Commit Graph

11 Commits

Author SHA1 Message Date
Valdis Kletnieks 8496ecd0be init/calibrate.c: provide proper prototype
Sparse issues a warning:

    CHECK   init/calibrate.c
  init/calibrate.c:271:28: warning: symbol 'calibration_delay_done' was not declared. Should it be static?

The actual issue is that it's a __weak symbol that archs can override
(in fact, ARM does so), but no prototype is provided.  Let's provide one
to prevent surprises.

Link: http://lkml.kernel.org/r/18827.1548750938@turing-police.cc.vt.edu
Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-07 18:32:01 -08:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Russell King 9f8197980d delay: Add explanation of udelay() inaccuracy
There seems to be some misunderstanding that udelay() and friends will
always guarantee the specified delay.  This is a false understanding.
When udelay() is based on CPU cycles, it can return early for many
reasons which are detailed by Linus' reply to me in a thread in 2011:

  http://lists.openwall.net/linux-kernel/2011/01/12/372

However, a udelay test module was created in 2014 which allows udelay()
to only be 0.5% fast, which is outside of the CPU-cycles udelay()
results I measured back in 2011, which were deemed to be in the "we
don't care" region.

test_udelay() should be fixed to reflect the real allowable tolerance
on udelay(), rather than 0.5%.

Cc: David Riley <davidriley@chromium.org>
Cc: John Stultz <john.stultz@linaro.org>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2017-01-20 14:32:39 -08:00
Patrick Pannuto 5e7f5a178b timer: Added usleep_range timer
usleep_range is a finer precision implementations of msleep
and is designed to be a drop-in replacement for udelay where
a precise sleep / busy-wait is unnecessary.

Since an easy interface to hrtimers could lead to an undesired
proliferation of interrupts, we provide only a "range" API,
forcing the caller to think about an acceptable tolerance on
both ends and hopefully avoiding introducing another interrupt.

INTRO

As discussed here ( http://lkml.org/lkml/2007/8/3/250 ), msleep(1) is not
precise enough for many drivers (yes, sleep precision is an unfair notion,
but consistently sleeping for ~an order of magnitude greater than requested
is worth fixing). This patch adds a usleep API so that udelay does not have
to be used. Obviously not every udelay can be replaced (those in atomic
contexts or being used for simple bitbanging come to mind), but there are
many, many examples of

mydriver_write(...)
/* Wait for hardware to latch */
udelay(100)

in various drivers where a busy-wait loop is neither beneficial nor
necessary, but msleep simply does not provide enough precision and people
are using a busy-wait loop instead.

CONCERNS FROM THE RFC

Why is udelay a problem / necessary? Most callers of udelay are in device/
driver initialization code, which is serial...

	As I see it, there is only benefit to sleeping over a delay; the
	notion of "refactoring" areas that use udelay was presented, but
	I see usleep as the refactoring. Consider i2c, if the bus is busy,
	you need to wait a bit (say 100us) before trying again, your
	current options are:

		* udelay(100)
		* msleep(1) <-- As noted above, actually as high as ~20ms
				on some platforms, so not really an option
		* Manually set up an hrtimer to try again in 100us (which
		  is what usleep does anyway...)

	People choose the udelay route because it is EASY; we need to
	provide a better easy route.

	Device / driver / boot code is *currently* serial, but every few
	months someone makes noise about parallelizing boot, and IMHO, a
	little forward-thinking now is one less thing to worry about
	if/when that ever happens

udelay's could be preempted

	Sure, but if udelay plans on looping 1000 times, and it gets
	preempted on loop 200, whenever it's scheduled again, it is
	going to do the next 800 loops.

Is the interruptible case needed?

	Probably not, but I see usleep as a very logical parallel to msleep,
	so it made sense to include the "full" API. Processors are getting
	faster (albeit not as quickly as they are becoming more parallel),
	so if someone wanted to be interruptible for a few usecs, why not
	let them? If this is a contentious point, I'm happy to remove it.

OTHER THOUGHTS

I believe there is also value in exposing the usleep_range option; it gives
the scheduler a lot more flexibility and allows the programmer to express
his intent much more clearly; it's something I would hope future driver
writers will take advantage of.

To get the results in the NUMBERS section below, I literally s/udelay/usleep
the kernel tree; I had to go in and undo the changes to the USB drivers, but
everything else booted successfully; I find that extremely telling in and
of itself -- many people are using a delay API where a sleep will suit them
just fine.

SOME ATTEMPTS AT NUMBERS

It turns out that calculating quantifiable benefit on this is challenging,
so instead I will simply present the current state of things, and I hope
this to be sufficient:

How many udelay calls are there in 2.6.35-rc5?

	udealy(ARG) >=	| COUNT
	1000		| 319
	500		| 414
	100		| 1146
	20		| 1832

I am working on Android, so that is my focus for this. The following table
is a modified usleep that simply printk's the amount of time requested to
sleep; these tests were run on a kernel with udelay >= 20 --> usleep

"boot" is power-on to lock screen
"power collapse" is when the power button is pushed and the device suspends
"resume" is when the power button is pushed and the lock screen is displayed
         (no touchscreen events or anything, just turning on the display)
"use device" is from the unlock swipe to clicking around a bit; there is no
	sd card in this phone, so fail loading music, video, camera

	ACTION		| TOTAL NUMBER OF USLEEP CALLS	| NET TIME (us)
	boot		| 22				| 1250
	power-collapse	| 9				| 1200
	resume		| 5				| 500
	use device	| 59				| 7700

The most interesting category to me is the "use device" field; 7700us of
busy-wait time that could be put towards better responsiveness, or at the
least less power usage.

Signed-off-by: Patrick Pannuto <ppannuto@codeaurora.org>
Cc: apw@canonical.com
Cc: corbet@lwn.net
Cc: arjan@linux.intel.com
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2010-08-04 11:00:45 +02:00
Thomas Gleixner e1b004c3ef Revert "timer: Added usleep[_range] timer"
This reverts commit 22b8f15c2f to merge
an advanced version.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2010-08-04 10:53:00 +02:00
Patrick Pannuto 22b8f15c2f timer: Added usleep[_range] timer
usleep[_range] are finer precision implementations of msleep
and are designed to be drop-in replacements for udelay where
a precise sleep / busy-wait is unnecessary. They also allow
an easy interface to specify slack when a precise (ish)
wakeup is unnecessary to help minimize wakeups

Signed-off-by: Patrick Pannuto <ppannuto@codeaurora.org>
Cc: akinobu.mita@gmail.com
Cc: sboyd@codeaurora.org
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <4C44CDD2.1070708@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2010-07-23 15:08:12 +02:00
Alok Kataria f3f3149f35 x86: use cpu_khz for loops_per_jiffy calculation, cleanup
As suggested by Ingo, remove all references to tsc from init/calibrate.c

TSC is x86 specific, and using tsc in variable names in a generic file should
be avoided. lpj_tsc is now called lpj_fine, since it is related to fine tuning
of lpj value. Also tsc_rate_*  is called timer_rate_*

Signed-off-by: Alok N Kataria <akataria@vmware.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Daniel Hecht <dhecht@vmware.com>
Cc: Tim Mann <mann@vmware.com>
Cc: Zach Amsden <zach@vmware.com>
Cc: Sahil Rihan <srihan@vmware.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-24 13:53:46 +02:00
Alok Kataria 3da757daf8 x86: use cpu_khz for loops_per_jiffy calculation
On the x86 platform we can use the value of tsc_khz computed during tsc
calibration to calculate the loops_per_jiffy value. Its very important
to keep the error in lpj values to minimum as any error in that may
result in kernel panic in check_timer. In virtualization environment, On
a highly overloaded host the guest delay calibration may sometimes
result in errors beyond the ~50% that timer_irq_works can handle,
resulting in the guest panicking.

Does some formating changes to lpj_setup code to now have a single
printk to print the bogomips value.

We do this only for the boot processor because the AP's can have
different base frequencies or the BIOS might boot a AP at a different
frequency.

Signed-off-by: Alok N Kataria <akataria@vmware.com>
Cc: Arjan van de Ven <arjan@infradead.org>
Cc: Daniel Hecht <dhecht@vmware.com>
Cc: Tim Mann <mann@vmware.com>
Cc: Zach Amsden <zach@vmware.com>
Cc: Sahil Rihan <srihan@vmware.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-06-23 22:51:33 +02:00
Andrew Morton 5cba6d22e3 ndelay(): switch to C function to avoid 64-bit division
We should be able to do ndelay(some_u64), but that can cause a call to
__divdi3() to be emitted because the ndelay() macros does a divide.

Fix it by switching to static inline which will force the u64 arg to be
treated as an unsigned long.  udelay() takes an unsigned long arg.

[bunk@kernel.org: reported m68k build breakage]
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Evgeniy Polyakov <johnpol@2ka.mipt.ru>
Cc: Martin Michlmayr <tbm@cyrius.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-03-04 16:35:12 -08:00
Anton Blanchard 1e92a550e8 [POWERPC] Fix mdelay badness on shared processor partitions
On partitioned PPC64 systems where a partition is given 1/10 of a
processor, we have seen mdelay() delaying for 10 times longer than it
should.  The reason is that the generic mdelay(n) does n delays of 1
millisecond each.  However, with 1/10 of a processor, we only get a
one-millisecond timeslice every 10ms.  Thus each 1 millisecond delay
loop ends up taking 10ms elapsed time.

The solution is just to use the PPC64 udelay function, which uses the
timebase to ensure that the delay is based on elapsed time rather than
how much processing time the partition has been given.  (Yes, the
generic mdelay uses the PPC64 udelay, but the problem is that the
start time gets reset every millisecond, and each time it gets reset
we lose another 9ms.)

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Andrew Morton <akpm@osdl.org>
2006-06-21 15:01:33 +10:00
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00