This driver solves three problems:
1). Parse and upload ACPI0007 (or PROCESSOR_TYPE) information to the
hypervisor - aka P-states (cpufreq data).
2). Upload the the Cx state information (cpuidle data).
3). Inhibit CPU frequency scaling drivers from loading.
The reason for wanting to solve 1) and 2) is such that the Xen hypervisor
is the only one that knows the CPU usage of different guests and can
make the proper decision of when to put CPUs and packages in proper states.
Unfortunately the hypervisor has no support to parse ACPI DSDT tables, hence it
needs help from the initial domain to provide this information. The reason
for 3) is that we do not want the initial domain to change P-states while the
hypervisor is doing it as well - it causes rather some funny cases of P-states
transitions.
For this to work, the driver parses the Power Management data and uploads said
information to the Xen hypervisor. It also calls acpi_processor_notify_smm()
to inhibit the other CPU frequency scaling drivers from being loaded.
Everything revolves around the 'struct acpi_processor' structure which
gets updated during the bootup cycle in different stages. At the startup, when
the ACPI parser starts, the C-state information is processed (processor_idle)
and saved in said structure as 'power' element. Later on, the CPU frequency
scaling driver (powernow-k8 or acpi_cpufreq), would call the the
acpi_processor_* (processor_perflib functions) to parse P-states information
and populate in the said structure the 'performance' element.
Since we do not want the CPU frequency scaling drivers from loading
we have to call the acpi_processor_* functions to parse the P-states and
call "acpi_processor_notify_smm" to stop them from loading.
There is also one oddity in this driver which is that under Xen, the
physical online CPU count can be different from the virtual online CPU count.
Meaning that the macros 'for_[online|possible]_cpu' would process only
up to virtual online CPU count. We on the other hand want to process
the full amount of physical CPUs. For that, the driver checks if the ACPI IDs
count is different from the APIC ID count - which can happen if the user
choose to use dom0_max_vcpu argument. In such a case a backup of the PM
structure is used and uploaded to the hypervisor.
[v1-v2: Initial RFC implementations that were posted]
[v3: Changed the name to passthru suggested by Pasi Kärkkäinen <pasik@iki.fi>]
[v4: Added vCPU != pCPU support - aka dom0_max_vcpus support]
[v5: Cleaned up the driver, fix bug under Athlon XP]
[v6: Changed the driver to a CPU frequency governor]
[v7: Jan Beulich <jbeulich@suse.com> suggestion to make it a cpufreq scaling driver
made me rework it as driver that inhibits cpufreq scaling driver]
[v8: Per Jan's review comments, fixed up the driver]
[v9: Allow to continue even if acpi_processor_preregister_perf.. fails]
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Access to arbitrary hypercalls is currently provided via xenfs. This
adds a standard character device to handle this. The support in xenfs
remains for backward compatibility and uses the device driver code.
Signed-off-by: Bastian Blank <waldi@debian.org>
Acked-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Xen PVHVM needs xen-platform-pci, on the other hand xen-platform-pci is
useless in any other cases.
Therefore remove the XEN_PLATFORM_PCI config option and compile
xen-platform-pci built-in if XEN_PVHVM is selected.
Changes to v1:
- remove xen-platform-pci.o and just use platform-pci.o since it is not
externally visible anymore.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
* stable/xen-pciback-0.6.3:
xen/pciback: Have 'passthrough' option instead of XEN_PCIDEV_BACKEND_PASS and XEN_PCIDEV_BACKEND_VPCI
xen/pciback: Remove the DEBUG option.
xen/pciback: Drop two backends, squash and cleanup some code.
xen/pciback: Print out the MSI/MSI-X (PIRQ) values
xen/pciback: Don't setup an fake IRQ handler for SR-IOV devices.
xen: rename pciback module to xen-pciback.
xen/pciback: Fine-grain the spinlocks and fix BUG: scheduling while atomic cases.
xen/pciback: Allocate IRQ handler for device that is shared with guest.
xen/pciback: Disable MSI/MSI-X when reseting a device
xen/pciback: guest SR-IOV support for PV guest
xen/pciback: Register the owner (domain) of the PCI device.
xen/pciback: Cleanup the driver based on checkpatch warnings and errors.
xen/pciback: xen pci backend driver.
Conflicts:
drivers/xen/Kconfig
This is the host side counterpart to the frontend driver in
drivers/pci/xen-pcifront.c. The PV protocol is also implemented by
frontend drivers in other OSes too, such as the BSDs.
The PV protocol is rather simple. There is page shared with the guest,
which has the 'struct xen_pci_sharedinfo' embossed in it. The backend
has a thread that is kicked every-time the structure is changed and
based on the operation field it performs specific tasks:
XEN_PCI_OP_conf_[read|write]:
Read/Write 0xCF8/0xCFC filtered data. (conf_space*.c)
Based on which field is probed, we either enable/disable the PCI
device, change power state, read VPD, etc. The major goal of this
call is to provide a Physical IRQ (PIRQ) to the guest.
The PIRQ is Xen hypervisor global IRQ value irrespective of the IRQ
is tied in to the IO-APIC, or is a vector. For GSI type
interrupts, the PIRQ==GSI holds. For MSI/MSI-X the
PIRQ value != Linux IRQ number (thought PIRQ==vector).
Please note, that with Xen, all interrupts (except those level shared ones)
are injected directly to the guest - there is no host interaction.
XEN_PCI_OP_[enable|disable]_msi[|x] (pciback_ops.c)
Enables/disables the MSI/MSI-X capability of the device. These operations
setup the MSI/MSI-X vectors for the guest and pass them to the frontend.
When the device is activated, the interrupts are directly injected in the
guest without involving the host.
XEN_PCI_OP_aer_[detected|resume|mmio|slotreset]: In case of failure,
perform the appropriate AER commands on the guest. Right now that is
a cop-out - we just kill the guest.
Besides implementing those commands, it can also
- hide a PCI device from the host. When booting up, the user can specify
xen-pciback.hide=(1:0:0)(BDF..) so that host does not try to use the
device.
The driver was lifted from linux-2.6.18.hg tree and fixed up
so that it could compile under v3.0. Per suggestion from Jesse Barnes
moved the driver to drivers/xen/xen-pciback.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
This patch introduces two in-kernel drivers for Xen transcendent memory
("tmem") functionality that complement cleancache and frontswap. Both
use control theory to dynamically adjust and optimize memory utilization.
Selfballooning controls the in-kernel Xen balloon driver, targeting a goal
value (vm_committed_as), thus pushing less frequently used clean
page cache pages (through the cleancache code) into Xen tmem where
Xen can balance needs across all VMs residing on the physical machine.
Frontswap-selfshrinking controls the number of pages in frontswap,
driving it towards zero (effectively doing a partial swapoff) when
in-kernel memory pressure subsides, freeing up RAM for other VMs.
More detail is provided in the header comment of xen-selfballooning.c.
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
[v8: konrad.wilk@oracle.com: set default enablement depending on frontswap]
[v7: konrad.wilk@oracle.com: fix capitalization and punctuation in comments]
[v6: fix frontswap-selfshrinking initialization]
[v6: konrad.wilk@oracle.com: fix init pr_infos; add comments about swap]
[v5: konrad.wilk@oracle.com: add NULL to attr list; move inits up to decls]
[v4: dkiper@net-space.pl: use strict_strtoul plus a few syntactic nits]
[v3: konrad.wilk@oracle.com: fix potential divides-by-zero]
[v3: konrad.wilk@oracle.com: add many more comments, fix nits]
[v2: rebased to linux-3.0-rc1]
[v2: Ian.Campbell@citrix.com: reorganize as new file (xen-selfballoon.c)]
[v2: dkiper@net-space.pl: proper access to vm_committed_as]
[v2: dkiper@net-space.pl: accounting fixes]
Cc: Jan Beulich <JBeulich@novell.com>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: <xen-devel@lists.xensource.com>
Provide the shim code for frontswap for Xen tmem even if the
frontswap patchset is not present yet. (The egg is before
the chicken.)
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Reviewed-by: Konrad Wilk <konrad.wilk@oracle.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/djm/tmem:
xen: cleancache shim to Xen Transcendent Memory
ocfs2: add cleancache support
ext4: add cleancache support
btrfs: add cleancache support
ext3: add cleancache support
mm/fs: add hooks to support cleancache
mm: cleancache core ops functions and config
fs: add field to superblock to support cleancache
mm/fs: cleancache documentation
Fix up trivial conflict in fs/btrfs/extent_io.c due to includes
This patch provides a shim between the kernel-internal cleancache
API (see Documentation/mm/cleancache.txt) and the Xen Transcendent
Memory ABI (see http://oss.oracle.com/projects/tmem).
Xen tmem provides "hypervisor RAM" as an ephemeral page-oriented
pseudo-RAM store for cleancache pages, shared cleancache pages,
and frontswap pages. Tmem provides enterprise-quality concurrency,
full save/restore and live migration support, compression
and deduplication.
A presentation showing up to 8% faster performance and up to 52%
reduction in sectors read on a kernel compile workload, despite
aggressive in-kernel page reclamation ("self-ballooning") can be
found at:
http://oss.oracle.com/projects/tmem/dist/documentation/presentations/TranscendentMemoryXenSummit2010.pdf
Signed-off-by: Dan Magenheimer <dan.magenheimer@oracle.com>
Reviewed-by: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Matthew Wilcox <matthew@wil.cx>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik Van Riel <riel@redhat.com>
Cc: Jan Beulich <JBeulich@novell.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Andreas Dilger <adilger@sun.com>
Cc: Ted Ts'o <tytso@mit.edu>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Joel Becker <joel.becker@oracle.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Various merges over time have led to rather a mish-mash of indentation.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: xen-devel@lists.xensource.com
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The basic functionality of ballooning pages is useful for Xen drivers in
general. Rather than require a dependency on the balloon module, split
the functionality that is reused into the core. The balloon module is
still required to follow ballooning requests from xenstore or to view
balloon statistics in sysfs.
Acked-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Daniel De Graaf <dgdegra@tycho.nsa.gov>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
This allows a userspace application to allocate a shared page for
implementing inter-domain communication or device drivers. These
shared pages can be mapped using the gntdev device or by the kernel
in another domain.
Signed-off-by: Daniel De Graaf <dgdegra@tycho.nsa.gov>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
* 'stable/gntdev' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
xen/p2m: Fix module linking error.
xen p2m: clear the old pte when adding a page to m2p_override
xen gntdev: use gnttab_map_refs and gnttab_unmap_refs
xen: introduce gnttab_map_refs and gnttab_unmap_refs
xen p2m: transparently change the p2m mappings in the m2p override
xen/gntdev: Fix circular locking dependency
xen/gntdev: stop using "token" argument
xen: gntdev: move use of GNTMAP_contains_pte next to the map_op
xen: add m2p override mechanism
xen: move p2m handling to separate file
xen/gntdev: add VM_PFNMAP to vma
xen/gntdev: allow usermode to map granted pages
xen: define gnttab_set_map_op/unmap_op
Fix up trivial conflict in drivers/xen/Kconfig
platform-pci is rather generic for a modular distro style kernel.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The gntdev driver allows usermode to map granted pages from other
domains. This is typically used to implement a Xen backend driver
in user mode.
Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
Signed-off-by: Stefano Stabellini <Stefano.Stabellini@eu.citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Register a pci notifier to add (or remove) pci devices to Xen via
hypercalls. Xen needs to know the pci devices present in the system to
handle pci passthrough and even MSI remapping in the initial domain.
Signed-off-by: Weidong Han <weidong.han@intel.com>
Signed-off-by: Qing He <qing.he@intel.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Without this dependency we get these compile errors:
linux-next-20101020/drivers/xen/biomerge.c: In function 'xen_biovec_phys_mergeable':
linux-next-20101020/drivers/xen/biomerge.c:8: error: dereferencing pointer to incomplete type
linux-next-20101020/drivers/xen/biomerge.c:9: error: dereferencing pointer to incomplete type
linux-next-20101020/drivers/xen/biomerge.c:11: error: implicit declaration of function '__BIOVEC_PHYS_MERGEABLE'
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Impact: allow Xen control of bio merging
When running in Xen domain with device access, we need to make sure
the block subsystem doesn't merge requests across pages which aren't
machine physically contiguous. To do this, we define our own
BIOVEC_PHYS_MERGEABLE. When CONFIG_XEN isn't enabled, or we're not
running in a Xen domain, this has identical behaviour to the normal
implementation. When running under Xen, we also make sure the
underlying machine pages are the same or adjacent.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
* 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
x86: Detect whether we should use Xen SWIOTLB.
pci-swiotlb-xen: Add glue code to setup dma_ops utilizing xen_swiotlb_* functions.
swiotlb-xen: SWIOTLB library for Xen PV guest with PCI passthrough.
xen/mmu: inhibit vmap aliases rather than trying to clear them out
vmap: add flag to allow lazy unmap to be disabled at runtime
xen: Add xen_create_contiguous_region
xen: Rename the balloon lock
xen: Allow unprivileged Xen domains to create iomap pages
xen: use _PAGE_IOMAP in ioremap to do machine mappings
Fix up trivial conflicts (adding both xen swiotlb and xen pci platform
driver setup close to each other) in drivers/xen/{Kconfig,Makefile} and
include/xen/xen-ops.h
This patchset:
PV guests under Xen are running in an non-contiguous memory architecture.
When PCI pass-through is utilized, this necessitates an IOMMU for
translating bus (DMA) to virtual and vice-versa and also providing a
mechanism to have contiguous pages for device drivers operations (say DMA
operations).
Specifically, under Xen the Linux idea of pages is an illusion. It
assumes that pages start at zero and go up to the available memory. To
help with that, the Linux Xen MMU provides a lookup mechanism to
translate the page frame numbers (PFN) to machine frame numbers (MFN)
and vice-versa. The MFN are the "real" frame numbers. Furthermore
memory is not contiguous. Xen hypervisor stitches memory for guests
from different pools, which means there is no guarantee that PFN==MFN
and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
allocated in descending order (high to low), meaning the guest might
never get any MFN's under the 4GB mark.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Albert Herranz <albert_herranz@yahoo.es>
Cc: Ian Campbell <Ian.Campbell@citrix.com>
Add the xen pci platform device driver that is responsible
for initializing the grant table and xenbus in PV on HVM mode.
Few changes to xenbus and grant table are necessary to allow the delayed
initialization in HVM mode.
Grant table needs few additional modifications to work in HVM mode.
The Xen PCI platform device raises an irq every time an event has been
delivered to us. However these interrupts are only delivered to vcpu 0.
The Xen PCI platform interrupt handler calls xen_hvm_evtchn_do_upcall
that is a little wrapper around __xen_evtchn_do_upcall, the traditional
Xen upcall handler, the very same used with traditional PV guests.
When running on HVM the event channel upcall is never called while in
progress because it is a normal Linux irq handler (and we cannot switch
the irq chip wholesale to the Xen PV ones as we are running QEMU and
might have passed in PCI devices), therefore we cannot be sure that
evtchn_upcall_pending is 0 when returning.
For this reason if evtchn_upcall_pending is set by Xen we need to loop
again on the event channels set pending otherwise we might loose some
event channel deliveries.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Sheng Yang <sheng@linux.intel.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
-fstack-protector uses a special per-cpu "stack canary" value.
gcc generates special code in each function to test the canary to make
sure that the function's stack hasn't been overrun.
On x86-64, this is simply an offset of %gs, which is the usual per-cpu
base segment register, so setting it up simply requires loading %gs's
base as normal.
On i386, the stack protector segment is %gs (rather than the usual kernel
percpu %fs segment register). This requires setting up the full kernel
GDT and then loading %gs accordingly. We also need to make sure %gs is
initialized when bringing up secondary cpus too.
To keep things consistent, we do the full GDT/segment register setup on
both architectures.
Because we need to avoid -fstack-protected code before setting up the GDT
and because there's no way to disable it on a per-function basis, several
files need to have stack-protector inhibited.
[ Impact: allow Xen booting with stack-protector enabled ]
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Adds support for Xen info under /sys/hypervisor. Taken from Novell 2.6.27
backport tree.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
This driver is used by application which wish to receive notifications
from the hypervisor or other guests via Xen's event channel
mechanism. In particular it is used by the xenstore daemon in domain
0.
Signed-off-by: Ian Campbell <ian.campbell@citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
The xenfs filesystem exports various interfaces to usermode. Initially
this exports a file to allow usermode to interact with xenbus/xenstore.
Traditionally this appeared in /proc/xen. Rather than extending procfs,
this patch adds a backward-compat mountpoint on /proc/xen, and provides
a xenfs filesystem which can be mounted there.
Signed-off-by: Alex Zeffertt <alex.zeffertt@eu.citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Note the changes from 2.6.18-xen CPU hotplugging:
A vcpu_down request from the remote admin via Xenbus both hotunplugs the
CPU, and disables it by removing it from the cpu_present map, and removing
its entry in /sys.
A vcpu_up request from the remote admin only re-enables the CPU, and does
not immediately bring the CPU up. A udev event is emitted, which can be
caught by the user if he wishes to automatically re-up CPUs when available,
or implement a more complex policy.
Signed-off-by: Alex Nixon <alex.nixon@citrix.com>
Acked-by: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
move arch/x86/xen/manage.c under drivers/xen/to share codes
with x86 and ia64.
ia64/xen also uses manage.c
Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The balloon driver allows memory to be dynamically added or removed from the domain,
in order to allow host memory to be balanced between multiple domains.
This patch introduces the Xen balloon driver, though it currently only
allows a domain to be shrunk from its initial size (and re-grown back to
that size). A later patch will add the ability to grow a domain beyond
its initial size.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
On xen/ia64 and xen/powerpc hypercall arguments are passed by pseudo
physical address (guest physical address) so that it's necessary to
convert from virtual address into pseudo physical address. The frame
work is called xencomm.
Import arch generic part of xencomm.
Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
move arch/x86/xen/events.c undedr drivers/xen to share codes
with x86 and ia64. And minor adjustment to compile.
ia64/xen also uses events.c
Signed-off-by: Yaozu (Eddie) Dong <eddie.dong@intel.com>
Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
ia64/xen also uses it too. Move it into common place so that
ia64/xen can share the code.
Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This communicates with the machine control software via a registry
residing in a controlling virtual machine. This allows dynamic
creation, destruction and modification of virtual device
configurations (network devices, block devices and CPUS, to name some
examples).
[ Greg, would you mind giving this a review? Thanks -J ]
Signed-off-by: Ian Pratt <ian.pratt@xensource.com>
Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: Greg KH <greg@kroah.com>
Add Xen 'grant table' driver which allows granting of access to
selected local memory pages by other virtual machines and,
symmetrically, the mapping of remote memory pages which other virtual
machines have granted access to.
This driver is a prerequisite for many of the Xen virtual device
drivers, which grant the 'device driver domain' restricted and
temporary access to only those memory pages that are currently
involved in I/O operations.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Ian Pratt <ian.pratt@xensource.com>
Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>