The return value of set_hugetlb_cgroup and set_hugetlb_cgroup_rsvd are
always ignored. Remove them to clean up the code.
Link: https://lkml.kernel.org/r/20220729080106.12752-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For hugetlb backed jobs/VMs it's critical to understand the numa
information for the memory backing these jobs to deliver optimal
performance.
Currently this technically can be queried from /proc/self/numa_maps, but
there are significant issues with that. Namely:
1. Memory can be mapped or unmapped.
2. numa_maps are per process and need to be aggregated across all
processes in the cgroup. For shared memory this is more involved as
the userspace needs to make sure it doesn't double count shared
mappings.
3. I believe querying numa_maps needs to hold the mmap_lock which adds
to the contention on this lock.
For these reasons I propose simply adding hugetlb.*.numa_stat file,
which shows the numa information of the cgroup similarly to
memory.numa_stat.
On cgroup-v2:
cat /sys/fs/cgroup/unified/test/hugetlb.2MB.numa_stat
total=2097152 N0=2097152 N1=0
On cgroup-v1:
cat /sys/fs/cgroup/hugetlb/test/hugetlb.2MB.numa_stat
total=2097152 N0=2097152 N1=0
hierarichal_total=2097152 N0=2097152 N1=0
This patch was tested manually by allocating hugetlb memory and querying
the hugetlb.*.numa_stat file of the cgroup and its parents.
[colin.i.king@googlemail.com: fix spelling mistake "hierarichal" -> "hierarchical"]
Link: https://lkml.kernel.org/r/20211125090635.23508-1-colin.i.king@gmail.com
[keescook@chromium.org: fix copy/paste array assignment]
Link: https://lkml.kernel.org/r/20211203065647.2819707-1-keescook@chromium.org
Link: https://lkml.kernel.org/r/20211123001020.4083653-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jue Wang <juew@google.com>
Cc: Yang Yao <ygyao@google.com>
Cc: Joanna Li <joannali@google.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hugetlb_vm_op_open() is called during copy_vma(), we may take the
reference to resv_map->css. Later, when clearing the reservation
pointer of old_vma after transferring it to new_vma, we forget to drop
the reference to resv_map->css. This leads to a reference leak of css.
Fixes this by adding a check to drop reservation css reference in
clear_vma_resv_huge_pages()
Link: https://lkml.kernel.org/r/20211113154412.91134-1-minhquangbui99@gmail.com
Fixes: 550a7d60bd ("mm, hugepages: add mremap() support for hugepage backed vma")
Signed-off-by: Bui Quang Minh <minhquangbui99@gmail.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mina Almasry <almasrymina@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Guillaume Morin reported hitting the following WARNING followed by GPF or
NULL pointer deference either in cgroups_destroy or in the kill_css path.:
percpu ref (css_release) <= 0 (-1) after switching to atomic
WARNING: CPU: 23 PID: 130 at lib/percpu-refcount.c:196 percpu_ref_switch_to_atomic_rcu+0x127/0x130
CPU: 23 PID: 130 Comm: ksoftirqd/23 Kdump: loaded Tainted: G O 5.10.60 #1
RIP: 0010:percpu_ref_switch_to_atomic_rcu+0x127/0x130
Call Trace:
rcu_core+0x30f/0x530
rcu_core_si+0xe/0x10
__do_softirq+0x103/0x2a2
run_ksoftirqd+0x2b/0x40
smpboot_thread_fn+0x11a/0x170
kthread+0x10a/0x140
ret_from_fork+0x22/0x30
Upon further examination, it was discovered that the css structure was
associated with hugetlb reservations.
For private hugetlb mappings the vma points to a reserve map that
contains a pointer to the css. At mmap time, reservations are set up
and a reference to the css is taken. This reference is dropped in the
vma close operation; hugetlb_vm_op_close. However, if a vma is split no
additional reference to the css is taken yet hugetlb_vm_op_close will be
called twice for the split vma resulting in an underflow.
Fix by taking another reference in hugetlb_vm_op_open. Note that the
reference is only taken for the owner of the reserve map. In the more
common fork case, the pointer to the reserve map is cleared for
non-owning vmas.
Link: https://lkml.kernel.org/r/20210830215015.155224-1-mike.kravetz@oracle.com
Fixes: e9fe92ae0c ("hugetlb_cgroup: add reservation accounting for private mappings")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Guillaume Morin <guillaume@morinfr.org>
Suggested-by: Guillaume Morin <guillaume@morinfr.org>
Tested-by: Guillaume Morin <guillaume@morinfr.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For HugeTLB page, there are more metadata to save in the struct page. But
the head struct page cannot meet our needs, so we have to abuse other tail
struct page to store the metadata. In order to avoid conflicts caused by
subsequent use of more tail struct pages, we can gather these discrete
indexes of tail struct page. In this case, it will be easier to add a new
tail page index later.
Link: https://lkml.kernel.org/r/20210510030027.56044-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Tested-by: Chen Huang <chenhuang5@huawei.com>
Tested-by: Bodeddula Balasubramaniam <bodeddub@amazon.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Neukum <oneukum@suse.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current implementation of hugetlb_cgroup for shared mappings could
have different behavior. Consider the following two scenarios:
1.Assume initial css reference count of hugetlb_cgroup is 1:
1.1 Call hugetlb_reserve_pages with from = 1, to = 2. So css reference
count is 2 associated with 1 file_region.
1.2 Call hugetlb_reserve_pages with from = 2, to = 3. So css reference
count is 3 associated with 2 file_region.
1.3 coalesce_file_region will coalesce these two file_regions into
one. So css reference count is 3 associated with 1 file_region
now.
2.Assume initial css reference count of hugetlb_cgroup is 1 again:
2.1 Call hugetlb_reserve_pages with from = 1, to = 3. So css reference
count is 2 associated with 1 file_region.
Therefore, we might have one file_region while holding one or more css
reference counts. This inconsistency could lead to imbalanced css_get()
and css_put() pair. If we do css_put one by one (i.g. hole punch case),
scenario 2 would put one more css reference. If we do css_put all
together (i.g. truncate case), scenario 1 will leak one css reference.
The imbalanced css_get() and css_put() pair would result in a non-zero
reference when we try to destroy the hugetlb cgroup. The hugetlb cgroup
directory is removed __but__ associated resource is not freed. This
might result in OOM or can not create a new hugetlb cgroup in a busy
workload ultimately.
In order to fix this, we have to make sure that one file_region must
hold exactly one css reference. So in coalesce_file_region case, we
should release one css reference before coalescence. Also only put css
reference when the entire file_region is removed.
The last thing to note is that the caller of region_add() will only hold
one reference to h_cg->css for the whole contiguous reservation region.
But this area might be scattered when there are already some
file_regions reside in it. As a result, many file_regions may share only
one h_cg->css reference. In order to ensure that one file_region must
hold exactly one css reference, we should do css_get() for each
file_region and release the reference held by caller when they are done.
[linmiaohe@huawei.com: fix imbalanced css_get and css_put pair for shared mappings]
Link: https://lkml.kernel.org/r/20210316023002.53921-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210301120540.37076-1-linmiaohe@huawei.com
Fixes: 075a61d07a ("hugetlb_cgroup: add accounting for shared mappings")
Reported-by: kernel test robot <lkp@intel.com> (auto build test ERROR)
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Wanpeng Li <liwp.linux@gmail.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For shared mappings, the pointer to the hugetlb_cgroup to uncharge lives
in the resv_map entries, in file_region->reservation_counter.
After a call to region_chg, we charge the approprate hugetlb_cgroup, and
if successful, we pass on the hugetlb_cgroup info to a follow up
region_add call. When a file_region entry is added to the resv_map via
region_add, we put the pointer to that cgroup in
file_region->reservation_counter. If charging doesn't succeed, we report
the error to the caller, so that the kernel fails the reservation.
On region_del, which is when the hugetlb memory is unreserved, we also
uncharge the file_region->reservation_counter.
[akpm@linux-foundation.org: forward declare struct file_region]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-5-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Normally the pointer to the cgroup to uncharge hangs off the struct page,
and gets queried when it's time to free the page. With hugetlb_cgroup
reservations, this is not possible. Because it's possible for a page to
be reserved by one task and actually faulted in by another task.
The best place to put the hugetlb_cgroup pointer to uncharge for
reservations is in the resv_map. But, because the resv_map has different
semantics for private and shared mappings, the code patch to
charge/uncharge shared and private mappings is different. This patch
implements charging and uncharging for private mappings.
For private mappings, the counter to uncharge is in
resv_map->reservation_counter. On initializing the resv_map this is set
to NULL. On reservation of a region in private mapping, the tasks
hugetlb_cgroup is charged and the hugetlb_cgroup is placed is
resv_map->reservation_counter.
On hugetlb_vm_op_close, we uncharge resv_map->reservation_counter.
[akpm@linux-foundation.org: forward declare struct resv_map]
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-3-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Augments hugetlb_cgroup_charge_cgroup to be able to charge hugetlb usage
or hugetlb reservation counter.
Adds a new interface to uncharge a hugetlb_cgroup counter via
hugetlb_cgroup_uncharge_counter.
Integrates the counter with hugetlb_cgroup, via hugetlb_cgroup_init,
hugetlb_cgroup_have_usage, and hugetlb_cgroup_css_offline.
Signed-off-by: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Link: http://lkml.kernel.org/r/20200211213128.73302-2-almasrymina@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Macro HUGETLBFS_SB is clear enough, so one statement is clearer than 3
lines statements.
Remove redundant return statements for non-return functions, which can
save lines, at least.
Signed-off-by: Chen Gang <gang.chen.5i5j@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hugh has pointed that compound_head() call can be unsafe in some
context. There's one example:
CPU0 CPU1
isolate_migratepages_block()
page_count()
compound_head()
!!PageTail() == true
put_page()
tail->first_page = NULL
head = tail->first_page
alloc_pages(__GFP_COMP)
prep_compound_page()
tail->first_page = head
__SetPageTail(p);
!!PageTail() == true
<head == NULL dereferencing>
The race is pure theoretical. I don't it's possible to trigger it in
practice. But who knows.
We can fix the race by changing how encode PageTail() and compound_head()
within struct page to be able to update them in one shot.
The patch introduces page->compound_head into third double word block in
front of compound_dtor and compound_order. Bit 0 encodes PageTail() and
the rest bits are pointer to head page if bit zero is set.
The patch moves page->pmd_huge_pte out of word, just in case if an
architecture defines pgtable_t into something what can have the bit 0
set.
hugetlb_cgroup uses page->lru.next in the second tail page to store
pointer struct hugetlb_cgroup. The patch switch it to use page->private
in the second tail page instead. The space is free since ->first_page is
removed from the union.
The patch also opens possibility to remove HUGETLB_CGROUP_MIN_ORDER
limitation, since there's now space in first tail page to store struct
hugetlb_cgroup pointer. But that's out of scope of the patch.
That means page->compound_head shares storage space with:
- page->lru.next;
- page->next;
- page->rcu_head.next;
That's too long list to be absolutely sure, but looks like nobody uses
bit 0 of the word.
page->rcu_head.next guaranteed[1] to have bit 0 clean as long as we use
call_rcu(), call_rcu_bh(), call_rcu_sched(), or call_srcu(). But future
call_rcu_lazy() is not allowed as it makes use of the bit and we can
get false positive PageTail().
[1] http://lkml.kernel.org/g/20150827163634.GD4029@linux.vnet.ibm.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace cgroup_subsys->disabled tests in controllers with
cgroup_subsys_enabled(). cgroup_subsys_enabled() requires literal
subsys name as its parameter and thus can't be used for cgroup core
which iterates through controllers. For cgroup core, introduce and
use cgroup_ssid_enabled() which uses slower static_key_enabled() test
and can be indexed by subsys ID.
This leaves cgroup_subsys->disabled unused. Removed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Abandon the spinlock-protected byte counters in favor of the unlocked
page counters in the hugetlb controller as well.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup_subsys is a bit messier than it needs to be.
* The name of a subsys can be different from its internal identifier
defined in cgroup_subsys.h. Most subsystems use the matching name
but three - cpu, memory and perf_event - use different ones.
* cgroup_subsys_id enums are postfixed with _subsys_id and each
cgroup_subsys is postfixed with _subsys. cgroup.h is widely
included throughout various subsystems, it doesn't and shouldn't
have claim on such generic names which don't have any qualifier
indicating that they belong to cgroup.
* cgroup_subsys->subsys_id should always equal the matching
cgroup_subsys_id enum; however, we require each controller to
initialize it and then BUG if they don't match, which is a bit
silly.
This patch cleans up cgroup_subsys names and initialization by doing
the followings.
* cgroup_subsys_id enums are now postfixed with _cgrp_id, and each
cgroup_subsys with _cgrp_subsys.
* With the above, renaming subsys identifiers to match the userland
visible names doesn't cause any naming conflicts. All non-matching
identifiers are renamed to match the official names.
cpu_cgroup -> cpu
mem_cgroup -> memory
perf -> perf_event
* controllers no longer need to initialize ->subsys_id and ->name.
They're generated in cgroup core and set automatically during boot.
* Redundant cgroup_subsys declarations removed.
* While updating BUG_ON()s in cgroup_init_early(), convert them to
WARN()s. BUGging that early during boot is stupid - the kernel
can't print anything, even through serial console and the trap
handler doesn't even link stack frame properly for back-tracing.
This patch doesn't introduce any behavior changes.
v2: Rebased on top of fe1217c4f3 ("net: net_cls: move cgroupfs
classid handling into core").
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: "David S. Miller" <davem@davemloft.net>
Acked-by: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Acked-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ingo Molnar <mingo@redhat.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Serge E. Hallyn <serue@us.ibm.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Thomas Graf <tgraf@suug.ch>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Build kernel with CONFIG_HUGETLBFS=y,CONFIG_HUGETLB_PAGE=y and
CONFIG_CGROUP_HUGETLB=y, then specify hugepagesz=xx boot option, system
will fail to boot.
This failure is caused by following code path:
setup_hugepagesz
hugetlb_add_hstate
hugetlb_cgroup_file_init
cgroup_add_cftypes
kzalloc <--slab is *not available* yet
For this path, slab is not available yet, so memory allocated will be
failed, and cause WARN_ON() in hugetlb_cgroup_file_init().
So I move hugetlb_cgroup_file_init() into hugetlb_init().
[akpm@linux-foundation.org: tweak coding-style, remove pointless __init on inlined function]
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Signed-off-by: Jiang Liu <jiang.liu@huawei.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With HugeTLB pages, hugetlb cgroup is uncharged in compound page
destructor. Since we are holding a hugepage reference, we can be sure
that old page won't get uncharged till the last put_page().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the hugetlb cgroup pointer to 3rd page lru.next. This limit the usage
to hugetlb cgroup to only hugepages with 3 or more normal pages. I guess
that is an acceptable limitation.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement a new controller that allows us to control HugeTLB allocations.
The extension allows to limit the HugeTLB usage per control group and
enforces the controller limit during page fault. Since HugeTLB doesn't
support page reclaim, enforcing the limit at page fault time implies that,
the application will get SIGBUS signal if it tries to access HugeTLB pages
beyond its limit. This requires the application to know beforehand how
much HugeTLB pages it would require for its use.
The charge/uncharge calls will be added to HugeTLB code in later patch.
Support for cgroup removal will be added in later patches.
[akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g]
[akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/g]
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>