Here is the "big" driver core and debugfs update for 5.12-rc1
This set of driver core patches caused a bunch of problems in linux-next
for the past few weeks, when Saravana tried to set fw_devlink=on as the
default functionality. This caused a number of systems to stop booting,
and lots of bugs were fixed in this area for almost all of the reported
systems, but this option is not ready to be turned on just yet for the
default operation based on this testing, so I've reverted that change at
the very end so we don't have to worry about regressions in 5.12. We
will try to turn this on for 5.13 if testing goes better over the next
few months.
Other than the fixes caused by the fw_devlink testing in here, there's
not much more:
- debugfs fixes for invalid input into debugfs_lookup()
- kerneldoc cleanups
- warn message if platform drivers return an error on their
remove callback (a futile effort, but good to catch).
All of these have been in linux-next for a while now, and the
regressions have gone away with the revert of the fw_devlink change.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCYDZhzA8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ylS2wCfU28FxDWNwcWhPFVfRT8Mb3OxZ50An1sR4lNR
t5Ie4aztMUjVJhI9bq6g
=3NSB
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core / debugfs update from Greg KH:
"Here is the "big" driver core and debugfs update for 5.12-rc1
This set of driver core patches caused a bunch of problems in
linux-next for the past few weeks, when Saravana tried to set
fw_devlink=on as the default functionality. This caused a number of
systems to stop booting, and lots of bugs were fixed in this area for
almost all of the reported systems, but this option is not ready to be
turned on just yet for the default operation based on this testing, so
I've reverted that change at the very end so we don't have to worry
about regressions in 5.12
We will try to turn this on for 5.13 if testing goes better over the
next few months.
Other than the fixes caused by the fw_devlink testing in here, there's
not much more:
- debugfs fixes for invalid input into debugfs_lookup()
- kerneldoc cleanups
- warn message if platform drivers return an error on their remove
callback (a futile effort, but good to catch).
All of these have been in linux-next for a while now, and the
regressions have gone away with the revert of the fw_devlink change"
* tag 'driver-core-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (35 commits)
Revert "driver core: Set fw_devlink=on by default"
of: property: fw_devlink: Ignore interrupts property for some configs
debugfs: do not attempt to create a new file before the filesystem is initalized
debugfs: be more robust at handling improper input in debugfs_lookup()
driver core: auxiliary bus: Fix calling stage for auxiliary bus init
of: irq: Fix the return value for of_irq_parse_one() stub
of: irq: make a stub for of_irq_parse_one()
clk: Mark fwnodes when their clock provider is added/removed
PM: domains: Mark fwnodes when their powerdomain is added/removed
irqdomain: Mark fwnodes when their irqdomain is added/removed
driver core: fw_devlink: Handle suppliers that don't use driver core
of: property: Add fw_devlink support for optional properties
driver core: Add fw_devlink.strict kernel param
of: property: Don't add links to absent suppliers
driver core: fw_devlink: Detect supplier devices that will never be added
driver core: platform: Emit a warning if a remove callback returned non-zero
of: property: Fix fw_devlink handling of interrupts/interrupts-extended
gpiolib: Don't probe gpio_device if it's not the primary device
device.h: Remove bogus "the" in kerneldoc
gpiolib: Bind gpio_device to a driver to enable fw_devlink=on by default
...
Device links only work between devices that use the driver core to match
and bind a driver to a device. So, add an API for frameworks to let the
driver core know that a fwnode has been initialized by a driver without
using the driver core.
Then use this information to make sure that fw_devlink doesn't make the
consumers wait indefinitely on suppliers that'll never bind to a driver.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20210205222644.2357303-6-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This param allows forcing all dependencies to be treated as mandatory.
This will be useful for boards in which all optional dependencies like
IOMMUs and DMAs need to be treated as mandatory dependencies.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20210205222644.2357303-4-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
During the initial parsing of firmware by fw_devlink, fw_devlink might
infer that some supplier firmware nodes would get populated as devices.
But the inference is not always correct. This patch tries to logically
detect and fix such mistakes as boot progresses or more devices probe.
fw_devlink makes a fundamental assumption that once a device binds to a
driver, it will populate (i.e: add as struct devices) all the child
firmware nodes that could be populated as devices (if they aren't
populated already).
So, whenever a device probes, we check all its child firmware nodes. If
a child firmware node has a corresponding device populated, we don't
modify the child node or its descendants. However, if a child firmware
node has not been populated as a device, we delete all the fwnode links
where the child node or its descendants are suppliers. This ensures that
no other device is blocked on a firmware node that will never be
populated as a device. We also mark such fwnodes as NOT_DEVICE, so that
no new fwnode links are created with these nodes as suppliers.
Fixes: e590474768 ("driver core: Set fw_devlink=on by default")
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20210205222644.2357303-2-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
OF, ACPI and software_nodes all implement graphs including nodes for ports
and endpoints. These are all intended to be named with a common schema,
as "port@n" and "endpoint@n" where n is an unsigned int representing the
index of the node. To ensure commonality across the subsystems, provide a
set of macros to define the format.
Suggested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Daniel Scally <djrscally@gmail.com>
Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
The struct device input to add_links() is not used for anything. So
delete it.
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20201121020232.908850-18-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This function is a wrapper around fwnode_operations.add_links().
This function parses each node in a fwnode tree and create fwnode links
for each of those nodes. The information for creating the fwnode links
(the supplier and consumer fwnode) is obtained by parsing the properties
in each of the fwnodes.
This function also ensures that no fwnode is parsed more than once by
marking the fwnodes as parsed.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20201121020232.908850-13-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Change the meaning of fwnode_operations.add_links() to just create
fwnode links by parsing the properties of a given fwnode.
This patch doesn't actually make any code changes. To keeps things more
digestable, the actual functional changes come in later patches in this
series.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20201121020232.908850-12-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add support for creating supplier-consumer links between fwnodes. It is
intended for internal use the driver core and generic firmware support
code (eg. Device Tree, ACPI), so it is simple by design and the API
provided is limited.
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20201121020232.908850-9-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There are multiple locations in the kernel where a struct fwnode_handle
is initialized. Add fwnode_init() so that we have one way of
initializing a fwnode_handle.
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20201121020232.908850-8-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This reverts commit 716a7a2596.
The fw_devlink_pause/resume() APIs added by the commit being reverted
were a first cut attempt at optimizing boot time. But these APIs don't
fully solve the problem and are very fragile (can only be used for the
top level devices being added). This series replaces them with a much
better optimization that works for all device additions and also has the
benefit of reducing the complexity of the firmware (DT, EFI) specific
code and abstracting out common code to driver core.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20201121020232.908850-7-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The amount of time spent parsing fwnodes of devices can become really
high if the devices are added in an non-ideal order. Worst case can be
O(N^2) when N devices are added. But this can be optimized to O(N) by
adding all the devices and then parsing all their fwnodes in one batch.
This commit adds fw_devlink_pause() and fw_devlink_resume() to allow
doing this.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20200515053500.215929-4-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
fwnode_operations.add_links allows creating device links from
information provided by firmware.
fwnode_operations.add_links is currently implemented only by
OF/devicetree code and a specific case of efi. However, there's nothing
preventing ACPI or other firmware types from implementing it.
The OF implementation is currently controlled by a kernel commandline
parameter called of_devlink.
Since this feature is generic isn't limited to OF, add a generic
fw_devlink kernel commandline parameter to control this feature across
firmware types.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20200222014038.180923-3-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Here is the "big" set of driver core patches for 5.5-rc1
There's a few minor cleanups and fixes in here, but the majority of the
patches in here fall into two buckets:
- debugfs api cleanups and fixes
- driver core device link support for boot dependancy issues
The debugfs api cleanups are working to slowly refactor the debugfs apis
so that it is even harder to use incorrectly. That work has been
happening for the past few kernel releases and will continue over time,
it's a long-term project/goal
The driver core device link support missed 5.4 by just a bit, so it's
been sitting and baking for many months now. It's from Saravana Kannan
to help resolve the problems that DT-based systems have at boot time
with dependancy graphs and kernel modules. Turns out that no one has
actually tried to build a generic arm64 kernel with loads of modules and
have it "just work" for a variety of platforms (like a distro kernel)
The big problem turned out to be a lack of depandancy information
between different areas of DT entries, and the work here resolves that
problem and now allows devices to boot properly, and quicker than a
monolith kernel.
All of these patches have been in linux-next for a long time with no
reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXd6m6Q8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yntJQCcCqg6RQ7LTdHuZv1ETeefXlsfk00An1Jtean6
42bWGx52bGFvAcpjWy8R
=P7hq
-----END PGP SIGNATURE-----
Merge tag 'driver-core-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the "big" set of driver core patches for 5.5-rc1
There's a few minor cleanups and fixes in here, but the majority of
the patches in here fall into two buckets:
- debugfs api cleanups and fixes
- driver core device link support for boot dependancy issues
The debugfs api cleanups are working to slowly refactor the debugfs
apis so that it is even harder to use incorrectly. That work has been
happening for the past few kernel releases and will continue over
time, it's a long-term project/goal
The driver core device link support missed 5.4 by just a bit, so it's
been sitting and baking for many months now. It's from Saravana Kannan
to help resolve the problems that DT-based systems have at boot time
with dependancy graphs and kernel modules. Turns out that no one has
actually tried to build a generic arm64 kernel with loads of modules
and have it "just work" for a variety of platforms (like a distro
kernel). The big problem turned out to be a lack of dependency
information between different areas of DT entries, and the work here
resolves that problem and now allows devices to boot properly, and
quicker than a monolith kernel.
All of these patches have been in linux-next for a long time with no
reported issues"
* tag 'driver-core-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (68 commits)
tracing: Remove unnecessary DEBUG_FS dependency
of: property: Add device link support for interrupt-parent, dmas and -gpio(s)
debugfs: Fix !DEBUG_FS debugfs_create_automount
of: property: Add device link support for "iommu-map"
of: property: Fix the semantics of of_is_ancestor_of()
i2c: of: Populate fwnode in of_i2c_get_board_info()
drivers: base: Fix Kconfig indentation
firmware_loader: Fix labels with comma for builtin firmware
driver core: Allow device link operations inside sync_state()
driver core: platform: Declare ret variable only once
cpu-topology: declare parse_acpi_topology in <linux/arch_topology.h>
crypto: hisilicon: no need to check return value of debugfs_create functions
driver core: platform: use the correct callback type for bus_find_device
firmware_class: make firmware caching configurable
driver core: Clarify documentation for fwnode_operations.add_links()
mailbox: tegra: Fix superfluous IRQ error message
net: caif: Fix debugfs on 64-bit platforms
mac80211: Use debugfs_create_xul() helper
media: c8sectpfe: no need to check return value of debugfs_create functions
of: property: Add device link support for iommus, mboxes and io-channels
...
The wording was a bit ambiguous. So update it to make it clear.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lore.kernel.org/r/20191113023559.62295-2-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When add_links() still has suppliers that it needs to link to in the
future, this patch allows it to differentiate between suppliers that are
needed for probing vs suppliers that are needed for sync_state()
correctness.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20191028220027.251605-4-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The add_links() ops shouldn't return on the first failed device link
add. It needs to continue trying to add device links to other suppliers
that are available. The documentation didn't explain WHY this behavior
is necessary. So, update the documentation with an example that explains
why this is necessary.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20191011191521.179614-3-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Adding description for the device_is_available member which
was missing, and fixing the description of the member
property_read_int_array.
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The prefix is used for printing purpose before a node, and it also works
as a separator between two nodes.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Acked-by: Rob Herring <robh@kernel.org> (for OF)
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The fwnode framework did not have means to obtain the name of a node. Add
that now, in form of the fwnode_get_name() function and a corresponding
get_name fwnode op. OF and ACPI support is included.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Acked-by: Rob Herring <robh@kernel.org> (for OF)
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The firmware corresponding to a device (dev.fwnode) might be able to
provide functional dependency information between a device and its
supplier and consumer devices. Tracking this functional dependency
allows optimizing device probe order and informing a supplier when all
its consumers have probed (and thereby actively managing their
resources).
The existing device links feature allows tracking and using
supplier-consumer relationships. So, this patch adds the add_links()
fwnode callback to allow firmware to create device links for each
device as the device is added.
However, when consumer devices are added, they might not have a supplier
device to link to despite needing mandatory resources/functionality from
one or more suppliers. A waiting_for_suppliers list is created to track
such consumers and retry linking them when new devices get added.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20190904211126.47518-3-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
It's often useful to look up a device that corresponds to a fwnode. So
add an API to do that irrespective of the bus on which the device has
been added to.
Signed-off-by: Saravana Kannan <saravanak@google.com>
Link: https://lore.kernel.org/r/20190904211126.47518-2-saravanak@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There is no need to check twice for a NULL in fwnode_call_bool_op().
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Based on 2 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation #
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 4122 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Enrico Weigelt <info@metux.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Convert all users of struct acpi_reference_args to more generic
fwnode_reference_args. This will
1) avoid an ACPI specific references to device nodes with integer
arguments as well as
2) allow making references to nodes other than device nodes in ACPI.
As a by-product, convert the fwnode interger arguments to u64. The
arguments were 64-bit integers on ACPI but the fwnode arguments were
just 32-bit.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Constify device_get_match_data() as OF and ACPI variants return
constant value.
Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
There is an OF/ACPI function to obtain the driver data. We want to hide
OF/ACPI details from the device drivers and abstract following the device
family of functions.
Signed-off-by: Sinan Kaya <okaya@codeaurora.org>
Reviewed-by: Rob Herring <robh@kernel.org>
Acked-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Vinod Koul <vinod.koul@intel.com>
The fwnode_handle_get() function is used to obtain a reference to an
fwnode. A common usage pattern for the OF equivalent of the function is:
mynode = of_node_get(node);
Similarly make fwnode_handle_get() return the fwnode to which the
reference was obtained.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The new fwnode_property_get_reference_args() interface amends the fwnode
property API with the functionality of both of_parse_phandle_with_args()
and __acpi_node_get_property_reference().
The semantics is slightly different: the cells property is ignored on ACPI
as the number of arguments can be explicitly obtained from the firmware
interface.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Make fwnode arguments to the fwnode property API const.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Rob Herring <robh@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Instead of relying on the struct fwnode_handle type field, define
fwnode_operations structs for all separate types of fwnodes. To find out
the type, compare to the ops field to relevant ops structs.
This change has two benefits:
1. it avoids adding the type field to each and every instance of struct
fwnode_handle, thus saving memory and
2. makes the ops field the single factor that defines both the types of
the fwnode as well as defines the implementation of its operations,
decreasing the possibility of bugs when developing code dealing with
fwnode internals.
Suggested-by: Rob Herring <robh@kernel.org>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
fwnode_call_int_op() isn't suitable for calling ops that return bool
since it effectively causes the result returned to the user to be
true when an op hasn't been defined or the fwnode is NULL.
Address this by introducing fwnode_call_bool_op() for calling ops
that return bool.
Fixes: 3708184afc "device property: Move FW type specific functionality to FW specific files"
Fixes: 2294b3af05 "device property: Introduce fwnode_device_is_available()"
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add fwnode_device_is_available() to tell whether the device corresponding
to a certain fwnode_handle is available for use.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Move firmware specific implementations of the fwnode graph operations to
firmware specific locations.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The device and fwnode property API supports Devicetree, ACPI and pset
properties. The implementation of this functionality for each firmware
type was embedded in the fwnode property core. Move it out to firmware
type specific locations, making it easier to maintain.
Depends-on: ("of: Move OF property and graph API from base.c to property.c")
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Similar to OF endpoints, endpoint type nodes can be also supported on
ACPI. In order to make it possible for drivers to ignore the matter,
add a type for fwnode_endpoint and a function to parse them.
On ACPI, find the child node index instead of relying on the "endpoint"
property.
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Reviewed-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On systems booting with a device tree, every struct device is associated
with a struct device_node, that provides its DT firmware representation.
The device node can be used in generic kernel contexts (eg IRQ
translation, IOMMU streamid mapping), to retrieve the properties
associated with the device and carry out kernel operations accordingly.
Owing to the 1:1 relationship between the device and its device_node,
the device_node can also be used as a look-up token for the device (eg
looking up a device through its device_node), to retrieve the device in
kernel paths where the device_node is available.
On systems booting with ACPI, the same abstraction provided by
the device_node is required to provide look-up functionality.
The struct acpi_device, that represents firmware objects in the
ACPI namespace already includes a struct fwnode_handle of
type FWNODE_ACPI as their member; the same abstraction is missing
though for devices that are instantiated out of static ACPI tables
entries (eg ARM SMMU devices).
Add a new fwnode_handle type to associate devices created out
of static ACPI table entries to the respective firmware components
and create a simple ACPI core layer interface to dynamically allocate
and free the corresponding firmware nodes so that kernel subsystems
can use it to instantiate the nodes and associate them with the
respective devices.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Hanjun Guo <hanjun.guo@linaro.org>
Reviewed-by: Tomasz Nowicki <tn@semihalf.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Tested-by: Tomasz Nowicki <tn@semihalf.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- ACPICA update to upstream revision 20150930 (Bob Moore, Lv Zheng).
The most significant change is to allow the AML debugger to be
built into the kernel. On top of that there is an update related
to the NFIT table (the ACPI persistent memory interface)
and a few fixes and cleanups.
- ACPI CPPC2 (Collaborative Processor Performance Control v2)
support along with a cpufreq frontend (Ashwin Chaugule).
This can only be enabled on ARM64 at this point.
- New ACPI infrastructure for the early probing of IRQ chips and
clock sources (Marc Zyngier).
- Support for a new hierarchical properties extension of the ACPI
_DSD (Device Specific Data) device configuration object allowing
the kernel to handle hierarchical properties (provided by the
platform firmware this way) automatically and make them available
to device drivers via the generic device properties interface
(Rafael Wysocki).
- Generic device properties API extension to obtain an index of
certain string value in an array of strings, along the lines of
of_property_match_string(), but working for all of the supported
firmware node types, and support for the "dma-names" device
property based on it (Mika Westerberg).
- ACPI core fix to parse the MADT (Multiple APIC Description Table)
entries in the order expected by platform firmware (and mandated
by the specification) to avoid confusion on systems with more than
255 logical CPUs (Lukasz Anaczkowski).
- Consolidation of the ACPI-based handling of PCI host bridges
on x86 and ia64 (Jiang Liu).
- ACPI core fixes to ensure that the correct IRQ number is used to
represent the SCI (System Control Interrupt) in the cases when
it has been re-mapped (Chen Yu).
- New ACPI backlight quirk for Lenovo IdeaPad S405 (Hans de Goede).
- ACPI EC driver fixes (Lv Zheng).
- Assorted ACPI fixes and cleanups (Dan Carpenter, Insu Yun, Jiri
Kosina, Rami Rosen, Rasmus Villemoes).
- New mechanism in the PM core allowing drivers to check if the
platform firmware is going to be involved in the upcoming system
suspend or if it has been involved in the suspend the system is
resuming from at the moment (Rafael Wysocki).
This should allow drivers to optimize their suspend/resume
handling in some cases and the changes include a couple of users
of it (the i8042 input driver, PCI PM).
- PCI PM fix to prevent runtime-suspended devices with PME enabled
from being resumed during system suspend even if they aren't
configured to wake up the system from sleep (Rafael Wysocki).
- New mechanism to report the number of a wakeup IRQ that woke up
the system from sleep last time (Alexandra Yates).
- Removal of unused interfaces from the generic power domains
framework and fixes related to latency measurements in that
code (Ulf Hansson, Daniel Lezcano).
- cpufreq core sysfs interface rework to make it handle CPUs that
share performance scaling settings (represented by a common
cpufreq policy object) more symmetrically (Viresh Kumar).
This should help to simplify the CPU offline/online handling among
other things.
- cpufreq core fixes and cleanups (Viresh Kumar).
- intel_pstate fixes related to the Turbo Activation Ratio (TAR)
mechanism on client platforms which causes the turbo P-states
range to vary depending on platform firmware settings (Srinivas
Pandruvada).
- intel_pstate sysfs interface fix (Prarit Bhargava).
- Assorted cpufreq driver (imx, tegra20, powernv, integrator) fixes
and cleanups (Bai Ping, Bartlomiej Zolnierkiewicz, Shilpasri G
Bhat, Luis de Bethencourt).
- cpuidle mvebu driver cleanups (Russell King).
- OPP (Operating Performance Points) framework code reorganization
to make it more maintainable (Viresh Kumar).
- Intel Broxton support for the RAPL (Running Average Power Limits)
power capping driver (Amy Wiles).
- Assorted power management code fixes and cleanups (Dan Carpenter,
Geert Uytterhoeven, Geliang Tang, Luis de Bethencourt, Rasmus
Villemoes).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJWOC9oAAoJEILEb/54YlRx/c8P/joflwoFsISwJccG62YTQMuc
bMQKM4Kw0vl5La8+pkLpe5t6+mW7l81UFtYF6Dzd8LOKlD9sszD34z1lHmCeT/oR
wn0uZpHagRyLMUfoyiEtlU/VRU6WQNNtS3EgjwUi7xgFz9Q0pjcCZ9OQ6vKov1j5
+6j40ODif5sgo+2vl+rztJiV0SIMkYdkgNqgfN1FE9bdLA2Zkk+PxxJbtGQORuDu
O/K+XhQT2xWquVWi/1p+VtQxs5glBS1oKm0kogV5bElCvNTRNIVABUNcjogITQwo
QSAKgoCKIoaIl5jtDT6u5dc0y67q/dMtqOY9fOCcOz1Z7jbWQzR8D7mpFWIsJUPK
K2LClI3t85ynpN6Jref246A6+C9nwB8JMAiAR11oBw7WbBlkd6tbRgcT5B+iz8UE
FuCCif7pha/Fs+Jt1YRazscIqteQ2bAhhxikuIPMfw2M6M67MNfVNeKA1bAoSM34
dH7JsilblitvV7shrwJHwXPXCOF2jEPoK8I4/q2+TR5qUxEpRJjelQxXGSaQScMZ
iNnjeTgv8H8q+rY5Yjzsl4pxP0Fvf7IuqkptWOJbgepg4cQc9pS87wOpY3uEeQzr
H7ruaQJFCnLO4aXbPNClsiJARhrBk+qMlsh4vBEyCJ2T0ucb+nIUcN4BTi8t85yl
X97BfHHUiDoUrnIsNids
=1gaH
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management and ACPI updates from Rafael Wysocki:
"Quite a new features are included this time.
First off, the Collaborative Processor Performance Control interface
(version 2) defined by ACPI will now be supported on ARM64 along with
a cpufreq frontend for CPU performance scaling.
Second, ACPI gets a new infrastructure for the early probing of IRQ
chips and clock sources (along the lines of the existing similar
mechanism for DT).
Next, the ACPI core and the generic device properties API will now
support a recently introduced hierarchical properties extension of the
_DSD (Device Specific Data) ACPI device configuration object. If the
ACPI platform firmware uses that extension to organize device
properties in a hierarchical way, the kernel will automatically handle
it and make those properties available to device drivers via the
generic device properties API.
It also will be possible to build the ACPICA's AML interpreter
debugger into the kernel now and use that to diagnose AML-related
problems more efficiently. In the future, this should make it
possible to single-step AML execution and do similar things.
Interesting stuff, although somewhat experimental at this point.
Finally, the PM core gets a new mechanism that can be used by device
drivers to distinguish between suspend-to-RAM (based on platform
firmware support) and suspend-to-idle (or other variants of system
suspend the platform firmware is not involved in) and possibly
optimize their device suspend/resume handling accordingly.
In addition to that, some existing features are re-organized quite
substantially.
First, the ACPI-based handling of PCI host bridges on x86 and ia64 is
unified and the common code goes into the ACPI core (so as to reduce
code duplication and eliminate non-essential differences between the
two architectures in that area).
Second, the Operating Performance Points (OPP) framework is
reorganized to make the code easier to find and follow.
Next, the cpufreq core's sysfs interface is reorganized to get rid of
the "primary CPU" concept for configurations in which the same
performance scaling settings are shared between multiple CPUs.
Finally, some interfaces that aren't necessary any more are dropped
from the generic power domains framework.
On top of the above we have some minor extensions, cleanups and bug
fixes in multiple places, as usual.
Specifics:
- ACPICA update to upstream revision 20150930 (Bob Moore, Lv Zheng).
The most significant change is to allow the AML debugger to be
built into the kernel. On top of that there is an update related
to the NFIT table (the ACPI persistent memory interface) and a few
fixes and cleanups.
- ACPI CPPC2 (Collaborative Processor Performance Control v2) support
along with a cpufreq frontend (Ashwin Chaugule).
This can only be enabled on ARM64 at this point.
- New ACPI infrastructure for the early probing of IRQ chips and
clock sources (Marc Zyngier).
- Support for a new hierarchical properties extension of the ACPI
_DSD (Device Specific Data) device configuration object allowing
the kernel to handle hierarchical properties (provided by the
platform firmware this way) automatically and make them available
to device drivers via the generic device properties interface
(Rafael Wysocki).
- Generic device properties API extension to obtain an index of
certain string value in an array of strings, along the lines of
of_property_match_string(), but working for all of the supported
firmware node types, and support for the "dma-names" device
property based on it (Mika Westerberg).
- ACPI core fix to parse the MADT (Multiple APIC Description Table)
entries in the order expected by platform firmware (and mandated by
the specification) to avoid confusion on systems with more than 255
logical CPUs (Lukasz Anaczkowski).
- Consolidation of the ACPI-based handling of PCI host bridges on x86
and ia64 (Jiang Liu).
- ACPI core fixes to ensure that the correct IRQ number is used to
represent the SCI (System Control Interrupt) in the cases when it
has been re-mapped (Chen Yu).
- New ACPI backlight quirk for Lenovo IdeaPad S405 (Hans de Goede).
- ACPI EC driver fixes (Lv Zheng).
- Assorted ACPI fixes and cleanups (Dan Carpenter, Insu Yun, Jiri
Kosina, Rami Rosen, Rasmus Villemoes).
- New mechanism in the PM core allowing drivers to check if the
platform firmware is going to be involved in the upcoming system
suspend or if it has been involved in the suspend the system is
resuming from at the moment (Rafael Wysocki).
This should allow drivers to optimize their suspend/resume handling
in some cases and the changes include a couple of users of it (the
i8042 input driver, PCI PM).
- PCI PM fix to prevent runtime-suspended devices with PME enabled
from being resumed during system suspend even if they aren't
configured to wake up the system from sleep (Rafael Wysocki).
- New mechanism to report the number of a wakeup IRQ that woke up the
system from sleep last time (Alexandra Yates).
- Removal of unused interfaces from the generic power domains
framework and fixes related to latency measurements in that code
(Ulf Hansson, Daniel Lezcano).
- cpufreq core sysfs interface rework to make it handle CPUs that
share performance scaling settings (represented by a common cpufreq
policy object) more symmetrically (Viresh Kumar).
This should help to simplify the CPU offline/online handling among
other things.
- cpufreq core fixes and cleanups (Viresh Kumar).
- intel_pstate fixes related to the Turbo Activation Ratio (TAR)
mechanism on client platforms which causes the turbo P-states range
to vary depending on platform firmware settings (Srinivas
Pandruvada).
- intel_pstate sysfs interface fix (Prarit Bhargava).
- Assorted cpufreq driver (imx, tegra20, powernv, integrator) fixes
and cleanups (Bai Ping, Bartlomiej Zolnierkiewicz, Shilpasri G
Bhat, Luis de Bethencourt).
- cpuidle mvebu driver cleanups (Russell King).
- OPP (Operating Performance Points) framework code reorganization to
make it more maintainable (Viresh Kumar).
- Intel Broxton support for the RAPL (Running Average Power Limits)
power capping driver (Amy Wiles).
- Assorted power management code fixes and cleanups (Dan Carpenter,
Geert Uytterhoeven, Geliang Tang, Luis de Bethencourt, Rasmus
Villemoes)"
* tag 'pm+acpi-4.4-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (108 commits)
cpufreq: postfix policy directory with the first CPU in related_cpus
cpufreq: create cpu/cpufreq/policyX directories
cpufreq: remove cpufreq_sysfs_{create|remove}_file()
cpufreq: create cpu/cpufreq at boot time
cpufreq: Use cpumask_copy instead of cpumask_or to copy a mask
cpufreq: ondemand: Drop unnecessary locks from update_sampling_rate()
PM / Domains: Merge measurements for PM QoS device latencies
PM / Domains: Don't measure ->start|stop() latency in system PM callbacks
PM / clk: Fix broken build due to non-matching code and header #ifdefs
ACPI / Documentation: add copy_dsdt to ACPI format options
ACPI / sysfs: correctly check failing memory allocation
ACPI / video: Add a quirk to force native backlight on Lenovo IdeaPad S405
ACPI / CPPC: Fix potential memory leak
ACPI / CPPC: signedness bug in register_pcc_channel()
ACPI / PAD: power_saving_thread() is not freezable
ACPI / PM: Fix incorrect wakeup IRQ setting during suspend-to-idle
ACPI: Using correct irq when waiting for events
ACPI: Use correct IRQ when uninstalling ACPI interrupt handler
cpuidle: mvebu: disable the bind/unbind attributes and use builtin_platform_driver
cpuidle: mvebu: clean up multiple platform drivers
...
In order to be able to reference an irqdomain from ACPI, we need
to be able to create an identifier, which is usually a struct
device_node.
This device node does't really fit the ACPI infrastructure, so
we cunningly allocate a new structure containing a fwnode_handle,
and return that.
This structure doesn't really point to a device (interrupt
controllers are not "real" devices in Linux), but as we cannot
really deny that they exist, we create them with a new fwnode_type
(FWNODE_IRQCHIP).
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-and-tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Tested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: <linux-arm-kernel@lists.infradead.org>
Cc: Tomasz Nowicki <tomasz.nowicki@linaro.org>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Graeme Gregory <graeme@xora.org.uk>
Cc: Jake Oshins <jakeo@microsoft.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Link: http://lkml.kernel.org/r/1444737105-31573-9-git-send-email-marc.zyngier@arm.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In some cases, the information expressed via device properties is
hierarchical by nature. For example, the properties of a composite
device consisting of multiple semi-dependent components may need
to be represented in the form of a tree of property data sets
corresponding to specific components of the device.
Unfortunately, using ACPI device objects for this purpose turns out
to be problematic, mostly due to the assumption made by some operating
systems (that platform firmware generally needs to work with) that
each device object in the ACPI namespace represents a device requiring
a separate driver. That assumption leads to complications which
reportedly are impractically difficult to overcome and a different
approach is needed for the sake of interoperability.
The approach implemented here is based on extending _DSD via pointers
(links) to additional ACPI objects returning data packages formatted
in accordance with the _DSD formatting rules defined by Section 6.2.5
of ACPI 6. Those additional objects are referred to as data-only
subnodes of the device object containing the _DSD pointing to them.
The links to them need to be located in a separate section of the
_DSD data package following UUID dbb8e3e6-5886-4ba6-8795-1319f52a966b
referred to as the Hierarchical Data Extension UUID as defined in [1].
Each of them is represented by a package of two strings. The first
string in that package (the key) is regarded as the name of the
data-only subnode pointed to by the link. The second string in it
(the target) is expected to hold the ACPI namespace path (possibly
utilizing the usual ACPI namespace search rules) of an ACPI object
evaluating to a data package extending the _DSD.
The device properties initialization code follows those links,
creates a struct acpi_data_node object for each of them to store
the data returned by the ACPI object pointed to by it and processes
those data recursively (which may lead to the creation of more
struct acpi_data_node objects if the returned data package contains
the Hierarchical Data Extension UUID section with more links in it).
All of the struct acpi_data_node objects are present until the the
ACPI device object containing the _DSD with links to them is deleted
and they are deleted along with that object.
[1]: http://www.uefi.org/sites/default/files/resources/_DSD-hierarchical-data-extension-UUID-v1.pdf
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Introduce data structures and code allowing "built-in" properties
to be associated with devices in such a way that they will be used
by the device_property_* API if no proper firmware node (neither DT
nor ACPI) is present for the given device.
Each property is to be represented by a property_entry structure.
An array of property_entry structures (terminated with a null
entry) can be pointed to by the properties field of struct
property_set that can be added as a firmware node to a struct
device using device_add_property_set(). That will cause the
device_property_* API to use that property_set as the source
of properties if the given device does not have a DT node or
an ACPI companion device object associated with it.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Add a secondary pointer to struct fwnode_handle so as to make it
possible for a device to have two firmware nodes associated with
it at the same time, for example, an ACPI node and a node with
a set of properties provided by platform initialization code.
In the future that will allow device property lookup to fall back
from the primary firmware node to the secondary one if the given
property is not present there to make it easier to provide defaults
for device properties used by device drivers.
Introduce two helper routines, set_primary_fwnode() and
set_secondary_fwnode() allowing callers to add a primary/secondary
firmware node to the given device in such a way that
(1) If there's only one firmware node for that device, it will be
pointed to by the device's firmware node pointer.
(2) If both the primary and secondary firmware nodes are present,
the primary one will be pointed to by the device's firmware
node pointer, while the secondary one will be pointed to by the
primary node's secondary pointer.
(3) If one of these nodes is removed (by calling one of the new
nelpers with NULL as the second argument), the other one will
be preserved.
Make ACPI use set_primary_fwnode() for attaching its firmware nodes
to devices.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that we have struct fwnode_handle, we can use that to point to
ACPI companions from struct device objects instead of pointing to
struct acpi_device directly.
There are two benefits from that. First, the somewhat ugly and
hackish struct acpi_dev_node can be dropped and, second, the same
struct fwnode_handle pointer can be used in the future to point
to other (non-ACPI) firmware device node types.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Grant Likely <grant.likely@linaro.org>