If the capi link is going down while the PSL owns a dirty cache line,
any access from the host for that data could lead to an Uncorrectable
Error.
So when resetting the capi adapter through sysfs, make sure the PSL
cache is flushed. It won't help if there are any active Process
Elements on the card, as the cache would likely get new dirty cache
lines immediately, but if resetting an idle adapter, it should avoid
any bad surprises from data left over from terminated Process Elements.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When set_sl_ops() is called, the adapter data structure is not fully
initialized yet. Therefore the device name is not showing up in the
trace. Fix is simply to get the device name from the pci_dev
structure.
Fixes: 6d382616ac ("cxl: Abstract the differences between the PSL and XSL")
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Switch the setting of psl_fir_cntl from debug to production
environment recommended value. It mostly affects the PSL behavior when
an error is raised in psl_fir1/2.
Tested with cxlflash.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit f67a6722d6 ("cxl: Workaround PE=0 hardware limitation in
Mellanox CX4") added a "min_pe" field to struct cxl_service_layer_ops,
to allow us to work around a Mellanox CX-4 hardware limitation.
When allocating the PE number in cxl_context_init(), we read from
ctx->afu->adapter->native->sl_ops->min_pe to get the minimum PE number.
Unsurprisingly, in a PowerVM guest ctx->afu->adapter->native is NULL,
and guests don't have a cxl_service_layer_ops struct anywhere.
Move min_pe from struct cxl_service_layer_ops to struct cxl so it's
accessible in both native and PowerVM environments. For the Mellanox
CX-4, set the min_pe value in set_sl_ops().
Fixes: f67a6722d6 ("cxl: Workaround PE=0 hardware limitation in Mellanox CX4")
Reported-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Add a new API, cxl_check_and_switch_mode() to allow for switching of
bi-modal CAPI cards, such as the Mellanox CX-4 network card.
When a driver requests to switch a card to CAPI mode, use PCI hotplug
infrastructure to remove all PCI devices underneath the slot. We then write
an updated mode control register to the CAPI VSEC, hot reset the card, and
reprobe the card.
As the card may present a different set of PCI devices after the mode
switch, use the infrastructure provided by the pnv_php driver and the OPAL
PCI slot management facilities to ensure that:
* the old devices are removed from both the OPAL and Linux device trees
* the new devices are probed by OPAL and added to the OPAL device tree
* the new devices are added to the Linux device tree and probed through
the regular PCI device probe path
As such, introduce a new option, CONFIG_CXL_BIMODAL, with a dependency on
the pnv_php driver.
Refactor existing code that touches the mode control register in the
regular single mode case into a new function, setup_cxl_protocol_area().
Co-authored-by: Ian Munsie <imunsie@au1.ibm.com>
Cc: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The CX4 card cannot cope with a context with PE=0 due to a hardware
limitation, resulting in:
[ 34.166577] command failed, status limits exceeded(0x8), syndrome 0x5a7939
[ 34.166580] mlx5_core 0000:01:00.1: Failed allocating uar, aborting
Since the kernel API allocates a default context very early during
device init that will almost certainly get Process Element ID 0 there is
no easy way for us to extend the API to allow the Mellanox to inform us
of this limitation ahead of time.
Instead, work around the issue by extending the XSL structure to include
a minimum PE to allocate. Although the bug is not in the XSL, it is the
easiest place to work around this limitation given that the CX4 is
currently the only card that uses an XSL.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This hooks up support for using the kernel API with a real PHB. After
the AFU initialisation has completed it calls into the PHB code to pass
it the AFU that will be used by other peer physical functions on the
adapter.
The cxl_pci_to_afu API is extended to work with peer PCI devices,
retrieving the peer AFU from the PHB. This API may also now return an
error if it is called on a PCI device that is not associated with either
a cxl vPHB or a peer PCI device to an AFU, and this error is propagated
down.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The vPHB model of the cxl kernel API is a hierarchy where the AFU is
represented by the vPHB, and it's AFU configuration records are exposed
as functions under that vPHB. If there are no AFU configuration records
we will create a vPHB with nothing under it, which is a waste of
resources and will opt us into EEH handling despite not having anything
special to handle.
This also does not make sense for cards using the peer model of the cxl
kernel API, where the other functions of the device are exposed via
additional peer physical functions rather than AFU configuration
records. This model will also not work with the existing EEH handling in
the cxl driver, as that is designed around the vPHB model.
Skip creating the vPHB for AFUs without any AFU configuration records,
and opt out of EEH handling for them.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Devices that use CAPP DMA mode (such as the Mellanox CX4) require bus
master to be enabled in order for the CAPI traffic to flow. This should
be harmless to enable for other cxl devices, so unconditionally enable
it in the adapter init flow.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This extends the check that the adapter is in a CAPI capable slot so
that it may be called by external users in the kernel API. This will be
used by the upcoming Mellanox CX4 support, which needs to know ahead of
time if the card can be switched to cxl mode so that it can leave it in
PCI mode if it is not.
This API takes a parameter to check if CAPP DMA mode is supported, which
it currently only allows on P8NVL systems, since that mode currently has
issues accessing memory < 4GB on P8, and we cannot realistically avoid
that.
This API does not currently check if a CAPP unit is available (i.e. not
already assigned to another PHB) on P8. Doing so would be racy since it
is assigned on a first come first serve basis, and so long as CAPP DMA
mode is not supported on P8 we don't need this, since the only
anticipated user of this API requires CAPP DMA mode.
Cc: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
One should not attempt to switch a PHB into CAPI mode if there is
a switch between the PHB and the adapter. This patch modifies the
cxl driver to ignore CAPI adapters misplaced in switched slots.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The AFU disable operation has a bug where it will not clear the enable
bit and therefore will have no effect. To date this has likely been
masked by fact that we perform an AFU reset before the disable, which
also has the effect of clearing the enable bit, making the following
disable operation effectively a noop on most hardware. This patch
modifies the afu_control function to take a parameter to clear from the
AFU control register so that the disable operation can clear the
appropriate bit.
This bug was uncovered on the Mellanox CX4, which uses an XSL rather
than a PSL. On the XSL the reset operation will not complete while the
AFU is enabled, meaning the enable bit was still set at the start of the
disable and as a result this bug was hit and the disable also timed out.
Because of this difference in behaviour between the PSL and XSL, this
patch now makes the reset dependent on the card using a PSL to avoid
waiting for a timeout on the XSL. It is entirely possible that we may be
able to drop the reset altogether if it turns out we only ever needed it
due to this bug - however I am not willing to drop it without further
regression testing and have added comments to the code explaining the
background.
This also fixes a small issue where the AFU_Cntl register was read
outside of the lock that protects it.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If the AFU descriptor of an AFU directed AFU indicates that it supports
0 maximum processes, we will accept that value and attempt to use it.
The SPA will still be allocated (with 2 pages due to another minor bug
and room for 958 processes), and when a context is allocated we will
pass the value of 0 to idr_alloc as the maximum. However, idr_alloc will
treat that as meaning no maximum and will allocate a context number and
we return a valid context.
Conceivably, this could lead to a buffer overflow of the SPA if more
than 958 contexts were allocated, however this is mitigated by the fact
that there are no known AFUs in the wild with a bogus AFU descriptor
like this, and that only the root user is allowed to flash an AFU image
to a card.
Add a check when validating the AFU descriptor to reject any with 0
maximum processes.
We do still allow a dedicated process only AFU to indicate that it
supports 0 contexts even though that is forbidden in the architecture,
as in that case we ignore the value and use 1 instead. This is just on
the off-chance that such a dedicated process AFU may exist (not that I
am aware of any), since their developers are less likely to have cared
about this value at all.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds support for using CAPP DMA mode, which is required for XSL
based cards such as the Mellanox CX4 to function.
This is currently an RFC as it depends on the corresponding support to
be merged into skiboot first, which was submitted here:
http://patchwork.ozlabs.org/patch/625582/
In the event that the skiboot on the system does not have the above
support, it will indicate as such in the kernel log and abort the init
process.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The XSL (Translation Service Layer) is a stripped down version of the
PSL (Power Service Layer) used in some cards such as the Mellanox CX4.
Like the PSL, it implements the CAIA architecture, but has a number of
differences, mostly in it's implementation dependent registers. This
adds an ops structure to abstract these differences to bring initial
support for XSL CAPI devices.
The XSL does not implement the optional architected SERR register,
however while it treats it as a reserved register and should work with
no special treatment, attempting to access it will cause the XSL_FEC
(First Error Capture) register to be filled out, preventing it from
capturing any subsequent errors. Therefore, this patch also prevents the
kernel from trying to set up the SERR register so that the FEC register
may still be useful, and to save one interrupt.
The XSL also uses a special DMA cxl mode, which uses a slightly
different init sequence for the CAPP and PHB. The kernel support for
this will be in a future patch once the corresponding support has been
merged into skiboot.
Co-authored-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
PSL designers recommend a larger value for the mmio hang pulse, 256 us
instead of 1 us. The CAIA architecture states that it needs to be
smaller than 1/2 of the RTOS timeout set in the PHB for outbound
non-posted transactions, which is still (easily) the case here.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Tested-by: Frank Haverkamp <haver@linux.vnet.ibm.com>
Tested-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Failure to synchronize the PSL timebase currently prevents the
initialization of the cxl card, thus rendering the card useless. This
is too extreme for a feature which is rarely used, if at all. No
hardware AFUs or software is currently using PSL timebase.
This patch still tries to synchronize the PSL timebase when the card
is initialized, but ignores the error if it can't. Instead, it reports
a status via /sys.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The POWER8NVL chip has two CAPI ports. Configure the PSL to route
data to the port corresponding to the CAPP unit.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy, Cyril
Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell Currey,
Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_* helpers from
Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/relaxed
variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs from Wei
Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter values,
display domain indices in sysfs, eliminate domain suffix in event names,
from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit checksum
optimizations, 86xx consolidation, e5500/e6500 cpu hotplug, more fman and
other dt bits, and minor fixes/cleanup."
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW69OrAAoJEFHr6jzI4aWAe5EQAJw/hE6WBQc6a7Tj70AnXOqR
qk/m5pZjuTwQxfBteIvHR1pE5eXdlvtAjcD254LVkFkAbIn19W/h2k0VX/nlee7P
n/VRHRifjtGmukqHrPYJJ7ua9mNlY7pxh3leGSixBFASnSWqMxNNNziNQtSTcuCs
TjHiw6NkZ/kzeunA4bAfE4yHVUZjmL74oiS9JbLyaVHqoW4fqWLlh26AKo2yYMZI
qPicBBG4HBi3FGvoexnKxlJNdcV4HO7LzDjJmCSfUKYCJi+Pw19T5qmhso0q0qVz
vHg/A8HNeG4Hn83pNVmLeQSAIQRZ3DvTtcLgbjPo+TVwm/hzrRRBWipTeOVbkLW8
2bcOXT4t7LWUq15EAJ1LYgYZGzcLrfRfUeOcuQ1TWd3+PcfY9pE7FmizsxAAfaVe
E9j9mpz4XnIqBtWkFHneTIHkQ5OWptyKuZJEaYH0nut4VsP0k8NarkseafGqBPu7
5eG83gbiQbCVixfOgblV9eocJ29JcwpjPAY4CZSGJimShg909FV7WRgZgJkKWrbK
dBRco8Jcp4VglGfo2qymv7Uj4KwQoypBREOhiKUvrAsVlDxPfx+bcskhjGu9xGDC
xs/+nme0/lKa/wg5K4C3mQ1GAlkMWHI0ojhJjsyODbetup5UbkEu03wjAaTdO9dT
Y6ptGm0rYAJluPNlziFj
=qkAt
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"This was delayed a day or two by some build-breakage on old toolchains
which we've now fixed.
There's two PCI commits both acked by Bjorn.
There's one commit to mm/hugepage.c which is (co)authored by Kirill.
Highlights:
- Restructure Linux PTE on Book3S/64 to Radix format from Paul
Mackerras
- Book3s 64 MMU cleanup in preparation for Radix MMU from Aneesh
Kumar K.V
- Add POWER9 cputable entry from Michael Neuling
- FPU/Altivec/VSX save/restore optimisations from Cyril Bur
- Add support for new ftrace ABI on ppc64le from Torsten Duwe
Various cleanups & minor fixes from:
- Adam Buchbinder, Andrew Donnellan, Balbir Singh, Christophe Leroy,
Cyril Bur, Luis Henriques, Madhavan Srinivasan, Pan Xinhui, Russell
Currey, Sukadev Bhattiprolu, Suraj Jitindar Singh.
General:
- atomics: Allow architectures to define their own __atomic_op_*
helpers from Boqun Feng
- Implement atomic{, 64}_*_return_* variants and acquire/release/
relaxed variants for (cmp)xchg from Boqun Feng
- Add powernv_defconfig from Jeremy Kerr
- Fix BUG_ON() reporting in real mode from Balbir Singh
- Add xmon command to dump OPAL msglog from Andrew Donnellan
- Add xmon command to dump process/task similar to ps(1) from Douglas
Miller
- Clean up memory hotplug failure paths from David Gibson
pci/eeh:
- Redesign SR-IOV on PowerNV to give absolute isolation between VFs
from Wei Yang.
- EEH Support for SRIOV VFs from Wei Yang and Gavin Shan.
- PCI/IOV: Rename and export virtfn_{add, remove} from Wei Yang
- PCI: Add pcibios_bus_add_device() weak function from Wei Yang
- MAINTAINERS: Update EEH details and maintainership from Russell
Currey
cxl:
- Support added to the CXL driver for running on both bare-metal and
hypervisor systems, from Christophe Lombard and Frederic Barrat.
- Ignore probes for virtual afu pci devices from Vaibhav Jain
perf:
- Export Power8 generic and cache events to sysfs from Sukadev
Bhattiprolu
- hv-24x7: Fix usage with chip events, display change in counter
values, display domain indices in sysfs, eliminate domain suffix in
event names, from Sukadev Bhattiprolu
Freescale:
- Updates from Scott: "Highlights include 8xx optimizations, 32-bit
checksum optimizations, 86xx consolidation, e5500/e6500 cpu
hotplug, more fman and other dt bits, and minor fixes/cleanup"
* tag 'powerpc-4.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (179 commits)
powerpc: Fix unrecoverable SLB miss during restore_math()
powerpc/8xx: Fix do_mtspr_cpu6() build on older compilers
powerpc/rcpm: Fix build break when SMP=n
powerpc/book3e-64: Use hardcoded mttmr opcode
powerpc/fsl/dts: Add "jedec,spi-nor" flash compatible
powerpc/T104xRDB: add tdm riser card node to device tree
powerpc32: PAGE_EXEC required for inittext
powerpc/mpc85xx: Add pcsphy nodes to FManV3 device tree
powerpc/mpc85xx: Add MDIO bus muxing support to the board device tree(s)
powerpc/86xx: Introduce and use common dtsi
powerpc/86xx: Update device tree
powerpc/86xx: Move dts files to fsl directory
powerpc/86xx: Switch to kconfig fragments approach
powerpc/86xx: Update defconfigs
powerpc/86xx: Consolidate common platform code
powerpc32: Remove one insn in mulhdu
powerpc32: small optimisation in flush_icache_range()
powerpc: Simplify test in __dma_sync()
powerpc32: move xxxxx_dcache_range() functions inline
powerpc32: Remove clear_pages() and define clear_page() inline
...
Add a check at the beginning of cxl_probe function to ignore virtual pci
devices created for each afu registered. This fixes the the errors
messages logged about missing CXL vsec, when cxl probe is unable to
find necessary vsec entries in device pci config space. The error
message logged are of the form :
cxl-pci 0004:00:00.0: ABORTING: CXL VSEC not found!
cxl-pci 0004:00:00.0: cxl_init_adapter failed: -19
Cc: Ian Munsie <imunsie@au1.ibm.com>
Cc: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Reviewed-by: fbarrat@linux.vnet.ibm.com
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Like on bare-metal, the cxl driver creates a virtual PHB and a pci
device for the AFU. The configuration space of the device is mapped to
the configuration record of the AFU.
Reuse the code defined in afu_cr_read8|16|32() when reading the
configuration space of the AFU device.
Even though the (virtual) AFU device is a pci device, the adapter is
not. So a driver using the cxl kernel API cannot read the VPD of the
adapter through the usual PCI interface. Therefore, we add a call to
the cxl kernel API:
ssize_t cxl_read_adapter_vpd(struct pci_dev *dev, void *buf, size_t count);
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Introduce sub-structures containing the bare-metal specific fields in
the structures describing the adapter (struct cxl) and AFU (struct
cxl_afu).
Update all their references.
Co-authored-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rename a few functions, changing the 'cxl_' prefix to either
'cxl_pci_' or 'cxl_native_', to make clear that the implementation is
bare-metal specific.
Those functions will have an equivalent implementation for a guest in
a later patch.
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The backend API (in cxl.h) lists some low-level functions whose
implementation is different on bare-metal and in a guest. Each
environment implements its own functions, and the common code uses
them through function pointers, defined in cxl_backend_ops
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Move a few functions around to better separate code specific to
bare-metal environment from code which will be commonly used between
guest and bare-metal.
Code specific to bare-metal is meant to be in native.c or pci.c
only. It's basically anything which touches the card p1 registers,
some p2 registers not needed from a guest and the PCI interface.
Co-authored-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Move around some functions which will be accessed from the bare-metal
and guest environments.
Code in native.c and pci.c is meant to be bare-metal specific.
Other files contain code which may be shared with guests.
Co-authored-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Manoj Kumar <manoj@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The PSL timebase synchronization is seemingly failing for
configuration not including VIRT_CPU_ACCOUNTING_NATIVE. The driver
shows the following trace in dmesg:
PSL: Timebase sync: giving up!
The PSL timebase register is actually syncing correctly, but the cxl
driver is not detecting it. Fix is to use the proper timebase-to-time
conversion.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org> # 4.3+
Acked-by: Michael Neuling <mikey@neuling.org>
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Drivers should include asm/pci-bridge.h only when they need the arch-
specific things provided there. Outside of the arch/ directories, the only
drivers that actually need things provided by asm/pci-bridge.h are the
powerpc RPA hotplug drivers in drivers/pci/hotplug/rpa*.
Remove the includes of asm/pci-bridge.h from the other drivers, adding an
include of linux/pci.h if necessary.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Add support for future IBM Coherent Accelerator (CXL) device
with ID of 0x0601.
Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a pcie host bridge defect on some cards, that can cause
malformed Transaction Layer Packet (TLP) errors to be erroneously reported.
The upper nibble of the vendor section PSL revision is used to distinguish
between different cards. The affected ones have it set to 0.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Currently the first thing we do in cxl_probe is to grab a reference
on the pci device. Later on, we call device_register on our adapter.
In our remove path, we call device_unregister, but we never call
pci_dev_put. We therefore leak the device every time we do a
reflash.
device_register/unregister is sufficient to hold the reference.
Therefore, drop the call to pci_dev_get.
Here's why this is safe.
The proposed cxl_probe(pdev) calls cxl_adapter_init:
a) init calls cxl_adapter_alloc, which creates a struct cxl,
conventionally called adapter. This struct contains a
device entry, adapter->dev.
b) init calls cxl_configure_adapter, where we set
adapter->dev.parent = &dev->dev (here dev is the pci dev)
So at this point, the cxl adapter's device's parent is the PCI
device that I want to be refcounted properly.
c) init calls cxl_register_adapter
*) cxl_register_adapter calls device_register(&adapter->dev)
So now we're in device_register, where dev is the adapter device, and
we want to know if the PCI device is safe after we return.
device_register(&adapter->dev) calls device_initialize() and then
device_add().
device_add() does a get_device(). device_add() also explicitly grabs
the device's parent, and calls get_device() on it:
parent = get_device(dev->parent);
So therefore, device_register() takes a lock on the parent PCI dev,
which is what pci_dev_get() was guarding. pci_dev_get() can therefore
be safely removed.
Fixes: f204e0b8ce ("cxl: Driver code for powernv PCIe based cards for userspace access")
Cc: stable@vger.kernel.org
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch configures the PSL Timebase function and enables it,
after the CAPP has been initialized by OPAL.
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
cxl_reset currently PERSTs the slot, and then repeatedly tries to
read MMIO space in order to kick off EEH.
There are 2 problems with this: it's unnecessary, and it's racy.
It's unnecessary because the PERST will bring down the PHB link.
That will be picked up by the CAPP, which will send out an HMI.
Skiboot, noticing an HMI from the CAPP, will send an OPAL
notification to the kernel, which will trigger EEH recovery.
It's also racy: the EEH recovery triggered by the CAPP will
eventually cause the MMIO space to have its mapping invalidated
and the pointer NULLed out. This races with our attempt to read
the MMIO space. This is causing OOPSes in testing.
Simply drop all the attempts to force EEH detection, and trust
that Skiboot will send the notification and that we'll act on it.
The Skiboot code to send the EEH notification has been in Skiboot
for as long as CAPP recovery has been supported, so we don't need
to worry about breaking obscure setups with ancient firmware.
Cc: Ryan Grimm <grimm@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Fixes: 62fa19d4b4 ("cxl: Add ability to reset the card")
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Macro DEFINE_PCI_DEVICE_TABLE is deprecated. So, here use
struct pci_device_id instead of DEFINE_PCI_DEVICE_TABLE with
the goal of getting rid of this macro completely.
The Coccinelle semantic patch that performs this transformation
is as follows:
@@
identifier a;
declarer name DEFINE_PCI_DEVICE_TABLE;
initializer i;
@@
- DEFINE_PCI_DEVICE_TABLE(a)
+ const struct pci_device_id a[]
= i;
Signed-off-by: Vaishali Thakkar <vthakkar1994@gmail.com>
Acked-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
EEH (Enhanced Error Handling) allows a driver to recover from the
temporary failure of an attached PCI card. Enable basic CXL support
for EEH.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Provide a kernel API and a sysfs entry which allow a user to specify
that when a card is PERSTed, it's image will stay the same, allowing
it to participate in EEH.
cxl_reset is used to reflash the card. In that case, we cannot safely
assert that the image will not change. Therefore, disallow cxl_reset
if the flag is set.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If the driver doesn't participate in EEH, the AFUs will be removed
by cxl_remove, which will be invoked by EEH.
If the driver does particpate in EEH, the vPHB needs to stick around
so that the it can particpate.
In both cases, we shouldn't remove the AFU/vPHB.
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
As with an adapter, some aspects of initialisation are done only once
in the lifetime of an AFU: for example, allocating memory, or setting
up sysfs/debugfs files.
However, we may want to be able to do some parts of the initialisation
multiple times: for example, in error recovery we want to be able to
tear down and then re-map IO memory and IRQs.
Therefore, refactor AFU init/teardown as follows.
- Create two new functions: 'cxl_configure_afu', and its pair
'cxl_deconfigure_afu'. As with the adapter functions,
these (de)configure resources that do not need to last the entire
lifetime of the AFU.
- Allocating and releasing memory remain the task of 'cxl_alloc_afu'
and 'cxl_release_afu'.
- Once-only functions that do not involve allocating/releasing memory
stay in the overarching 'cxl_init_afu'/'cxl_remove_afu' pair.
However, the task of picking an AFU mode and activating it has been
broken out.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Some aspects of initialisation are done only once in the lifetime of
an adapter: for example, allocating memory for the adapter,
allocating the adapter number, or setting up sysfs/debugfs files.
However, we may want to be able to do some parts of the
initialisation multiple times: for example, in error recovery we
want to be able to tear down and then re-map IO memory and IRQs.
Therefore, refactor CXL init/teardown as follows.
- Keep the overarching functions 'cxl_init_adapter' and its pair,
'cxl_remove_adapter'.
- Move all 'once only' allocation/freeing steps to the existing
'cxl_alloc_adapter' function, and its pair 'cxl_release_adapter'
(This involves moving allocation of the adapter number out of
cxl_init_adapter.)
- Create two new functions: 'cxl_configure_adapter', and its pair
'cxl_deconfigure_adapter'. These two functions 'wire up' the
hardware --- they (de)configure resources that do not need to
last the entire lifetime of the adapter
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
- MMIO pointer unmapping is guarded by a null pointer check.
However, iounmap doesn't null the pointer, just invalidate it.
Therefore, explicitly null the pointer after unmapping.
- afu_desc_mmio also needs to be unmapped.
- PCI regions are allocated in cxl_map_adapter_regs.
Therefore they should be released in unmap, not elsewhere.
Acked-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Previously the SPA was allocated and freed upon entering and leaving
AFU-directed mode. This causes some issues for error recovery - contexts
hold a pointer inside the SPA, and they may persist after the AFU has
been detached.
We would ideally like to allocate the SPA when the AFU is allocated, and
release it until the AFU is released. However, we don't know how big the
SPA needs to be until we read the AFU descriptor.
Therefore, restructure the code:
- Allocate the SPA only once, on the first attach.
- Release the SPA only when the entire AFU is being released (not
detached). Guard the release with a NULL check, so we don't free
if it was never allocated (e.g. dedicated mode)
Acked-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Destroy afu->contexts_idr on release of an afu, reclaiming the allocated
memory.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
A precision of 16 (%.16llx) has the same effect as a field width of 16
along with passing the 0 flag (%016llx), but the latter is much more
common in the kernel tree. Update cxl to use that.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Before freeing p2n, test p2n, not p1n.
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Fix typo in debug print. p1_base() should be p2_base(). No change other
than to the debug output.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch does two things.
Firstly it presents the Accelerator Function Unit (AFUs) behind the POWER
Service Layer (PSL) as PCI devices on a virtual PCI Host Bridge (vPHB). This
in in addition to the PSL being a PCI device itself.
As part of the Coherent Accelerator Interface Architecture (CAIA) AFUs can
provide an AFU configuration. This AFU configuration recored is architected to
be the same as a PCI config space.
This patch sets discovers the AFU configuration records, provides AFU config
space read/write functions to these configuration records. It then enumerates
the PCI bus. It also hooks in PCI ops where appropriate. It also destroys the
vPHB when the physical card is removed.
Secondly, it add an in kernel API for AFU to use CXL. AFUs must present a
driver that firstly binds as a PCI device. This PCI device can then be using
to do CXL specific operations (that can't sit in the PCI ops) using this API.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Rename cxl_afu_reset() to __cxl_afu_reset() to we can reuse this function name
in the API.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that we parse the AFU Configuration record, dump some info on it when in
debug mode.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When probing we call pci_enable_device() but don't call pci_disable_device() on
fail. This causes refcounting issues in the PCI subsystem if a second driver
tries to bind to the same device.
This patch adds the pci_disable_device() to the probe error path. This error
path is hit when this cxl driver tries to bind to AFUs (on the vPHB) rather
than the physical device.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>