When a task wakes up on an idle rq, uclamp_rq_util_with() would max
aggregate with rq value. But since there is no task enqueued yet, the
values are stale based on the last task that was running. When the new
task actually wakes up and enqueued, then the rq uclamp values should
reflect that of the newly woken up task effective uclamp values.
This is a problem particularly for uclamp_max because it default to
1024. If a task p with uclamp_max = 512 wakes up, then max aggregation
would ignore the capping that should apply when this task is enqueued,
which is wrong.
Fix that by ignoring max aggregation if the rq is idle since in that
case the effective uclamp value of the rq will be the ones of the task
that will wake up.
Fixes: 9d20ad7dfc ("sched/uclamp: Add uclamp_util_with()")
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
[qias: Changelog]
Reviewed-by: Qais Yousef <qais.yousef@arm.com>
Link: https://lore.kernel.org/r/20210630141204.8197-1-xuewen.yan94@gmail.com
The CFS bandwidth controller limits CPU requests of a task group to
quota during each period. However, parallel workloads might be bursty
so that they get throttled even when their average utilization is under
quota. And they are latency sensitive at the same time so that
throttling them is undesired.
We borrow time now against our future underrun, at the cost of increased
interference against the other system users. All nicely bounded.
Traditional (UP-EDF) bandwidth control is something like:
(U = \Sum u_i) <= 1
This guaranteeds both that every deadline is met and that the system is
stable. After all, if U were > 1, then for every second of walltime,
we'd have to run more than a second of program time, and obviously miss
our deadline, but the next deadline will be further out still, there is
never time to catch up, unbounded fail.
This work observes that a workload doesn't always executes the full
quota; this enables one to describe u_i as a statistical distribution.
For example, have u_i = {x,e}_i, where x is the p(95) and x+e p(100)
(the traditional WCET). This effectively allows u to be smaller,
increasing the efficiency (we can pack more tasks in the system), but at
the cost of missing deadlines when all the odds line up. However, it
does maintain stability, since every overrun must be paired with an
underrun as long as our x is above the average.
That is, suppose we have 2 tasks, both specify a p(95) value, then we
have a p(95)*p(95) = 90.25% chance both tasks are within their quota and
everything is good. At the same time we have a p(5)p(5) = 0.25% chance
both tasks will exceed their quota at the same time (guaranteed deadline
fail). Somewhere in between there's a threshold where one exceeds and
the other doesn't underrun enough to compensate; this depends on the
specific CDFs.
At the same time, we can say that the worst case deadline miss, will be
\Sum e_i; that is, there is a bounded tardiness (under the assumption
that x+e is indeed WCET).
The benefit of burst is seen when testing with schbench. Default value of
kernel.sched_cfs_bandwidth_slice_us(5ms) and CONFIG_HZ(1000) is used.
mkdir /sys/fs/cgroup/cpu/test
echo $$ > /sys/fs/cgroup/cpu/test/cgroup.procs
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_quota_us
echo 100000 > /sys/fs/cgroup/cpu/test/cpu.cfs_burst_us
./schbench -m 1 -t 3 -r 20 -c 80000 -R 10
The average CPU usage is at 80%. I run this for 10 times, and got long tail
latency for 6 times and got throttled for 8 times.
Tail latencies are shown below, and it wasn't the worst case.
Latency percentiles (usec)
50.0000th: 19872
75.0000th: 21344
90.0000th: 22176
95.0000th: 22496
*99.0000th: 22752
99.5000th: 22752
99.9000th: 22752
min=0, max=22727
rps: 9.90 p95 (usec) 22496 p99 (usec) 22752 p95/cputime 28.12% p99/cputime 28.44%
The interferenece when using burst is valued by the possibilities for
missing the deadline and the average WCET. Test results showed that when
there many cgroups or CPU is under utilized, the interference is
limited. More details are shown in:
https://lore.kernel.org/lkml/5371BD36-55AE-4F71-B9D7-B86DC32E3D2B@linux.alibaba.com/
Co-developed-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Signed-off-by: Shanpei Chen <shanpeic@linux.alibaba.com>
Co-developed-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Huaixin Chang <changhuaixin@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20210621092800.23714-2-changhuaixin@linux.alibaba.com
This is a partial forward-port of Peter Ziljstra's work first posted
at:
https://lore.kernel.org/lkml/20180530142236.667774973@infradead.org/
Currently select_idle_cpu()'s proportional scheme uses the average idle
time *for when we are idle*, that is temporally challenged. When a CPU
is not at all idle, we'll happily continue using whatever value we did
see when the CPU goes idle. To fix this, introduce a separate average
idle and age it (the existing value still makes sense for things like
new-idle balancing, which happens when we do go idle).
The overall goal is to not spend more time scanning for idle CPUs than
we're idle for. Otherwise we're inhibiting work. This means that we need to
consider the cost over all the wake-ups between consecutive idle periods.
To track this, the scan cost is subtracted from the estimated average
idle time.
The impact of this patch is related to workloads that have domains that
are fully busy or overloaded. Without the patch, the scan depth may be
too high because a CPU is not reaching idle.
Due to the nature of the patch, this is a regression magnet. It
potentially wins when domains are almost fully busy or overloaded --
at that point searches are likely to fail but idle is not being aged
as CPUs are active so search depth is too large and useless. It will
potentially show regressions when there are idle CPUs and a deep search is
beneficial. This tbench result on a 2-socket broadwell machine partially
illustates the problem
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Hmean 1 445.02 ( 0.00%) 451.36 * 1.42%*
Hmean 2 830.69 ( 0.00%) 846.03 * 1.85%*
Hmean 4 1350.80 ( 0.00%) 1505.56 * 11.46%*
Hmean 8 2888.88 ( 0.00%) 2586.40 * -10.47%*
Hmean 16 5248.18 ( 0.00%) 5305.26 * 1.09%*
Hmean 32 8914.03 ( 0.00%) 9191.35 * 3.11%*
Hmean 64 10663.10 ( 0.00%) 10192.65 * -4.41%*
Hmean 128 18043.89 ( 0.00%) 18478.92 * 2.41%*
Hmean 256 16530.89 ( 0.00%) 17637.16 * 6.69%*
Hmean 320 16451.13 ( 0.00%) 17270.97 * 4.98%*
Note that 8 was a regression point where a deeper search would have helped
but it gains for high thread counts when searches are useless. Hackbench
is a more extreme example although not perfect as the tasks idle rapidly
hackbench-process-pipes
5.13.0-rc2 5.13.0-rc2
vanilla sched-avgidle-v1r5
Amean 1 0.3950 ( 0.00%) 0.3887 ( 1.60%)
Amean 4 0.9450 ( 0.00%) 0.9677 ( -2.40%)
Amean 7 1.4737 ( 0.00%) 1.4890 ( -1.04%)
Amean 12 2.3507 ( 0.00%) 2.3360 * 0.62%*
Amean 21 4.0807 ( 0.00%) 4.0993 * -0.46%*
Amean 30 5.6820 ( 0.00%) 5.7510 * -1.21%*
Amean 48 8.7913 ( 0.00%) 8.7383 ( 0.60%)
Amean 79 14.3880 ( 0.00%) 13.9343 * 3.15%*
Amean 110 21.2233 ( 0.00%) 19.4263 * 8.47%*
Amean 141 28.2930 ( 0.00%) 25.1003 * 11.28%*
Amean 172 34.7570 ( 0.00%) 30.7527 * 11.52%*
Amean 203 41.0083 ( 0.00%) 36.4267 * 11.17%*
Amean 234 47.7133 ( 0.00%) 42.0623 * 11.84%*
Amean 265 53.0353 ( 0.00%) 47.7720 * 9.92%*
Amean 296 60.0170 ( 0.00%) 53.4273 * 10.98%*
Stddev 1 0.0052 ( 0.00%) 0.0025 ( 51.57%)
Stddev 4 0.0357 ( 0.00%) 0.0370 ( -3.75%)
Stddev 7 0.0190 ( 0.00%) 0.0298 ( -56.64%)
Stddev 12 0.0064 ( 0.00%) 0.0095 ( -48.38%)
Stddev 21 0.0065 ( 0.00%) 0.0097 ( -49.28%)
Stddev 30 0.0185 ( 0.00%) 0.0295 ( -59.54%)
Stddev 48 0.0559 ( 0.00%) 0.0168 ( 69.92%)
Stddev 79 0.1559 ( 0.00%) 0.0278 ( 82.17%)
Stddev 110 1.1728 ( 0.00%) 0.0532 ( 95.47%)
Stddev 141 0.7867 ( 0.00%) 0.0968 ( 87.69%)
Stddev 172 1.0255 ( 0.00%) 0.0420 ( 95.91%)
Stddev 203 0.8106 ( 0.00%) 0.1384 ( 82.92%)
Stddev 234 1.1949 ( 0.00%) 0.1328 ( 88.89%)
Stddev 265 0.9231 ( 0.00%) 0.0820 ( 91.11%)
Stddev 296 1.0456 ( 0.00%) 0.1327 ( 87.31%)
Again, higher thread counts benefit and the standard deviation
shows that results are also a lot more stable when the idle
time is aged.
The patch potentially matters when a socket was multiple LLCs as the
maximum search depth is lower. However, some of the test results were
suspiciously good (e.g. specjbb2005 gaining 50% on a Zen1 machine) and
other results were not dramatically different to other mcahines.
Given the nature of the patch, Peter's full series is not being forward
ported as each part should stand on its own. Preferably they would be
merged at different times to reduce the risk of false bisections.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210615111611.GH30378@techsingularity.net
Make:
struct dl_rq::dl_nr_migratory
struct dl_rq::dl_nr_running
struct rt_rq::rt_nr_boosted
struct rt_rq::rt_nr_migratory
struct rt_rq::rt_nr_total
struct rq::nr_uninterruptible
32-bit.
If total number of tasks can't exceed 2**32 (and less due to futex pid
limits), then per-runqueue counters can't as well.
This patchset has been sponsored by REX Prefix Eradication Society.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20210422200228.1423391-4-adobriyan@gmail.com
In order to not have to use pid_struct, create a new, smaller,
structure to manage task cookies for core scheduling.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.919768100@infradead.org
- Don't migrate if there is a cookie mismatch
Load balance tries to move task from busiest CPU to the
destination CPU. When core scheduling is enabled, if the
task's cookie does not match with the destination CPU's
core cookie, this task may be skipped by this CPU. This
mitigates the forced idle time on the destination CPU.
- Select cookie matched idle CPU
In the fast path of task wakeup, select the first cookie matched
idle CPU instead of the first idle CPU.
- Find cookie matched idlest CPU
In the slow path of task wakeup, find the idlest CPU whose core
cookie matches with task's cookie
Signed-off-by: Aubrey Li <aubrey.li@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.860083871@infradead.org
When a sibling is forced-idle to match the core-cookie; search for
matching tasks to fill the core.
rcu_read_unlock() can incur an infrequent deadlock in
sched_core_balance(). Fix this by using the RCU-sched flavor instead.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.800048269@infradead.org
During force-idle, we end up doing cross-cpu comparison of vruntimes
during pick_next_task. If we simply compare (vruntime-min_vruntime)
across CPUs, and if the CPUs only have 1 task each, we will always
end up comparing 0 with 0 and pick just one of the tasks all the time.
This starves the task that was not picked. To fix this, take a snapshot
of the min_vruntime when entering force idle and use it for comparison.
This min_vruntime snapshot will only be used for cross-CPU vruntime
comparison, and nothing else.
A note about the min_vruntime snapshot and force idling:
During selection:
When we're not fi, we need to update snapshot.
when we're fi and we were not fi, we must update snapshot.
When we're fi and we were already fi, we must not update snapshot.
Which gives:
fib fi update
0 0 1
0 1 1
1 0 1
1 1 0
Where:
fi: force-idled now
fib: force-idled before
So the min_vruntime snapshot needs to be updated when: !(fib && fi).
Also, the cfs_prio_less() function needs to be aware of whether the
core is in force idle or not, since it will be use this information to
know whether to advance a cfs_rq's min_vruntime_fi in the hierarchy.
So pass this information along via pick_task() -> prio_less().
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.738542617@infradead.org
If there is only one long running local task and the sibling is
forced idle, it might not get a chance to run until a schedule
event happens on any cpu in the core.
So we check for this condition during a tick to see if a sibling
is starved and then give it a chance to schedule.
Signed-off-by: Vineeth Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.617407840@infradead.org
Instead of only selecting a local task, select a task for all SMT
siblings for every reschedule on the core (irrespective which logical
CPU does the reschedule).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.557559654@infradead.org
Introduce task_struct::core_cookie as an opaque identifier for core
scheduling. When enabled; core scheduling will only allow matching
task to be on the core; where idle matches everything.
When task_struct::core_cookie is set (and core scheduling is enabled)
these tasks are indexed in a second RB-tree, first on cookie value
then on scheduling function, such that matching task selection always
finds the most elegible match.
NOTE: *shudder* at the overhead...
NOTE: *sigh*, a 3rd copy of the scheduling function; the alternative
is per class tracking of cookies and that just duplicates a lot of
stuff for no raisin (the 2nd copy lives in the rt-mutex PI code).
[Joel: folded fixes]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.496975854@infradead.org
Because sched_class::pick_next_task() also implies
sched_class::set_next_task() (and possibly put_prev_task() and
newidle_balance) it is not state invariant. This makes it unsuitable
for remote task selection.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[Vineeth: folded fixes]
Signed-off-by: Vineeth Remanan Pillai <viremana@linux.microsoft.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.437092775@infradead.org
rq_lockp() includes a static_branch(), which is asm-goto, which is
asm volatile which defeats regular CSE. This means that:
if (!static_branch(&foo))
return simple;
if (static_branch(&foo) && cond)
return complex;
Doesn't fold and we get horrible code. Introduce __rq_lockp() without
the static_branch() on.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.316696988@infradead.org
Introduce the basic infrastructure to have a core wide rq->lock.
This relies on the rq->__lock order being in increasing CPU number
(inside a core). It is also constrained to SMT8 per lockdep (and
SMT256 per preempt_count).
Luckily SMT8 is the max supported SMT count for Linux (Mips, Sparc and
Power are known to have this).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/YJUNfzSgptjX7tG6@hirez.programming.kicks-ass.net
When switching on core-sched, CPUs need to agree which lock to use for
their RQ.
The new rule will be that rq->core_enabled will be toggled while
holding all rq->__locks that belong to a core. This means we need to
double check the rq->core_enabled value after each lock acquire and
retry if it changed.
This also has implications for those sites that take multiple RQ
locks, they need to be careful that the second lock doesn't end up
being the first lock.
Verify the lock pointer after acquiring the first lock, because if
they're on the same core, holding any of the rq->__lock instances will
pin the core state.
While there, change the rq->__lock order to CPU number, instead of rq
address, this greatly simplifies the next patch.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/YJUNY0dmrJMD/BIm@hirez.programming.kicks-ass.net
In preparation of playing games with rq->lock, abstract the thing
using an accessor.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.136465446@infradead.org
In prepration for playing games with rq->lock, add some rq_lock
wrappers.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Don Hiatt <dhiatt@digitalocean.com>
Tested-by: Hongyu Ning <hongyu.ning@linux.intel.com>
Tested-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20210422123308.075967879@infradead.org
CPU scheduler marks need_resched flag to signal a schedule() on a
particular CPU. But, schedule() may not happen immediately in cases
where the current task is executing in the kernel mode (no
preemption state) for extended periods of time.
This patch adds a warn_on if need_resched is pending for more than the
time specified in sysctl resched_latency_warn_ms. If it goes off, it is
likely that there is a missing cond_resched() somewhere. Monitoring is
done via the tick and the accuracy is hence limited to jiffy scale. This
also means that we won't trigger the warning if the tick is disabled.
This feature (LATENCY_WARN) is default disabled.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210416212936.390566-1-joshdon@google.com
CONFIG_SCHED_DEBUG is the build-time Kconfig knob, the boot param
sched_debug and the /debug/sched/debug_enabled knobs control the
sched_debug_enabled variable, but what they really do is make
SCHED_DEBUG more verbose, so rename the lot.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Move the #ifdef SCHED_DEBUG bits to kernel/sched/debug.c in order to
collect all the debugfs bits.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.353833279@infradead.org
Stop polluting sysctl with undocumented knobs that really are debug
only, move them all to /debug/sched/ along with the existing
/debug/sched_* files that already exist.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210412102001.287610138@infradead.org
Use the new cpu_dying() state to simplify and fix the balance_push()
vs CPU hotplug rollback state.
Specifically, we currently rely on notifiers sched_cpu_dying() /
sched_cpu_activate() to terminate balance_push, however if the
cpu_down() fails when we're past sched_cpu_deactivate(), it should
terminate balance_push at that point and not wait until we hit
sched_cpu_activate().
Similarly, when cpu_up() fails and we're going back down, balance_push
should be active, where it currently is not.
So instead, make sure balance_push is enabled below SCHED_AP_ACTIVE
(when !cpu_active()), and gate it's utility with cpu_dying().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/YHgAYef83VQhKdC2@hirez.programming.kicks-ass.net
Fix ~42 single-word typos in scheduler code comments.
We have accumulated a few fun ones over the years. :-)
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: linux-kernel@vger.kernel.org
A significant portion of __calc_delta() time is spent in the loop
shifting a u64 by 32 bits. Use `fls` instead of iterating.
This is ~7x faster on benchmarks.
The generic `fls` implementation (`generic_fls`) is still ~4x faster
than the loop.
Architectures that have a better implementation will make use of it. For
example, on x86 we get an additional factor 2 in speed without dedicated
implementation.
On GCC, the asm versions of `fls` are about the same speed as the
builtin. On Clang, the versions that use fls are more than twice as
slow as the builtin. This is because the way the `fls` function is
written, clang puts the value in memory:
https://godbolt.org/z/EfMbYe. This bug is filed at
https://bugs.llvm.org/show_bug.cgi?idI406.
```
name cpu/op
BM_Calc<__calc_delta_loop> 9.57ms Â=B112%
BM_Calc<__calc_delta_generic_fls> 2.36ms Â=B113%
BM_Calc<__calc_delta_asm_fls> 2.45ms Â=B113%
BM_Calc<__calc_delta_asm_fls_nomem> 1.66ms Â=B112%
BM_Calc<__calc_delta_asm_fls64> 2.46ms Â=B113%
BM_Calc<__calc_delta_asm_fls64_nomem> 1.34ms Â=B115%
BM_Calc<__calc_delta_builtin> 1.32ms Â=B111%
```
Signed-off-by: Clement Courbet <courbet@google.com>
Signed-off-by: Josh Don <joshdon@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210303224653.2579656-1-joshdon@google.com
Syzbot reported a handful of occurrences where an sd->nr_balance_failed can
grow to much higher values than one would expect.
A successful load_balance() resets it to 0; a failed one increments
it. Once it gets to sd->cache_nice_tries + 3, this *should* trigger an
active balance, which will either set it to sd->cache_nice_tries+1 or reset
it to 0. However, in case the to-be-active-balanced task is not allowed to
run on env->dst_cpu, then the increment is done without any further
modification.
This could then be repeated ad nauseam, and would explain the absurdly high
values reported by syzbot (86, 149). VincentG noted there is value in
letting sd->cache_nice_tries grow, so the shift itself should be
fixed. That means preventing:
"""
If the value of the right operand is negative or is greater than or equal
to the width of the promoted left operand, the behavior is undefined.
"""
Thus we need to cap the shift exponent to
BITS_PER_TYPE(typeof(lefthand)) - 1.
I had a look around for other similar cases via coccinelle:
@expr@
position pos;
expression E1;
expression E2;
@@
(
E1 >> E2@pos
|
E1 >> E2@pos
)
@cst depends on expr@
position pos;
expression expr.E1;
constant cst;
@@
(
E1 >> cst@pos
|
E1 << cst@pos
)
@script:python depends on !cst@
pos << expr.pos;
exp << expr.E2;
@@
# Dirty hack to ignore constexpr
if exp.upper() != exp:
coccilib.report.print_report(pos[0], "Possible UB shift here")
The only other match in kernel/sched is rq_clock_thermal() which employs
sched_thermal_decay_shift, and that exponent is already capped to 10, so
that one is fine.
Fixes: 5a7f555904 ("sched/fair: Relax constraint on task's load during load balance")
Reported-by: syzbot+d7581744d5fd27c9fbe1@syzkaller.appspotmail.com
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: http://lore.kernel.org/r/000000000000ffac1205b9a2112f@google.com
Instead of waking up a random and already idle CPU, we can take advantage
of this_cpu being about to enter idle to run the ILB and update the
blocked load.
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210224133007.28644-7-vincent.guittot@linaro.org
The HRTICK feature has traditionally been servicing configurations that
need precise preemptions point for NORMAL tasks. More recently, the
feature has been extended to also service DEADLINE tasks with stringent
runtime enforcement needs (e.g., runtime < 1ms with HZ=1000).
Enabling HRTICK sched feature currently enables the additional timer and
task tick for both classes, which might introduced undesired overhead
for no additional benefit if one needed it only for one of the cases.
Separate HRTICK sched feature in two (and leave the traditional case
name unmodified) so that it can be selectively enabled when needed.
With:
$ echo HRTICK > /sys/kernel/debug/sched_features
the NORMAL/fair hrtick gets enabled.
With:
$ echo HRTICK_DL > /sys/kernel/debug/sched_features
the DEADLINE hrtick gets enabled.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-3-juri.lelli@redhat.com
Hung tasks and RCU stall cases were reported on systems which were not
100% busy. Investigation of such unexpected cases (no sign of potential
starvation caused by tasks hogging the system) pointed out that the
periodic sched tick timer wasn't serviced anymore after a certain point
and that caused all machinery that depends on it (timers, RCU, etc.) to
stop working as well. This issues was however only reproducible if
HRTICK was enabled.
Looking at core dumps it was found that the rbtree of the hrtimer base
used also for the hrtick was corrupted (i.e. next as seen from the base
root and actual leftmost obtained by traversing the tree are different).
Same base is also used for periodic tick hrtimer, which might get "lost"
if the rbtree gets corrupted.
Much alike what described in commit 1f71addd34 ("tick/sched: Do not
mess with an enqueued hrtimer") there is a race window between
hrtimer_set_expires() in hrtick_start and hrtimer_start_expires() in
__hrtick_restart() in which the former might be operating on an already
queued hrtick hrtimer, which might lead to corruption of the base.
Use hrtick_start() (which removes the timer before enqueuing it back) to
ensure hrtick hrtimer reprogramming is entirely guarded by the base
lock, so that no race conditions can occur.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210208073554.14629-2-juri.lelli@redhat.com
The only remaining use of MAX_USER_PRIO (and USER_PRIO) is the
SCALE_PRIO() definition in the PowerPC Cell architecture's Synergistic
Processor Unit (SPU) scheduler. TASK_USER_PRIO isn't used anymore.
Commit fe443ef2ac ("[POWERPC] spusched: Dynamic timeslicing for
SCHED_OTHER") copied SCALE_PRIO() from the task scheduler in v2.6.23.
Commit a4ec24b48d ("sched: tidy up SCHED_RR") removed it from the task
scheduler in v2.6.24.
Commit 3ee237dddc ("sched/prio: Add 3 macros of MAX_NICE, MIN_NICE and
NICE_WIDTH in prio.h") introduced NICE_WIDTH much later.
With:
MAX_USER_PRIO = USER_PRIO(MAX_PRIO)
= MAX_PRIO - MAX_RT_PRIO
MAX_PRIO = MAX_RT_PRIO + NICE_WIDTH
MAX_USER_PRIO = MAX_RT_PRIO + NICE_WIDTH - MAX_RT_PRIO
MAX_USER_PRIO = NICE_WIDTH
MAX_USER_PRIO can be replaced by NICE_WIDTH to be able to remove all the
{*_}USER_PRIO defines.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20210128131040.296856-3-dietmar.eggemann@arm.com
In preparation of using the balance_push state in ttwu() we need it to
provide a reliable and consistent state.
The immediate problem is that rq->balance_callback gets cleared every
schedule() and then re-set in the balance_push_callback() itself. This
is not a reliable signal, so add a variable that stays set during the
entire time.
Also move setting it before the synchronize_rcu() in
sched_cpu_deactivate(), such that we get guaranteed visibility to
ttwu(), which is a preempt-disable region.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Tested-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lkml.kernel.org/r/20210121103506.966069627@infradead.org
There is nothing schedutil specific in schedutil_cpu_util(), rename it
to effective_cpu_util(). Also create and expose another wrapper
sched_cpu_util() which can be used by other parts of the kernel, like
thermal core (that will be done in a later commit).
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/db011961fb3bb8bef1c0eda5cd64564637d3ef31.1607400596.git.viresh.kumar@linaro.org
The kernel test robot measured a -1.6% performance regression on
will-it-scale/sched_yield due to commit:
2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Even though we were careful to replace a single load with another
single load from the same cacheline.
Restore finish_lock_switch() to the exact state before the offending
patch and solve the problem differently.
Fixes: 2558aacff8 ("sched/hotplug: Ensure only per-cpu kthreads run during hotplug")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201210161408.GX3021@hirez.programming.kicks-ass.net
Now that the scheduler can deal with migrate disable properly, there is no
real compelling reason to make it only available for RT.
There are quite some code pathes which needlessly disable preemption in
order to prevent migration and some constructs like kmap_atomic() enforce
it implicitly.
Making it available independent of RT allows to provide a preemptible
variant of kmap_atomic() and makes the code more consistent in general.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Grudgingly-Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20201118204007.269943012@linutronix.de
Only select_task_rq_fair() uses that parameter to do an actual domain
search, other classes only care about what kind of wakeup is happening
(fork, exec, or "regular") and thus just translate the flag into a wakeup
type.
WF_TTWU and WF_EXEC have just been added, use these along with WF_FORK to
encode the wakeup types we care about. For select_task_rq_fair(), we can
simply use the shiny new WF_flag : SD_flag mapping.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201102184514.2733-3-valentin.schneider@arm.com
To remove the sd_flag parameter of select_task_rq(), we need another way of
encoding wakeup types. There already is a WF_FORK flag, add the missing two.
With that said, we still need an easy way to turn WF_foo into
SD_bar (e.g. WF_TTWU into SD_BALANCE_WAKE). As suggested by Peter, let's
make our lives easier and make them match exactly, and throw in some
compile-time checks for good measure.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201102184514.2733-2-valentin.schneider@arm.com
In order to minimize the interference of migrate_disable() on lower
priority tasks, which can be deprived of runtime due to being stuck
below a higher priority task. Teach the RT/DL balancers to push away
these higher priority tasks when a lower priority task gets selected
to run on a freshly demoted CPU (pull).
This adds migration interference to the higher priority task, but
restores bandwidth to system that would otherwise be irrevocably lost.
Without this it would be possible to have all tasks on the system
stuck on a single CPU, each task preempted in a migrate_disable()
section with a single high priority task running.
This way we can still approximate running the M highest priority tasks
on the system.
Migrating the top task away is (ofcourse) still subject to
migrate_disable() too, which means the lower task is subject to an
interference equivalent to the worst case migrate_disable() section.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102347.499155098@infradead.org
On CPU unplug tasks which are in a migrate disabled region cannot be pushed
to a different CPU until they returned to migrateable state.
Account the number of tasks on a runqueue which are in a migrate disabled
section and make the hotplug wait mechanism respect that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102347.067278757@infradead.org
Add the base migrate_disable() support (under protest).
While migrate_disable() is (currently) required for PREEMPT_RT, it is
also one of the biggest flaws in the system.
Notably this is just the base implementation, it is broken vs
sched_setaffinity() and hotplug, both solved in additional patches for
ease of review.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.818170844@infradead.org
Thread a u32 flags word through the *set_cpus_allowed*() callchain.
This will allow adding behavioural tweaks for future users.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.729082820@infradead.org
RT kernels need to ensure that all tasks which are not per CPU kthreads
have left the outgoing CPU to guarantee that no tasks are force migrated
within a migrate disabled section.
There is also some desire to (ab)use fine grained CPU hotplug control to
clear a CPU from active state to force migrate tasks which are not per CPU
kthreads away for power control purposes.
Add a mechanism which waits until all tasks which should leave the CPU
after the CPU active flag is cleared have moved to a different online CPU.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.377836842@infradead.org
In preparation for migrate_disable(), make sure only per-cpu kthreads
are allowed to run on !active CPUs.
This is ran (as one of the very first steps) from the cpu-hotplug
task which is a per-cpu kthread and completion of the hotplug
operation only requires such tasks.
This constraint enables the migrate_disable() implementation to wait
for completion of all migrate_disable regions on this CPU at hotplug
time without fear of any new ones starting.
This replaces the unlikely(rq->balance_callbacks) test at the tail of
context_switch with an unlikely(rq->balance_work), the fast path is
not affected.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.292709163@infradead.org
The intent of balance_callback() has always been to delay executing
balancing operations until the end of the current rq->lock section.
This is because balance operations must often drop rq->lock, and that
isn't safe in general.
However, as noted by Scott, there were a few holes in that scheme;
balance_callback() was called after rq->lock was dropped, which means
another CPU can interleave and touch the callback list.
Rework code to call the balance callbacks before dropping rq->lock
where possible, and otherwise splice the balance list onto a local
stack.
This guarantees that the balance list must be empty when we take
rq->lock. IOW, we'll only ever run our own balance callbacks.
Reported-by: Scott Wood <swood@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Link: https://lkml.kernel.org/r/20201023102346.203901269@infradead.org
Florian reported that all of kernel/sched/ is rebuild when
CONFIG_BLK_DEV_INITRD is changed, which, while not a bug is
unexpected. This is due to us including vmlinux.lds.h.
Jakub explained that the problem is that we put the alignment
requirement on the type instead of on a variable. Type alignment is a
minimum, the compiler is free to pick any larger alignment for a
specific instance of the type (eg. the variable).
So force the type alignment on all individual variable definitions and
remove the undesired dependency on vmlinux.lds.h.
Fixes: 85c2ce9104 ("sched, vmlinux.lds: Increase STRUCT_ALIGNMENT to 64 bytes for GCC-4.9")
Reported-by: Florian Fainelli <f.fainelli@gmail.com>
Suggested-by: Jakub Jelinek <jakub@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
When change sched_rt_{runtime, period}_us, we validate that the new
settings should at least accommodate the currently allocated -dl
bandwidth:
sched_rt_handler()
--> sched_dl_bandwidth_validate()
{
new_bw = global_rt_runtime()/global_rt_period();
for_each_possible_cpu(cpu) {
dl_b = dl_bw_of(cpu);
if (new_bw < dl_b->total_bw) <-------
ret = -EBUSY;
}
}
But under CONFIG_SMP, dl_bw is per root domain , but not per CPU,
dl_b->total_bw is the allocated bandwidth of the whole root domain.
Instead, we should compare dl_b->total_bw against "cpus*new_bw",
where 'cpus' is the number of CPUs of the root domain.
Also, below annotation(in kernel/sched/sched.h) implied implementation
only appeared in SCHED_DEADLINE v2[1], then deadline scheduler kept
evolving till got merged(v9), but the annotation remains unchanged,
meaningless and misleading, update it.
* With respect to SMP, the bandwidth is given on a per-CPU basis,
* meaning that:
* - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
* - dl_total_bw array contains, in the i-eth element, the currently
* allocated bandwidth on the i-eth CPU.
[1]: https://lore.kernel.org/lkml/1267385230.13676.101.camel@Palantir/
Fixes: 332ac17ef5 ("sched/deadline: Add bandwidth management for SCHED_DEADLINE tasks")
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/db6bbda316048cda7a1bbc9571defde193a8d67e.1602171061.git.iwtbavbm@gmail.com
Under CONFIG_SMP, dl_bw is per root domain, but not per CPU.
When checking or updating dl_bw, currently iterating every CPU is
overdoing, just need iterate each root domain once.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Peng Liu <iwtbavbm@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lkml.kernel.org/r/78d21ee792cc48ff79e8cd62a5f26208463684d6.1602171061.git.iwtbavbm@gmail.com
Commit:
765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")
made sched features static for !CONFIG_SCHED_DEBUG configurations, but
overlooked the CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL cases.
For the latter echoing changes to /sys/kernel/debug/sched_features has
the nasty effect of effectively changing what sched_features reports,
but without actually changing the scheduler behaviour (since different
translation units get different sysctl_sched_features).
Fix CONFIG_SCHED_DEBUG=y and !CONFIG_JUMP_LABEL configurations by properly
restructuring ifdefs.
Fixes: 765cc3a4b2 ("sched/core: Optimize sched_feat() for !CONFIG_SCHED_DEBUG builds")
Co-developed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Patrick Bellasi <patrick.bellasi@matbug.net>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Link: https://lore.kernel.org/r/20201013053114.160628-1-juri.lelli@redhat.com