There is a chance of racing for qgroup flushing which may lead to
deadlock:
Thread A | Thread B
(not holding trans handle) | (holding a trans handle)
--------------------------------+--------------------------------
__btrfs_qgroup_reserve_meta() | __btrfs_qgroup_reserve_meta()
|- try_flush_qgroup() | |- try_flush_qgroup()
|- QGROUP_FLUSHING bit set | |
| | |- test_and_set_bit()
| | |- wait_event()
|- btrfs_join_transaction() |
|- btrfs_commit_transaction()|
!!! DEAD LOCK !!!
Since thread A wants to commit transaction, but thread B is holding a
transaction handle, blocking the commit.
At the same time, thread B is waiting for thread A to finish its commit.
This is just a hot fix, and would lead to more EDQUOT when we're near
the qgroup limit.
The proper fix would be to make all metadata/data reservations happen
without holding a transaction handle.
CC: stable@vger.kernel.org # 5.9+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to properly set the lockdep class of a newly allocated block we
need to know the owner of the block. For non-refcounted trees this is
straightforward, we always know in advance what tree we're reading from.
For refcounted trees we don't necessarily know, however all refcounted
trees share the same lockdep class name, tree-<level>.
Fix all the callers of read_tree_block() to pass in the root objectid
we're using. In places like relocation and backref we could probably
unconditionally use 0, but just in case use the root when we have it,
otherwise use 0 in the cases we don't have the root as it's going to be
a refcounted tree anyway.
This is a preparation patch for further changes.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're open-coding btrfs_read_node_slot() here, replace with the helper.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're open-coding btrfs_read_node_slot() here, replace with the helper.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We're open-coding btrfs_read_node_slot() here, replace with the helper.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We no longer distinguish between blocking and spinning, so rip out all
this code.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that we're using a rw_semaphore we no longer need to indicate if a
lock is blocking or not, nor do we need to flip the entire path from
blocking to spinning. Remove these helpers and all the places they are
called.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When adding or removing a qgroup relation we are doing a GFP_KERNEL
allocation which is not safe because we are holding a transaction
handle open and that can make us deadlock if the allocator needs to
recurse into the filesystem. So just surround those calls with a
nofs context.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
When running the following script, btrfs will trigger an ASSERT():
#/bin/bash
mkfs.btrfs -f $dev
mount $dev $mnt
xfs_io -f -c "pwrite 0 1G" $mnt/file
sync
btrfs quota enable $mnt
btrfs quota rescan -w $mnt
# Manually set the limit below current usage
btrfs qgroup limit 512M $mnt $mnt
# Crash happens
touch $mnt/file
The dmesg looks like this:
assertion failed: refcount_read(&trans->use_count) == 1, in fs/btrfs/transaction.c:2022
------------[ cut here ]------------
kernel BUG at fs/btrfs/ctree.h:3230!
invalid opcode: 0000 [#1] SMP PTI
RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
btrfs_commit_transaction.cold+0x11/0x5d [btrfs]
try_flush_qgroup+0x67/0x100 [btrfs]
__btrfs_qgroup_reserve_meta+0x3a/0x60 [btrfs]
btrfs_delayed_update_inode+0xaa/0x350 [btrfs]
btrfs_update_inode+0x9d/0x110 [btrfs]
btrfs_dirty_inode+0x5d/0xd0 [btrfs]
touch_atime+0xb5/0x100
iterate_dir+0xf1/0x1b0
__x64_sys_getdents64+0x78/0x110
do_syscall_64+0x33/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fb5afe588db
[CAUSE]
In try_flush_qgroup(), we assume we don't hold a transaction handle at
all. This is true for data reservation and mostly true for metadata.
Since data space reservation always happens before we start a
transaction, and for most metadata operation we reserve space in
start_transaction().
But there is an exception, btrfs_delayed_inode_reserve_metadata().
It holds a transaction handle, while still trying to reserve extra
metadata space.
When we hit EDQUOT inside btrfs_delayed_inode_reserve_metadata(), we
will join current transaction and commit, while we still have
transaction handle from qgroup code.
[FIX]
Let's check current->journal before we join the transaction.
If current->journal is unset or BTRFS_SEND_TRANS_STUB, it means
we are not holding a transaction, thus are able to join and then commit
transaction.
If current->journal is a valid transaction handle, we avoid committing
transaction and just end it
This is less effective than committing current transaction, as it won't
free metadata reserved space, but we may still free some data space
before new data writes.
Bugzilla: https://bugzilla.suse.com/show_bug.cgi?id=1178634
Fixes: c53e965360 ("btrfs: qgroup: try to flush qgroup space when we get -EDQUOT")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Smatch complains that this code dereferences "entry" before checking
whether it's NULL on the next line. Fortunately, rb_entry() will never
return NULL so it doesn't cause a problem. We can clean up the NULL
checking a bit to silence the warning and make the code more clear.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When enabling qgroups we walk the tree_root and then add a qgroup item
for every root that we have. This creates a lock dependency on the
tree_root and qgroup_root, which results in the following lockdep splat
(with tree locks using rwsem), eg. in tests btrfs/017 or btrfs/022:
======================================================
WARNING: possible circular locking dependency detected
5.9.0-default+ #1299 Not tainted
------------------------------------------------------
btrfs/24552 is trying to acquire lock:
ffff9142dfc5f630 (btrfs-quota-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
but task is already holding lock:
ffff9142dfc5d0b0 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (btrfs-root-00){++++}-{3:3}:
__lock_acquire+0x3fb/0x730
lock_acquire.part.0+0x6a/0x130
down_read_nested+0x46/0x130
__btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
__btrfs_read_lock_root_node+0x3a/0x50 [btrfs]
btrfs_search_slot_get_root+0x11d/0x290 [btrfs]
btrfs_search_slot+0xc3/0x9f0 [btrfs]
btrfs_insert_item+0x6e/0x140 [btrfs]
btrfs_create_tree+0x1cb/0x240 [btrfs]
btrfs_quota_enable+0xcd/0x790 [btrfs]
btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs]
__x64_sys_ioctl+0x83/0xa0
do_syscall_64+0x2d/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #0 (btrfs-quota-00){++++}-{3:3}:
check_prev_add+0x91/0xc30
validate_chain+0x491/0x750
__lock_acquire+0x3fb/0x730
lock_acquire.part.0+0x6a/0x130
down_read_nested+0x46/0x130
__btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
__btrfs_read_lock_root_node+0x3a/0x50 [btrfs]
btrfs_search_slot_get_root+0x11d/0x290 [btrfs]
btrfs_search_slot+0xc3/0x9f0 [btrfs]
btrfs_insert_empty_items+0x58/0xa0 [btrfs]
add_qgroup_item.part.0+0x72/0x210 [btrfs]
btrfs_quota_enable+0x3bb/0x790 [btrfs]
btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs]
__x64_sys_ioctl+0x83/0xa0
do_syscall_64+0x2d/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(btrfs-root-00);
lock(btrfs-quota-00);
lock(btrfs-root-00);
lock(btrfs-quota-00);
*** DEADLOCK ***
5 locks held by btrfs/24552:
#0: ffff9142df431478 (sb_writers#10){.+.+}-{0:0}, at: mnt_want_write_file+0x22/0xa0
#1: ffff9142f9b10cc0 (&fs_info->subvol_sem){++++}-{3:3}, at: btrfs_ioctl_quota_ctl+0x7b/0xe0 [btrfs]
#2: ffff9142f9b11a08 (&fs_info->qgroup_ioctl_lock){+.+.}-{3:3}, at: btrfs_quota_enable+0x3b/0x790 [btrfs]
#3: ffff9142df431698 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x406/0x510 [btrfs]
#4: ffff9142dfc5d0b0 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
stack backtrace:
CPU: 1 PID: 24552 Comm: btrfs Not tainted 5.9.0-default+ #1299
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
Call Trace:
dump_stack+0x77/0x97
check_noncircular+0xf3/0x110
check_prev_add+0x91/0xc30
validate_chain+0x491/0x750
__lock_acquire+0x3fb/0x730
lock_acquire.part.0+0x6a/0x130
? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
? lock_acquire+0xc4/0x140
? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
down_read_nested+0x46/0x130
? __btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
__btrfs_tree_read_lock+0x35/0x1c0 [btrfs]
? btrfs_root_node+0xd9/0x200 [btrfs]
__btrfs_read_lock_root_node+0x3a/0x50 [btrfs]
btrfs_search_slot_get_root+0x11d/0x290 [btrfs]
btrfs_search_slot+0xc3/0x9f0 [btrfs]
btrfs_insert_empty_items+0x58/0xa0 [btrfs]
add_qgroup_item.part.0+0x72/0x210 [btrfs]
btrfs_quota_enable+0x3bb/0x790 [btrfs]
btrfs_ioctl_quota_ctl+0xc9/0xe0 [btrfs]
__x64_sys_ioctl+0x83/0xa0
do_syscall_64+0x2d/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fix this by dropping the path whenever we find a root item, add the
qgroup item, and then re-lookup the root item we found and continue
processing roots.
Reported-by: David Sterba <dsterba@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Delete repeated words in fs/btrfs/.
{to, the, a, and old}
and change "into 2 part" to "into 2 parts".
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
commit a514d63882 ("btrfs: qgroup: Commit transaction in advance to
reduce early EDQUOT") tries to reduce the early EDQUOT problems by
checking the qgroup free against threshold and tries to wake up commit
kthread to free some space.
The problem of that mechanism is, it can only free qgroup per-trans
metadata space, can't do anything to data, nor prealloc qgroup space.
Now since we have the ability to flush qgroup space, and implemented
retry-after-EDQUOT behavior, such mechanism can be completely replaced.
So this patch will cleanup such mechanism in favor of
retry-after-EDQUOT.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
There are known problem related to how btrfs handles qgroup reserved
space. One of the most obvious case is the the test case btrfs/153,
which do fallocate, then write into the preallocated range.
btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad)
--- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800
+++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800
@@ -1,2 +1,5 @@
QA output created by 153
+pwrite: Disk quota exceeded
+/mnt/scratch/testfile2: Disk quota exceeded
+/mnt/scratch/testfile2: Disk quota exceeded
Silence is golden
...
(Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff)
[CAUSE]
Since commit c6887cd111 ("Btrfs: don't do nocow check unless we have to"),
we always reserve space no matter if it's COW or not.
Such behavior change is mostly for performance, and reverting it is not
a good idea anyway.
For preallcoated extent, we reserve qgroup data space for it already,
and since we also reserve data space for qgroup at buffered write time,
it needs twice the space for us to write into preallocated space.
This leads to the -EDQUOT in buffered write routine.
And we can't follow the same solution, unlike data/meta space check,
qgroup reserved space is shared between data/metadata.
The EDQUOT can happen at the metadata reservation, so doing NODATACOW
check after qgroup reservation failure is not a solution.
[FIX]
To solve the problem, we don't return -EDQUOT directly, but every time
we got a -EDQUOT, we try to flush qgroup space:
- Flush all inodes of the root
NODATACOW writes will free the qgroup reserved at run_dealloc_range().
However we don't have the infrastructure to only flush NODATACOW
inodes, here we flush all inodes anyway.
- Wait for ordered extents
This would convert the preallocated metadata space into per-trans
metadata, which can be freed in later transaction commit.
- Commit transaction
This will free all per-trans metadata space.
Also we don't want to trigger flush multiple times, so here we introduce
a per-root wait list and a new root status, to ensure only one thread
starts the flushing.
Fixes: c6887cd111 ("Btrfs: don't do nocow check unless we have to")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
Before this patch, when btrfs_qgroup_reserve_data() fails, we free all
reserved space of the changeset.
For example:
ret = btrfs_qgroup_reserve_data(inode, changeset, 0, SZ_1M);
ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_1M, SZ_1M);
ret = btrfs_qgroup_reserve_data(inode, changeset, SZ_2M, SZ_1M);
If the last btrfs_qgroup_reserve_data() failed, it will release the
entire [0, 3M) range.
This behavior is kind of OK for now, as when we hit -EDQUOT, we normally
go error handling and need to release all reserved ranges anyway.
But this also means the following call is not possible:
ret = btrfs_qgroup_reserve_data();
if (ret == -EDQUOT) {
/* Do something to free some qgroup space */
ret = btrfs_qgroup_reserve_data();
}
As if the first btrfs_qgroup_reserve_data() fails, it will free all
reserved qgroup space.
[CAUSE]
This is because we release all reserved ranges when
btrfs_qgroup_reserve_data() fails.
[FIX]
This patch will implement a new function, qgroup_unreserve_range(), to
iterate through the ulist nodes, to find any nodes in the failure range,
and remove the EXTENT_QGROUP_RESERVED bits from the io_tree, and
decrease the extent_changeset::bytes_changed, so that we can revert to
previous state.
This allows later patches to retry btrfs_qgroup_reserve_data() if EDQUOT
happens.
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This patch will add the following sysfs interface:
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/referenced
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/exclusive
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/max_referenced
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/max_exclusive
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/limit_flags
Which is also available in output of "btrfs qgroup show".
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/rsv_data
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/rsv_meta_pertrans
/sys/fs/btrfs/<UUID>/qgroups/<qgroup_id>/rsv_meta_prealloc
The last 3 rsv related members are not visible to users, but can be very
useful to debug qgroup limit related bugs.
Also, to avoid '/' used in <qgroup_id>, the separator between qgroup
level and qgroup id is changed to '_'.
The interface is not hidden behind 'debug' as we want this interface to
be included into production build and to provide another way to read the
qgroup information besides the ioctls.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The qgroup level is limited to u16, so no need to use u64 for it.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
vfs_inode is used only for the inode number everything else requires
btrfs_inode.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ use btrfs_ino ]
Signed-off-by: David Sterba <dsterba@suse.com>
There's only a single use of vfs_inode in a tracepoint so let's take
btrfs_inode directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It just forwards its argument to __btrfs_qgroup_release_data.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It passes btrfs_inode to its callee so change the interface.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It uses vfs_inode only for a tracepoint so convert its interface to take
btrfs_inode directly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It only uses btrfs_inode so can just as easily take it as an argument.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Before this patch, qgroup completely relies on per-inode extent io tree
to detect reserved data space leak.
However previous bug has already shown how release page before
btrfs_finish_ordered_io() could lead to leak, and since it's
QGROUP_RESERVED bit cleared without triggering qgroup rsv, it can't be
detected by per-inode extent io tree.
So this patch adds another (and hopefully the final) safety net to catch
qgroup data reserved space leak. At least the new safety net catches
all the leaks during development, so it should be pretty useful in the
real world.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For the following operation, qgroup is guaranteed to be screwed up due
to snapshot adding to a new qgroup:
# mkfs.btrfs -f $dev
# mount $dev $mnt
# btrfs qgroup en $mnt
# btrfs subv create $mnt/src
# xfs_io -f -c "pwrite 0 1m" $mnt/src/file
# sync
# btrfs qgroup create 1/0 $mnt/src
# btrfs subv snapshot -i 1/0 $mnt/src $mnt/snapshot
# btrfs qgroup show -prce $mnt/src
qgroupid rfer excl max_rfer max_excl parent child
-------- ---- ---- -------- -------- ------ -----
0/5 16.00KiB 16.00KiB none none --- ---
0/257 1.02MiB 16.00KiB none none --- ---
0/258 1.02MiB 16.00KiB none none 1/0 ---
1/0 0.00B 0.00B none none --- 0/258
^^^^^^^^^^^^^^^^^^^^
[CAUSE]
The problem is in btrfs_qgroup_inherit(), we don't have good enough
check to determine if the new relation would break the existing
accounting.
Unlike btrfs_add_qgroup_relation(), which has proper check to determine
if we can do quick update without a rescan, in btrfs_qgroup_inherit() we
can even assign a snapshot to multiple qgroups.
[FIX]
Fix it by manually marking qgroup inconsistent for snapshot inheritance.
For subvolume creation, since all its extents are exclusively owned, we
don't need to rescan.
In theory, we should call relation check like quick_update_accounting()
when doing qgroup inheritance and inform user about qgroup accounting
inconsistency.
But we don't have good mechanism to relay that back to the user in the
snapshot creation context, thus we can only silently mark the qgroup
inconsistent.
Anyway, user shouldn't use qgroup inheritance during snapshot creation,
and should add qgroup relationship after snapshot creation by 'btrfs
qgroup assign', which has a much better UI to inform user about qgroup
inconsistent and kick in rescan automatically.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few different ways to free roots, either you allocated them
yourself and you just do
free_extent_buffer(root->node);
free_extent_buffer(root->commit_node);
btrfs_put_root(root);
Which is the pattern for log roots. Or for snapshots/subvolumes that
are being dropped you simply call btrfs_free_fs_root() which does all
the cleanup for you.
Unify this all into btrfs_put_root(), so that we don't free up things
associated with the root until the last reference is dropped. This
makes the root freeing code much more significant.
The only caveat is at close_ctree() time we have to free the extent
buffers for all of our main roots (extent_root, chunk_root, etc) because
we have to drop the btree_inode and we'll run into issues if we hold
onto those nodes until ->kill_sb() time. This will be addressed in the
future when we kill the btree_inode.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After the previous patch, qgroup_rescan_running is protected by
btrfs_fs_info::qgroup_rescan_lock, thus no need for the extra spinlock.
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are some reports about btrfs wait forever to unmount itself, with
the following call trace:
INFO: task umount:4631 blocked for more than 491 seconds.
Tainted: G X 5.3.8-2-default #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
umount D 0 4631 3337 0x00000000
Call Trace:
([<00000000174adf7a>] __schedule+0x342/0x748)
[<00000000174ae3ca>] schedule+0x4a/0xd8
[<00000000174b1f08>] schedule_timeout+0x218/0x420
[<00000000174af10c>] wait_for_common+0x104/0x1d8
[<000003ff804d6994>] btrfs_qgroup_wait_for_completion+0x84/0xb0 [btrfs]
[<000003ff8044a616>] close_ctree+0x4e/0x380 [btrfs]
[<0000000016fa3136>] generic_shutdown_super+0x8e/0x158
[<0000000016fa34d6>] kill_anon_super+0x26/0x40
[<000003ff8041ba88>] btrfs_kill_super+0x28/0xc8 [btrfs]
[<0000000016fa39f8>] deactivate_locked_super+0x68/0x98
[<0000000016fcb198>] cleanup_mnt+0xc0/0x140
[<0000000016d6a846>] task_work_run+0xc6/0x110
[<0000000016d04f76>] do_notify_resume+0xae/0xb8
[<00000000174b30ae>] system_call+0xe2/0x2c8
[CAUSE]
The problem happens when we have called qgroup_rescan_init(), but
not queued the worker. It can be caused mostly by error handling.
Qgroup ioctl thread | Unmount thread
----------------------------------------+-----------------------------------
|
btrfs_qgroup_rescan() |
|- qgroup_rescan_init() |
| |- qgroup_rescan_running = true; |
| |
|- trans = btrfs_join_transaction() |
| Some error happened |
| |
|- btrfs_qgroup_rescan() returns error |
But qgroup_rescan_running == true; |
| close_ctree()
| |- btrfs_qgroup_wait_for_completion()
| |- running == true;
| |- wait_for_completion();
btrfs_qgroup_rescan_worker is never queued, thus no one is going to wake
up close_ctree() and we get a deadlock.
All involved qgroup_rescan_init() callers are:
- btrfs_qgroup_rescan()
The example above. It's possible to trigger the deadlock when error
happened.
- btrfs_quota_enable()
Not possible. Just after qgroup_rescan_init() we queue the work.
- btrfs_read_qgroup_config()
It's possible to trigger the deadlock. It only init the work, the
work queueing happens in btrfs_qgroup_rescan_resume().
Thus if error happened in between, deadlock is possible.
We shouldn't set fs_info->qgroup_rescan_running just in
qgroup_rescan_init(), as at that stage we haven't yet queued qgroup
rescan worker to run.
[FIX]
Set qgroup_rescan_running before queueing the work, so that we ensure
the rescan work is queued when we wait for it.
Fixes: 8d9eddad19 ("Btrfs: fix qgroup rescan worker initialization")
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ Change subject and cause analyse, use a smaller fix ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are now using these for all roots, rename them to btrfs_put_root()
and btrfs_grab_root();
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we are going to track leaked roots we need to free them all the same
way, so don't kfree() roots directly, use btrfs_put_fs_root.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We clean up the delayed references when we abort a transaction but we
leave the pending qgroup extent records behind, leaking memory.
This patch destroys the extent records when we destroy the delayed refs
and makes sure ensure they're gone before releasing the transaction.
Fixes: 3368d001ba ("btrfs: qgroup: Record possible quota-related extent for qgroup.")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
[ Rebased to latest upstream, remove to_qgroup() helper, use
rbtree_postorder_for_each_entry_safe() wrapper ]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[PROBLEM]
qgroup create/remove code is currently returning EINVAL when the user
tries to create a qgroup on a subvolume without quota enabled. EINVAL is
already being used for too many error scenarios so that is hard to
depict what is the problem.
[FIX]
Currently scrub and balance code return -ENOTCONN when the user tries to
cancel/pause and no scrub or balance is currently running for the
desired subvolume. Do the same here by returning -ENOTCONN when a user
tries to create/delete/assing/list a qgroup on a subvolume without quota
enabled.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Remove some variables that are set only to be checked later, and never
used.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Marcos Paulo de Souza <mpdesouza@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When running xfstests on the current btrfs I get the following splat from
kmemleak:
unreferenced object 0xffff88821b2404e0 (size 32):
comm "kworker/u4:7", pid 26663, jiffies 4295283698 (age 8.776s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 10 ff fd 26 82 88 ff ff ...........&....
10 ff fd 26 82 88 ff ff 20 ff fd 26 82 88 ff ff ...&.... ..&....
backtrace:
[<00000000f94fd43f>] ulist_alloc+0x25/0x60 [btrfs]
[<00000000fd023d99>] btrfs_find_all_roots_safe+0x41/0x100 [btrfs]
[<000000008f17bd32>] btrfs_find_all_roots+0x52/0x70 [btrfs]
[<00000000b7660afb>] btrfs_qgroup_rescan_worker+0x343/0x680 [btrfs]
[<0000000058e66778>] btrfs_work_helper+0xac/0x1e0 [btrfs]
[<00000000f0188930>] process_one_work+0x1cf/0x350
[<00000000af5f2f8e>] worker_thread+0x28/0x3c0
[<00000000b55a1add>] kthread+0x109/0x120
[<00000000f88cbd17>] ret_from_fork+0x35/0x40
This corresponds to:
(gdb) l *(btrfs_find_all_roots_safe+0x41)
0x8d7e1 is in btrfs_find_all_roots_safe (fs/btrfs/backref.c:1413).
1408
1409 tmp = ulist_alloc(GFP_NOFS);
1410 if (!tmp)
1411 return -ENOMEM;
1412 *roots = ulist_alloc(GFP_NOFS);
1413 if (!*roots) {
1414 ulist_free(tmp);
1415 return -ENOMEM;
1416 }
1417
Following the lifetime of the allocated 'roots' ulist, it gets freed
again in btrfs_qgroup_account_extent().
But this does not happen if the function is called with the
'BTRFS_FS_QUOTA_ENABLED' flag cleared, then btrfs_qgroup_account_extent()
does a short leave and directly returns.
Instead of directly returning we should jump to the 'out_free' in order to
free all resources as expected.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
The branch of qgroup_rescan_init which is executed from the mount
path prints wrong errors messages. The textual print out in case
BTRFS_QGROUP_STATUS_FLAG_RESCAN/BTRFS_QGROUP_STATUS_FLAG_ON are not
set are transposed. Fix it by exchanging their place.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The type name is misleading, a single entry is named 'cache' while this
normally means a collection of objects. Rename that everywhere. Also the
identifier was quite long, making function prototypes harder to format.
Suggested-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper is trivial and we can understand what the atomic_inc on
something named refs does.
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 9e0af23764 ("Btrfs: fix task hang under heavy compressed
write") worked around the issue that a recycled work item could get a
false dependency on the original work item due to how the workqueue code
guarantees non-reentrancy. It did so by giving different work functions
to different types of work.
However, the fixes in the previous few patches are more complete, as
they prevent a work item from being recycled at all (except for a tiny
window that the kernel workqueue code handles for us). This obsoletes
the previous fix, so we don't need the unique helpers for correctness.
The only other reason to keep them would be so they show up in stack
traces, but they always seem to be optimized to a tail call, so they
don't show up anyways. So, let's just get rid of the extra indirection.
While we're here, rename normal_work_helper() to the more informative
btrfs_work_helper().
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit fc97fab0ea ("btrfs: Replace fs_info->qgroup_rescan_worker
workqueue with btrfs_workqueue.") converted qgroup_rescan_work to be
initialized with btrfs_init_work(), but it left behind an unnecessary
memset(). Get rid of the memset().
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For btrfs:qgroup_meta_reserve event, the trace event can output garbage:
qgroup_meta_reserve: 9c7f6acc-b342-4037-bc47-7f6e4d2232d7: refroot=5(FS_TREE) type=DATA diff=2
The diff should always be alinged to sector size (4k), so there is
definitely something wrong.
[CAUSE]
For the wrong @diff, it's caused by wrong parameter order.
The correct parameters are:
struct btrfs_root, s64 diff, int type.
However the parameters used are:
struct btrfs_root, int type, s64 diff.
Fixes: 4ee0d8832c ("btrfs: qgroup: Update trace events for metadata reservation")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The following script can cause btrfs qgroup data space leak:
mkfs.btrfs -f $dev
mount $dev -o nospace_cache $mnt
btrfs subv create $mnt/subv
btrfs quota en $mnt
btrfs quota rescan -w $mnt
btrfs qgroup limit 128m $mnt/subv
for (( i = 0; i < 3; i++)); do
# Create 3 64M holes for latter fallocate to fail
truncate -s 192m $mnt/subv/file
xfs_io -c "pwrite 64m 4k" $mnt/subv/file > /dev/null
xfs_io -c "pwrite 128m 4k" $mnt/subv/file > /dev/null
sync
# it's supposed to fail, and each failure will leak at least 64M
# data space
xfs_io -f -c "falloc 0 192m" $mnt/subv/file &> /dev/null
rm $mnt/subv/file
sync
done
# Shouldn't fail after we removed the file
xfs_io -f -c "falloc 0 64m" $mnt/subv/file
[CAUSE]
Btrfs qgroup data reserve code allow multiple reservations to happen on
a single extent_changeset:
E.g:
btrfs_qgroup_reserve_data(inode, &data_reserved, 0, SZ_1M);
btrfs_qgroup_reserve_data(inode, &data_reserved, SZ_1M, SZ_2M);
btrfs_qgroup_reserve_data(inode, &data_reserved, 0, SZ_4M);
Btrfs qgroup code has its internal tracking to make sure we don't
double-reserve in above example.
The only pattern utilizing this feature is in the main while loop of
btrfs_fallocate() function.
However btrfs_qgroup_reserve_data()'s error handling has a bug in that
on error it clears all ranges in the io_tree with EXTENT_QGROUP_RESERVED
flag but doesn't free previously reserved bytes.
This bug has a two fold effect:
- Clearing EXTENT_QGROUP_RESERVED ranges
This is the correct behavior, but it prevents
btrfs_qgroup_check_reserved_leak() to catch the leakage as the
detector is purely EXTENT_QGROUP_RESERVED flag based.
- Leak the previously reserved data bytes.
The bug manifests when N calls to btrfs_qgroup_reserve_data are made and
the last one fails, leaking space reserved in the previous ones.
[FIX]
Also free previously reserved data bytes when btrfs_qgroup_reserve_data
fails.
Fixes: 5247255370 ("btrfs: qgroup: Introduce btrfs_qgroup_reserve_data function")
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Under the following case with qgroup enabled, if some error happened
after we have reserved delalloc space, then in error handling path, we
could cause qgroup data space leakage:
From btrfs_truncate_block() in inode.c:
ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
block_start, blocksize);
if (ret)
goto out;
again:
page = find_or_create_page(mapping, index, mask);
if (!page) {
btrfs_delalloc_release_space(inode, data_reserved,
block_start, blocksize, true);
btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ret = -ENOMEM;
goto out;
}
[CAUSE]
In the above case, btrfs_delalloc_reserve_space() will call
btrfs_qgroup_reserve_data() and mark the io_tree range with
EXTENT_QGROUP_RESERVED flag.
In the error handling path, we have the following call stack:
btrfs_delalloc_release_space()
|- btrfs_free_reserved_data_space()
|- btrsf_qgroup_free_data()
|- __btrfs_qgroup_release_data(reserved=@reserved, free=1)
|- qgroup_free_reserved_data(reserved=@reserved)
|- clear_record_extent_bits();
|- freed += changeset.bytes_changed;
However due to a completion bug, qgroup_free_reserved_data() will clear
EXTENT_QGROUP_RESERVED flag in BTRFS_I(inode)->io_failure_tree, other
than the correct BTRFS_I(inode)->io_tree.
Since io_failure_tree is never marked with that flag,
btrfs_qgroup_free_data() will not free any data reserved space at all,
causing a leakage.
This type of error handling can only be triggered by errors outside of
qgroup code. So EDQUOT error from qgroup can't trigger it.
[FIX]
Fix the wrong target io_tree.
Reported-by: Josef Bacik <josef@toxicpanda.com>
Fixes: bc42bda223 ("btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges")
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a race between setting up a qgroup rescan worker and completing
a qgroup rescan worker that can lead to callers of the qgroup rescan wait
ioctl to either not wait for the rescan worker to complete or to hang
forever due to missing wake ups. The following diagram shows a sequence
of steps that illustrates the race.
CPU 1 CPU 2 CPU 3
btrfs_ioctl_quota_rescan()
btrfs_qgroup_rescan()
qgroup_rescan_init()
mutex_lock(&fs_info->qgroup_rescan_lock)
spin_lock(&fs_info->qgroup_lock)
fs_info->qgroup_flags |=
BTRFS_QGROUP_STATUS_FLAG_RESCAN
init_completion(
&fs_info->qgroup_rescan_completion)
fs_info->qgroup_rescan_running = true
mutex_unlock(&fs_info->qgroup_rescan_lock)
spin_unlock(&fs_info->qgroup_lock)
btrfs_init_work()
--> starts the worker
btrfs_qgroup_rescan_worker()
mutex_lock(&fs_info->qgroup_rescan_lock)
fs_info->qgroup_flags &=
~BTRFS_QGROUP_STATUS_FLAG_RESCAN
mutex_unlock(&fs_info->qgroup_rescan_lock)
starts transaction, updates qgroup status
item, etc
btrfs_ioctl_quota_rescan()
btrfs_qgroup_rescan()
qgroup_rescan_init()
mutex_lock(&fs_info->qgroup_rescan_lock)
spin_lock(&fs_info->qgroup_lock)
fs_info->qgroup_flags |=
BTRFS_QGROUP_STATUS_FLAG_RESCAN
init_completion(
&fs_info->qgroup_rescan_completion)
fs_info->qgroup_rescan_running = true
mutex_unlock(&fs_info->qgroup_rescan_lock)
spin_unlock(&fs_info->qgroup_lock)
btrfs_init_work()
--> starts another worker
mutex_lock(&fs_info->qgroup_rescan_lock)
fs_info->qgroup_rescan_running = false
mutex_unlock(&fs_info->qgroup_rescan_lock)
complete_all(&fs_info->qgroup_rescan_completion)
Before the rescan worker started by the task at CPU 3 completes, if
another task calls btrfs_ioctl_quota_rescan(), it will get -EINPROGRESS
because the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN is set at
fs_info->qgroup_flags, which is expected and correct behaviour.
However if other task calls btrfs_ioctl_quota_rescan_wait() before the
rescan worker started by the task at CPU 3 completes, it will return
immediately without waiting for the new rescan worker to complete,
because fs_info->qgroup_rescan_running is set to false by CPU 2.
This race is making test case btrfs/171 (from fstests) to fail often:
btrfs/171 9s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad)
--- tests/btrfs/171.out 2018-09-16 21:30:48.505104287 +0100
+++ /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad 2019-09-19 02:01:36.938486039 +0100
@@ -1,2 +1,3 @@
QA output created by 171
+ERROR: quota rescan failed: Operation now in progress
Silence is golden
...
(Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/btrfs/171.out /home/fdmanana/git/hub/xfstests/results//btrfs/171.out.bad' to see the entire diff)
That is because the test calls the btrfs-progs commands "qgroup quota
rescan -w", "qgroup assign" and "qgroup remove" in a sequence that makes
calls to the rescan start ioctl fail with -EINPROGRESS (note the "btrfs"
commands 'qgroup assign' and 'qgroup remove' often call the rescan start
ioctl after calling the qgroup assign ioctl,
btrfs_ioctl_qgroup_assign()), since previous waits didn't actually wait
for a rescan worker to complete.
Another problem the race can cause is missing wake ups for waiters,
since the call to complete_all() happens outside a critical section and
after clearing the flag BTRFS_QGROUP_STATUS_FLAG_RESCAN. In the sequence
diagram above, if we have a waiter for the first rescan task (executed
by CPU 2), then fs_info->qgroup_rescan_completion.wait is not empty, and
if after the rescan worker clears BTRFS_QGROUP_STATUS_FLAG_RESCAN and
before it calls complete_all() against
fs_info->qgroup_rescan_completion, the task at CPU 3 calls
init_completion() against fs_info->qgroup_rescan_completion which
re-initilizes its wait queue to an empty queue, therefore causing the
rescan worker at CPU 2 to call complete_all() against an empty queue,
never waking up the task waiting for that rescan worker.
Fix this by clearing BTRFS_QGROUP_STATUS_FLAG_RESCAN and setting
fs_info->qgroup_rescan_running to false in the same critical section,
delimited by the mutex fs_info->qgroup_rescan_lock, as well as doing the
call to complete_all() in that same critical section. This gives the
protection needed to avoid rescan wait ioctl callers not waiting for a
running rescan worker and the lost wake ups problem, since setting that
rescan flag and boolean as well as initializing the wait queue is done
already in a critical section delimited by that mutex (at
qgroup_rescan_init()).
Fixes: 57254b6ebc ("Btrfs: add ioctl to wait for qgroup rescan completion")
Fixes: d2c609b834 ("btrfs: properly track when rescan worker is running")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we try to delete qgroups, we're pretty cautious, we make sure both
qgroups exist and there is a relationship between them, then try to
delete the relation.
This behavior is OK, but the problem is we need to two relation items,
and if we failed the first item deletion, we error out, leaving the
other relation item in qgroup tree.
Sometimes the error from del_qgroup_relation_item() could just be
-ENOENT, thus we can ignore that error and continue without any problem.
Further more, such cautious behavior makes qgroup relation deletion
impossible for orphan relation items.
This patch will enhance __del_qgroup_relation():
- If both qgroups and their relation items exist
Go the regular deletion routine and update their accounting if needed.
- If any qgroup or relation item doesn't exist
Then we still try to delete the orphan items anyway, but don't trigger
the accounting update.
By this, we try our best to remove relation items, and can handle orphan
relation items properly, while still keep the existing behavior for good
qgroup tree.
Reported-by: Andrei Borzenkov <arvidjaar@gmail.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is prep work for moving all of the block group cache code into its
own file.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Lockdep will report the following circular locking dependency:
WARNING: possible circular locking dependency detected
5.2.0-rc2-custom #24 Tainted: G O
------------------------------------------------------
btrfs/8631 is trying to acquire lock:
000000002536438c (&fs_info->qgroup_ioctl_lock#2){+.+.}, at: btrfs_qgroup_inherit+0x40/0x620 [btrfs]
but task is already holding lock:
000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (&fs_info->tree_log_mutex){+.+.}:
__mutex_lock+0x76/0x940
mutex_lock_nested+0x1b/0x20
btrfs_commit_transaction+0x475/0xa00 [btrfs]
btrfs_commit_super+0x71/0x80 [btrfs]
close_ctree+0x2bd/0x320 [btrfs]
btrfs_put_super+0x15/0x20 [btrfs]
generic_shutdown_super+0x72/0x110
kill_anon_super+0x18/0x30
btrfs_kill_super+0x16/0xa0 [btrfs]
deactivate_locked_super+0x3a/0x80
deactivate_super+0x51/0x60
cleanup_mnt+0x3f/0x80
__cleanup_mnt+0x12/0x20
task_work_run+0x94/0xb0
exit_to_usermode_loop+0xd8/0xe0
do_syscall_64+0x210/0x240
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #1 (&fs_info->reloc_mutex){+.+.}:
__mutex_lock+0x76/0x940
mutex_lock_nested+0x1b/0x20
btrfs_commit_transaction+0x40d/0xa00 [btrfs]
btrfs_quota_enable+0x2da/0x730 [btrfs]
btrfs_ioctl+0x2691/0x2b40 [btrfs]
do_vfs_ioctl+0xa9/0x6d0
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x65/0x240
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #0 (&fs_info->qgroup_ioctl_lock#2){+.+.}:
lock_acquire+0xa7/0x190
__mutex_lock+0x76/0x940
mutex_lock_nested+0x1b/0x20
btrfs_qgroup_inherit+0x40/0x620 [btrfs]
create_pending_snapshot+0x9d7/0xe60 [btrfs]
create_pending_snapshots+0x94/0xb0 [btrfs]
btrfs_commit_transaction+0x415/0xa00 [btrfs]
btrfs_mksubvol+0x496/0x4e0 [btrfs]
btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs]
btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs]
btrfs_ioctl+0xa90/0x2b40 [btrfs]
do_vfs_ioctl+0xa9/0x6d0
ksys_ioctl+0x67/0x90
__x64_sys_ioctl+0x1a/0x20
do_syscall_64+0x65/0x240
entry_SYSCALL_64_after_hwframe+0x49/0xbe
other info that might help us debug this:
Chain exists of:
&fs_info->qgroup_ioctl_lock#2 --> &fs_info->reloc_mutex --> &fs_info->tree_log_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&fs_info->tree_log_mutex);
lock(&fs_info->reloc_mutex);
lock(&fs_info->tree_log_mutex);
lock(&fs_info->qgroup_ioctl_lock#2);
*** DEADLOCK ***
6 locks held by btrfs/8631:
#0: 00000000ed8f23f6 (sb_writers#12){.+.+}, at: mnt_want_write_file+0x28/0x60
#1: 000000009fb1597a (&type->i_mutex_dir_key#10/1){+.+.}, at: btrfs_mksubvol+0x70/0x4e0 [btrfs]
#2: 0000000088c5ad88 (&fs_info->subvol_sem){++++}, at: btrfs_mksubvol+0x128/0x4e0 [btrfs]
#3: 000000009606fc3e (sb_internal#2){.+.+}, at: start_transaction+0x37a/0x520 [btrfs]
#4: 00000000f82bbdf5 (&fs_info->reloc_mutex){+.+.}, at: btrfs_commit_transaction+0x40d/0xa00 [btrfs]
#5: 000000003d52cc23 (&fs_info->tree_log_mutex){+.+.}, at: create_pending_snapshot+0x8b6/0xe60 [btrfs]
[CAUSE]
Due to the delayed subvolume creation, we need to call
btrfs_qgroup_inherit() inside commit transaction code, with a lot of
other mutex hold.
This hell of lock chain can lead to above problem.
[FIX]
On the other hand, we don't really need to hold qgroup_ioctl_lock if
we're in the context of create_pending_snapshot().
As in that context, we're the only one being able to modify qgroup.
All other qgroup functions which needs qgroup_ioctl_lock are either
holding a transaction handle, or will start a new transaction:
Functions will start a new transaction():
* btrfs_quota_enable()
* btrfs_quota_disable()
Functions hold a transaction handler:
* btrfs_add_qgroup_relation()
* btrfs_del_qgroup_relation()
* btrfs_create_qgroup()
* btrfs_remove_qgroup()
* btrfs_limit_qgroup()
* btrfs_qgroup_inherit() call inside create_subvol()
So we have a higher level protection provided by transaction, thus we
don't need to always hold qgroup_ioctl_lock in btrfs_qgroup_inherit().
Only the btrfs_qgroup_inherit() call in create_subvol() needs to hold
qgroup_ioctl_lock, while the btrfs_qgroup_inherit() call in
create_pending_snapshot() is already protected by transaction.
So the fix is to detect the context by checking
trans->transaction->state.
If we're at TRANS_STATE_COMMIT_DOING, then we're in commit transaction
context and no need to get the mutex.
Reported-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>