This adds the needed check after the call to the function
mraid_mm_alloc_kioc in order to make sure that this function has not
returned NULL and therefore makes sure we do not deference a NULL
pointer if one is returned by mraid_mm_alloc_kioc. Further more add
needed comments explaining that this function call can return NULL if
the list head is empty for the pointer passed in order to allow furture
users to understand this required pointer check.
Signed-off-by: Nicholas Krause <xerofoify@gmail.com>
Acked-by: Sumit Saxena <sumit.saxena@avagotech.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
pthru32->dataxferlen comes from the user so we need to check that it's
not too large so we don't overflow the buffer.
Reported-by: Nico Golde <nico@ngolde.de>
Reported-by: Fabian Yamaguchi <fabs@goesec.de>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Sumit Saxena <sumit.saxena@lsi.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
Fixed several typos in comments in megaraid_mbox.c, megaraid_mm.c
and megaraid_sas_fusion.h.
Signed-off-by: Matthias Schid <aircrach115@gmail.com>
Signed-off-by: Stefan Huber <steffhip@gmail.com>
Signed-off-by: Simon Puels <simon.puels@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
* 'llseek' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/bkl:
vfs: make no_llseek the default
vfs: don't use BKL in default_llseek
llseek: automatically add .llseek fop
libfs: use generic_file_llseek for simple_attr
mac80211: disallow seeks in minstrel debug code
lirc: make chardev nonseekable
viotape: use noop_llseek
raw: use explicit llseek file operations
ibmasmfs: use generic_file_llseek
spufs: use llseek in all file operations
arm/omap: use generic_file_llseek in iommu_debug
lkdtm: use generic_file_llseek in debugfs
net/wireless: use generic_file_llseek in debugfs
drm: use noop_llseek
All file_operations should get a .llseek operation so we can make
nonseekable_open the default for future file operations without a
.llseek pointer.
The three cases that we can automatically detect are no_llseek, seq_lseek
and default_llseek. For cases where we can we can automatically prove that
the file offset is always ignored, we use noop_llseek, which maintains
the current behavior of not returning an error from a seek.
New drivers should normally not use noop_llseek but instead use no_llseek
and call nonseekable_open at open time. Existing drivers can be converted
to do the same when the maintainer knows for certain that no user code
relies on calling seek on the device file.
The generated code is often incorrectly indented and right now contains
comments that clarify for each added line why a specific variant was
chosen. In the version that gets submitted upstream, the comments will
be gone and I will manually fix the indentation, because there does not
seem to be a way to do that using coccinelle.
Some amount of new code is currently sitting in linux-next that should get
the same modifications, which I will do at the end of the merge window.
Many thanks to Julia Lawall for helping me learn to write a semantic
patch that does all this.
===== begin semantic patch =====
// This adds an llseek= method to all file operations,
// as a preparation for making no_llseek the default.
//
// The rules are
// - use no_llseek explicitly if we do nonseekable_open
// - use seq_lseek for sequential files
// - use default_llseek if we know we access f_pos
// - use noop_llseek if we know we don't access f_pos,
// but we still want to allow users to call lseek
//
@ open1 exists @
identifier nested_open;
@@
nested_open(...)
{
<+...
nonseekable_open(...)
...+>
}
@ open exists@
identifier open_f;
identifier i, f;
identifier open1.nested_open;
@@
int open_f(struct inode *i, struct file *f)
{
<+...
(
nonseekable_open(...)
|
nested_open(...)
)
...+>
}
@ read disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ read_no_fpos disable optional_qualifier exists @
identifier read_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
{
... when != off
}
@ write @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
expression E;
identifier func;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
<+...
(
*off = E
|
*off += E
|
func(..., off, ...)
|
E = *off
)
...+>
}
@ write_no_fpos @
identifier write_f;
identifier f, p, s, off;
type ssize_t, size_t, loff_t;
@@
ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
{
... when != off
}
@ fops0 @
identifier fops;
@@
struct file_operations fops = {
...
};
@ has_llseek depends on fops0 @
identifier fops0.fops;
identifier llseek_f;
@@
struct file_operations fops = {
...
.llseek = llseek_f,
...
};
@ has_read depends on fops0 @
identifier fops0.fops;
identifier read_f;
@@
struct file_operations fops = {
...
.read = read_f,
...
};
@ has_write depends on fops0 @
identifier fops0.fops;
identifier write_f;
@@
struct file_operations fops = {
...
.write = write_f,
...
};
@ has_open depends on fops0 @
identifier fops0.fops;
identifier open_f;
@@
struct file_operations fops = {
...
.open = open_f,
...
};
// use no_llseek if we call nonseekable_open
////////////////////////////////////////////
@ nonseekable1 depends on !has_llseek && has_open @
identifier fops0.fops;
identifier nso ~= "nonseekable_open";
@@
struct file_operations fops = {
... .open = nso, ...
+.llseek = no_llseek, /* nonseekable */
};
@ nonseekable2 depends on !has_llseek @
identifier fops0.fops;
identifier open.open_f;
@@
struct file_operations fops = {
... .open = open_f, ...
+.llseek = no_llseek, /* open uses nonseekable */
};
// use seq_lseek for sequential files
/////////////////////////////////////
@ seq depends on !has_llseek @
identifier fops0.fops;
identifier sr ~= "seq_read";
@@
struct file_operations fops = {
... .read = sr, ...
+.llseek = seq_lseek, /* we have seq_read */
};
// use default_llseek if there is a readdir
///////////////////////////////////////////
@ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier readdir_e;
@@
// any other fop is used that changes pos
struct file_operations fops = {
... .readdir = readdir_e, ...
+.llseek = default_llseek, /* readdir is present */
};
// use default_llseek if at least one of read/write touches f_pos
/////////////////////////////////////////////////////////////////
@ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read.read_f;
@@
// read fops use offset
struct file_operations fops = {
... .read = read_f, ...
+.llseek = default_llseek, /* read accesses f_pos */
};
@ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write.write_f;
@@
// write fops use offset
struct file_operations fops = {
... .write = write_f, ...
+ .llseek = default_llseek, /* write accesses f_pos */
};
// Use noop_llseek if neither read nor write accesses f_pos
///////////////////////////////////////////////////////////
@ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
identifier write_no_fpos.write_f;
@@
// write fops use offset
struct file_operations fops = {
...
.write = write_f,
.read = read_f,
...
+.llseek = noop_llseek, /* read and write both use no f_pos */
};
@ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier write_no_fpos.write_f;
@@
struct file_operations fops = {
... .write = write_f, ...
+.llseek = noop_llseek, /* write uses no f_pos */
};
@ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
identifier read_no_fpos.read_f;
@@
struct file_operations fops = {
... .read = read_f, ...
+.llseek = noop_llseek, /* read uses no f_pos */
};
@ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
identifier fops0.fops;
@@
struct file_operations fops = {
...
+.llseek = noop_llseek, /* no read or write fn */
};
===== End semantic patch =====
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Julia Lawall <julia@diku.dk>
Cc: Christoph Hellwig <hch@infradead.org>
All these files use the big kernel lock in a trivial
way to serialize their private file operations,
typically resulting from an earlier semi-automatic
pushdown from VFS.
None of these drivers appears to want to lock against
other code, and they all use the BKL as the top-level
lock in their file operations, meaning that there
is no lock-order inversion problem.
Consequently, we can remove the BKL completely,
replacing it with a per-file mutex in every case.
Using a scripted approach means we can avoid
typos.
file=$1
name=$2
if grep -q lock_kernel ${file} ; then
if grep -q 'include.*linux.mutex.h' ${file} ; then
sed -i '/include.*<linux\/smp_lock.h>/d' ${file}
else
sed -i 's/include.*<linux\/smp_lock.h>.*$/include <linux\/mutex.h>/g' ${file}
fi
sed -i ${file} \
-e "/^#include.*linux.mutex.h/,$ {
1,/^\(static\|int\|long\)/ {
/^\(static\|int\|long\)/istatic DEFINE_MUTEX(${name}_mutex);
} }" \
-e "s/\(un\)*lock_kernel\>[ ]*()/mutex_\1lock(\&${name}_mutex)/g" \
-e '/[ ]*cycle_kernel_lock();/d'
else
sed -i -e '/include.*\<smp_lock.h\>/d' ${file} \
-e '/cycle_kernel_lock()/d'
fi
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: linux-scsi@vger.kernel.org
Cc: "James E.J. Bottomley" <James.Bottomley@suse.de>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
[jejb: fixed up a ton of missed conversions.
All of you are on notice this has happened, driver trees will now
need to be rebased]
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Cc: SCSI List <linux-scsi@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
The MegaRAID driver's common management module (megaraid_mm.c) creates a
char device used by the management tool "megarc" from LSI Logic (and
possibly other management tools).
In 2.6 with udev, this device doesn't get created because it is not
registered in sysfs.
I first fixed this by registering a class "megaraid_mm", but realized that
this should probably be moved to misc devices, instead of taking up a char
major. This is because only 1 device is used, even if there are multiple
adapters - the minor is never used (the adapter info is in the ioctl block
sent to the driver, not detected based on the minor number as one might
think). So it is a complete waste to have an entire major taken by this.
So it now uses a misc device which I named "megadev0" (the name that megarc
expects), and has a dynamic minor (previoulsy a dynamic major was used).
I have tested this on my own system with the megarc tool, and it works just
as fine as before (only now the device gets created correctly by udev).
Acked-by: "Patro, Sumant" <Sumant.Patro@lsi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Transform some calls to kmalloc/memset to a single kzalloc (or kcalloc).
Here is a short excerpt of the semantic patch performing
this transformation:
@@
type T2;
expression x;
identifier f,fld;
expression E;
expression E1,E2;
expression e1,e2,e3,y;
statement S;
@@
x =
- kmalloc
+ kzalloc
(E1,E2)
... when != \(x->fld=E;\|y=f(...,x,...);\|f(...,x,...);\|x=E;\|while(...) S\|for(e1;e2;e3) S\)
- memset((T2)x,0,E1);
@@
expression E1,E2,E3;
@@
- kzalloc(E1 * E2,E3)
+ kcalloc(E1,E2,E3)
[akpm@linux-foundation.org: get kcalloc args the right way around]
Signed-off-by: Yoann Padioleau <padator@wanadoo.fr>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Acked-by: Russell King <rmk@arm.linux.org.uk>
Cc: Bryan Wu <bryan.wu@analog.com>
Acked-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Dave Airlie <airlied@linux.ie>
Acked-by: Roland Dreier <rolandd@cisco.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Acked-by: Dmitry Torokhov <dtor@mail.ru>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Acked-by: Mauro Carvalho Chehab <mchehab@infradead.org>
Acked-by: Pierre Ossman <drzeus-list@drzeus.cx>
Cc: Jeff Garzik <jeff@garzik.org>
Cc: "David S. Miller" <davem@davemloft.net>
Acked-by: Greg KH <greg@kroah.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Cc: "Antonino A. Daplas" <adaplas@pol.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
First thing mm.h does is including sched.h solely for can_do_mlock() inline
function which has "current" dereference inside. By dealing with can_do_mlock()
mm.h can be detached from sched.h which is good. See below, why.
This patch
a) removes unconditional inclusion of sched.h from mm.h
b) makes can_do_mlock() normal function in mm/mlock.c
c) exports can_do_mlock() to not break compilation
d) adds sched.h inclusions back to files that were getting it indirectly.
e) adds less bloated headers to some files (asm/signal.h, jiffies.h) that were
getting them indirectly
Net result is:
a) mm.h users would get less code to open, read, preprocess, parse, ... if
they don't need sched.h
b) sched.h stops being dependency for significant number of files:
on x86_64 allmodconfig touching sched.h results in recompile of 4083 files,
after patch it's only 3744 (-8.3%).
Cross-compile tested on
all arm defconfigs, all mips defconfigs, all powerpc defconfigs,
alpha alpha-up
arm
i386 i386-up i386-defconfig i386-allnoconfig
ia64 ia64-up
m68k
mips
parisc parisc-up
powerpc powerpc-up
s390 s390-up
sparc sparc-up
sparc64 sparc64-up
um-x86_64
x86_64 x86_64-up x86_64-defconfig x86_64-allnoconfig
as well as my two usual configs.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Update the driver version reported by MEGAIOC_QDRVRVER to
match LSI_COMMON_MOD_VERSION.
Signed-off-by: David Milburn <dmilburn@redhat.com>
Acked-by: "Patro, Sumant" <Sumant.Patro@lsi.com>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
Many struct file_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kernel-doc modifications:
- change "@param var" notation to @var;
- change function/description separator from ':' to '-';
- change var/description separator from '-' to ':';
- fix a few doc. typos;
- don't use kernel-doc /** lead-in when the doc. block is not kernel-doc;
- use Linux common */ ending comment format instead of **/;
- use correct function parameter names;
- place function parameters immediately after the function short description;
- place kernel-doc immediately before its function or macro;
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Sumant Patro <sumantp@lsil.com>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
There was an issue in the data structure defined by megaraid driver
casuing "kernel unaligned access.." messages to be displayed during
IOCTL on IA64 platform.
The issue has been reported/fixed by Sakurai Hiroomi
[sakurai_hiro@soft.fujitsu.com].
Signed-Off By: Seokmann Ju <seokmann.ju@lsil.com>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
This patch fixes a NULL pointer dereference spotted by the Coverity
checker.
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
This is the drivers/scsi/ part of the big kfree cleanup patch.
Remove pointless checks for NULL prior to calling kfree() in drivers/scsi/.
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Cc: James Bottomley <James.Bottomley@steeleye.com>
Acked-by: Kai Makisara <kai.makisara@kolumbus.fi>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!