The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.
[akpm@linux-foundation.org: fix mm/migrate.c]
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are some similar functions for migration target allocation. Since
there is no fundamental difference, it's better to keep just one rather
than keeping all variants. This patch implements base migration target
allocation function. In the following patches, variants will be converted
to use this function.
Changes should be mechanical, but, unfortunately, there are some
differences. First, some callers' nodemask is assgined to NULL since NULL
nodemask will be considered as all available nodes, that is,
&node_states[N_MEMORY]. Second, for hugetlb page allocation, gfp_mask is
redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if
user provided gfp_mask has it. This is because future caller of this
function requires to set this node constaint. Lastly, if provided nodeid
is NUMA_NO_NODE, nodeid is set up to the node where migration source
lives. It helps to remove simple wrappers for setting up the nodeid.
Note that PageHighmem() call in previous function is changed to open-code
"is_highmem_idx()" since it provides more readability.
[akpm@linux-foundation.org: tweak patch title, per Vlastimil]
[akpm@linux-foundation.org: fix typo in comment]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When onlining a first memory block in a zone, pcp lists are not updated
thus pcp struct will have the default setting of ->high = 0,->batch = 1.
This means till the second memory block in a zone(if it have) is onlined
the pcp lists of this zone will not contain any pages because pcp's
->count is always greater than ->high thus free_pcppages_bulk() is called
to free batch size(=1) pages every time system wants to add a page to the
pcp list through free_unref_page().
To put this in a word, system is not using benefits offered by the pcp
lists when there is a single onlineable memory block in a zone. Correct
this by always updating the pcp lists when memory block is onlined.
Fixes: 1f522509c7 ("mem-hotplug: avoid multiple zones sharing same boot strapping boot_pageset")
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Link: http://lkml.kernel.org/r/1596372896-15336-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is to introduce a general dummy helper. memory_add_physaddr_to_nid()
is a fallback option to get the nid in case NUMA_NO_NID is detected.
After this patch, arm64/sh/s390 can simply use the general dummy version.
PowerPC/x86/ia64 will still use their specific version.
This is the preparation to set a fallback value for dev_dax->target_node.
Signed-off-by: Jia He <justin.he@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chuhong Yuan <hslester96@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Kaly Xin <Kaly.Xin@arm.com>
Link: http://lkml.kernel.org/r/20200710031619.18762-2-justin.he@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's not completely obvious why we have to shuffle the complete zone -
introduced in commit e900a918b0 ("mm: shuffle initial free memory to
improve memory-side-cache utilization") - because some sort of shuffling
is already performed when onlining pages via __free_one_page(), placing
MAX_ORDER-1 pages either to the head or the tail of the freelist. Let's
document why we have to shuffle the complete zone when exposing larger,
contiguous physical memory areas to the buddy.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200624094741.9918-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The global variable "vm_total_pages" is a relic from older days. There is
only a single user that reads the variable - build_all_zonelists() - and
the first thing it does is update it.
Use a local variable in build_all_zonelists() instead and remove the
global variable.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200619132410.23859-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When working with very large nodes, poisoning the struct pages (for which
there will be very many) can take a very long time. If the system is
using voluntary preemptions, the software watchdog will not be able to
detect forward progress. This patch addresses this issue by offering to
give up time like __remove_pages() does. This behavior was introduced in
v5.6 with: commit d33695b16a ("mm/memory_hotplug: poison memmap in
remove_pfn_range_from_zone()")
Alternately, init_page_poison could do this cond_resched(), but it seems
to me that the caller of init_page_poison() is what actually knows whether
or not it should relax its own priority.
Based on Dan's notes, I think this is perfectly safe: commit f931ab479d
("mm: fix devm_memremap_pages crash, use mem_hotplug_{begin, done}")
Aside from fixing the lockup, it is also a friendlier thing to do on lower
core systems that might wipe out large chunks of hotplug memory (probably
not a very common case).
Fixes this kind of splat:
watchdog: BUG: soft lockup - CPU#46 stuck for 22s! [daxctl:9922]
irq event stamp: 138450
hardirqs last enabled at (138449): [<ffffffffa1001f26>] trace_hardirqs_on_thunk+0x1a/0x1c
hardirqs last disabled at (138450): [<ffffffffa1001f42>] trace_hardirqs_off_thunk+0x1a/0x1c
softirqs last enabled at (138448): [<ffffffffa1e00347>] __do_softirq+0x347/0x456
softirqs last disabled at (138443): [<ffffffffa10c416d>] irq_exit+0x7d/0xb0
CPU: 46 PID: 9922 Comm: daxctl Not tainted 5.7.0-BEN-14238-g373c6049b336 #30
Hardware name: Intel Corporation PURLEY/PURLEY, BIOS PLYXCRB1.86B.0578.D07.1902280810 02/28/2019
RIP: 0010:memset_erms+0x9/0x10
Code: c1 e9 03 40 0f b6 f6 48 b8 01 01 01 01 01 01 01 01 48 0f af c6 f3 48 ab 89 d1 f3 aa 4c 89 c8 c3 90 49 89 f9 40 88 f0 48 89 d1 <f3> aa 4c 89 c8 c3 90 49 89 fa 40 0f b6 ce 48 b8 01 01 01 01 01 01
Call Trace:
remove_pfn_range_from_zone+0x3a/0x380
memunmap_pages+0x17f/0x280
release_nodes+0x22a/0x260
__device_release_driver+0x172/0x220
device_driver_detach+0x3e/0xa0
unbind_store+0x113/0x130
kernfs_fop_write+0xdc/0x1c0
vfs_write+0xde/0x1d0
ksys_write+0x58/0xd0
do_syscall_64+0x5a/0x120
entry_SYSCALL_64_after_hwframe+0x49/0xb3
Built 2 zonelists, mobility grouping on. Total pages: 49050381
Policy zone: Normal
Built 3 zonelists, mobility grouping on. Total pages: 49312525
Policy zone: Normal
David said: "It really only is an issue for devmem. Ordinary
hotplugged system memory is not affected (onlined/offlined in memory
block granularity)."
Link: http://lkml.kernel.org/r/20200619231213.1160351-1-ben.widawsky@intel.com
Fixes: commit d33695b16a ("mm/memory_hotplug: poison memmap in remove_pfn_range_from_zone()")
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reported-by: "Scargall, Steve" <steve.scargall@intel.com>
Reported-by: Ben Widawsky <ben.widawsky@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
virtio-mem
doorbell mapping for vdpa
config interrupt support in ifc
fixes all over the place
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEXQn9CHHI+FuUyooNKB8NuNKNVGkFAl7fZ6APHG1zdEByZWRo
YXQuY29tAAoJECgfDbjSjVRpkDoIAMcBcQx5su1iuX7vT35xzUWZO478eAf1jOMZ
7KxKUVBeztkcxVFUlRVRu9MR6wOzwHils+1HD6025775Smr5M6x3aJxR6xOORaBj
RoU6OVGkpDvbzsxlhW+xhONz4O7/RkveKJPCwzGjqHrsFeh92lkfTqroz/EuNpw+
LZsO0+DhdUf123HbwHQp5lxW8EjyrRabgeZZg/D9VLPhoCP88vCjRhBXU2GPuaUl
/UNXsQafn4xUgrxPaoN5f4Phn/P46NNrbZ1jmlkw/z/3QhF/DhktGXGaZsIHDCN/
vicUii0or5QLeBsZpMbKko/BIe2xWHxFjkMRhMOMZOfcBb6sMBI=
=auUa
-----END PGP SIGNATURE-----
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
Pull virtio updates from Michael Tsirkin:
- virtio-mem: paravirtualized memory hotplug
- support doorbell mapping for vdpa
- config interrupt support in ifc
- fixes all over the place
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: (40 commits)
vhost/test: fix up after API change
virtio_mem: convert device block size into 64bit
virtio-mem: drop unnecessary initialization
ifcvf: implement config interrupt in IFCVF
vhost: replace -1 with VHOST_FILE_UNBIND in ioctls
vhost_vdpa: Support config interrupt in vdpa
ifcvf: ignore continuous setting same status value
virtio-mem: Don't rely on implicit compiler padding for requests
virtio-mem: Try to unplug the complete online memory block first
virtio-mem: Use -ETXTBSY as error code if the device is busy
virtio-mem: Unplug subblocks right-to-left
virtio-mem: Drop manual check for already present memory
virtio-mem: Add parent resource for all added "System RAM"
virtio-mem: Better retry handling
virtio-mem: Offline and remove completely unplugged memory blocks
mm/memory_hotplug: Introduce offline_and_remove_memory()
virtio-mem: Allow to offline partially unplugged memory blocks
mm: Allow to offline unmovable PageOffline() pages via MEM_GOING_OFFLINE
virtio-mem: Paravirtualized memory hotunplug part 2
virtio-mem: Paravirtualized memory hotunplug part 1
...
There is a typo in comment, fix it.
s/recoreded/recorded
Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200410160328.13843-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: Interface to add driver-managed system
ram", v4.
kexec (via kexec_load()) can currently not properly handle memory added
via dax/kmem, and will have similar issues with virtio-mem. kexec-tools
will currently add all memory to the fixed-up initial firmware memmap. In
case of dax/kmem, this means that - in contrast to a proper reboot - how
that persistent memory will be used can no longer be configured by the
kexec'd kernel. In case of virtio-mem it will be harmful, because that
memory might contain inaccessible pieces that require coordination with
hypervisor first.
In both cases, we want to let the driver in the kexec'd kernel handle
detecting and adding the memory, like during an ordinary reboot.
Introduce add_memory_driver_managed(). More on the samentics are in patch
#1.
In the future, we might want to make this behavior configurable for
dax/kmem- either by configuring it in the kernel (which would then also
allow to configure kexec_file_load()) or in kexec-tools by also adding
"System RAM (kmem)" memory from /proc/iomem to the fixed-up initial
firmware memmap.
More on the motivation can be found in [1] and [2].
[1] https://lkml.kernel.org/r/20200429160803.109056-1-david@redhat.com
[2] https://lkml.kernel.org/r/20200430102908.10107-1-david@redhat.com
This patch (of 3):
Some device drivers rely on memory they managed to not get added to the
initial (firmware) memmap as system RAM - so it's not used as initial
system RAM by the kernel and the driver is under control. While this is
the case during cold boot and after a reboot, kexec is not aware of that
and might add such memory to the initial (firmware) memmap of the kexec
kernel. We need ways to teach kernel and userspace that this system ram
is different.
For example, dax/kmem allows to decide at runtime if persistent memory is
to be used as system ram. Another future user is virtio-mem, which has to
coordinate with its hypervisor to deal with inaccessible parts within
memory resources.
We want to let users in the kernel (esp. kexec) but also user space
(esp. kexec-tools) know that this memory has different semantics and
needs to be handled differently:
1. Don't create entries in /sys/firmware/memmap/
2. Name the memory resource "System RAM ($DRIVER)" (exposed via
/proc/iomem) ($DRIVER might be "kmem", "virtio_mem").
3. Flag the memory resource IORESOURCE_MEM_DRIVER_MANAGED
/sys/firmware/memmap/ [1] represents the "raw firmware-provided memory
map" because "on most architectures that firmware-provided memory map is
modified afterwards by the kernel itself". The primary user is kexec on
x86-64. Since commit d96ae53091 ("memory-hotplug: create
/sys/firmware/memmap entry for new memory"), we add all hotplugged memory
to that firmware memmap - which makes perfect sense for traditional memory
hotplug on x86-64, where real HW will also add hotplugged DIMMs to the
firmware memmap. We replicate what the "raw firmware-provided memory map"
looks like after hot(un)plug.
To keep things simple, let the user provide the full resource name instead
of only the driver name - this way, we don't have to manually
allocate/craft strings for memory resources. Also use the resource name
to make decisions, to avoid passing additional flags. In case the name
isn't "System RAM", it's special.
We don't have to worry about firmware_map_remove() on the removal path.
If there is no entry, it will simply return with -EINVAL.
We'll adapt dax/kmem in a follow-up patch.
[1] https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-firmware-memmap
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200508084217.9160-1-david@redhat.com
Link: http://lkml.kernel.org/r/20200508084217.9160-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The comment in add_memory_resource() is stale: hotadd_new_pgdat() will no
longer call get_pfn_range_for_nid(), as a hotadded pgdat will simply span
no pages at all, until memory is moved to the zone/node via
move_pfn_range_to_zone() - e.g., when onlining memory blocks.
The only archs that care about memblocks for hotplugged memory (either for
iterating over all system RAM or testing for memory validity) are arm64,
s390x, and powerpc - due to CONFIG_ARCH_KEEP_MEMBLOCK. Without
CONFIG_ARCH_KEEP_MEMBLOCK, we can simply stop messing with memblocks.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: http://lkml.kernel.org/r/20200422155353.25381-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: handle memblocks only with
CONFIG_ARCH_KEEP_MEMBLOCK", v1.
A hotadded node/pgdat will span no pages at all, until memory is moved to
the zone/node via move_pfn_range_to_zone() -> resize_pgdat_range - e.g.,
when onlining memory blocks. We don't have to initialize the
node_start_pfn to the memory we are adding.
This patch (of 2):
Especially, there is an inconsistency:
- Hotplugging memory to a memory-less node with cpus: node_start_pf == 0
- Offlining and removing last memory from a node: node_start_pfn == 0
- Hotplugging memory to a memory-less node without cpus: node_start_pfn != 0
As soon as memory is onlined, node_start_pfn is overwritten with the
actual start. E.g., when adding two DIMMs but only onlining one of both,
only that DIMM (with online memory blocks) is spanned by the node.
Currently, the validity of node_start_pfn really is linked to
node_spanned_pages != 0. With node_spanned_pages == 0 (e.g., before
onlining memory), it has no meaning.
So let's stop setting node_start_pfn, just to be overwritten via
move_pfn_range_to_zone(). This avoids confusion when looking at the code,
wondering which magic will be performed with the node_start_pfn in this
function, when hotadding a pgdat.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200422155353.25381-1-david@redhat.com
Link: http://lkml.kernel.org/r/20200422155353.25381-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fortunately, all users of is_mem_section_removable() are gone. Get rid of
it, including some now unnecessary functions.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Oscar Salvador <osalvador@suse.de>
Link: http://lkml.kernel.org/r/20200407135416.24093-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
virtio-mem wants to offline and remove a memory block once it unplugged
all subblocks (e.g., using alloc_contig_range()). Let's provide
an interface to do that from a driver. virtio-mem already supports to
offline partially unplugged memory blocks. Offlining a fully unplugged
memory block will not require to migrate any pages. All unplugged
subblocks are PageOffline() and have a reference count of 0 - so
offlining code will simply skip them.
All we need is an interface to offline and remove the memory from kernel
module context, where we don't have access to the memory block devices
(esp. find_memory_block() and device_offline()) and the device hotplug
lock.
To keep things simple, allow to only work on a single memory block.
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-9-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
virtio-mem wants to allow to offline memory blocks of which some parts
were unplugged (allocated via alloc_contig_range()), especially, to later
offline and remove completely unplugged memory blocks. The important part
is that PageOffline() has to remain set until the section is offline, so
these pages will never get accessed (e.g., when dumping). The pages should
not be handed back to the buddy (which would require clearing PageOffline()
and result in issues if offlining fails and the pages are suddenly in the
buddy).
Let's allow to do that by allowing to isolate any PageOffline() page
when offlining. This way, we can reach the memory hotplug notifier
MEM_GOING_OFFLINE, where the driver can signal that he is fine with
offlining this page by dropping its reference count. PageOffline() pages
with a reference count of 0 can then be skipped when offlining the
pages (like if they were free, however they are not in the buddy).
Anybody who uses PageOffline() pages and does not agree to offline them
(e.g., Hyper-V balloon, XEN balloon, VMWare balloon for 2MB pages) will not
decrement the reference count and make offlining fail when trying to
migrate such an unmovable page. So there should be no observable change.
Same applies to balloon compaction users (movable PageOffline() pages), the
pages will simply be migrated.
Note 1: If offlining fails, a driver has to increment the reference
count again in MEM_CANCEL_OFFLINE.
Note 2: A driver that makes use of this has to be aware that re-onlining
the memory block has to be handled by hooking into onlining code
(online_page_callback_t), resetting the page PageOffline() and
not giving them to the buddy.
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-7-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
classzone_idx is just different name for high_zoneidx now. So, integrate
them and add some comment to struct alloc_context in order to reduce
future confusion about the meaning of this variable.
The accessor, ac_classzone_idx() is also removed since it isn't needed
after integration.
In addition to integration, this patch also renames high_zoneidx to
highest_zoneidx since it represents more precise meaning.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ye Xiaolong <xiaolong.ye@intel.com>
Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_HAVE_MEMBLOCK_NODE_MAP is used to differentiate initialization of
nodes and zones structures between the systems that have region to node
mapping in memblock and those that don't.
Currently all the NUMA architectures enable this option and for the
non-NUMA systems we can presume that all the memory belongs to node 0 and
therefore the compile time configuration option is not required.
The remaining few architectures that use DISCONTIGMEM without NUMA are
easily updated to use memblock_add_node() instead of memblock_add() and
thus have proper correspondence of memblock regions to NUMA nodes.
Still, free_area_init_node() must have a backward compatible version
because its semantics with and without CONFIG_HAVE_MEMBLOCK_NODE_MAP is
different. Once all the architectures will use the new semantics, the
entire compatibility layer can be dropped.
To avoid addition of extra run time memory to store node id for
architectures that keep memblock but have only a single node, the node id
field of the memblock_region is guarded by CONFIG_NEED_MULTIPLE_NODES and
the corresponding accessors presume that in those cases it is always 0.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com> [arm64]
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
devm_memremap_pages() is currently used by the PCI P2PDMA code to create
struct page mappings for IO memory. At present, these mappings are
created with PAGE_KERNEL which implies setting the PAT bits to be WB.
However, on x86, an mtrr register will typically override this and force
the cache type to be UC-. In the case firmware doesn't set this
register it is effectively WB and will typically result in a machine
check exception when it's accessed.
Other arches are not currently likely to function correctly seeing they
don't have any MTRR registers to fall back on.
To solve this, provide a way to specify the pgprot value explicitly to
arch_add_memory().
Of the arches that support MEMORY_HOTPLUG: x86_64, and arm64 need a
simple change to pass the pgprot_t down to their respective functions
which set up the page tables. For x86_32, set the page tables
explicitly using _set_memory_prot() (seeing they are already mapped).
For ia64, s390 and sh, reject anything but PAGE_KERNEL settings -- this
should be fine, for now, seeing these architectures don't support
ZONE_DEVICE.
A check in __add_pages() is also added to ensure the pgprot parameter
was set for all arches.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-7-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mhp_restrictions struct really doesn't specify anything resembling a
restriction anymore so rename it to be mhp_params as it is a list of
extended parameters.
Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-3-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use __pfn_to_section() API instead of open-coding for better code
readability.
Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/1584345134-16671-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For now, distributions implement advanced udev rules to essentially
- Don't online any hotplugged memory (s390x)
- Online all memory to ZONE_NORMAL (e.g., most virt environments like
hyperv)
- Online all memory to ZONE_MOVABLE in case the zone imbalance is taken
care of (e.g., bare metal, special virt environments)
In summary: All memory is usually onlined the same way, however, the
kernel always has to ask user space to come up with the same answer.
E.g., Hyper-V always waits for a memory block to get onlined before
continuing, otherwise it might end up adding memory faster than
onlining it, which can result in strange OOM situations. This waiting
slows down adding of a bigger amount of memory.
Let's allow to specify a default online_type, not just "online" and
"offline". This allows distributions to configure the default online_type
when booting up and be done with it.
We can now specify "offline", "online", "online_movable" and
"online_kernel" via
- "memhp_default_state=" on the kernel cmdline
- /sys/devices/system/memory/auto_online_blocks
just like we are able to specify for a single memory block via
/sys/devices/system/memory/memoryX/state
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-9-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
... and rename it to memhp_default_online_type. This is a preparation
for more detailed default online behavior.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-8-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All in-tree users except the mm-core are gone. Let's drop the export.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-7-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's drop the basically unused section stuff and simplify. The logic now
matches the logic in __remove_pages().
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200228095819.10750-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 52fb87c81f ("mm/memory_hotplug: cleanup __remove_pages()"), we
cleaned up __remove_pages(), and introduced a shorter variant to calculate
the number of pages to the next section boundary.
Turns out we can make this calculation easier to read. We always want to
have the number of pages (> 0) to the next section boundary, starting from
the current pfn.
We'll clean up __remove_pages() in a follow-up patch and directly make use
of this computation.
Suggested-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200228095819.10750-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 357b4da50a ("x86: respect memory size limiting via mem=
parameter") a global varialbe max_mem_size is added to store the value
parsed from 'mem= ', then checked when memory region is added. This truly
stops those DIMMs from being added into system memory during boot-time.
However, it also limits the later memory hotplug functionality. Any DIMM
can't be hotplugged any more if its region is beyond the max_mem_size. We
will get errors like:
[ 216.387164] acpi PNP0C80:02: add_memory failed
[ 216.389301] acpi PNP0C80:02: acpi_memory_enable_device() error
[ 216.392187] acpi PNP0C80:02: Enumeration failure
This will cause issue in a known use case where 'mem=' is added to the
hypervisor. The memory that lies after 'mem=' boundary will be assigned
to KVM guests. After commit 357b4da50a merged, memory can't be extended
dynamically if system memory on hypervisor is not sufficient.
So fix it by also checking if it's during boot-time restricting to add
memory. Otherwise, skip the restriction.
And also add this use case to document of 'mem=' kernel parameter.
Fixes: 357b4da50a ("x86: respect memory size limiting via mem= parameter")
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200204050643.20925-1-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some comments for MADV_FREE is revised and added to help people understand
the MADV_FREE code, especially the page flag, PG_swapbacked. This makes
page_is_file_cache() isn't consistent with its comments. So the function
is renamed to page_is_file_lru() to make them consistent again. All these
are put in one patch as one logical change.
Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit cd02cf1ace ("mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC")
fixed memory hotplug with debug_pagealloc enabled, where onlining a page
goes through page freeing, which removes the direct mapping. Some arches
don't like when the page is not mapped in the first place, so
generic_online_page() maps it first. This is somewhat wasteful, but
better than special casing page freeing fast paths.
The commit however missed that DEBUG_PAGEALLOC configured doesn't mean
it's actually enabled. One has to test debug_pagealloc_enabled() since
031bc5743f ("mm/debug-pagealloc: make debug-pagealloc boottime
configurable"), or alternatively debug_pagealloc_enabled_static() since
8e57f8acbb ("mm, debug_pagealloc: don't rely on static keys too early"),
but this is not done.
As a result, a s390 kernel with DEBUG_PAGEALLOC configured but not enabled
will crash:
Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0000000000000000 TEID: 0000000000000483
Fault in home space mode while using kernel ASCE.
AS:0000001ece13400b R2:000003fff7fd000b R3:000003fff7fcc007 S:000003fff7fd7000 P:000000000000013d
Oops: 0004 ilc:2 [#1] SMP
CPU: 1 PID: 26015 Comm: chmem Kdump: loaded Tainted: GX 5.3.18-5-default #1 SLE15-SP2 (unreleased)
Krnl PSW : 0704e00180000000 0000001ecd281b9e (__kernel_map_pages+0x166/0x188)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000000000000 0000000000000800 0000400b00000000 0000000000000100
0000000000000001 0000000000000000 0000000000000002 0000000000000100
0000001ece139230 0000001ecdd98d40 0000400b00000100 0000000000000000
000003ffa17e4000 001fffe0114f7d08 0000001ecd4d93ea 001fffe0114f7b20
Krnl Code: 0000001ecd281b8e: ec17ffff00d8 ahik %r1,%r7,-1
0000001ecd281b94: ec111dbc0355 risbg %r1,%r1,29,188,3
>0000001ecd281b9e: 94fb5006 ni 6(%r5),251
0000001ecd281ba2: 41505008 la %r5,8(%r5)
0000001ecd281ba6: ec51fffc6064 cgrj %r5,%r1,6,1ecd281b9e
0000001ecd281bac: 1a07 ar %r0,%r7
0000001ecd281bae: ec03ff584076 crj %r0,%r3,4,1ecd281a5e
Call Trace:
[<0000001ecd281b9e>] __kernel_map_pages+0x166/0x188
[<0000001ecd4d9516>] online_pages_range+0xf6/0x128
[<0000001ecd2a8186>] walk_system_ram_range+0x7e/0xd8
[<0000001ecda28aae>] online_pages+0x2fe/0x3f0
[<0000001ecd7d02a6>] memory_subsys_online+0x8e/0xc0
[<0000001ecd7add42>] device_online+0x5a/0xc8
[<0000001ecd7d0430>] state_store+0x88/0x118
[<0000001ecd5b9f62>] kernfs_fop_write+0xc2/0x200
[<0000001ecd5064b6>] vfs_write+0x176/0x1e0
[<0000001ecd50676a>] ksys_write+0xa2/0x100
[<0000001ecda315d4>] system_call+0xd8/0x2c8
Fix this by checking debug_pagealloc_enabled_static() before calling
kernel_map_pages(). Backports for kernel before 5.5 should use
debug_pagealloc_enabled() instead. Also add comments.
Fixes: cd02cf1ace ("mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC")
Reported-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200224094651.18257-1-vbabka@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The callers are only interested in the actual zone, they don't care about
boundaries. Return the zone instead to simplify.
Link: http://lkml.kernel.org/r/20200110183308.11849-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's drop the basically unused section stuff and simplify.
Also, let's use a shorter variant to calculate the number of pages to
the next section boundary.
Link: http://lkml.kernel.org/r/20191006085646.5768-11-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Get rid of the unnecessary local variables.
Link: http://lkml.kernel.org/r/20191006085646.5768-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we have holes, the holes will automatically get detected and removed
once we remove the next bigger/smaller section. The extra checks can go.
Link: http://lkml.kernel.org/r/20191006085646.5768-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With shrink_pgdat_span() out of the way, we now always have a valid zone.
Link: http://lkml.kernel.org/r/20191006085646.5768-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's poison the pages similar to when adding new memory in
sparse_add_section(). Also call remove_pfn_range_from_zone() from
memunmap_pages(), so we can poison the memmap from there as well.
Link: http://lkml.kernel.org/r/20191006085646.5768-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: pass in nid to online_pages()".
Simplify onlining code and get rid of find_memory_block(). Pass in the
nid from the memory block we are trying to online directly, instead of
manually looking it up.
This patch (of 2):
No need to lookup the memory block, we can directly pass in the nid.
Link: http://lkml.kernel.org/r/20200113113354.6341-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the memory isolate notifier is gone, the parameter is always 0.
Drop it and cleanup has_unmovable_pages().
Link: http://lkml.kernel.org/r/20191114131911.11783-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The daxctl unit test for the dax_kmem driver currently triggers the
(false positive) lockdep splat below. It results from the fact that
remove_memory_block_devices() is invoked under the mem_hotplug_lock()
causing lockdep entanglements with cpu_hotplug_lock() and sysfs (kernfs
active state tracking). It is a false positive because the sysfs
attribute path triggering the memory remove is not the same attribute
path associated with memory-block device.
sysfs_break_active_protection() is not applicable since there is no real
deadlock conflict, instead move memory-block device removal outside the
lock. The mem_hotplug_lock() is not needed to synchronize the
memory-block device removal vs the page online state, that is already
handled by lock_device_hotplug(). Specifically, lock_device_hotplug()
is sufficient to allow try_remove_memory() to check the offline state of
the memblocks and be assured that any in progress online attempts are
flushed / blocked by kernfs_drain() / attribute removal.
The add_memory() path safely creates memblock devices under the
mem_hotplug_lock(). There is no kernfs active state synchronization in
the memblock device_register() path, so nothing to fix there.
This change is only possible thanks to the recent change that refactored
memory block device removal out of arch_remove_memory() (commit
4c4b7f9ba9 "mm/memory_hotplug: remove memory block devices before
arch_remove_memory()"), and David's due diligence tracking down the
guarantees afforded by kernfs_drain(). Not flagged for -stable since
this only impacts ongoing development and lockdep validation, not a
runtime issue.
======================================================
WARNING: possible circular locking dependency detected
5.5.0-rc3+ #230 Tainted: G OE
------------------------------------------------------
lt-daxctl/6459 is trying to acquire lock:
ffff99c7f0003510 (kn->count#241){++++}, at: kernfs_remove_by_name_ns+0x41/0x80
but task is already holding lock:
ffffffffa76a5450 (mem_hotplug_lock.rw_sem){++++}, at: percpu_down_write+0x20/0xe0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (mem_hotplug_lock.rw_sem){++++}:
__lock_acquire+0x39c/0x790
lock_acquire+0xa2/0x1b0
get_online_mems+0x3e/0xb0
kmem_cache_create_usercopy+0x2e/0x260
kmem_cache_create+0x12/0x20
ptlock_cache_init+0x20/0x28
start_kernel+0x243/0x547
secondary_startup_64+0xb6/0xc0
-> #1 (cpu_hotplug_lock.rw_sem){++++}:
__lock_acquire+0x39c/0x790
lock_acquire+0xa2/0x1b0
cpus_read_lock+0x3e/0xb0
online_pages+0x37/0x300
memory_subsys_online+0x17d/0x1c0
device_online+0x60/0x80
state_store+0x65/0xd0
kernfs_fop_write+0xcf/0x1c0
vfs_write+0xdb/0x1d0
ksys_write+0x65/0xe0
do_syscall_64+0x5c/0xa0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
-> #0 (kn->count#241){++++}:
check_prev_add+0x98/0xa40
validate_chain+0x576/0x860
__lock_acquire+0x39c/0x790
lock_acquire+0xa2/0x1b0
__kernfs_remove+0x25f/0x2e0
kernfs_remove_by_name_ns+0x41/0x80
remove_files.isra.0+0x30/0x70
sysfs_remove_group+0x3d/0x80
sysfs_remove_groups+0x29/0x40
device_remove_attrs+0x39/0x70
device_del+0x16a/0x3f0
device_unregister+0x16/0x60
remove_memory_block_devices+0x82/0xb0
try_remove_memory+0xb5/0x130
remove_memory+0x26/0x40
dev_dax_kmem_remove+0x44/0x6a [kmem]
device_release_driver_internal+0xe4/0x1c0
unbind_store+0xef/0x120
kernfs_fop_write+0xcf/0x1c0
vfs_write+0xdb/0x1d0
ksys_write+0x65/0xe0
do_syscall_64+0x5c/0xa0
entry_SYSCALL_64_after_hwframe+0x49/0xbe
other info that might help us debug this:
Chain exists of:
kn->count#241 --> cpu_hotplug_lock.rw_sem --> mem_hotplug_lock.rw_sem
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(mem_hotplug_lock.rw_sem);
lock(cpu_hotplug_lock.rw_sem);
lock(mem_hotplug_lock.rw_sem);
lock(kn->count#241);
*** DEADLOCK ***
No fixes tag as this has been a long standing issue that predated the
addition of kernfs lockdep annotations.
Link: http://lkml.kernel.org/r/157991441887.2763922.4770790047389427325.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We currently try to shrink a single zone when removing memory. We use
the zone of the first page of the memory we are removing. If that
memmap was never initialized (e.g., memory was never onlined), we will
read garbage and can trigger kernel BUGs (due to a stale pointer):
BUG: unable to handle page fault for address: 000000000000353d
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] SMP PTI
CPU: 1 PID: 7 Comm: kworker/u8:0 Not tainted 5.3.0-rc5-next-20190820+ #317
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.4
Workqueue: kacpi_hotplug acpi_hotplug_work_fn
RIP: 0010:clear_zone_contiguous+0x5/0x10
Code: 48 89 c6 48 89 c3 e8 2a fe ff ff 48 85 c0 75 cf 5b 5d c3 c6 85 fd 05 00 00 01 5b 5d c3 0f 1f 840
RSP: 0018:ffffad2400043c98 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000200000000 RCX: 0000000000000000
RDX: 0000000000200000 RSI: 0000000000140000 RDI: 0000000000002f40
RBP: 0000000140000000 R08: 0000000000000000 R09: 0000000000000001
R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000140000
R13: 0000000000140000 R14: 0000000000002f40 R15: ffff9e3e7aff3680
FS: 0000000000000000(0000) GS:ffff9e3e7bb00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000353d CR3: 0000000058610000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
__remove_pages+0x4b/0x640
arch_remove_memory+0x63/0x8d
try_remove_memory+0xdb/0x130
__remove_memory+0xa/0x11
acpi_memory_device_remove+0x70/0x100
acpi_bus_trim+0x55/0x90
acpi_device_hotplug+0x227/0x3a0
acpi_hotplug_work_fn+0x1a/0x30
process_one_work+0x221/0x550
worker_thread+0x50/0x3b0
kthread+0x105/0x140
ret_from_fork+0x3a/0x50
Modules linked in:
CR2: 000000000000353d
Instead, shrink the zones when offlining memory or when onlining failed.
Introduce and use remove_pfn_range_from_zone(() for that. We now
properly shrink the zones, even if we have DIMMs whereby
- Some memory blocks fall into no zone (never onlined)
- Some memory blocks fall into multiple zones (offlined+re-onlined)
- Multiple memory blocks that fall into different zones
Drop the zone parameter (with a potential dubious value) from
__remove_pages() and __remove_section().
Link: http://lkml.kernel.org/r/20191006085646.5768-6-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") [visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: <stable@vger.kernel.org> [5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our onlining/offlining code is unnecessarily complicated. Only memory
blocks added during boot can have holes (a range that is not
IORESOURCE_SYSTEM_RAM). Hotplugged memory never has holes (e.g., see
add_memory_resource()). All memory blocks that belong to boot memory
are already online.
Note that boot memory can have holes and the memmap of the holes is
marked PG_reserved. However, also memory allocated early during boot is
PG_reserved - basically every page of boot memory that is not given to
the buddy is PG_reserved.
Therefore, when we stop allowing to offline memory blocks with holes, we
implicitly no longer have to deal with onlining memory blocks with
holes. E.g., online_pages() will do a walk_system_ram_range(...,
online_pages_range), whereby online_pages_range() will effectively only
free the memory holes not falling into a hole to the buddy. The other
pages (holes) are kept PG_reserved (via
move_pfn_range_to_zone()->memmap_init_zone()).
This allows to simplify the code. For example, we no longer have to
worry about marking pages that fall into memory holes PG_reserved when
onlining memory. We can stop setting pages PG_reserved completely in
memmap_init_zone().
Offlining memory blocks added during boot is usually not guaranteed to
work either way (unmovable data might have easily ended up on that
memory during boot). So stopping to do that should not really hurt.
Also, people are not even aware of a setup where onlining/offlining of
memory blocks with holes used to work reliably (see [1] and [2]
especially regarding the hotplug path) - I doubt it worked reliably.
For the use case of offlining memory to unplug DIMMs, we should see no
change. (holes on DIMMs would be weird).
Please note that hardware errors (PG_hwpoison) are not memory holes and
are not affected by this change when offlining.
[1] https://lkml.org/lkml/2019/10/22/135
[2] https://lkml.org/lkml/2019/8/14/1365
Link: http://lkml.kernel.org/r/20191119115237.6662-1-david@redhat.com
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have two types of users of page isolation:
1. Memory offlining: Offline memory so it can be unplugged. Memory
won't be touched.
2. Memory allocation: Allocate memory (e.g., alloc_contig_range()) to
become the owner of the memory and make use of
it.
For example, in case we want to offline memory, we can ignore (skip
over) PageHWPoison() pages, as the memory won't get used. We can allow
to offline memory. In contrast, we don't want to allow to allocate such
memory.
Let's generalize the approach so we can special case other types of
pages we want to skip over in case we offline memory. While at it, also
pass the same flags to test_pages_isolated().
Link: http://lkml.kernel.org/r/20191021172353.3056-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Memory offlining + page isolation cleanups", v2.
This patch (of 2):
We call __offline_isolated_pages() from __offline_pages() after all
pages were isolated and are either free (PageBuddy()) or PageHWPoison.
Nothing can stop us from offlining memory at this point.
In __offline_isolated_pages() we first set all affected memory sections
offline (offline_mem_sections(pfn, end_pfn)), to mark the memmap as
invalid (pfn_to_online_page() will no longer succeed), and then walk
over all pages to pull the free pages from the free lists (to the
isolated free lists, to be precise).
Note that re-onlining a memory block will result in the whole memmap
getting reinitialized, overwriting any old state. We already poision
the memmap when offlining is complete to find any access to
stale/uninitialized memmaps.
So, setting the pages PageReserved() is not helpful. The memap is
marked offline and all pageblocks are isolated. As soon as offline, the
memmap is stale either way.
This looks like a leftover from ancient times where we initialized the
memmap when adding memory and not when onlining it (the pages were set
PageReserved so re-onling would work as expected).
Link: http://lkml.kernel.org/r/20191021172353.3056-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's drop the now unused functions.
Link: http://lkml.kernel.org/r/20190909114830.662-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memory_hotplug: Export generic_online_page()".
Let's replace the __online_page...() functions by generic_online_page().
Hyper-V only wants to delay the actual onlining of un-backed pages, so
we can simpy re-use the generic function.
This patch (of 3):
Let's expose generic_online_page() so online_page_callback users can
simply fall back to the generic implementation when actually deciding to
online the pages.
Link: http://lkml.kernel.org/r/20190909114830.662-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On PowerPC, the address ranges allocated to OpenCAPI LPC memory are
allocated from firmware. These address ranges may be higher than what
older kernels permit, as we increased the maximum permissable address in
commit 4ffe713b75 ("powerpc/mm: Increase the max addressable memory to
2PB"). It is possible that the addressable range may change again in
the future.
In this scenario, we end up with a bogus section returned from
__section_nr (see the discussion on the thread "mm: Trigger bug on if a
section is not found in __section_nr").
Adding a check here means that we fail early and have an opportunity to
handle the error gracefully, rather than rumbling on and potentially
accessing an incorrect section.
Further discussion is also on the thread ("powerpc: Perform a bounds
check in arch_add_memory")
http://lkml.kernel.org/r/20190827052047.31547-1-alastair@au1.ibm.com
Link: http://lkml.kernel.org/r/20191001004617.7536-2-alastair@au1.ibm.com
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently during memory hot add procedure, memory gets into memblock
before calling arch_add_memory() which creates its linear mapping.
add_memory_resource() {
..................
memblock_add_node()
..................
arch_add_memory()
..................
}
But during memory hot remove procedure, removal from memblock happens
first before its linear mapping gets teared down with
arch_remove_memory() which is not consistent. Resource removal should
happen in reverse order as they were added. However this does not pose
any problem for now, unless there is an assumption regarding linear
mapping. One example was a subtle failure on arm64 platform [1].
Though this has now found a different solution.
try_remove_memory() {
..................
memblock_free()
memblock_remove()
..................
arch_remove_memory()
..................
}
This changes the sequence of resource removal including memblock and
linear mapping tear down during memory hot remove which will now be the
reverse order in which they were added during memory hot add. The
changed removal order looks like the following.
try_remove_memory() {
..................
arch_remove_memory()
..................
memblock_free()
memblock_remove()
..................
}
[1] https://patchwork.kernel.org/patch/11127623/
Memory hot remove now works on arm64 without this because a recent
commit 60bb462fc7ad ("drivers/base/node.c: simplify
unregister_memory_block_under_nodes()").
This does not fix a serious problem. It just removes an inconsistency
while freeing resources during memory hot remove which for now does not
pose a real problem.
David mentioned that re-ordering should still make sense for consistency
purpose (removing stuff in the reverse order they were added). This
patch is now detached from arm64 hot-remove series.
Michal:
: I would just a note that the inconsistency doesn't pose any problem now
: but if somebody makes any assumptions about linear mappings then it could
: get subtly broken like your example for arm64 which has found a different
: solution in the meantime.
Link: http://lkml.kernel.org/r/1569380273-7708-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's limit shrinking to !ZONE_DEVICE so we can fix the current code.
We should never try to touch the memmap of offline sections where we
could have uninitialized memmaps and could trigger BUGs when calling
page_to_nid() on poisoned pages.
There is no reliable way to distinguish an uninitialized memmap from an
initialized memmap that belongs to ZONE_DEVICE, as we don't have
anything like SECTION_IS_ONLINE we can use similar to
pfn_to_online_section() for !ZONE_DEVICE memory.
E.g., set_zone_contiguous() similarly relies on pfn_to_online_section()
and will therefore never set a ZONE_DEVICE zone consecutive. Stopping
to shrink the ZONE_DEVICE therefore results in no observable changes,
besides /proc/zoneinfo indicating different boundaries - something we
can totally live with.
Before commit d0dc12e86b ("mm/memory_hotplug: optimize memory
hotplug"), the memmap was initialized with 0 and the node with the right
value. So the zone might be wrong but not garbage. After that commit,
both the zone and the node will be garbage when touching uninitialized
memmaps.
Toshiki reported a BUG (race between delayed initialization of
ZONE_DEVICE memmaps without holding the memory hotplug lock and
concurrent zone shrinking).
https://lkml.org/lkml/2019/11/14/1040
"Iteration of create and destroy namespace causes the panic as below:
kernel BUG at mm/page_alloc.c:535!
CPU: 7 PID: 2766 Comm: ndctl Not tainted 5.4.0-rc4 #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
RIP: 0010:set_pfnblock_flags_mask+0x95/0xf0
Call Trace:
memmap_init_zone_device+0x165/0x17c
memremap_pages+0x4c1/0x540
devm_memremap_pages+0x1d/0x60
pmem_attach_disk+0x16b/0x600 [nd_pmem]
nvdimm_bus_probe+0x69/0x1c0
really_probe+0x1c2/0x3e0
driver_probe_device+0xb4/0x100
device_driver_attach+0x4f/0x60
bind_store+0xc9/0x110
kernfs_fop_write+0x116/0x190
vfs_write+0xa5/0x1a0
ksys_write+0x59/0xd0
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9
While creating a namespace and initializing memmap, if you destroy the
namespace and shrink the zone, it will initialize the memmap outside
the zone and trigger VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page),
pfn), page) in set_pfnblock_flags_mask()."
This BUG is also mitigated by this commit, where we for now stop to
shrink the ZONE_DEVICE zone until we can do it in a safe and clean way.
Link: http://lkml.kernel.org/r/20191006085646.5768-5-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") [visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Toshiki Fukasawa <t-fukasawa@vx.jp.nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Damian Tometzki <damian.tometzki@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Halil Pasic <pasic@linux.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_offline_node() is pretty much broken right now:
- The node span is updated when onlining memory, not when adding it. We
ignore memory that was mever onlined. Bad.
- We touch possible garbage memmaps. The pfn_to_nid(pfn) can easily
trigger a kernel panic. Bad for memory that is offline but also bad
for subsection hotadd with ZONE_DEVICE, whereby the memmap of the
first PFN of a section might contain garbage.
- Sections belonging to mixed nodes are not properly considered.
As memory blocks might belong to multiple nodes, we would have to walk
all pageblocks (or at least subsections) within present sections.
However, we don't have a way to identify whether a memmap that is not
online was initialized (relevant for ZONE_DEVICE). This makes things
more complicated.
Luckily, we can piggy pack on the node span and the nid stored in memory
blocks. Currently, the node span is grown when calling
move_pfn_range_to_zone() - e.g., when onlining memory, and shrunk when
removing memory, before calling try_offline_node(). Sysfs links are
created via link_mem_sections(), e.g., during boot or when adding
memory.
If the node still spans memory or if any memory block belongs to the
nid, we don't set the node offline. As memory blocks that span multiple
nodes cannot get offlined, the nid stored in memory blocks is reliable
enough (for such online memory blocks, the node still spans the memory).
Introduce for_each_memory_block() to efficiently walk all memory blocks.
Note: We will soon stop shrinking the ZONE_DEVICE zone and the node span
when removing ZONE_DEVICE memory to fix similar issues (access of
garbage memmaps) - until we have a reliable way to identify whether
these memmaps were properly initialized. This implies later, that once
a node had ZONE_DEVICE memory, we won't be able to set a node offline -
which should be acceptable.
Since commit f1dd2cd13c ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") memory that is added is not
assoziated with a zone/node (memmap not initialized). The introducing
commit 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
already missed that we could have multiple nodes for a section and that
the zone/node span is updated when onlining pages, not when adding them.
I tested this by hotplugging two DIMMs to a memory-less and cpu-less
NUMA node. The node is properly onlined when adding the DIMMs. When
removing the DIMMs, the node is properly offlined.
Masayoshi Mizuma reported:
: Without this patch, memory hotplug fails as panic:
:
: BUG: kernel NULL pointer dereference, address: 0000000000000000
: ...
: Call Trace:
: remove_memory_block_devices+0x81/0xc0
: try_remove_memory+0xb4/0x130
: __remove_memory+0xa/0x20
: acpi_memory_device_remove+0x84/0x100
: acpi_bus_trim+0x57/0x90
: acpi_bus_trim+0x2e/0x90
: acpi_device_hotplug+0x2b2/0x4d0
: acpi_hotplug_work_fn+0x1a/0x30
: process_one_work+0x171/0x380
: worker_thread+0x49/0x3f0
: kthread+0xf8/0x130
: ret_from_fork+0x35/0x40
[david@redhat.com: v3]
Link: http://lkml.kernel.org/r/20191102120221.7553-1-david@redhat.com
Link: http://lkml.kernel.org/r/20191028105458.28320-1-david@redhat.com
Fixes: 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visiable after d0dc12e86b
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Nayna Jain <nayna@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>