Each zcomp backend uses own gfp flag but it's pointless because the
context they could be called is driven by upper layer(ie, zcomp
frontend). As well, zcomp frondend could call them in different
context. One context(ie, zram init part) is it should be better to make
sure successful allocation other context(ie, further stream allocation
part for accelarating I/O speed) is just optional so let's pass gfp down
from driver (ie, zcomp frontend) like normal MM convention.
[sergey.senozhatsky@gmail.com: add missing __vmalloc zero and highmem gfps]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can end up allocating a new compression stream with GFP_KERNEL from
within the IO path, which may result is nested (recursive) IO
operations. That can introduce problems if the IO path in question is a
reclaimer, holding some locks that will deadlock nested IOs.
Allocate streams and working memory using GFP_NOIO flag, forbidding
recursive IO and FS operations.
An example:
inconsistent {IN-RECLAIM_FS-W} -> {RECLAIM_FS-ON-W} usage.
git/20158 [HC0[0]:SC0[0]:HE1:SE1] takes:
(jbd2_handle){+.+.?.}, at: start_this_handle+0x4ca/0x555
{IN-RECLAIM_FS-W} state was registered at:
__lock_acquire+0x8da/0x117b
lock_acquire+0x10c/0x1a7
start_this_handle+0x52d/0x555
jbd2__journal_start+0xb4/0x237
__ext4_journal_start_sb+0x108/0x17e
ext4_dirty_inode+0x32/0x61
__mark_inode_dirty+0x16b/0x60c
iput+0x11e/0x274
__dentry_kill+0x148/0x1b8
shrink_dentry_list+0x274/0x44a
prune_dcache_sb+0x4a/0x55
super_cache_scan+0xfc/0x176
shrink_slab.part.14.constprop.25+0x2a2/0x4d3
shrink_zone+0x74/0x140
kswapd+0x6b7/0x930
kthread+0x107/0x10f
ret_from_fork+0x3f/0x70
irq event stamp: 138297
hardirqs last enabled at (138297): debug_check_no_locks_freed+0x113/0x12f
hardirqs last disabled at (138296): debug_check_no_locks_freed+0x33/0x12f
softirqs last enabled at (137818): __do_softirq+0x2d3/0x3e9
softirqs last disabled at (137813): irq_exit+0x41/0x95
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(jbd2_handle);
<Interrupt>
lock(jbd2_handle);
*** DEADLOCK ***
5 locks held by git/20158:
#0: (sb_writers#7){.+.+.+}, at: [<ffffffff81155411>] mnt_want_write+0x24/0x4b
#1: (&type->i_mutex_dir_key#2/1){+.+.+.}, at: [<ffffffff81145087>] lock_rename+0xd9/0xe3
#2: (&sb->s_type->i_mutex_key#11){+.+.+.}, at: [<ffffffff8114f8e2>] lock_two_nondirectories+0x3f/0x6b
#3: (&sb->s_type->i_mutex_key#11/4){+.+.+.}, at: [<ffffffff8114f909>] lock_two_nondirectories+0x66/0x6b
#4: (jbd2_handle){+.+.?.}, at: [<ffffffff811e31db>] start_this_handle+0x4ca/0x555
stack backtrace:
CPU: 2 PID: 20158 Comm: git Not tainted 4.1.0-rc7-next-20150615-dbg-00016-g8bdf555-dirty #211
Call Trace:
dump_stack+0x4c/0x6e
mark_lock+0x384/0x56d
mark_held_locks+0x5f/0x76
lockdep_trace_alloc+0xb2/0xb5
kmem_cache_alloc_trace+0x32/0x1e2
zcomp_strm_alloc+0x25/0x73 [zram]
zcomp_strm_multi_find+0xe7/0x173 [zram]
zcomp_strm_find+0xc/0xe [zram]
zram_bvec_rw+0x2ca/0x7e0 [zram]
zram_make_request+0x1fa/0x301 [zram]
generic_make_request+0x9c/0xdb
submit_bio+0xf7/0x120
ext4_io_submit+0x2e/0x43
ext4_bio_write_page+0x1b7/0x300
mpage_submit_page+0x60/0x77
mpage_map_and_submit_buffers+0x10f/0x21d
ext4_writepages+0xc8c/0xe1b
do_writepages+0x23/0x2c
__filemap_fdatawrite_range+0x84/0x8b
filemap_flush+0x1c/0x1e
ext4_alloc_da_blocks+0xb8/0x117
ext4_rename+0x132/0x6dc
? mark_held_locks+0x5f/0x76
ext4_rename2+0x29/0x2b
vfs_rename+0x540/0x636
SyS_renameat2+0x359/0x44d
SyS_rename+0x1e/0x20
entry_SYSCALL_64_fastpath+0x12/0x6f
[minchan@kernel.org: add stable mark]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Kyeongdon Kim <kyeongdon.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zcomp_create() verifies the success of zcomp_strm_{multi,single}_create()
through comp->stream, which can potentially be pointing to memory that
was freed if these functions returned an error.
While at it, replace a 'ERR_PTR(-ENOMEM)' by a more generic
'ERR_PTR(error)' as in the future zcomp_strm_{multi,siggle}_create()
could return other error codes. Function documentation updated
accordingly.
Fixes: beca3ec71f ("zram: add multi stream functionality")
Signed-off-by: Luis Henriques <luis.henriques@canonical.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Improvement idea by Marcin Jabrzyk.
comp_algorithm_store() silently accepts any supplied algorithm name,
because zram performs algorithm availability check later, during the
device configuration phase in disksize_store() and emits the following
error:
"zram: Cannot initialise %s compressing backend"
this error line is somewhat generic and, besides, can indicate a failed
attempt to allocate compression backend's working buffers.
add algorithm availability check to comp_algorithm_store():
echo lzz > /sys/block/zram0/comp_algorithm
-bash: echo: write error: Invalid argument
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Marcin Jabrzyk <m.jabrzyk@samsung.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Supplied sysfs values sometimes contain new-line symbols (echo vs. echo
-n), which we also copy as a compression algorithm name. it works fine
when we lookup for compression algorithm, because we use sysfs_streq()
which takes care of new line symbols. however, it doesn't look nice when
we print compression algorithm name if zcomp_create() failed:
zram: Cannot initialise LXZ
compressing backend
cut trailing new-line, so the error string will look like
zram: Cannot initialise LXZ compressing backend
we also now can replace sysfs_streq() in zcomp_available_show() with
strcmp().
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sysfs.txt documentation lists the following requirements:
- The buffer will always be PAGE_SIZE bytes in length. On i386, this
is 4096.
- show() methods should return the number of bytes printed into the
buffer. This is the return value of scnprintf().
- show() should always use scnprintf().
Use scnprintf() in show() functions.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we initialized zcomp with single, we couldn't change
max_comp_streams without zram reset but current interface doesn't show
any error to user and even it changes max_comp_streams's value without
any effect so it would make user very confusing.
This patch prevents max_comp_streams's change when zcomp was initialized
as single zcomp and emit the error to user(ex, echo).
[akpm@linux-foundation.org: don't return with the lock held, per Sergey]
[fengguang.wu@intel.com: fix coccinelle warnings]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Acked-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of returning just NULL, return ERR_PTR from zcomp_create() if
compressing backend creation has failed. ERR_PTR(-EINVAL) for unsupported
compression algorithm request, ERR_PTR(-ENOMEM) for allocation (zcomp or
compression stream) error.
Perform IS_ERR() check of returned from zcomp_create() value in
disksize_store() and set return code to PTR_ERR().
Change suggested by Jerome Marchand.
[akpm@linux-foundation.org: clean up error recovery flow]
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce LZ4 compression backend and make it available for selection.
LZ4 support is optional and requires user to set ZRAM_LZ4_COMPRESS config
option. The default compression backend is LZO.
TEST
(x86_64, core i5, 2 cores + 2 hyperthreading, zram disk size 1G,
ext4 file system, 3 compression streams)
iozone -t 3 -R -r 16K -s 60M -I +Z
Test LZO LZ4
----------------------------------------------
Initial write 1642744.62 1317005.09
Rewrite 2498980.88 1800645.16
Read 3957026.38 5877043.75
Re-read 3950997.38 5861847.00
Reverse Read 2937114.56 5047384.00
Stride read 2948163.19 4929587.38
Random read 3292692.69 4880793.62
Mixed workload 1545602.62 3502940.38
Random write 2448039.75 1758786.25
Pwrite 1670051.03 1338329.69
Pread 2530682.00 5097177.62
Fwrite 3232085.62 3275942.56
Fread 6306880.25 6645271.12
So on my system LZ4 is slower in write-only tests, while it performs
better in read-only and mixed (reads + writes) tests.
Official LZ4 benchmarks available here http://code.google.com/p/lz4/
(linux kernel uses revision r90).
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch allows to change max_comp_streams on initialised zcomp.
Introduce zcomp set_max_streams() knob, zcomp_strm_multi_set_max_streams()
and zcomp_strm_single_set_max_streams() callbacks to change streams limit
for zcomp_strm_multi and zcomp_strm_single, accordingly. set_max_streams
for single steam zcomp does nothing.
If user has lowered the limit, then zcomp_strm_multi_set_max_streams()
attempts to immediately free extra streams (as much as it can, depending
on idle streams availability).
Note, this patch does not allow to change stream 'policy' from single to
multi stream (or vice versa) on already initialised compression backend.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Existing zram (zcomp) implementation has only one compression stream
(buffer and algorithm private part), so in order to prevent data
corruption only one write (compress operation) can use this compression
stream, forcing all concurrent write operations to wait for stream lock
to be released. This patch changes zcomp to keep a compression streams
list of user-defined size (via sysfs device attr). Each write operation
still exclusively holds compression stream, the difference is that we
can have N write operations (depending on size of streams list)
executing in parallel. See TEST section later in commit message for
performance data.
Introduce struct zcomp_strm_multi and a set of functions to manage
zcomp_strm stream access. zcomp_strm_multi has a list of idle
zcomp_strm structs, spinlock to protect idle list and wait queue, making
it possible to perform parallel compressions.
The following set of functions added:
- zcomp_strm_multi_find()/zcomp_strm_multi_release()
find and release a compression stream, implement required locking
- zcomp_strm_multi_create()/zcomp_strm_multi_destroy()
create and destroy zcomp_strm_multi
zcomp ->strm_find() and ->strm_release() callbacks are set during
initialisation to zcomp_strm_multi_find()/zcomp_strm_multi_release()
correspondingly.
Each time zcomp issues a zcomp_strm_multi_find() call, the following set
of operations performed:
- spin lock strm_lock
- if idle list is not empty, remove zcomp_strm from idle list, spin
unlock and return zcomp stream pointer to caller
- if idle list is empty, current adds itself to wait queue. it will be
awaken by zcomp_strm_multi_release() caller.
zcomp_strm_multi_release():
- spin lock strm_lock
- add zcomp stream to idle list
- spin unlock, wake up sleeper
Minchan Kim reported that spinlock-based locking scheme has demonstrated
a severe perfomance regression for single compression stream case,
comparing to mutex-based (see https://lkml.org/lkml/2014/2/18/16)
base spinlock mutex
==Initial write ==Initial write ==Initial write
records: 5 records: 5 records: 5
avg: 1642424.35 avg: 699610.40 avg: 1655583.71
std: 39890.95(2.43%) std: 232014.19(33.16%) std: 52293.96
max: 1690170.94 max: 1163473.45 max: 1697164.75
min: 1568669.52 min: 573429.88 min: 1553410.23
==Rewrite ==Rewrite ==Rewrite
records: 5 records: 5 records: 5
avg: 1611775.39 avg: 501406.64 avg: 1684419.11
std: 17144.58(1.06%) std: 15354.41(3.06%) std: 18367.42
max: 1641800.95 max: 531356.78 max: 1706445.84
min: 1593515.27 min: 488817.78 min: 1655335.73
When only one compression stream available, mutex with spin on owner
tends to perform much better than frequent wait_event()/wake_up(). This
is why single stream implemented as a special case with mutex locking.
Introduce and document zram device attribute max_comp_streams. This
attr shows and stores current zcomp's max number of zcomp streams
(max_strm). Extend zcomp's zcomp_create() with `max_strm' parameter.
`max_strm' limits the number of zcomp_strm structs in compression
backend's idle list (max_comp_streams).
max_comp_streams used during initialisation as follows:
-- passing to zcomp_create() max_strm equals to 1 will initialise zcomp
using single compression stream zcomp_strm_single (mutex-based locking).
-- passing to zcomp_create() max_strm greater than 1 will initialise zcomp
using multi compression stream zcomp_strm_multi (spinlock-based locking).
default max_comp_streams value is 1, meaning that zram with single stream
will be initialised.
Later patch will introduce configuration knob to change max_comp_streams
on already initialised and used zcomp.
TEST
iozone -t 3 -R -r 16K -s 60M -I +Z
test base 1 strm (mutex) 3 strm (spinlock)
-----------------------------------------------------------------------
Initial write 589286.78 583518.39 718011.05
Rewrite 604837.97 596776.38 1515125.72
Random write 584120.11 595714.58 1388850.25
Pwrite 535731.17 541117.38 739295.27
Fwrite 1418083.88 1478612.72 1484927.06
Usage example:
set max_comp_streams to 4
echo 4 > /sys/block/zram0/max_comp_streams
show current max_comp_streams (default value is 1).
cat /sys/block/zram0/max_comp_streams
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is preparation patch to add multi stream support to zcomp.
Introduce struct zcomp_strm_single and a set of functions to manage
zcomp_strm stream access. zcomp_strm_single implements single compession
stream, same way as current zcomp implementation. This moves zcomp_strm
stream control and locking from zcomp, so compressing backend zcomp is not
aware of required locking.
Single and multi streams require different locking schemes. Minchan Kim
reported that spinlock-based locking scheme (which is used in multi stream
implementation) has demonstrated a severe perfomance regression for single
compression stream case, comparing to mutex-based. see
https://lkml.org/lkml/2014/2/18/16
The following set of functions added:
- zcomp_strm_single_find()/zcomp_strm_single_release()
find and release a compression stream, implement required locking
- zcomp_strm_single_create()/zcomp_strm_single_destroy()
create and destroy zcomp_strm_single
New ->strm_find() and ->strm_release() callbacks added to zcomp, which are
set to zcomp_strm_single_find() and zcomp_strm_single_release() during
initialisation. Instead of direct locking and zcomp_strm access from
zcomp_strm_find() and zcomp_strm_release(), zcomp now calls ->strm_find()
and ->strm_release() correspondingly.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ZRAM performs direct LZO compression algorithm calls, making it the one
and only option. While LZO is generally performs well, LZ4 algorithm
tends to have a faster decompression (see http://code.google.com/p/lz4/
for full report)
Name Ratio C.speed D.speed
MB/s MB/s
LZ4 (r101) 2.084 422 1820
LZO 2.06 2.106 414 600
Thus, users who have mostly read (decompress) usage scenarious or mixed
workflow (writes with relatively high read ops number) will benefit from
using LZ4 compression backend.
Introduce compressing backend abstraction zcomp in order to support
multiple compression algorithms with the following set of operations:
.create
.destroy
.compress
.decompress
Schematically zram write() usually contains the following steps:
0) preparation (decompression of partioal IO, etc.)
1) lock buffer_lock mutex (protects meta compress buffers)
2) compress (using meta compress buffers)
3) alloc and map zs_pool object
4) copy compressed data (from meta compress buffers) to object allocated by 3)
5) free previous pool page, assign a new one
6) unlock buffer_lock mutex
As we can see, compressing buffers must remain untouched from 1) to 4),
because, otherwise, concurrent write() can overwrite data. At the same
time, zram_meta must be aware of a) specific compression algorithm memory
requirements and b) necessary locking to protect compression buffers. To
remove requirement a) new struct zcomp_strm introduced, which contains a
compress/decompress `buffer' and compression algorithm `private' part.
While struct zcomp implements zcomp_strm stream handling and locking and
removes requirement b) from zram meta. zcomp ->create() and ->destroy(),
respectively, allocate and deallocate algorithm specific zcomp_strm
`private' part.
Every zcomp has zcomp stream and mutex to protect its compression stream.
Stream usage semantics remains the same -- only one write can hold stream
lock and use its buffers. zcomp_strm_find() turns caller into exclusive
user of a stream (holding stream mutex until zram release stream), and
zcomp_strm_release() makes zcomp stream available (unlock the stream
mutex). Hence no concurrent write (compression) operations possible at
the moment.
iozone -t 3 -R -r 16K -s 60M -I +Z
test base patched
--------------------------------------------------
Initial write 597992.91 591660.58
Rewrite 609674.34 616054.97
Read 2404771.75 2452909.12
Re-read 2459216.81 2470074.44
Reverse Read 1652769.66 1589128.66
Stride read 2202441.81 2202173.31
Random read 2236311.47 2276565.31
Mixed workload 1423760.41 1709760.06
Random write 579584.08 615933.86
Pwrite 597550.02 594933.70
Pread 1703672.53 1718126.72
Fwrite 1330497.06 1461054.00
Fread 3922851.00 3957242.62
Usage examples:
comp = zcomp_create(NAME) /* NAME e.g. "lzo" */
which initialises compressing backend if requested algorithm is supported.
Compress:
zstrm = zcomp_strm_find(comp)
zcomp_compress(comp, zstrm, src, &dst_len)
[..] /* copy compressed data */
zcomp_strm_release(comp, zstrm)
Decompress:
zcomp_decompress(comp, src, src_len, dst);
Free compessing backend and its zcomp stream:
zcomp_destroy(comp)
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>