Derive fuse_writepage_args from fuse_io_args.
Sending the request is tricky since it was done with fi->lock held, hence
we must either use atomic allocation or release the lock. Both are
possible so try atomic first and if it fails, release the lock and do the
regular allocation with GFP_NOFS and __GFP_NOFAIL. Both flags are
necessary for correct operation.
Move the page realloc function from dev.c to file.c and convert to using
fuse_writepage_args.
The last caller of fuse_write_fill() is gone, so get rid of it.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
The old fuse_read_fill() helper can be deleted, now that the last user is
gone.
The fuse_io_args struct is moved to fuse_i.h so it can be shared between
readdir/read code.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Need to extend fuse_io_args with 'attr_ver' and 'ff' members, that take the
functionality of the same named members in fuse_req.
fuse_short_read() can now take struct fuse_args_pages.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Change of semantics in fuse_async_req_send/fuse_send_(read|write): these
can now return error, in which case the 'end' callback isn't called, so the
fuse_io_args object needs to be freed.
Added verification that the return value is sane (less than or equal to the
requested read/write size).
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Create a helper named fuse_simple_background() that is similar to
fuse_simple_request(). Unlike the latter, it returns immediately and calls
the supplied 'end' callback when the reply is received.
The supplied 'args' pointer is stored in 'fuse_req' which allows the
callback to interpret the output arguments decoded from the reply.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Extract a fuse_write_flags() helper that converts ki_flags relevant write
to open flags.
The other parts of fuse_send_write() aren't used in the
fuse_perform_write() case.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Derive fuse_io_args from struct fuse_args_pages. This will be used for
both synchronous and asynchronous read/write requests.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This will allow the use of this function when converting to the simple api
(which doesn't use fuse_req).
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
fuse_simple_request() is converted to return length of last (instead of
single) out arg, since FUSE_IOCTL_OUT has two out args, the second of which
is variable length.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
fuse_req_pages_alloc() is moved to file.c, since its internal use by the
device code will eventually be removed.
Rename to fuse_pages_alloc() to signify that it's not only usable for
fuse_req page array.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Derive fuse_args_pages from fuse_args. This is used to handle requests
which use pages for input or output. The related flags are added to
fuse_args.
New FR_ALLOC_PAGES flags is added to indicate whether the page arrays in
fuse_req need to be freed by fuse_put_request() or not.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
We can use the "force" flag to make sure the DESTROY request is always sent
to userspace. So no need to keep it allocated during the lifetime of the
filesystem.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
In some cases it makes no sense to set pid/uid/gid fields in the request
header. Allow fuse_simple_background() to omit these. This is only
required in the "force" case, so for now just WARN if set otherwise.
Fold fuse_get_req_nofail_nopages() into its only caller. Comment is
obsolete anyway.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
This will be used by fuse_force_forget().
We can expand fuse_request_send() into fuse_simple_request(). The
FR_WAITING bit has already been set, no need to check.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Add 'force' to fuse_args and use fuse_get_req_nofail_nopages() to allocate
the request in that case.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Instead of complex games with a reserved request, just use __GFP_NOFAIL.
Both calers (flush, readdir) guarantee that connection was already
initialized, so no need to wait for fc->initialized.
Also remove unneeded clearing of FR_BACKGROUND flag.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
...to make future expansion simpler. The hiearachical structure is a
historical thing that does not serve any practical purpose.
The generated code is excatly the same before and after the patch.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
When IOCB_CMD_POLL is used on the FUSE device, aio_poll() disables IRQs
and takes kioctx::ctx_lock, then fuse_iqueue::waitq.lock.
This may have to wait for fuse_iqueue::waitq.lock to be released by one
of many places that take it with IRQs enabled. Since the IRQ handler
may take kioctx::ctx_lock, lockdep reports that a deadlock is possible.
Fix it by protecting the state of struct fuse_iqueue with a separate
spinlock, and only accessing fuse_iqueue::waitq using the versions of
the waitqueue functions which do IRQ-safe locking internally.
Reproducer:
#include <fcntl.h>
#include <stdio.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <linux/aio_abi.h>
int main()
{
char opts[128];
int fd = open("/dev/fuse", O_RDWR);
aio_context_t ctx = 0;
struct iocb cb = { .aio_lio_opcode = IOCB_CMD_POLL, .aio_fildes = fd };
struct iocb *cbp = &cb;
sprintf(opts, "fd=%d,rootmode=040000,user_id=0,group_id=0", fd);
mkdir("mnt", 0700);
mount("foo", "mnt", "fuse", 0, opts);
syscall(__NR_io_setup, 1, &ctx);
syscall(__NR_io_submit, ctx, 1, &cbp);
}
Beginning of lockdep output:
=====================================================
WARNING: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected
5.3.0-rc5 #9 Not tainted
-----------------------------------------------------
syz_fuse/135 [HC0[0]:SC0[0]:HE0:SE1] is trying to acquire:
000000003590ceda (&fiq->waitq){+.+.}, at: spin_lock include/linux/spinlock.h:338 [inline]
000000003590ceda (&fiq->waitq){+.+.}, at: aio_poll fs/aio.c:1751 [inline]
000000003590ceda (&fiq->waitq){+.+.}, at: __io_submit_one.constprop.0+0x203/0x5b0 fs/aio.c:1825
and this task is already holding:
0000000075037284 (&(&ctx->ctx_lock)->rlock){..-.}, at: spin_lock_irq include/linux/spinlock.h:363 [inline]
0000000075037284 (&(&ctx->ctx_lock)->rlock){..-.}, at: aio_poll fs/aio.c:1749 [inline]
0000000075037284 (&(&ctx->ctx_lock)->rlock){..-.}, at: __io_submit_one.constprop.0+0x1f4/0x5b0 fs/aio.c:1825
which would create a new lock dependency:
(&(&ctx->ctx_lock)->rlock){..-.} -> (&fiq->waitq){+.+.}
but this new dependency connects a SOFTIRQ-irq-safe lock:
(&(&ctx->ctx_lock)->rlock){..-.}
[...]
Reported-by: syzbot+af05535bb79520f95431@syzkaller.appspotmail.com
Reported-by: syzbot+d86c4426a01f60feddc7@syzkaller.appspotmail.com
Fixes: bfe4037e72 ("aio: implement IOCB_CMD_POLL")
Cc: <stable@vger.kernel.org> # v4.19+
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
The unused vfs code can be removed. Don't pass empty subtype (same as if
->parse callback isn't called).
The bits that are left involve determining whether it's permitted to split the
filesystem type string passed in to mount(2). Consequently, this means that we
cannot get rid of the FS_HAS_SUBTYPE flag unless we define that a type string
with a dot in it always indicates a subtype specification.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Convert the fuse filesystem to the new internal mount API as the old
one will be obsoleted and removed. This allows greater flexibility in
communication of mount parameters between userspace, the VFS and the
filesystem.
See Documentation/filesystems/mount_api.txt for more information.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Provide a function, get_tree_mtd(), to replace mount_mtd(), using an
fs_context struct to hold the parameters.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: David Woodhouse <dwmw2@infradead.org>
cc: Brian Norris <computersforpeace@gmail.com>
cc: Boris Brezillon <bbrezillon@kernel.org>
cc: Marek Vasut <marek.vasut@gmail.com>
cc: Richard Weinberger <richard@nod.at>
cc: linux-mtd@lists.infradead.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Create a function, get_tree_bdev(), that is fs_context-aware and a
->get_tree() counterpart of mount_bdev().
It caches the block device pointer in the fs_context struct so that this
information can be passed into sget_fc()'s test and set functions.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Jens Axboe <axboe@kernel.dk>
cc: linux-block@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The inode parameter in cuse_release() is likely *not* a fuse inode. It's a
small wonder it didn't blow up until now.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
[ This retries commit d4b13963f2 ("fuse: require /dev/fuse reads to have
enough buffer capacity"), which was reverted. In this version we require
only `sizeof(fuse_in_header) + sizeof(fuse_write_in)` instead of 4K for
FUSE request header room, because, contrary to libfuse and kernel client
behaviour, GlusterFS actually provides only so much room for request
header. ]
A FUSE filesystem server queues /dev/fuse sys_read calls to get filesystem
requests to handle. It does not know in advance what would be that request
as it can be anything that client issues - LOOKUP, READ, WRITE, ... Many
requests are short and retrieve data from the filesystem. However WRITE and
NOTIFY_REPLY write data into filesystem.
Before getting into operation phase, FUSE filesystem server and kernel
client negotiate what should be the maximum write size the client will ever
issue. After negotiation the contract in between server/client is that the
filesystem server then should queue /dev/fuse sys_read calls with enough
buffer capacity to receive any client request - WRITE in particular, while
FUSE client should not, in particular, send WRITE requests with >
negotiated max_write payload. FUSE client in kernel and libfuse
historically reserve 4K for request header. However an existing filesystem
server - GlusterFS - was found which reserves only 80 bytes for header room
(= `sizeof(fuse_in_header) + sizeof(fuse_write_in)`).
Since
`sizeof(fuse_in_header) + sizeof(fuse_write_in)` ==
`sizeof(fuse_in_header) + sizeof(fuse_read_in)` ==
`sizeof(fuse_in_header) + sizeof(fuse_notify_retrieve_in)`
is the absolute minimum any sane filesystem should be using for header
room, the contract is that filesystem server should queue sys_reads with
`sizeof(fuse_in_header) + sizeof(fuse_write_in)` + max_write buffer.
If the filesystem server does not follow this contract, what can happen
is that fuse_dev_do_read will see that request size is > buffer size,
and then it will return EIO to client who issued the request but won't
indicate in any way that there is a problem to filesystem server.
This can be hard to diagnose because for some requests, e.g. for
NOTIFY_REPLY which mimics WRITE, there is no client thread that is
waiting for request completion and that EIO goes nowhere, while on
filesystem server side things look like the kernel is not replying back
after successful NOTIFY_RETRIEVE request made by the server.
We can make the problem easy to diagnose if we indicate via error return to
filesystem server when it is violating the contract. This should not
practically cause problems because if a filesystem server is using shorter
buffer, writes to it were already very likely to cause EIO, and if the
filesystem is read-only it should be too following FUSE_MIN_READ_BUFFER
minimum buffer size.
Please see [1] for context where the problem of stuck filesystem was hit
for real (because kernel client was incorrectly sending more than
max_write data with NOTIFY_REPLY; see also previous patch), how the
situation was traced and for more involving patch that did not make it
into the tree.
[1] https://marc.info/?l=linux-fsdevel&m=155057023600853&w=2
Signed-off-by: Kirill Smelkov <kirr@nexedi.com>
Tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Cc: Han-Wen Nienhuys <hanwen@google.com>
Cc: Jakob Unterwurzacher <jakobunt@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
UBIFS:
- Don't block too long in writeback_inodes_sb()
- Fix for a possible overrun of the log head
- Fix double unlock in orphan_delete()
JFFS2:
- Remove C++ style from UAPI header and unbreak picky toolchains
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEdgfidid8lnn52cLTZvlZhesYu8EFAl1ik14WHHJpY2hhcmRA
c2lnbWEtc3Rhci5hdAAKCRBm+VmF6xi7wbP2D/4xVW7YP5Yyt6YrABJuclfoib30
2LI6eOz0+5OojQKUbOzXCN9N7Dv4TLJKrCjRc9qKYTIB1DiQXuBDqtYKg6CTBhHb
MjiftEDiBQ6j3jVmRxkQRXZEB9I3Uu9CkA8s65+UmL8peJfgNElpH34omsU1fzup
y0NhZhj77P5jsAG6r7yXvuaofCOTlZIZVPya9FX17J0Ra+3rMOCtVEqnaHk2E5RB
EQPAEByqXUIx7+9mOi1Krw7B7fesB7oOVbCykE5knX1pZQCTURP64yNr35WxN+7Z
crcpdEQtf54qWMCKf4ClIBHiPmmsDIHYJy3JXjgJKOwIYvrB3dZ5E170qPr3JixY
nS+l8x69IYZhWUzHg8gxDizk92iFYKbO1h5vBwI7NUFHkHLzylsgonBK0KdaUnol
OvI5oCO/rdJEMBPr5LEFpOjZJIEptPtXpDvQCpm5tWd5tuW+8edNpI38lDO9LThC
O0diZZUQfsuzD1XrvKRORPU+4lskzGV5b1UA0DWXdGKALqM5VrQZo1XftvA74Zkv
oZQcHNK5wdecQX81Oadfb/0a5SN7FGGtTUCKTpOyBIu0adarGIasC6TQr2aDiiNh
7jLjBoV2XEGhXZQrK2lm8G+6rJ7Mp11B6aoTFgDELzt+SB7htp6dARR2+4aGWXh9
iXgme0n9HXDDeuosag==
=Bsgx
-----END PGP SIGNATURE-----
Merge tag 'for-linus-5.3-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/ubifs
Pull UBIFS and JFFS2 fixes from Richard Weinberger:
"UBIFS:
- Don't block too long in writeback_inodes_sb()
- Fix for a possible overrun of the log head
- Fix double unlock in orphan_delete()
JFFS2:
- Remove C++ style from UAPI header and unbreak picky toolchains"
* tag 'for-linus-5.3-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/ubifs:
ubifs: Limit the number of pages in shrink_liability
ubifs: Correctly initialize c->min_log_bytes
ubifs: Fix double unlock around orphan_delete()
jffs2: Remove C++ style comments from uapi header
Pull x86 fixes from Thomas Gleixner:
"A few fixes for x86:
- Fix a boot regression caused by the recent bootparam sanitizing
change, which escaped the attention of all people who reviewed that
code.
- Address a boot problem on machines with broken E820 tables caused
by an underflow which ended up placing the trampoline start at
physical address 0.
- Handle machines which do not advertise a legacy timer of any form,
but need calibration of the local APIC timer gracefully by making
the calibration routine independent from the tick interrupt. Marked
for stable as well as there seems to be quite some new laptops
rolled out which expose this.
- Clear the RDRAND CPUID bit on AMD family 15h and 16h CPUs which are
affected by broken firmware which does not initialize RDRAND
correctly after resume. Add a command line parameter to override
this for machine which either do not use suspend/resume or have a
fixed BIOS. Unfortunately there is no way to detect this on boot,
so the only safe decision is to turn it off by default.
- Prevent RFLAGS from being clobbers in CALL_NOSPEC on 32bit which
caused fast KVM instruction emulation to break.
- Explain the Intel CPU model naming convention so that the repeating
discussions come to an end"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/retpoline: Don't clobber RFLAGS during CALL_NOSPEC on i386
x86/boot: Fix boot regression caused by bootparam sanitizing
x86/CPU/AMD: Clear RDRAND CPUID bit on AMD family 15h/16h
x86/boot/compressed/64: Fix boot on machines with broken E820 table
x86/apic: Handle missing global clockevent gracefully
x86/cpu: Explain Intel model naming convention
Pull timekeeping fix from Thomas Gleixner:
"A single fix for a regression caused by the generic VDSO
implementation where a math overflow causes CLOCK_BOOTTIME to become a
random number generator"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
timekeeping/vsyscall: Prevent math overflow in BOOTTIME update
Pull scheduler fix from Thomas Gleixner:
"Handle the worker management in situations where a task is scheduled
out on a PI lock contention correctly and schedule a new worker if
possible"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/core: Schedule new worker even if PI-blocked
Pull perf fixes from Thomas Gleixner:
"Two small fixes for kprobes and perf:
- Prevent a deadlock in kprobe_optimizer() causes by reverse lock
ordering
- Fix a comment typo"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kprobes: Fix potential deadlock in kprobe_optimizer()
perf/x86: Fix typo in comment
Pull irq fix from Thomas Gleixner:
"A single fix for a imbalanced kobject operation in the irq decriptor
code which was unearthed by the new warnings in the kobject code"
* 'irq-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
genirq: Properly pair kobject_del() with kobject_add()
Mergr misc fixes from Andrew Morton:
"11 fixes"
Mostly VM fixes, one psi polling fix, and one parisc build fix.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm/kasan: fix false positive invalid-free reports with CONFIG_KASAN_SW_TAGS=y
mm/zsmalloc.c: fix race condition in zs_destroy_pool
mm/zsmalloc.c: migration can leave pages in ZS_EMPTY indefinitely
mm, page_owner: handle THP splits correctly
userfaultfd_release: always remove uffd flags and clear vm_userfaultfd_ctx
psi: get poll_work to run when calling poll syscall next time
mm: memcontrol: flush percpu vmevents before releasing memcg
mm: memcontrol: flush percpu vmstats before releasing memcg
parisc: fix compilation errrors
mm, page_alloc: move_freepages should not examine struct page of reserved memory
mm/z3fold.c: fix race between migration and destruction
Two fixes for regressions in this merge window:
- select the Kconfig symbols for the noncoherent dma arch helpers
on arm if swiotlb is selected, not just for LPAE to not break then
Xen build, that uses swiotlb indirectly through swiotlb-xen
- fix the page allocator fallback in dma_alloc_contiguous if the CMA
allocation fails
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAl1hvn4LHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYON4w//Recfoy5T2Q4Gfjp1xVKGbr2sP7J93Vs7VCyQNZmX
PrtzhmNKs4gxCEXVgHm+GVA+IJwQFqDtSFaPb8q3GQ+qM9NUDF4ScMFpfrLZsFr1
dorm5kC1xcwrQtWjS1CQS/Gj0VBtWiMQOoUcAESMqgBIUo4ssj3Ny+vnh8hWgAOs
oVDgOM4wt35bW0Pv/iY44uQzOq7xcYJUUYtPIiP9vMDrhPsxe6D1DgFQ4HZKJWix
uS3BjZnsZDnLltXM/0CKdRV9wLF+jHYP/wJTztksRlr/A5V3FJ8lJIvgphxG1v3J
tDfQs4BNuGWBjqdg+Qo6qOPEL9krvVYYVVql93DXwtPK/cJW1Z+0glgC2rbbHmIy
ew35DFnYm9v0sFLZnbpuoHd6sQ9G59nTZstkqt/Z/hldBvKotwBpeuILAcMC9Nlw
3iYW6Sz5L7cmkifC8OvopKKJWVoW5rVtMrVQw5niBiZVERtWbY825r/7ju2xYhZC
iSAaUHT5wNtXsXQOTrFQ5LzTDBtgGyXRXgvNagEHhBf120jBQfOhvOCVT2HHOxdy
5vx7xeeRS0M2HpxIsmd3XQjIUQEY9x1to4FKiYczGM1kcKeyWWBMFOXfLxe2Rmhg
h14lbfsAxIEWdFkJAVFhjyjzC6IzxyVGtHCxw1iw0VgGzYATO/K6Oo8T2hG3HagR
abQ=
=DXk9
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.3-5' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping fixes from Christoph Hellwig:
"Two fixes for regressions in this merge window:
- select the Kconfig symbols for the noncoherent dma arch helpers on
arm if swiotlb is selected, not just for LPAE to not break then Xen
build, that uses swiotlb indirectly through swiotlb-xen
- fix the page allocator fallback in dma_alloc_contiguous if the CMA
allocation fails"
* tag 'dma-mapping-5.3-5' of git://git.infradead.org/users/hch/dma-mapping:
dma-direct: fix zone selection after an unaddressable CMA allocation
arm: select the dma-noncoherent symbols for all swiotlb builds
The code like this:
ptr = kmalloc(size, GFP_KERNEL);
page = virt_to_page(ptr);
offset = offset_in_page(ptr);
kfree(page_address(page) + offset);
may produce false-positive invalid-free reports on the kernel with
CONFIG_KASAN_SW_TAGS=y.
In the example above we lose the original tag assigned to 'ptr', so
kfree() gets the pointer with 0xFF tag. In kfree() we check that 0xFF
tag is different from the tag in shadow hence print false report.
Instead of just comparing tags, do the following:
1) Check that shadow doesn't contain KASAN_TAG_INVALID. Otherwise it's
double-free and it doesn't matter what tag the pointer have.
2) If pointer tag is different from 0xFF, make sure that tag in the
shadow is the same as in the pointer.
Link: http://lkml.kernel.org/r/20190819172540.19581-1-aryabinin@virtuozzo.com
Fixes: 7f94ffbc4c ("kasan: add hooks implementation for tag-based mode")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reported-by: Walter Wu <walter-zh.wu@mediatek.com>
Reported-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In zs_destroy_pool() we call flush_work(&pool->free_work). However, we
have no guarantee that migration isn't happening in the background at
that time.
Since migration can't directly free pages, it relies on free_work being
scheduled to free the pages. But there's nothing preventing an
in-progress migrate from queuing the work *after*
zs_unregister_migration() has called flush_work(). Which would mean
pages still pointing at the inode when we free it.
Since we know at destroy time all objects should be free, no new
migrations can come in (since zs_page_isolate() fails for fully-free
zspages). This means it is sufficient to track a "# isolated zspages"
count by class, and have the destroy logic ensure all such pages have
drained before proceeding. Keeping that state under the class spinlock
keeps the logic straightforward.
In this case a memory leak could lead to an eventual crash if compaction
hits the leaked page. This crash would only occur if people are
changing their zswap backend at runtime (which eventually starts
destruction).
Link: http://lkml.kernel.org/r/20190809181751.219326-2-henryburns@google.com
Fixes: 48b4800a1c ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In zs_page_migrate() we call putback_zspage() after we have finished
migrating all pages in this zspage. However, the return value is
ignored. If a zs_free() races in between zs_page_isolate() and
zs_page_migrate(), freeing the last object in the zspage,
putback_zspage() will leave the page in ZS_EMPTY for potentially an
unbounded amount of time.
To fix this, we need to do the same thing as zs_page_putback() does:
schedule free_work to occur.
To avoid duplicated code, move the sequence to a new
putback_zspage_deferred() function which both zs_page_migrate() and
zs_page_putback() call.
Link: http://lkml.kernel.org/r/20190809181751.219326-1-henryburns@google.com
Fixes: 48b4800a1c ("zsmalloc: page migration support")
Signed-off-by: Henry Burns <henryburns@google.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Adams <jwadams@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP splitting path is missing the split_page_owner() call that
split_page() has.
As a result, split THP pages are wrongly reported in the page_owner file
as order-9 pages. Furthermore when the former head page is freed, the
remaining former tail pages are not listed in the page_owner file at
all. This patch fixes that by adding the split_page_owner() call into
__split_huge_page().
Link: http://lkml.kernel.org/r/20190820131828.22684-2-vbabka@suse.cz
Fixes: a9627bc5e3 ("mm/page_owner: introduce split_page_owner and replace manual handling")
Reported-by: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
userfaultfd_release() should clear vm_flags/vm_userfaultfd_ctx even if
mm->core_state != NULL.
Otherwise a page fault can see userfaultfd_missing() == T and use an
already freed userfaultfd_ctx.
Link: http://lkml.kernel.org/r/20190820160237.GB4983@redhat.com
Fixes: 04f5866e41 ("coredump: fix race condition between mmget_not_zero()/get_task_mm() and core dumping")
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only when calling the poll syscall the first time can user receive
POLLPRI correctly. After that, user always fails to acquire the event
signal.
Reproduce case:
1. Get the monitor code in Documentation/accounting/psi.txt
2. Run it, and wait for the event triggered.
3. Kill and restart the process.
The question is why we can end up with poll_scheduled = 1 but the work
not running (which would reset it to 0). And the answer is because the
scheduling side sees group->poll_kworker under RCU protection and then
schedules it, but here we cancel the work and destroy the worker. The
cancel needs to pair with resetting the poll_scheduled flag.
Link: http://lkml.kernel.org/r/1566357985-97781-1-git-send-email-joseph.qi@linux.alibaba.com
Signed-off-by: Jason Xing <kerneljasonxing@linux.alibaba.com>
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Caspar Zhang <caspar@linux.alibaba.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to vmstats, percpu caching of local vmevents leads to an
accumulation of errors on non-leaf levels. This happens because some
leftovers may remain in percpu caches, so that they are never propagated
up by the cgroup tree and just disappear into nonexistence with on
releasing of the memory cgroup.
To fix this issue let's accumulate and propagate percpu vmevents values
before releasing the memory cgroup similar to what we're doing with
vmstats.
Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate
only over online cpus.
Link: http://lkml.kernel.org/r/20190819202338.363363-4-guro@fb.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>