time, however this hurts if we get
a lot of delayed refs queued up.
So instead just have an rb tree for the delayed ref heads, and then attach the
delayed ref updates to an rb tree that is per delayed ref head. Then we only
need to take the delayed ref lock when adding new delayed refs and when
selecting a delayed ref head to process, all the rest of the time we deal with a
per delayed ref head lock which will be much less contentious.
The locking rules for this get a little more complicated since we have to lock
up to 3 things to properly process delayed refs, but I will address that problem
later. For now this passes all of xfstests and my overnight stress tests.
Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
When we have data deduplication on, we'll hang on the merge part
because it needs to verify every queued delayed data refs related to
this disk offset but we may have millions refs.
And in the case of delayed data refs, we don't usually have too much
data refs to merge.
So it's safe to shut it down for data refs.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
The way how we process delayed refs is
1) get a bunch of head refs,
2) pick up one head ref,
3) go one node back for any delayed ref updates.
The head ref is also linked in the same rbtree as the delayed ref is,
so in 1) stage, we have to walk one by one including not only head refs, but
delayed refs.
When we have a great number of delayed refs pending to process,
this'll cost time a lot.
Here we introduce a head ref specific rbtree, it only has head refs, so troubles
go away.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <clm@fb.com>
make C=2 fs/btrfs/ CF=-D__CHECK_ENDIAN__
I tried to filter out the warnings for which patches have already
been sent to the mailing list, pending for inclusion in btrfs-next.
All these changes should be obviously safe.
Signed-off-by: Stefan Behrens <sbehrens@giantdisaster.de>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
This shows exactly how btrfs processes the delayed refs onto disks,
which is very helpful on understanding delayed ref mechanism and
debugging related bugs.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Sequence numbers for delayed refs have been introduced in the first version
of the qgroup patch set. To solve the problem of find_all_roots on a busy
file system, the tree mod log was introduced. The sequence numbers for that
were simply shared between those two users.
However, at one point in qgroup's quota accounting, there's a statement
accessing the previous sequence number, that's still just doing (seq - 1)
just as it would have to in the very first version.
To satisfy that requirement, this patch makes the sequence number counter 64
bit and splits it into a major part (used for qgroup sequence number
counting) and a minor part (incremented for each tree modification in the
log). This enables us to go exactly one major step backwards, as required
for qgroups, while still incrementing the sequence counter for tree mod log
insertions to keep track of their order. Keeping them in a single variable
means there's no need to change all the code dealing with comparisons of two
sequence numbers.
The sequence number is reset to 0 on commit (not new in this patch), which
ensures we won't overflow the two 32 bit counters.
Without this fix, the qgroup tracking can occasionally go wrong and WARN_ONs
from the tree mod log code may happen.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
A user reported a panic while running a balance. What was happening was he was
relocating a block, which added the reference to the relocation tree. Then
relocation would walk through the relocation tree and drop that reference and
free that block, and then it would walk down a snapshot which referenced the
same block and add another ref to the block. The problem is this was all
happening in the same transaction, so the parent block was free'ed up when we
drop our reference which was immediately available for allocation, and then it
was used _again_ to add a reference for the same block from a different
snapshot. This resulted in something like this in the delayed ref tree
add ref to 90234880, parent=2067398656, ref_root 1766, level 1
del ref to 90234880, parent=2067398656, ref_root 18446744073709551608, level 1
add ref to 90234880, parent=2067398656, ref_root 1767, level 1
as you can see the ref_root's don't match, because when we inc the ref we use
the header owner, which is the original tree the block belonged to, instead of
the data reloc tree. Then when we remove the extent we use the reloc tree
objectid. But none of this matters, since it is a shared reference which means
only the parent matters. When the delayed ref stuff runs it adds all the
increments first, and then does all the drops, to make sure that we don't delete
the ref if we net a positive ref count. But tree blocks aren't allowed to have
multiple refs from the same block, so this panics when it tries to add the
second ref. We need the add and the drop to cancel each other out in memory so
we only do the final add.
So to fix this we need to adjust how the delayed refs are added to the tree.
Only the ref_root matters when it is a normal backref, and only the parent
matters when it is a shared backref. So make our decision based on what ref
type we have. This allows us to keep the ref_root in memory in case anybody
wants to use it for something else, and it allows the delayed refs to be merged
properly so we don't end up with this panic.
With this patch the users image no longer panics on mount, and it has a clean
fsck after a normal mount/umount cycle. Thanks,
Cc: stable@vger.kernel.org
Reported-by: Roman Mamedov <rm@romanrm.ru>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Locking and unlocking delayed ref mutex are in the different functions,
and the name of lock functions is not uniform, so the readability is not
so good, this patch optimizes the lock logic and makes it more readable.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
The delayed reference allocation is in the fast path of the IO, so use slabs
to improve the speed of the allocation.
And besides that, it can do check for leaked objects when the module is removed.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Daniel Blueman reported a bug with fio+balance on a ramdisk setup.
Basically what happens is the balance relocates a tree block which will drop
the implicit refs for all of its children and adds a full backref. Once the
block is relocated we have to add the implicit refs back, so when we cow the
block again we add the implicit refs for its children back. The problem
comes when the original drop ref doesn't get run before we add the implicit
refs back. The delayed ref stuff will specifically prefer ADD operations
over DROP to keep us from freeing up an extent that will have references to
it, so we try to add the implicit ref before it is actually removed and we
panic. This worked fine before because the add would have just canceled the
drop out and we would have been fine. But the backref walking work needs to
be able to freeze the delayed ref stuff in time so we have this ever
increasing sequence number that gets attached to all new delayed ref updates
which makes us not merge refs and we run into this issue.
So to fix this we need to merge delayed refs. So everytime we run a
clustered ref we need to try and merge all of its delayed refs. The backref
walking stuff locks the delayed ref head before processing, so if we have it
locked we are safe to merge any refs inside of the sequence number. If
there is no sequence number we can merge all refs. Doing this not only
fixes our bug but keeps the delayed ref code from adding and removing
useless refs and batching together multiple refs into one search instead of
one search per delayed ref, which will really help our commit times. I ran
this with Daniels test and 276 and I haven't seen any problems. Thanks,
Reported-by: Daniel J Blueman <daniel@quora.org>
Signed-off-by: Josef Bacik <jbacik@fusionio.com>
Commit a168650c introduced a waiting mechanism to prevent busy waiting in
btrfs_run_delayed_refs. This can deadlock with btrfs_run_ordered_operations,
where a tree_mod_seq is held while waiting for the io to complete, while
the end_io calls btrfs_run_delayed_refs.
This whole mechanism is unnecessary. If not enough runnable refs are
available to satisfy count, just return as count is more like a guideline
than a strict requirement.
In case we have to run all refs, commit transaction makes sure that no
other threads are working in the transaction anymore, so we just assert
here that no refs are blocked.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Chris Mason <chris.mason@fusionio.com>
Hooks into qgroup code to record refs and into transaction commit.
This is the main entry point for qgroup. Basically every change in
extent backrefs got accounted to the appropriate qgroups.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
We've got two mechanisms both required for reliable backref resolving (tree
mod log and holding back delayed refs). You cannot make use of one without
the other. So instead of requiring the user of this mechanism to setup both
correctly, we join them into a single interface.
Additionally, we stop inserting non-blockers into fs_info->tree_mod_seq_list
as we did before, which was of no value.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
The sequence number for delayed refs is needed to postpone certain delayed
refs for a very short period while walking backrefs. Before the tree
modification log, we thought we'd only have to hold back those references
that don't have a counter operation.
While now we've the tree mod log, we're rewinding fs tree blocks to a
defined consistent state. We cannot know in advance for which tree block
we'll be doing rewind operations later. Therefore, we must postpone all the
delayed refs for fs-tree blocks, even those having a counter operation.
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Correctness fix: The kfree calls in the add_delayed_* functions free
the node that's passed into it, but the node is a member of another
structure. It works because it's always the first member of the
containing structure, but it should really be using the containing
structure itself.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Now that we may be holding back delayed refs for a limited period, we
might end up having no runnable delayed refs. Without this commit, we'd
do busy waiting in that thread until another (runnable) ref arives.
Instead, we're detecting this situation and use a waitqueue, such that
we only try to run more refs after
a) another runnable ref was added or
b) delayed refs are no longer held back
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
When processing a delayed ref, first check if there are still old refs in
the process of being added. If so, put this ref back to the tree. To avoid
looping on this ref, choose a newer one in the next loop.
btrfs_find_ref_cluster has to take care of that.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>
Sequence numbers are needed to reconstruct the backrefs of a given extent to
a certain point in time. The total set of backrefs consist of the set of
backrefs recorded on disk plus the enqueued delayed refs for it that existed
at that moment.
This patch also adds a list that records all delayed refs which are
currently in the process of being added.
When walking all refs of an extent in btrfs_find_all_roots(), we freeze the
current state of delayed refs, honor anythinh up to this point and prevent
processing newer delayed refs to assert consistency.
Signed-off-by: Arne Jansen <sensille@gmx.net>
Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net>