Pull btrfs fix from David Sterba:
"This fixes a user-visible bug introduced by the nowait-aio patches
merged in this cycle"
* 'nowait-aio-btrfs-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: nowait aio: Correct assignment of pos
Assigning pos for usage early messes up in append mode, where the pos is
re-assigned in generic_write_checks(). Assign pos later to get the
correct position to write from iocb->ki_pos.
Since check_can_nocow also uses the value of pos, we shift
generic_write_checks() before check_can_nocow(). Checks with IOCB_DIRECT
are present in generic_write_checks(), so checking for IOCB_NOWAIT is
enough.
Also, put locking sequence in the fast path.
This fixes a user visible bug, as reported:
"apparently breaks several shell related features on my system.
In zsh history stopped working, because no new entries are added
anymore.
I fist noticed the issue when I tried to build mplayer. It uses a shell
script to generate a help_mp.h file:
[...]
Here is a simple testcase:
% echo "foo" >> test
% echo "foo" >> test
% cat test
foo
%
"
Fixes: edf064e7c6 ("btrfs: nowait aio support")
CC: Jens Axboe <axboe@kernel.dk>
Reported-by: Markus Trippelsdorf <markus@trippelsdorf.de>
Link: https://lkml.kernel.org/r/20170704042306.GA274@x4
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL
5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG
aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR
hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5
hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T
tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a
BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z
Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0
t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv
OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh
oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0
yKWjj9wfYRQ0vSUqhsI5
=3Z93
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux
Pull Writeback error handling updates from Jeff Layton:
"This pile represents the bulk of the writeback error handling fixes
that I have for this cycle. Some of the earlier patches in this pile
may look trivial but they are prerequisites for later patches in the
series.
The aim of this set is to improve how we track and report writeback
errors to userland. Most applications that care about data integrity
will periodically call fsync/fdatasync/msync to ensure that their
writes have made it to the backing store.
For a very long time, we have tracked writeback errors using two flags
in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a
writeback error occurs (via mapping_set_error) and are cleared as a
side-effect of filemap_check_errors (as you noted yesterday). This
model really sucks for userland.
Only the first task to call fsync (or msync or fdatasync) will see the
error. Any subsequent task calling fsync on a file will get back 0
(unless another writeback error occurs in the interim). If I have
several tasks writing to a file and calling fsync to ensure that their
writes got stored, then I need to have them coordinate with one
another. That's difficult enough, but in a world of containerized
setups that coordination may even not be possible.
But wait...it gets worse!
The calls to filemap_check_errors can be buried pretty far down in the
call stack, and there are internal callers of filemap_write_and_wait
and the like that also end up clearing those errors. Many of those
callers ignore the error return from that function or return it to
userland at nonsensical times (e.g. truncate() or stat()). If I get
back -EIO on a truncate, there is no reason to think that it was
because some previous writeback failed, and a subsequent fsync() will
(incorrectly) return 0.
This pile aims to do three things:
1) ensure that when a writeback error occurs that that error will be
reported to userland on a subsequent fsync/fdatasync/msync call,
regardless of what internal callers are doing
2) report writeback errors on all file descriptions that were open at
the time that the error occurred. This is a user-visible change,
but I think most applications are written to assume this behavior
anyway. Those that aren't are unlikely to be hurt by it.
3) document what filesystems should do when there is a writeback
error. Today, there is very little consistency between them, and a
lot of cargo-cult copying. We need to make it very clear what
filesystems should do in this situation.
To achieve this, the set adds a new data type (errseq_t) and then
builds new writeback error tracking infrastructure around that. Once
all of that is in place, we change the filesystems to use the new
infrastructure for reporting wb errors to userland.
Note that this is just the initial foray into cleaning up this mess.
There is a lot of work remaining here:
1) convert the rest of the filesystems in a similar fashion. Once the
initial set is in, then I think most other fs' will be fairly
simple to convert. Hopefully most of those can in via individual
filesystem trees.
2) convert internal waiters on writeback to use errseq_t for
detecting errors instead of relying on the AS_* flags. I have some
draft patches for this for ext4, but they are not quite ready for
prime time yet.
This was a discussion topic this year at LSF/MM too. If you're
interested in the gory details, LWN has some good articles about this:
https://lwn.net/Articles/718734/https://lwn.net/Articles/724307/"
* tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux:
btrfs: minimal conversion to errseq_t writeback error reporting on fsync
xfs: minimal conversion to errseq_t writeback error reporting
ext4: use errseq_t based error handling for reporting data writeback errors
fs: convert __generic_file_fsync to use errseq_t based reporting
block: convert to errseq_t based writeback error tracking
dax: set errors in mapping when writeback fails
Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors
mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error
fs: new infrastructure for writeback error handling and reporting
lib: add errseq_t type and infrastructure for handling it
mm: don't TestClearPageError in __filemap_fdatawait_range
mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
jbd2: don't clear and reset errors after waiting on writeback
buffer: set errors in mapping at the time that the error occurs
fs: check for writeback errors after syncing out buffers in generic_file_fsync
buffer: use mapping_set_error instead of setting the flag
mm: fix mapping_set_error call in me_pagecache_dirty
When doing an incremental send, while processing an extent that changed
between the parent and send snapshots and that extent was an inline extent
in the parent snapshot, it's possible to access a memory region beyond
the end of leaf if the inline extent is very small and it is the first
item in a leaf.
An example scenario is described below.
The send snapshot has the following leaf:
leaf 33865728 items 33 free space 773 generation 46 owner 5
fs uuid ab7090d8-dafd-4fb9-9246-723b6d2e2fb7
chunk uuid 2d16478c-c704-4ab9-b574-68bff2281b1f
(...)
item 14 key (335 EXTENT_DATA 0) itemoff 3052 itemsize 53
generation 36 type 1 (regular)
extent data disk byte 12791808 nr 4096
extent data offset 0 nr 4096 ram 4096
extent compression 0 (none)
item 15 key (335 EXTENT_DATA 8192) itemoff 2999 itemsize 53
generation 36 type 1 (regular)
extent data disk byte 138170368 nr 225280
extent data offset 0 nr 225280 ram 225280
extent compression 0 (none)
(...)
And the parent snapshot has the following leaf:
leaf 31272960 items 17 free space 17 generation 31 owner 5
fs uuid ab7090d8-dafd-4fb9-9246-723b6d2e2fb7
chunk uuid 2d16478c-c704-4ab9-b574-68bff2281b1f
item 0 key (335 EXTENT_DATA 0) itemoff 3951 itemsize 44
generation 31 type 0 (inline)
inline extent data size 23 ram_bytes 613 compression 1 (zlib)
(...)
When computing the send stream, it is detected that the extent of inode
335, at file offset 0, and at fs/btrfs/send.c:is_extent_unchanged() we
grab the leaf from the parent snapshot and access the inline extent item.
However, before jumping to the 'out' label, we access the 'offset' and
'disk_bytenr' fields of the extent item, which should not be done for
inline extents since the inlined data starts at the offset of the
'disk_bytenr' field and can be very small. For example accessing the
'offset' field of the file extent item results in the following trace:
[ 599.705368] general protection fault: 0000 [#1] PREEMPT SMP
[ 599.706296] Modules linked in: btrfs psmouse i2c_piix4 ppdev acpi_cpufreq serio_raw parport_pc i2c_core evdev tpm_tis tpm_tis_core sg pcspkr parport tpm button su$
[ 599.709340] CPU: 7 PID: 5283 Comm: btrfs Not tainted 4.10.0-rc8-btrfs-next-46+ #1
[ 599.709340] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 599.709340] task: ffff88023eedd040 task.stack: ffffc90006658000
[ 599.709340] RIP: 0010:read_extent_buffer+0xdb/0xf4 [btrfs]
[ 599.709340] RSP: 0018:ffffc9000665ba00 EFLAGS: 00010286
[ 599.709340] RAX: db73880000000000 RBX: 0000000000000000 RCX: 0000000000000001
[ 599.709340] RDX: ffffc9000665ba60 RSI: db73880000000000 RDI: ffffc9000665ba5f
[ 599.709340] RBP: ffffc9000665ba30 R08: 0000000000000001 R09: ffff88020dc5e098
[ 599.709340] R10: 0000000000001000 R11: 0000160000000000 R12: 6db6db6db6db6db7
[ 599.709340] R13: ffff880000000000 R14: 0000000000000000 R15: ffff88020dc5e088
[ 599.709340] FS: 00007f519555a8c0(0000) GS:ffff88023f3c0000(0000) knlGS:0000000000000000
[ 599.709340] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 599.709340] CR2: 00007f1411afd000 CR3: 0000000235f8e000 CR4: 00000000000006e0
[ 599.709340] Call Trace:
[ 599.709340] btrfs_get_token_64+0x93/0xce [btrfs]
[ 599.709340] ? printk+0x48/0x50
[ 599.709340] btrfs_get_64+0xb/0xd [btrfs]
[ 599.709340] process_extent+0x3a1/0x1106 [btrfs]
[ 599.709340] ? btree_read_extent_buffer_pages+0x5/0xef [btrfs]
[ 599.709340] changed_cb+0xb03/0xb3d [btrfs]
[ 599.709340] ? btrfs_get_token_32+0x7a/0xcc [btrfs]
[ 599.709340] btrfs_compare_trees+0x432/0x53d [btrfs]
[ 599.709340] ? process_extent+0x1106/0x1106 [btrfs]
[ 599.709340] btrfs_ioctl_send+0x960/0xe26 [btrfs]
[ 599.709340] btrfs_ioctl+0x181b/0x1fed [btrfs]
[ 599.709340] ? trace_hardirqs_on_caller+0x150/0x1ac
[ 599.709340] vfs_ioctl+0x21/0x38
[ 599.709340] ? vfs_ioctl+0x21/0x38
[ 599.709340] do_vfs_ioctl+0x611/0x645
[ 599.709340] ? rcu_read_unlock+0x5b/0x5d
[ 599.709340] ? __fget+0x6d/0x79
[ 599.709340] SyS_ioctl+0x57/0x7b
[ 599.709340] entry_SYSCALL_64_fastpath+0x18/0xad
[ 599.709340] RIP: 0033:0x7f51945eec47
[ 599.709340] RSP: 002b:00007ffc21c13e98 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[ 599.709340] RAX: ffffffffffffffda RBX: ffffffff81096459 RCX: 00007f51945eec47
[ 599.709340] RDX: 00007ffc21c13f20 RSI: 0000000040489426 RDI: 0000000000000004
[ 599.709340] RBP: ffffc9000665bf98 R08: 00007f519450d700 R09: 00007f519450d700
[ 599.709340] R10: 00007f519450d9d0 R11: 0000000000000202 R12: 0000000000000046
[ 599.709340] R13: ffffc9000665bf78 R14: 0000000000000000 R15: 00007f5195574040
[ 599.709340] ? trace_hardirqs_off_caller+0x43/0xb1
[ 599.709340] Code: 29 f0 49 39 d8 4c 0f 47 c3 49 03 81 58 01 00 00 44 89 c1 4c 01 c2 4c 29 c3 48 c1 f8 03 49 0f af c4 48 c1 e0 0c 4c 01 e8 48 01 c6 <f3> a4 31 f6 4$
[ 599.709340] RIP: read_extent_buffer+0xdb/0xf4 [btrfs] RSP: ffffc9000665ba00
[ 599.762057] ---[ end trace fe00d7af61b9f49e ]---
This is because the 'offset' field starts at an offset of 37 bytes
(offsetof(struct btrfs_file_extent_item, offset)), has a length of 8
bytes and therefore attemping to read it causes a 1 byte access beyond
the end of the leaf, as the first item's content in a leaf is located
at the tail of the leaf, the item size is 44 bytes and the offset of
that field plus its length (37 + 8 = 45) goes beyond the item's size
by 1 byte.
So fix this by accessing the 'offset' and 'disk_bytenr' fields after
jumping to the 'out' label if we are processing an inline extent. We
move the reading operation of the 'disk_bytenr' field too because we
have the same problem as for the 'offset' field explained above when
the inline data is less then 8 bytes. The access to the 'generation'
field is also moved but just for the sake of grouping access to all
the fields.
Fixes: e1cbfd7bf6 ("Btrfs: send, fix file hole not being preserved due to inline extent")
Cc: <stable@vger.kernel.org> # v4.12+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
In some scenarios an incremental send stream can contain link commands
with an invalid target path. Such scenarios happen after moving some
directory inode A, renaming a regular file inode B into the old name of
inode A and finally creating a new hard link for inode B at directory
inode A.
Consider the following example scenario where this issue happens.
Parent snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
| |--- dir2/ (ino 258)
| |--- dir3/ (ino 259)
| |--- file1 (ino 261)
| |--- dir4/ (ino 262)
|
|--- dir5/ (ino 260)
Send snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
|--- dir2/ (ino 258)
| |--- dir3/ (ino 259)
| |--- dir4 (ino 261)
|
|--- dir6/ (ino 263)
|--- dir44/ (ino 262)
|--- file11 (ino 261)
|--- dir55/ (ino 260)
When attempting to apply the corresponding incremental send stream, a
link command contains an invalid target path which makes the receiver
fail. The following is the verbose output of the btrfs receive command:
receiving snapshot mysnap2 uuid=90076fe6-5ba6-e64a-9321-9279670ed16b (...)
utimes
utimes dir1
utimes dir1/dir2/dir3
utimes
rename dir1/dir2/dir3/dir4 -> o262-7-0
link dir1/dir2/dir3/dir4 -> dir1/dir2/dir3/file1
link dir1/dir2/dir3/dir4/file11 -> dir1/dir2/dir3/file1
ERROR: link dir1/dir2/dir3/dir4/file11 -> dir1/dir2/dir3/file1 failed: Not a directory
The following steps happen during the computation of the incremental send
stream the lead to this issue:
1) When processing inode 261, we orphanize inode 262 due to a name/location
collision with one of the new hard links for inode 261 (created in the
second step below).
2) We create one of the 2 new hard links for inode 261, the one whose
location is at "dir1/dir2/dir3/dir4".
3) We then attempt to create the other new hard link for inode 261, which
has inode 262 as its parent directory. Because the path for this new
hard link was computed before we started processing the new references
(hard links), it reflects the old name/location of inode 262, that is,
it does not account for the orphanization step that happened when
we started processing the new references for inode 261, whence it is
no longer valid, causing the receiver to fail.
So fix this issue by recomputing the full path of new references if we
ended up orphanizing other inodes which are directories.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Pull percpu updates from Tejun Heo:
"These are the percpu changes for the v4.13-rc1 merge window. There are
a couple visibility related changes - tracepoints and allocator stats
through debugfs, along with __ro_after_init markings and a cosmetic
rename in percpu_counter.
Please note that the simple O(#elements_in_the_chunk) area allocator
used by percpu allocator is again showing scalability issues,
primarily with bpf allocating and freeing large number of counters.
Dennis is working on the replacement allocator and the percpu
allocator will be seeing increased churns in the coming cycles"
* 'for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: fix static checker warnings in pcpu_destroy_chunk
percpu: fix early calls for spinlock in pcpu_stats
percpu: resolve err may not be initialized in pcpu_alloc
percpu_counter: Rename __percpu_counter_add to percpu_counter_add_batch
percpu: add tracepoint support for percpu memory
percpu: expose statistics about percpu memory via debugfs
percpu: migrate percpu data structures to internal header
percpu: add missing lockdep_assert_held to func pcpu_free_area
mark most percpu globals as __ro_after_init
Just check and advance the errseq_t in the file before returning, and
use an errseq_t based check for writeback errors.
Other internal callers of filemap_* functions are left as-is.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
btrfs, debugfs, reiserfs and tracefs call save_mount_options() and reiserfs
calls replace_mount_options(), but they then implement their own
->show_options() methods and don't touch s_options, rendering the saved
options unnecessary. I'm trying to eliminate s_options to make it easier
to implement a context-based mount where the mount options can be passed
individually over a file descriptor.
Remove the calls to save/replace_mount_options() call in these cases.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Chris Mason <clm@fb.com>
cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
cc: Steven Rostedt <rostedt@goodmis.org>
cc: linux-btrfs@vger.kernel.org
cc: reiserfs-devel@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull btrfs updates from David Sterba:
"The core updates improve error handling (mostly related to bios), with
the usual incremental work on the GFP_NOFS (mis)use removal,
refactoring or cleanups. Except the two top patches, all have been in
for-next for an extensive amount of time.
User visible changes:
- statx support
- quota override tunable
- improved compression thresholds
- obsoleted mount option alloc_start
Core updates:
- bio-related updates:
- faster bio cloning
- no allocation failures
- preallocated flush bios
- more kvzalloc use, memalloc_nofs protections, GFP_NOFS updates
- prep work for btree_inode removal
- dir-item validation
- qgoup fixes and updates
- cleanups:
- removed unused struct members, unused code, refactoring
- argument refactoring (fs_info/root, caller -> callee sink)
- SEARCH_TREE ioctl docs"
* 'for-4.13-part1' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (115 commits)
btrfs: Remove false alert when fiemap range is smaller than on-disk extent
btrfs: Don't clear SGID when inheriting ACLs
btrfs: fix integer overflow in calc_reclaim_items_nr
btrfs: scrub: fix target device intialization while setting up scrub context
btrfs: qgroup: Fix qgroup reserved space underflow by only freeing reserved ranges
btrfs: qgroup: Introduce extent changeset for qgroup reserve functions
btrfs: qgroup: Fix qgroup reserved space underflow caused by buffered write and quotas being enabled
btrfs: qgroup: Return actually freed bytes for qgroup release or free data
btrfs: qgroup: Cleanup btrfs_qgroup_prepare_account_extents function
btrfs: qgroup: Add quick exit for non-fs extents
Btrfs: rework delayed ref total_bytes_pinned accounting
Btrfs: return old and new total ref mods when adding delayed refs
Btrfs: always account pinned bytes when dropping a tree block ref
Btrfs: update total_bytes_pinned when pinning down extents
Btrfs: make BUG_ON() in add_pinned_bytes() an ASSERT()
Btrfs: make add_pinned_bytes() take an s64 num_bytes instead of u64
btrfs: fix validation of XATTR_ITEM dir items
btrfs: Verify dir_item in iterate_object_props
btrfs: Check name_len before in btrfs_del_root_ref
btrfs: Check name_len before reading btrfs_get_name
...
Pull core block/IO updates from Jens Axboe:
"This is the main pull request for the block layer for 4.13. Not a huge
round in terms of features, but there's a lot of churn related to some
core cleanups.
Note this depends on the UUID tree pull request, that Christoph
already sent out.
This pull request contains:
- A series from Christoph, unifying the error/stats codes in the
block layer. We now use blk_status_t everywhere, instead of using
different schemes for different places.
- Also from Christoph, some cleanups around request allocation and IO
scheduler interactions in blk-mq.
- And yet another series from Christoph, cleaning up how we handle
and do bounce buffering in the block layer.
- A blk-mq debugfs series from Bart, further improving on the support
we have for exporting internal information to aid debugging IO
hangs or stalls.
- Also from Bart, a series that cleans up the request initialization
differences across types of devices.
- A series from Goldwyn Rodrigues, allowing the block layer to return
failure if we will block and the user asked for non-blocking.
- Patch from Hannes for supporting setting loop devices block size to
that of the underlying device.
- Two series of patches from Javier, fixing various issues with
lightnvm, particular around pblk.
- A series from me, adding support for write hints. This comes with
NVMe support as well, so applications can help guide data placement
on flash to improve performance, latencies, and write
amplification.
- A series from Ming, improving and hardening blk-mq support for
stopping/starting and quiescing hardware queues.
- Two pull requests for NVMe updates. Nothing major on the feature
side, but lots of cleanups and bug fixes. From the usual crew.
- A series from Neil Brown, greatly improving the bio rescue set
support. Most notably, this kills the bio rescue work queues, if we
don't really need them.
- Lots of other little bug fixes that are all over the place"
* 'for-4.13/block' of git://git.kernel.dk/linux-block: (217 commits)
lightnvm: pblk: set line bitmap check under debug
lightnvm: pblk: verify that cache read is still valid
lightnvm: pblk: add initialization check
lightnvm: pblk: remove target using async. I/Os
lightnvm: pblk: use vmalloc for GC data buffer
lightnvm: pblk: use right metadata buffer for recovery
lightnvm: pblk: schedule if data is not ready
lightnvm: pblk: remove unused return variable
lightnvm: pblk: fix double-free on pblk init
lightnvm: pblk: fix bad le64 assignations
nvme: Makefile: remove dead build rule
blk-mq: map all HWQ also in hyperthreaded system
nvmet-rdma: register ib_client to not deadlock in device removal
nvme_fc: fix error recovery on link down.
nvmet_fc: fix crashes on bad opcodes
nvme_fc: Fix crash when nvme controller connection fails.
nvme_fc: replace ioabort msleep loop with completion
nvme_fc: fix double calls to nvme_cleanup_cmd()
nvme-fabrics: verify that a controller returns the correct NQN
nvme: simplify nvme_dev_attrs_are_visible
...
Commit 4751832da9 ("btrfs: fiemap: Cache and merge fiemap extent before
submit it to user") introduced a warning to catch unemitted cached
fiemap extent.
However such warning doesn't take the following case into consideration:
0 4K 8K
|<---- fiemap range --->|
|<----------- On-disk extent ------------------>|
In this case, the whole 0~8K is cached, and since it's larger than
fiemap range, it break the fiemap extent emit loop.
This leaves the fiemap extent cached but not emitted, and caught by the
final fiemap extent sanity check, causing kernel warning.
This patch removes the kernel warning and renames the sanity check to
emit_last_fiemap_cache() since it's possible and valid to have cached
fiemap extent.
Reported-by: David Sterba <dsterba@suse.cz>
Reported-by: Adam Borowski <kilobyte@angband.pl>
Fixes: 4751832da9 ("btrfs: fiemap: Cache and merge fiemap extent ...")
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When new directory 'DIR1' is created in a directory 'DIR0' with SGID bit
set, DIR1 is expected to have SGID bit set (and owning group equal to
the owning group of 'DIR0'). However when 'DIR0' also has some default
ACLs that 'DIR1' inherits, setting these ACLs will result in SGID bit on
'DIR1' to get cleared if user is not member of the owning group.
Fix the problem by moving posix_acl_update_mode() out of
__btrfs_set_acl() into btrfs_set_acl(). That way the function will not be
called when inheriting ACLs which is what we want as it prevents SGID
bit clearing and the mode has been properly set by posix_acl_create()
anyway.
Fixes: 073931017b
CC: stable@vger.kernel.org
CC: linux-btrfs@vger.kernel.org
CC: David Sterba <dsterba@suse.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: David Sterba <dsterba@suse.com>
Dave Jones hit a WARN_ON(nr < 0) in btrfs_wait_ordered_roots() with
v4.12-rc6. This was because commit 70e7af244 made it possible for
calc_reclaim_items_nr() to return a negative number. It's not really a
bug in that commit, it just didn't go far enough down the stack to find
all the possible 64->32 bit overflows.
This switches calc_reclaim_items_nr() to return a u64 and changes everyone
that uses the results of that math to u64 as well.
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Fixes: 70e7af2 ("Btrfs: fix delalloc accounting leak caused by u32 overflow")
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The commit "btrfs: scrub: inline helper scrub_setup_wr_ctx" inlined a
helper but wrongly sets up the target device. Incidentally there's a
local variable with the same name as a parameter in the previous
function, so this got caught during runtime as crash in test btrfs/027.
Reported-by: Chris Mason <clm@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For the following case, btrfs can underflow qgroup reserved space
at an error path:
(Page size 4K, function name without "btrfs_" prefix)
Task A | Task B
----------------------------------------------------------------------
Buffered_write [0, 2K) |
|- check_data_free_space() |
| |- qgroup_reserve_data() |
| Range aligned to page |
| range [0, 4K) <<< |
| 4K bytes reserved <<< |
|- copy pages to page cache |
| Buffered_write [2K, 4K)
| |- check_data_free_space()
| | |- qgroup_reserved_data()
| | Range alinged to page
| | range [0, 4K)
| | Already reserved by A <<<
| | 0 bytes reserved <<<
| |- delalloc_reserve_metadata()
| | And it *FAILED* (Maybe EQUOTA)
| |- free_reserved_data_space()
|- qgroup_free_data()
Range aligned to page range
[0, 4K)
Freeing 4K
(Special thanks to Chandan for the detailed report and analyse)
[CAUSE]
Above Task B is freeing reserved data range [0, 4K) which is actually
reserved by Task A.
And at writeback time, page dirty by Task A will go through writeback
routine, which will free 4K reserved data space at file extent insert
time, causing the qgroup underflow.
[FIX]
For btrfs_qgroup_free_data(), add @reserved parameter to only free
data ranges reserved by previous btrfs_qgroup_reserve_data().
So in above case, Task B will try to free 0 byte, so no underflow.
Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Tested-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new parameter, struct extent_changeset for
btrfs_qgroup_reserved_data() and its callers.
Such extent_changeset was used in btrfs_qgroup_reserve_data() to record
which range it reserved in current reserve, so it can free it in error
paths.
The reason we need to export it to callers is, at buffered write error
path, without knowing what exactly which range we reserved in current
allocation, we can free space which is not reserved by us.
This will lead to qgroup reserved space underflow.
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Under the following case, we can underflow qgroup reserved space.
Task A | Task B
---------------------------------------------------------------
Quota disabled |
Buffered write |
|- btrfs_check_data_free_space() |
| *NO* qgroup space is reserved |
| since quota is *DISABLED* |
|- All pages are copied to page |
cache |
| Enable quota
| Quota scan finished
|
| Sync_fs
| |- run_delalloc_range
| |- Write pages
| |- btrfs_finish_ordered_io
| |- insert_reserved_file_extent
| |- btrfs_qgroup_release_data()
| Since no qgroup space is
reserved in Task A, we
underflow qgroup reserved
space
This can be detected by fstest btrfs/104.
[CAUSE]
In insert_reserved_file_extent() we tell qgroup to release the @ram_bytes
size of qgroup reserved_space in all cases.
And btrfs_qgroup_release_data() will check if quotas are enabled.
However in the above case, the buffered write happens before quota is
enabled, so we don't have the reserved space for that range.
[FIX]
In insert_reserved_file_extent(), we tell qgroup to release the acctual
byte number it released.
In the above case, since we don't have the reserved space, we tell
qgroups to release 0 byte, so the problem can be fixed.
And thanks to the @reserved parameter introduced by the qgroup rework,
and previous patch to return released bytes, the fix can be as small as
10 lines.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[ changelog updates ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_qgroup_release/free_data() only returns 0 or a negative error
number (ENOMEM is the only possible error).
This is normally good enough, but sometimes we need the exact byte
count it freed/released.
Change it to return actually released/freed bytenr number instead of 0
for success.
And slightly modify related extent_changeset structure, since in btrfs
one no-hole data extent won't be larger than 128M, so "unsigned int"
is large enough for the use case.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Quite a lot of qgroup corruption happens due to wrong time of calling
btrfs_qgroup_prepare_account_extents().
Since the safest time is to call it just before
btrfs_qgroup_account_extents(), there is no need to separate these 2
functions.
Merging them will make code cleaner and less bug prone.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[ changelog and comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
Modify btrfs_qgroup_account_extent() to exit quicker for non-fs extents.
The quick exit condition is:
1) The extent belongs to a non-fs tree
Only fs-tree extents can affect qgroup numbers and is the only case
where extent can be shared between different trees.
Although strictly speaking extent in data-reloc or tree-reloc tree
can be shared, data/tree-reloc root won't appear in the result of
btrfs_find_all_roots(), so we can ignore such case.
So we can check the first root in old_roots/new_roots ulist.
- if we find the 1st root is a not a fs/subvol root, then we can skip
the extent
- if we find the 1st root is a fs/subvol root, then we must continue
calculation
OR
2) both 'nr_old_roots' and 'nr_new_roots' are 0
This means either such extent got allocated then freed in current
transaction or it's a new reloc tree extent, whose nr_new_roots is 0.
Either way it won't affect qgroup accounting and can be skipped
safely.
Such quick exit can make trace output more quite and less confusing:
(example with fs uuid and time stamp removed)
Before:
------
add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0
btrfs_qgroup_account_extent: bytenr=29556736 num_bytes=16384 nr_old_roots=0 nr_new_roots=1
------
Extent tree block will trigger btrfs_qgroup_account_extent() trace point
while no qgroup number is changed, as extent tree won't affect qgroup
accounting.
After:
------
add_delayed_tree_ref: bytenr=29556736 num_bytes=16384 action=ADD_DELAYED_REF parent=0(-) ref_root=2(EXTENT_TREE) level=0 type=TREE_BLOCK_REF seq=0
------
Now such unrelated extent won't trigger btrfs_qgroup_account_extent()
trace point, making the trace less noisy.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
[ changelog and comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
The total_bytes_pinned counter is completely broken when accounting
delayed refs:
- If two drops for the same extent are merged, we will decrement
total_bytes_pinned twice but only increment it once.
- If an add is merged into a drop or vice versa, we will decrement the
total_bytes_pinned counter but never increment it.
- If multiple references to an extent are dropped, we will account it
multiple times, potentially vastly over-estimating the number of bytes
that will be freed by a commit and doing unnecessary work when we're
close to ENOSPC.
The last issue is relatively minor, but the first two make the
total_bytes_pinned counter leak or underflow very often. These
accounting issues were introduced in b150a4f10d ("Btrfs: use a percpu
to keep track of possibly pinned bytes"), but they were papered over by
zeroing out the counter on every commit until d288db5dc0 ("Btrfs: fix
race of using total_bytes_pinned").
We need to make sure that an extent is accounted as pinned exactly once
if and only if we will drop references to it when when the transaction
is committed. Ideally we would only add to total_bytes_pinned when the
*last* reference is dropped, but this information isn't readily
available for data extents. Again, this over-estimation can lead to
extra commits when we're close to ENOSPC, but it's not as bad as before.
The fix implemented here is to increment total_bytes_pinned when the
total refmod count for an extent goes negative and decrement it if the
refmod count goes back to non-negative or after we've run all of the
delayed refs for that extent.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We need this to decide when to account pinned bytes.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, we only increment total_bytes_pinned in
btrfs_free_tree_block() when dropping the last reference on the block.
However, when the delayed ref is run later, we will decrement
total_bytes_pinned regardless of whether it was the last reference or
not. This causes the counter to underflow when the reference we dropped
was not the last reference. Fix it by incrementing the counter
unconditionally, which is what btrfs_free_extent() does. This makes
total_bytes_pinned an overestimate when references to shared extents are
dropped, but in the worst case this will just make us try to commit the
transaction to try to free up space and find we didn't free enough.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extents marked in pin_down_extent() will be unpinned later in
unpin_extent_range(), which decrements total_bytes_pinned.
pin_down_extent() must increment the counter to avoid underflowing it.
Also adjust btrfs_free_tree_block() to avoid accounting for the same
extent twice.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The value of flags is one of DATA/METADATA/SYSTEM, they must exist at
when add_pinned_bytes is called.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ added changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
There are a few places where we pass in a negative num_bytes, so make it
signed for clarity. Also move it up in the file since later patches will
need it there.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The XATTR_ITEM is a type of a directory item so we use the common
validator helper. Unlike other dir items, it can have data. The way the
name len validation is currently implemented does not reflect that. We'd
have to adjust by the data_len when comparing the read and item limits.
However, this will not work for multi-item xattr dir items.
Example from tree dump of generic/337:
item 7 key (257 XATTR_ITEM 751495445) itemoff 15667 itemsize 147
location key (0 UNKNOWN.0 0) type XATTR
transid 8 data_len 3 name_len 11
name: user.foobar
data 123
location key (0 UNKNOWN.0 0) type XATTR
transid 8 data_len 6 name_len 13
name: user.WvG1c1Td
data qwerty
location key (0 UNKNOWN.0 0) type XATTR
transid 8 data_len 5 name_len 19
name: user.J3__T_Km3dVsW_
data hello
At the point of btrfs_is_name_len_valid call we don't have access to the
data_len value of the 2nd and 3rd sub-item. So simple btrfs_dir_data_len(leaf,
di) would always return 3, although we'd need to get 6 and 5 respectively to
get the claculations right. (read_end + name_len + data_len vs item_end)
We'd have to also pass data_len externally, which is not point of the
name validation. The last check is supposed to test if there's at least
one dir item space after the one we're processing. I don't think this is
particularly useful, validation of the next item would catch that too.
So the check is removed and we don't weaken the validation. Now tests
btrfs/048, btrfs/053, generic/273 and generic/337 pass.
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Call verify_dir_item before memcmp_extent_buffer reading name from
dir_item.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_del_root_ref calls btrfs_search_slot and reads name from root_ref.
Call btrfs_is_name_len_valid before memcmp.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_get_name, there's btrfs_search_slot and reads name from
inode_ref/root_ref.
Call btrfs_is_name_len_valid in btrfs_get_name.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since iterate_dir_item checks name_len in its own way,
so use btrfs_is_name_len_valid not 'verify_dir_item' to make more strict
name_len check.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ switched ENAMETOOLONG to EIO ]
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_log_inode, btrfs_search_forward gets the buffer and then
btrfs_check_ref_name_override will read name from ref/extref for the
first time.
Call btrfs_is_name_len_valid before reading name.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
replay_xattr_deletes calls btrfs_search_slot to get buffer and reads
name.
Call verify_dir_item to check name_len in replay_xattr_deletes to avoid
reading out of boundary.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
replay_one_buffer first reads buffers and dispatches items accroding to
the item type.
In this patch, add_inode_ref handles inode_ref and inode_extref.
Then add_inode_ref calls ref_get_fields and extref_get_fields to read
ref/extref name for the first time.
So checking name_len before reading those two is fine.
add_inode_ref also calls inode_in_dir to match ref/extref in parent_dir.
The call graph includes btrfs_match_dir_item_name to read dir_item name
in the parent dir.
Checking first dir_item is not enough. Change it to verify every
dir_item while doing matches.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce function btrfs_is_name_len_valid.
The function compares parameter @name_len with item boundary then
returns true if name_len is valid.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ s/btrfs_leaf_data/BTRFS_LEAF_DATA_OFFSET/ ]
Signed-off-by: David Sterba <dsterba@suse.com>
We should really just wait in wait_dev_flush and let the caller decide
what to do with the error value.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Similar to what submit_bio_wait does, we should account for IO while
waiting for a bio completion. This has marginal visible effects, flush
bio is short-lived.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For devices that support flushing, we allocate a bio, submit, wait for
it and then free it. The bio allocation does not fail so ENOMEM is not a
problem but we still may unnecessarily stress the allocation subsystem.
Instead, we can allocate the bio at the same time we allocate the device
and reuse it each time we need to flush the barriers. The bio is reset
before each use. Reference counting is simplified to just device
allocation (get) and freeing (put).
The bio used to be submitted through the integrity checker which will
find out that bio has no data attached and call submit_bio.
Status of the bio in flight needs to be tracked separately in case the
device caches get switched off between write and wait.
Signed-off-by: David Sterba <dsterba@suse.com>
An incremental send can contain unlink operations with an invalid target
path when we rename some directory inode A, then rename some file inode B
to the old name of inode A and directory inode A is an ancestor of inode B
in the parent snapshot (but not anymore in the send snapshot).
Consider the following example scenario where this issue happens.
Parent snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
|--- dir2/ (ino 258)
| |--- file1 (ino 259)
| |--- file3 (ino 261)
|
|--- dir3/ (ino 262)
|--- file22 (ino 260)
|--- dir4/ (ino 263)
Send snapshot:
. (ino 256)
|
|--- dir1/ (ino 257)
|--- dir2/ (ino 258)
|--- dir3 (ino 260)
|--- file3/ (ino 262)
|--- dir4/ (ino 263)
|--- file11 (ino 269)
|--- file33 (ino 261)
When attempting to apply the corresponding incremental send stream, an
unlink operation contains an invalid path which makes the receiver fail.
The following is verbose output of the btrfs receive command:
receiving snapshot snap2 uuid=7d5450da-a573-e043-a451-ec85f4879f0f (...)
utimes
utimes dir1
utimes dir1/dir2
link dir1/dir3/dir4/file11 -> dir1/dir2/file1
unlink dir1/dir2/file1
utimes dir1/dir2
truncate dir1/dir3/dir4/file11 size=0
utimes dir1/dir3/dir4/file11
rename dir1/dir3 -> o262-7-0
link dir1/dir3 -> o262-7-0/file22
unlink dir1/dir3/file22
ERROR: unlink dir1/dir3/file22 failed. Not a directory
The following steps happen during the computation of the incremental send
stream the lead to this issue:
1) Before we start processing the new and deleted references for inode
260, we compute the full path of the deleted reference
("dir1/dir3/file22") and cache it in the list of deleted references
for our inode.
2) We then start processing the new references for inode 260, for which
there is only one new, located at "dir1/dir3". When processing this
new reference, we check that inode 262, which was not yet processed,
collides with the new reference and because of that we orphanize
inode 262 so its new full path becomes "o262-7-0".
3) After the orphanization of inode 262, we create the new reference for
inode 260 by issuing a link command with a target path of "dir1/dir3"
and a source path of "o262-7-0/file22".
4) We then start processing the deleted references for inode 260, for
which there is only one with the base name of "file22", and issue
an unlink operation containing the target path computed at step 1,
which is wrong because that path no longer exists and should be
replaced with "o262-7-0/file22".
So fix this issue by recomputing the full path of deleted references if
when we processed the new references for an inode we ended up orphanizing
any other inode that is an ancestor of our inode in the parent snapshot.
A test case for fstests follows soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[ adjusted after prev patch removed fs_path::dir_path and dir_path_len ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently an incremental snapshot can generate link operations which
contain an invalid target path. Such case happens when in the send
snapshot a file was renamed, a new hard link added for it and some
other inode (with a lower number) got renamed to the former name of
that file. Example:
Parent snapshot
. (ino 256)
|
|--- f1 (ino 257)
|--- f2 (ino 258)
|--- f3 (ino 259)
Send snapshot
. (ino 256)
|
|--- f2 (ino 257)
|--- f3 (ino 258)
|--- f4 (ino 259)
|--- f5 (ino 258)
The following steps happen when computing the incremental send stream:
1) When processing inode 257, inode 258 is orphanized (renamed to
"o258-7-0"), because its current reference has the same name as the
new reference for inode 257;
2) When processing inode 258, we iterate over all its new references,
which have the names "f3" and "f5". The first iteration sees name
"f5" and renames the inode from its orphan name ("o258-7-0") to
"f5", while the second iteration sees the name "f3" and, incorrectly,
issues a link operation with a target name matching the orphan name,
which no longer exists. The first iteration had reset the current
valid path of the inode to "f5", but in the second iteration we lost
it because we found another inode, with a higher number of 259, which
has a reference named "f3" as well, so we orphanized inode 259 and
recomputed the current valid path of inode 258 to its old orphan
name because inode 259 could be an ancestor of inode 258 and therefore
the current valid path could contain the pre-orphanization name of
inode 259. However in this case inode 259 is not an ancestor of inode
258 so the current valid path should not be recomputed.
This makes the receiver fail with the following error:
ERROR: link f3 -> o258-7-0 failed: No such file or directory
So fix this by not recomputing the current valid path for an inode
whenever we find a colliding reference from some not yet processed inode
(inode number higher then the one currently being processed), unless
that other inode is an ancestor of the one we are currently processing.
A test case for fstests will follow soon.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
While punching a hole in a range that is not aligned with the sector size
(currently the same as the page size) we can end up leaving an extent map
in memory with a length that is smaller then the sector size or with a
start offset that is not aligned to the sector size. Both cases are not
expected and can lead to problems. This issue is easily detected
after the patch from commit a7e3b975a0 ("Btrfs: fix reported number of
inode blocks"), introduced in kernel 4.12-rc1, in a scenario like the
following for example:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -c "pwrite -S 0xaa -b 100K 0 100K" /mnt/foo
$ xfs_io -c "fpunch 60K 90K" /mnt/foo
$ xfs_io -c "pwrite -S 0xbb -b 100K 50K 100K" /mnt/foo
$ xfs_io -c "pwrite -S 0xcc -b 50K 100K 50K" /mnt/foo
$ umount /mnt
After the unmount operation we can see several warnings emmitted due to
underflows related to space reservation counters:
[ 2837.443299] ------------[ cut here ]------------
[ 2837.447395] WARNING: CPU: 8 PID: 2474 at fs/btrfs/inode.c:9444 btrfs_destroy_inode+0xe8/0x27e [btrfs]
[ 2837.452108] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button se
rio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_gene
ric raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.458389] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.459754] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.462379] Call Trace:
[ 2837.462379] dump_stack+0x68/0x92
[ 2837.462379] __warn+0xc2/0xdd
[ 2837.462379] warn_slowpath_null+0x1d/0x1f
[ 2837.462379] btrfs_destroy_inode+0xe8/0x27e [btrfs]
[ 2837.462379] destroy_inode+0x3d/0x55
[ 2837.462379] evict+0x177/0x17e
[ 2837.462379] dispose_list+0x50/0x71
[ 2837.462379] evict_inodes+0x132/0x141
[ 2837.462379] generic_shutdown_super+0x3f/0xeb
[ 2837.462379] kill_anon_super+0x12/0x1c
[ 2837.462379] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.462379] deactivate_locked_super+0x30/0x68
[ 2837.462379] deactivate_super+0x36/0x39
[ 2837.462379] cleanup_mnt+0x58/0x76
[ 2837.462379] __cleanup_mnt+0x12/0x14
[ 2837.462379] task_work_run+0x77/0x9b
[ 2837.462379] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.462379] syscall_return_slowpath+0x196/0x1b9
[ 2837.462379] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.462379] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.462379] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.462379] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.462379] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.462379] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.462379] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.462379] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.519355] ---[ end trace e79345fe24b30b8d ]---
[ 2837.596256] ------------[ cut here ]------------
[ 2837.597625] WARNING: CPU: 8 PID: 2474 at fs/btrfs/extent-tree.c:5699 btrfs_free_block_groups+0x246/0x3eb [btrfs]
[ 2837.603547] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button serio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_generic raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.659372] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.663359] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.663359] Call Trace:
[ 2837.663359] dump_stack+0x68/0x92
[ 2837.663359] __warn+0xc2/0xdd
[ 2837.663359] warn_slowpath_null+0x1d/0x1f
[ 2837.663359] btrfs_free_block_groups+0x246/0x3eb [btrfs]
[ 2837.663359] close_ctree+0x1dd/0x2e1 [btrfs]
[ 2837.663359] ? evict_inodes+0x132/0x141
[ 2837.663359] btrfs_put_super+0x15/0x17 [btrfs]
[ 2837.663359] generic_shutdown_super+0x6a/0xeb
[ 2837.663359] kill_anon_super+0x12/0x1c
[ 2837.663359] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.663359] deactivate_locked_super+0x30/0x68
[ 2837.663359] deactivate_super+0x36/0x39
[ 2837.663359] cleanup_mnt+0x58/0x76
[ 2837.663359] __cleanup_mnt+0x12/0x14
[ 2837.663359] task_work_run+0x77/0x9b
[ 2837.663359] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.663359] syscall_return_slowpath+0x196/0x1b9
[ 2837.663359] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.663359] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.663359] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.663359] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.663359] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.663359] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.663359] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.663359] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.739445] ---[ end trace e79345fe24b30b8e ]---
[ 2837.745595] ------------[ cut here ]------------
[ 2837.746412] WARNING: CPU: 8 PID: 2474 at fs/btrfs/extent-tree.c:5700 btrfs_free_block_groups+0x261/0x3eb [btrfs]
[ 2837.747955] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button serio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_generic raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.755395] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.756769] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.758526] Call Trace:
[ 2837.758925] dump_stack+0x68/0x92
[ 2837.759383] __warn+0xc2/0xdd
[ 2837.759383] warn_slowpath_null+0x1d/0x1f
[ 2837.759383] btrfs_free_block_groups+0x261/0x3eb [btrfs]
[ 2837.759383] close_ctree+0x1dd/0x2e1 [btrfs]
[ 2837.759383] ? evict_inodes+0x132/0x141
[ 2837.759383] btrfs_put_super+0x15/0x17 [btrfs]
[ 2837.759383] generic_shutdown_super+0x6a/0xeb
[ 2837.759383] kill_anon_super+0x12/0x1c
[ 2837.759383] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.759383] deactivate_locked_super+0x30/0x68
[ 2837.759383] deactivate_super+0x36/0x39
[ 2837.759383] cleanup_mnt+0x58/0x76
[ 2837.759383] __cleanup_mnt+0x12/0x14
[ 2837.759383] task_work_run+0x77/0x9b
[ 2837.759383] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.759383] syscall_return_slowpath+0x196/0x1b9
[ 2837.759383] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.759383] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.759383] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.759383] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.759383] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.759383] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.759383] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.759383] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.777063] ---[ end trace e79345fe24b30b8f ]---
[ 2837.778235] ------------[ cut here ]------------
[ 2837.778856] WARNING: CPU: 8 PID: 2474 at fs/btrfs/extent-tree.c:9825 btrfs_free_block_groups+0x348/0x3eb [btrfs]
[ 2837.791385] Modules linked in: dm_flakey dm_mod ppdev parport_pc psmouse parport sg pcspkr acpi_cpufreq tpm_tis tpm_tis_core i2c_piix4 i2c_core evdev tpm button serio_raw sunrpc loop autofs4 ext4 crc16 jbd2 mbcache btrfs raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq libcrc32c crc32c_generic raid1 raid0 multipath linear md_mod sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata virtio_pci virtio_ring virtio e1000 scsi_mod floppy
[ 2837.797711] CPU: 8 PID: 2474 Comm: umount Tainted: G W 4.10.0-rc8-btrfs-next-43+ #1
[ 2837.798594] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 2837.800118] Call Trace:
[ 2837.800515] dump_stack+0x68/0x92
[ 2837.801015] __warn+0xc2/0xdd
[ 2837.801471] warn_slowpath_null+0x1d/0x1f
[ 2837.801698] btrfs_free_block_groups+0x348/0x3eb [btrfs]
[ 2837.801698] close_ctree+0x1dd/0x2e1 [btrfs]
[ 2837.801698] ? evict_inodes+0x132/0x141
[ 2837.801698] btrfs_put_super+0x15/0x17 [btrfs]
[ 2837.801698] generic_shutdown_super+0x6a/0xeb
[ 2837.801698] kill_anon_super+0x12/0x1c
[ 2837.801698] btrfs_kill_super+0x16/0x21 [btrfs]
[ 2837.801698] deactivate_locked_super+0x30/0x68
[ 2837.801698] deactivate_super+0x36/0x39
[ 2837.801698] cleanup_mnt+0x58/0x76
[ 2837.801698] __cleanup_mnt+0x12/0x14
[ 2837.801698] task_work_run+0x77/0x9b
[ 2837.801698] prepare_exit_to_usermode+0x9d/0xc5
[ 2837.801698] syscall_return_slowpath+0x196/0x1b9
[ 2837.801698] entry_SYSCALL_64_fastpath+0xab/0xad
[ 2837.801698] RIP: 0033:0x7f3ef3e6b9a7
[ 2837.801698] RSP: 002b:00007ffdd0d8de58 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[ 2837.801698] RAX: 0000000000000000 RBX: 0000556f76a39060 RCX: 00007f3ef3e6b9a7
[ 2837.801698] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 0000556f76a3f910
[ 2837.801698] RBP: 0000556f76a3f910 R08: 0000556f76a3e670 R09: 0000000000000015
[ 2837.801698] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007f3ef436ce64
[ 2837.801698] R13: 0000000000000000 R14: 0000556f76a39240 R15: 00007ffdd0d8e0e0
[ 2837.818441] ---[ end trace e79345fe24b30b90 ]---
[ 2837.818991] BTRFS info (device sdc): space_info 1 has 7974912 free, is not full
[ 2837.819830] BTRFS info (device sdc): space_info total=8388608, used=417792, pinned=0, reserved=0, may_use=18446744073709547520, readonly=0
What happens in the above example is the following:
1) When punching the hole, at btrfs_punch_hole(), the variable tail_len
is set to 2048 (as tail_start is 148Kb + 1 and offset + len is 150Kb).
This results in the creation of an extent map with a length of 2Kb
starting at file offset 148Kb, through find_first_non_hole() ->
btrfs_get_extent().
2) The second write (first write after the hole punch operation), sets
the range [50Kb, 152Kb[ to delalloc.
3) The third write, at btrfs_find_new_delalloc_bytes(), sees the extent
map covering the range [148Kb, 150Kb[ and ends up calling
set_extent_bit() for the same range, which results in splitting an
existing extent state record, covering the range [148Kb, 152Kb[ into
two 2Kb extent state records, covering the ranges [148Kb, 150Kb[ and
[150Kb, 152Kb[.
4) Finally at lock_and_cleanup_extent_if_need(), immediately after calling
btrfs_find_new_delalloc_bytes() we clear the delalloc bit from the
range [100Kb, 152Kb[ which results in the btrfs_clear_bit_hook()
callback being invoked against the two 2Kb extent state records that
cover the ranges [148Kb, 150Kb[ and [150Kb, 152Kb[. When called against
the first 2Kb extent state, it calls btrfs_delalloc_release_metadata()
with a length argument of 2048 bytes. That function rounds up the length
to a sector size aligned length, so it ends up considering a length of
4096 bytes, and then calls calc_csum_metadata_size() which results in
decrementing the inode's csum_bytes counter by 4096 bytes, so after
it stays a value of 0 bytes. Then the same happens when
btrfs_clear_bit_hook() is called against the second extent state that
has a length of 2Kb, covering the range [150Kb, 152Kb[, the length is
rounded up to 4096 and calc_csum_metadata_size() ends up being called
to decrement 4096 bytes from the inode's csum_bytes counter, which
at that time has a value of 0, leading to an underflow, which is
exactly what triggers the first warning, at btrfs_destroy_inode().
All the other warnings relate to several space accounting counters
that underflow as well due to similar reasons.
A similar case but where the hole punching operation creates an extent map
with a start offset not aligned to the sector size is the following:
$ mkfs.btrfs -f /dev/sdb
$ mount /dev/sdb /mnt
$ xfs_io -f -c "fpunch 695K 820K" $SCRATCH_MNT/bar
$ xfs_io -c "pwrite -S 0xaa 1008K 307K" $SCRATCH_MNT/bar
$ xfs_io -c "pwrite -S 0xbb -b 630K 1073K 630K" $SCRATCH_MNT/bar
$ xfs_io -c "pwrite -S 0xcc -b 459K 1068K 459K" $SCRATCH_MNT/bar
$ umount /mnt
During the unmount operation we get similar traces for the same reasons as
in the first example.
So fix the hole punching operation to make sure it never creates extent
maps with a length that is not aligned to the sector size nor with a start
offset that is not aligned to the sector size, as this breaks all
assumptions and it's a land mine.
Fixes: d77815461f ("btrfs: Avoid trucating page or punching hole in a already existed hole.")
Cc: <stable@vger.kernel.org>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
On an uncontended system, we can end up hitting soft lockups while
doing replace_path. At the core, and frequently called is
btrfs_qgroup_trace_leaf_items, so it makes sense to add a cond_resched
there.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function is supposed to return blk_status_t error codes now but
there was a stray -ENOMEM left behind.
Fixes: 4e4cbee93d ("block: switch bios to blk_status_t")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, percpu_counter_add is a wrapper around __percpu_counter_add
which is preempt safe due to explicit calls to preempt_disable. Given
how __ prefix is used in percpu related interfaces, the naming
unfortunately creates the false sense that __percpu_counter_add is
less safe than percpu_counter_add. In terms of context-safety,
they're equivalent. The only difference is that the __ version takes
a batch parameter.
Make this a bit more explicit by just renaming __percpu_counter_add to
percpu_counter_add_batch.
This patch doesn't cause any functional changes.
tj: Minor updates to patch description for clarity. Cosmetic
indentation updates.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: David Sterba <dsterba@suse.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: linux-mm@kvack.org
Cc: "David S. Miller" <davem@davemloft.net>
Return EAGAIN if any of the following checks fail
+ i_rwsem is not lockable
+ NODATACOW or PREALLOC is not set
+ Cannot nocow at the desired location
+ Writing beyond end of file which is not allocated
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We got an internal report about a file system not wanting to mount
following 99e3ecfcb9 ("Btrfs: add more validation checks for
superblock").
BTRFS error (device sdb1): super_total_bytes 1000203816960 mismatch with
fs_devices total_rw_bytes 1000203820544
Subtracting the numbers we get a difference of less than a 4kb. Upon
closer inspection it became apparent that mkfs actually rounds down the
size of the device to a multiple of sector size. However, the same
cannot be said for various functions which modify the total size and are
called from btrfs_balance as well as when adding a new device. So this
patch ensures that values being saved into on-disk data structures are
always rounded down to a multiple of sectorsize.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The device->total_bytes member needs to always be rounded down to sectorsize
so that it corresponds to the value of super->total_bytes. However, there are
multiple places where the setter is fed a value which is not rounded which
can cause a fs to be unmountable due to the check introduced in
99e3ecfcb9 ("Btrfs: add more validation checks for superblock"). This patch
implements the getter/setter manually so that in a later patch I can add
necessary code to catch offenders.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The mount option alloc_start was used in the past for debugging and
stressing the chunk allocator. Not meant to be used by users, so we're
not breaking anybody's setup.
There was some added complexity handling changes of the value and when
it was not same as default. Such code has likely been untested and I
think it's better to remove it.
This patch kills all use of alloc_start, and by doing that also fixes
a bug when alloc_size is set, potentially called from statfs:
in btrfs_calc_avail_data_space, traversing the list in RCU, the RCU
protection is temporarily dropped so btrfs_account_dev_extents_size can
be called and then RCU is locked again! Doing that inside
list_for_each_entry_rcu is just asking for trouble, but unlikely to be
observed in practice.
Signed-off-by: David Sterba <dsterba@suse.com>
We can keep the state among the other fs_info flags, there's no reason
why fs_frozen would need to be separate.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The pattern when err is used for function exit and ret is used for
return values of callees is not used here.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The function is called from ioctl context and we don't hold any locks
that take part in writeback. Right now it's only fs_info::volume_mutex.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't hold any locks here. Inidirectly called from statfs.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Submit and wait parts of write_dev_flush() can be split into two
separate functions for better readability.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is no extra benefit to count null bdev during the submit loop,
as these null devices will be anyway checked during command
completion device loop just after the submit loop. We are holding the
device_list_mutex, the device->bdev status won't change in between.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since commit "btrfs: btrfs_io_bio_alloc never fails, skip error handling"
write_dev_flush will not return ENOMEM in the sending part. We do not
need to check for it in the callers.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ updated changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
We already skip storing data where compression does not make the result
at least one byte less. Let's make the logic better and check
that compression frees at least one sector size of bytes, otherwise it's
not that useful.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ changelog updated ]
Signed-off-by: David Sterba <dsterba@suse.com>
We can hardcode GFP_NOFS to btrfs_io_bio_alloc, although it means we
change it back from GFP_KERNEL in scrub. I'd rather save a few stack
bytes from not passing the gfp flags in the remaining, more imporatant,
contexts and the bio allocating API now looks more consistent.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use btrfs_bioset for bios and ask to allocate the entire size of
btrfs_io_bio from btrfs bio_alloc_bioset. The member 'bio' is
initialized but the bytes from 0 to offset of 'bio' are left
uninitialized. Although we initialize some of the members in our
helpers, we should initialize the whole structures.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently dio read also goes to verify checksum if -EIO has been returned,
although it usually fails on checksum, it's not necessary at all, we could
directly check if there is another copy to read.
And with this, the behavior of dio read is now consistent with that of
buffered read.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ use bool for uptodate ]
Signed-off-by: David Sterba <dsterba@suse.com>
With raid1 profile, dio read isn't tolerating IO errors if read length is
less than the stripe length (64K).
Our bio didn't get split in btrfs_submit_direct_hook() if (dip->flags &
BTRFS_DIO_ORIG_BIO_SUBMITTED) is true and that happens when the read
length is less than 64k. In this case, if the underlying device returns
error somehow, bio->bi_error has recorded that error.
If we could recover the correct data from another copy in profile raid1/10/5/6,
with btrfs_subio_endio_read() returning 0, bio would have the correct data in
its vector, but bio->bi_error is not updated accordingly so that the following
dio_end_io(dio_bio, bio->bi_error) makes directIO think this read has failed.
This fixes the problem by setting bio's error to 0 if a good copy has been
found.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Most callers of btrfs_bio_alloc convert from bytes to sectors. Hide that
in the helper and simplify the logic in the callsers.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
compressed_bio_alloc is now a trivial wrapper around btrfs_bio_alloc, no
point keeping it. The error handling can be simplified, as we know
btrfs_bio_alloc will never fail.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All callers pass gfp_flags=GFP_NOFS and nr_vecs=BIO_MAX_PAGES.
submit_extent_page adds __GFP_HIGH that does not make a difference in
our case as it allows access to memory reserves but otherwise does not
change the constraints.
Signed-off-by: David Sterba <dsterba@suse.com>
Update direct callers of btrfs_io_bio_alloc that do error handling, that
we can now remove.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update direct callers of btrfs_bio_clone that do error handling, that we
can now remove.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update direct callers of btrfs_bio_alloc that do error handling, that we
can now remove.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Christoph pointed out that bio allocations backed by a bioset will never
fail. As we always use a bioset for all bio allocations, we can skip
the error handling. This patch adjusts our low-level helpers, the
cascaded changes to all callers will come next.
CC: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The compression workspace buffers are larger than a page so we use
vmalloc, unconditionally. This is not always necessary as there might be
contiguous memory available.
Let's use the kvmalloc helpers that will try kmalloc first and fallback
to vmalloc. For that they require GFP_KERNEL flags. As we now have the
alloc_workspace calls protected by memalloc_nofs in the critical
contexts, we can safely use GFP_KERNEL.
Signed-off-by: David Sterba <dsterba@suse.com>
As alloc_workspace is now protected by memalloc_nofs where needed,
we can switch the kmalloc to use GFP_KERNEL.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The workspaces are preallocated at the beginning where we can safely use
GFP_KERNEL, but in some cases the find_workspace might reach the
allocation again, now in a more restricted context when the bios or
pages are being compressed.
To avoid potential lockup when alloc_workspace -> vmalloc would silently
use the GFP_KERNEL, add the memalloc_nofs helpers around the critical
call site.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As we don't use vmalloc/vzalloc/vfree directly in ctree.c, we can now
use the proper header that defines kvmalloc.
Signed-off-by: David Sterba <dsterba@suse.com>
Now that init_ipath is called either from a safe context or with
memalloc_nofs protection, we can switch to GFP_KERNEL allocations in
init_path and init_data_container.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
init_ipath is called from a safe ioctl context and from scrub when
printing an error. The protection is added for three reasons:
* init_data_container calls vmalloc and this does not work as expected
in the GFP_NOFS context, so this silently does GFP_KERNEL and might
deadlock in some cases
* keep the context constraint of GFP_NOFS, used by scrub
* we want to use GFP_KERNEL unconditionally inside init_ipath or its
callees
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We use a growing buffer for xattrs larger than a page size, at some
point vmalloc is unconditionally used for larger buffers. We can still
try to avoid it using the kvmalloc helper.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The logic of kmalloc and vmalloc fallback is opencoded in
several places, we can now use the existing helper.
Signed-off-by: David Sterba <dsterba@suse.com>
Logic already skips if compression makes data bigger, let's sync lzo
with zlib and also return error if compressed size is equal to
input size.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
bio_io_error was introduced in the commit 4246a0b63b
("block: add a bi_error field to struct bio"), so use it to simplify
code.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
First, instead of open-coding the vmalloc() fallback, use the new
kvzalloc() helper. Second, use memalloc_nofs_{save,restore}() instead of
GFP_NOFS, as vmalloc() uses some GFP_KERNEL allocations internally which
could lead to deadlocks.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Observing the number of slab objects of btrfs_transaction, there's just
one active on an almost quiescent filesystem, and the number of objects
goes to about ten when sync is in progress. Then the nubmer goes down to
1. This matches the expectations of the transaction lifetime.
For such use the separate slab cache is not justified, as we do not
reuse objects frequently. For the shortlived transaction, the generic
slab (size 512) should be ok. We can optimistically expect that the 512
slabs are not all used (fragmentation) and there are free slots to take
when we do the allocation, compared to potentially allocating a whole new
page for the separate slab.
We'll lose the stats about the object use, which could be added later if
we really need them.
Signed-off-by: David Sterba <dsterba@suse.com>
The structure scrub_wr_ctx is not used anywhere just the scrub context,
we can move the members there. The tgtdev is renamed so it's more clear
that it belongs to the "wr" part.
Signed-off-by: David Sterba <dsterba@suse.com>
As we now have the node/block sizes in fs_info, we can use them and can
drop the local copies.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix copy paste typo in debug message for lzo.c, lzo is not deflate.
Signed-off-by: Timofey Titovets <nefelim4ag@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Nothing checks its return value.
Is it safe to skip checking return value of btrfs_wait_tree_block_writeback?
Liu Bo: I think yes, it's used in walk_log_tree which is called in two
places, free_log_tree and log replay. For free_log_tree, it waits for
any running writeback of the extent buffer under freeing to finish in
case we need to access the eb pointer from page->private, and it's OK to
not check the return value, while for log replay, it's doesn't wait
because wc->wait is not set. So neither cares about the writeback error.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
[ added more explanation to changelog, from Liu Bo ]
Signed-off-by: David Sterba <dsterba@suse.com>
__BTRFS_LAF_DATA_SIZE is used only by BTRFS_LEAF_DATA_SIZE. Make the
latter subsume the former.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 5f39d397df ("Btrfs: Create extent_buffer interface
for large blocksizes") refactored btrfs_leaf_data function to take
extent_buffer rather than struct btrfs_leaf. However, as it turns out the
parameter being passed is never used. Furthermore this function no longer
returns the leaf data but rather the offset to it. So rename the function
to BTRFS_LEAF_DATA_OFFSET to make it consistent with other BTRFS_LEAF_*
helpers and turn it into a macro.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
[ removed () from the macro ]
Signed-off-by: David Sterba <dsterba@suse.com>
struct compressed_bio pointer can be used instead.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of sending each argument of struct compressed_bio, send
the compressed_bio itself.
Also by having struct compressed_bio in btrfs_decompress_bio()
it would help tracing.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Following the factoring out of the creation code udpate_space_info can
only be called for already-existing space_info structs. As such it
cannot fail. Remove superfluous error handling and make the function
return void.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the struct space_info creation code is intermixed in the
udpate_space_info function. There are well-defined points at which the
we actually want to create brand-new space_info structs (e.g. during
mount of the filesystem as well as sometimes when adding/initialising
new chunks). In such cases update_space_info is called with 0 as the
bytes parameter. All of this makes for spaghetti code.
Fix it by factoring out the creation code in a separate
create_space_info structure. This also allows to simplify the internals.
Also remove BUG_ON from do_alloc_chunk since the callers handle errors.
Furthermore it will make the update_space_info function not fail,
allowing us to remove error handling in callers. This will come in a
follow up patch.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds chunk_objectid and flags, with flags we can recognize whether
the block group is about data or metadata.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We commit transaction in order to reclaim space from pinned bytes because
it could process delayed refs, and in may_commit_transaction(), we check
first if pinned bytes are enough for the required space, we then check if
that plus bytes reserved for delayed insert are enough for the required
space.
This changes the code to the above logic.
Fixes: b150a4f10d ("Btrfs: use a percpu to keep track of possibly pinned bytes")
Tested-by: Nikolay Borisov <nborisov@suse.com>
Reported-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't need to take the mutex and zero out wr_cur_bio, as this is
called after the scrub finished.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_free_wr_ctx is used only once and fits into
scrub_free_ctx as it continues sctx shutdown, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
The helper scrub_setup_wr_ctx is used only once and fits into
scrub_setup_ctx as it continues intialization, no need to keep it
separate.
Signed-off-by: David Sterba <dsterba@suse.com>
can_overcommit using the root to determine the allocation profile
is the only use of a root in the call graph below reserve_metadata_bytes.
It turns out that we only need to know whether the allocation is for
the chunk root or not -- and we can pass that around as a bool instead.
This allows us to pull root usage out of the reservation path all the
way up to reserve_metadata_bytes itself, which uses it only to compare
against fs_info->chunk_root to set the bool. In turn, this eliminates
a bunch of races where we use a particular root too early in the mount
process.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two places where we don't already know what kind of alloc
profile we need before calling btrfs_get_alloc_profile, but we need
access to a root everywhere we call it.
This patch adds helpers for btrfs_{data,metadata,system}_alloc_profile()
and relegates btrfs_system_alloc_profile to a static for use in those
two cases. The next patch will eliminate one of those.
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The end io work queue items have been tracked by the work queues since
"Btrfs: Add async worker threads for pre and post IO checksumming"
(8b71284292) (2008).
Signed-off-by: David Sterba <dsterba@suse.com>
The list used to track checksums in the early version (2.6.29), but I
was able not pinpoint the commit that stopped using it. Everything
apparently works without it for a long time.
Signed-off-by: David Sterba <dsterba@suse.com>
Seems to be unused since the initial commit, we ignore readahead errors
anyway, the full read will handle that if necessary.
Signed-off-by: David Sterba <dsterba@suse.com>
Both btrfs_create_free_space_tree and btrfs_clear_free_space_tree
contain:
if (ret)
return ret;
return 0;
The if statement is only false when ret equals zero, and since we return
zero in such cases, we can safely remove the branching.
Signed-off-by: Sahil Kang <sahil.kang@asilaycomputing.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only pass GFP_NOFS to btrfs_bio_clone_partial, so lets hardcode it.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A rewrite of btrfs_submit_direct_hook appears to have introduced a warning:
fs/btrfs/inode.c: In function 'btrfs_submit_direct_hook':
fs/btrfs/inode.c:8467:14: error: 'bio' may be used uninitialized in this function [-Werror=maybe-uninitialized]
Where the 'bio' variable was previously initialized unconditionally, it
is now set in the "while (submit_len > 0)" loop that would never execute
if submit_len is zero.
Assuming this cannot happen in practice, we can avoid the warning
by simply replacing the while{} loop with a do{}while() loop so
the compiler knows that it will always be entered at least once.
Fixes changes introduced in "Btrfs: use bio_clone_bioset_partial to
simplify DIO submit".
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
All dio endio functions are using io_bio for struct btrfs_io_bio, this
makes btrfs_submit_direct to follow this convention.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some check-integrity code depends on bio->bi_vcnt, this changes it to use
bio segments because some bios passing here may not have a reliable
bi_vcnt.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the nocsum case of dio read endio, it returns immediately if an error
gets returned when repairing, which leaves the rest blocks unrepaired. The
behavior is different from how buffered read endio works in the same case.
This changes it to record error only and go on repairing the rest blocks.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since dio submit has used bio_clone_fast, the submitted bio may not have a
reliable bi_vcnt, for the bio vector iterations in checksum related
functions, bio->bi_iter is not modified yet and it's safe to use
bio_for_each_segment, while for those bio vector iterations in dio read's
endio, we now save a copy of bvec_iter in struct btrfs_io_bio when cloning
bios and use the helper __bio_for_each_segment with the saved bvec_iter to
access each bvec.
Also for dio reads which don't get split, we also need to save a copy of
bio iterator in btrfs_bio_clone to let __bio_for_each_segments to access
each bvec in dio read's endio. Note that it doesn't affect other calls of
btrfs_bio_clone() because they don't need to use this iterator.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently when mapping bio to limit bio to a single stripe length, we
split bio by adding page to bio one by one, but later we don't modify
the vector of bio at all, thus we can use bio_clone_fast to use the
original bio vector directly.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds a new helper btrfs_bio_clone_partial, it'll allocate a cloned
bio that only owns a part of the original bio's data.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For raid1 and raid10, we clone the original bio to the bios which are then
sent to different disks.
Right now we use bio_clone_bioset to create a clone bio with iterating
bi_io_vec to initialize it. This changes it to use bio_clone_fast()
which creates a clone bio but only copies the bi_io_vec pointer
instead of iterating bi_io_vec.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead pass around the failure tree and the io tree.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Once we remove the btree_inode we won't have an inode to pass anymore,
just pass the fs_info directly and the inum since we use that to print
out the repair message.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For extent_io tree's we have carried the address_mapping of the inode
around in the io tree in order to pull the inode back out for calling
into various tree ops hooks. This works fine when everything that has
an extent_io_tree has an inode. But we are going to remove the
btree_inode, so we need to change this. Instead just have a generic
void * for private data that we can initialize with, and have all the
tree ops use that instead. This had a lot of cascading changes but
should be relatively straightforward.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor reordering of the callback prototypes ]
Signed-off-by: David Sterba <dsterba@suse.com>
This patch adds the read-write attribute quota_override into sysfs.
Any process which has CAP_SYS_RESOURCE can set this flag to on, and
once it is set to true, processes with CAP_SYS_RESOURCE can exceed
the quota.
Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor changelog edits ]
Signed-off-by: David Sterba <dsterba@suse.com>
This patch introduces the quota override flag to btrfs_fs_info, and a
change to quota limit checking code to temporarily allow for quota to be
overridden for processes with CAP_SYS_RESOURCE.
It's useful for administrative programs, such as log rotation, that may
need to temporarily use more disk space in order to free up a greater
amount of overall disk space without yielding more disk space to the
rest of userland.
Eventually, we may want to add the idea of an operator-specific quota,
operator reserved space, or something else to allow for administrative
override, but this is perhaps the simplest solution.
Signed-off-by: Sargun Dhillon <sargun@sargun.me>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor changelog edits ]
Signed-off-by: David Sterba <dsterba@suse.com>
The ->free_chunk_space variable is used to track the unallocated space
and access to it is protected by a spinlock, which is not used for
anything else. Make the code a bit self-explanatory by switching the
variable to an atomic64_t type and kill the spinlock.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
[ not a performance critical code, use of atomic type is ok ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds comments to the flush error handling part of the code, and
hopes to maintain the same logic with a framework which can be used to
handle the errors at the volume level.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These FIXMEs were already addressed in 2013. All functions check for
qgroup existence:
* btrfs_add_qgroup_relation
* btrfs_ioctl_qgroup_create
* btrfs_limit_qgroup
* btrfs_del_qgroup_relation
Signed-off-by: Daichou <tommy0705c@gmail.com>
[ enhance and reformat changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
Remove NULL test on kmap() as it will always return a valid pointer.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
"flags" arguments are often seen as good API design as they allow
easy extensibility.
bioset_create_nobvec() is implemented internally as a variation in
flags passed to __bioset_create().
To support future extension, make the internal structure part of the
API.
i.e. add a 'flags' argument to bioset_create() and discard
bioset_create_nobvec().
Note that the bio_split allocations in drivers/md/raid* do not need
the bvec mempool - they should have used bioset_create_nobvec().
Suggested-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull crypto fix from Herbert Xu:
"This fixes a bug on sparc where we may dereference freed stack memory"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: Work around deallocated stack frame reference gcc bug on sparc.
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJZPdbLAAoJEHm+PkMAQRiGx4wH/1nCjfnl6fE8oJ24/1gEAOUh
biFdqJkYZmlLYHVtYfLm4Ueg4adJdg0wx6qM/4RaAzmQVvLfDV34bc1qBf1+P95G
kVF+osWyXrZo5cTwkwapHW/KNu4VJwAx2D1wrlxKDVG5AOrULH1pYOYGOpApEkZU
4N+q5+M0ce0GJpqtUZX+UnI33ygjdDbBxXoFKsr24B7eA0ouGbAJ7dC88WcaETL+
2/7tT01SvDMo0jBSV0WIqlgXwZ5gp3yPGnklC3F4159Yze6VFrzHMKS/UpPF8o8E
W9EbuzwxsKyXUifX2GY348L1f+47glen/1sedbuKnFhP6E9aqUQQJXvEO7ueQl4=
=m2Gx
-----END PGP SIGNATURE-----
Merge tag 'v4.12-rc5' into for-4.13/block
We've already got a few conflicts and upcoming work depends on some of the
changes that have gone into mainline as regression fixes for this series.
Pull in 4.12-rc5 to resolve these conflicts and make it easier on down stream
trees to continue working on 4.13 changes.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pull btrfs fixes from Chris Mason:
"Some fixes that Dave Sterba collected.
We've been hitting an early enospc problem on production machines that
Omar tracked down to an old int->u64 mistake. I waited a bit on this
pull to make sure it was really the problem from production, but it's
on ~2100 hosts now and I think we're good.
Omar also noticed a commit in the queue would make new early ENOSPC
problems. I pulled that out for now, which is why the top three
commits are younger than the rest.
Otherwise these are all fixes, some explaining very old bugs that
we've been poking at for a while"
* 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix delalloc accounting leak caused by u32 overflow
Btrfs: clear EXTENT_DEFRAG bits in finish_ordered_io
btrfs: tree-log.c: Wrong printk information about namelen
btrfs: fix race with relocation recovery and fs_root setup
btrfs: fix memory leak in update_space_info failure path
btrfs: use correct types for page indices in btrfs_page_exists_in_range
btrfs: fix incorrect error return ret being passed to mapping_set_error
btrfs: Make flush bios explicitely sync
btrfs: fiemap: Cache and merge fiemap extent before submit it to user
btrfs_calc_trans_metadata_size() does an unsigned 32-bit multiplication,
which can overflow if num_items >= 4 GB / (nodesize * BTRFS_MAX_LEVEL * 2).
For a nodesize of 16kB, this overflow happens at 16k items. Usually,
num_items is a small constant passed to btrfs_start_transaction(), but
we also use btrfs_calc_trans_metadata_size() for metadata reservations
for extent items in btrfs_delalloc_{reserve,release}_metadata().
In drop_outstanding_extents(), num_items is calculated as
inode->reserved_extents - inode->outstanding_extents. The difference
between these two counters is usually small, but if many delalloc
extents are reserved and then the outstanding extents are merged in
btrfs_merge_extent_hook(), the difference can become large enough to
overflow in btrfs_calc_trans_metadata_size().
The overflow manifests itself as a leak of a multiple of 4 GB in
delalloc_block_rsv and the metadata bytes_may_use counter. This in turn
can cause early ENOSPC errors. Additionally, these WARN_ONs in
extent-tree.c will be hit when unmounting:
WARN_ON(fs_info->delalloc_block_rsv.size > 0);
WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
WARN_ON(space_info->bytes_pinned > 0 ||
space_info->bytes_reserved > 0 ||
space_info->bytes_may_use > 0);
Fix it by casting nodesize to a u64 so that
btrfs_calc_trans_metadata_size() does a full 64-bit multiplication.
While we're here, do the same in btrfs_calc_trunc_metadata_size(); this
can't overflow with any existing uses, but it's better to be safe here
than have another hard-to-debug problem later on.
Cc: stable@vger.kernel.org
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Before this, we use 'filled' mode here, ie. if all range has been
filled with EXTENT_DEFRAG bits, get to clear it, but if the defrag
range joins the adjacent delalloc range, then we'll have EXTENT_DEFRAG
bits in extent_state until releasing this inode's pages, and that
prevents extent_data from being freed.
This clears the bit if any was found within the ordered extent.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
In verify_dir_item, it wants to printk name_len of dir_item but
printk data_len acutally.
Fix it by calling btrfs_dir_name_len instead of btrfs_dir_data_len.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Replace bi_error with a new bi_status to allow for a clear conversion.
Note that device mapper overloaded bi_error with a private value, which
we'll have to keep arround at least for now and thus propagate to a
proper blk_status_t value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
On sparc, if we have an alloca() like situation, as is the case with
SHASH_DESC_ON_STACK(), we can end up referencing deallocated stack
memory. The result can be that the value is clobbered if a trap
or interrupt arrives at just the right instruction.
It only occurs if the function ends returning a value from that
alloca() area and that value can be placed into the return value
register using a single instruction.
For example, in lib/libcrc32c.c:crc32c() we end up with a return
sequence like:
return %i7+8
lduw [%o5+16], %o0 ! MEM[(u32 *)__shash_desc.1_10 + 16B],
%o5 holds the base of the on-stack area allocated for the shash
descriptor. But the return released the stack frame and the
register window.
So if an intererupt arrives between 'return' and 'lduw', then
the value read at %o5+16 can be corrupted.
Add a data compiler barrier to work around this problem. This is
exactly what the gcc fix will end up doing as well, and it absolutely
should not change the code generated for other cpus (unless gcc
on them has the same bug :-)
With crucial insight from Eric Sandeen.
Cc: <stable@vger.kernel.org>
Reported-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
If we have to recover relocation during mount, we'll ultimately have to
evict the orphan inode. That goes through the reservation dance, where
priority_reclaim_metadata_space and flush_space expect fs_info->fs_root
to be valid. That's the next thing to be set up during mount, so we
crash, almost always in flush_space trying to join the transaction
but priority_reclaim_metadata_space is possible as well. This call
path has been problematic in the past WRT whether ->fs_root is valid
yet. Commit 957780eb27 (Btrfs: introduce ticketed enospc
infrastructure) added new users that are called in the direct path
instead of the async path that had already been worked around.
The thing is that we don't actually need the fs_root, specifically, for
anything. We either use it to determine whether the root is the
chunk_root for use in choosing an allocation profile or as a root to pass
btrfs_join_transaction before immediately committing it. Anything that
isn't the chunk root works in the former case and any root works in
the latter.
A simple fix is to use a root we know will always be there: the
extent_root.
Cc: <stable@vger.kernel.org> # v4.8+
Fixes: 957780eb27 (Btrfs: introduce ticketed enospc infrastructure)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we fail to add the space_info kobject, we'll leak the memory
for the percpu counter.
Fixes: 6ab0a2029c (btrfs: publish allocation data in sysfs)
Cc: <stable@vger.kernel.org> # v3.14+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Variables start_idx and end_idx are supposed to hold a page index
derived from the file offsets. The int type is not the right one though,
offsets larger than 1 << 44 will get silently trimmed off the high bits.
(1 << 44 is 16TiB)
What can go wrong, if start is below the boundary and end gets trimmed:
- if there's a page after start, we'll find it (radix_tree_gang_lookup_slot)
- the final check "if (page->index <= end_idx)" will unexpectedly fail
The function will return false, ie. "there's no page in the range",
although there is at least one.
btrfs_page_exists_in_range is used to prevent races in:
* in hole punching, where we make sure there are not pages in the
truncated range, otherwise we'll wait for them to finish and redo
truncation, but we're going to replace the pages with holes anyway so
the only problem is the intermediate state
* lock_extent_direct: we want to make sure there are no pages before we
lock and start DIO, to prevent stale data reads
For practical occurence of the bug, there are several constaints. The
file must be quite large, the affected range must cross the 16TiB
boundary and the internal state of the file pages and pending operations
must match. Also, we must not have started any ordered data in the
range, otherwise we don't even reach the buggy function check.
DIO locking tries hard in several places to avoid deadlocks with
buffered IO and avoids waiting for ranges. The worst consequence seems
to be stale data read.
CC: Liu Bo <bo.li.liu@oracle.com>
CC: stable@vger.kernel.org # 3.16+
Fixes: fc4adbff82 ("btrfs: Drop EXTENT_UPTODATE check in hole punching and direct locking")
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The setting of return code ret should be based on the error code
passed into function end_extent_writepage and not on ret. Thanks
to Liu Bo for spotting this mistake in the original fix I submitted.
Detected by CoverityScan, CID#1414312 ("Logically dead code")
Fixes: 5dca6eea91 ("Btrfs: mark mapping with error flag to report errors to userspace")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit b685d3d65a "block: treat REQ_FUA and REQ_PREFLUSH as
synchronous" removed REQ_SYNC flag from WRITE_{FUA|PREFLUSH|...}
definitions. generic_make_request_checks() however strips REQ_FUA and
REQ_PREFLUSH flags from a bio when the storage doesn't report volatile
write cache and thus write effectively becomes asynchronous which can
lead to performance regressions
Fix the problem by making sure all bios which are synchronous are
properly marked with REQ_SYNC.
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Fixes: b685d3d65a
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
Cycle mount btrfs can cause fiemap to return different result.
Like:
# mount /dev/vdb5 /mnt/btrfs
# dd if=/dev/zero bs=16K count=4 oflag=dsync of=/mnt/btrfs/file
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..127]: 25088..25215 128 0x1
# umount /mnt/btrfs
# mount /dev/vdb5 /mnt/btrfs
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..31]: 25088..25119 32 0x0
1: [32..63]: 25120..25151 32 0x0
2: [64..95]: 25152..25183 32 0x0
3: [96..127]: 25184..25215 32 0x1
But after above fiemap, we get correct merged result if we call fiemap
again.
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..127]: 25088..25215 128 0x1
[REASON]
Btrfs will try to merge extent map when inserting new extent map.
btrfs_fiemap(start=0 len=(u64)-1)
|- extent_fiemap(start=0 len=(u64)-1)
|- get_extent_skip_holes(start=0 len=64k)
| |- btrfs_get_extent_fiemap(start=0 len=64k)
| |- btrfs_get_extent(start=0 len=64k)
| | Found on-disk (ino, EXTENT_DATA, 0)
| |- add_extent_mapping()
| |- Return (em->start=0, len=16k)
|
|- fiemap_fill_next_extent(logic=0 phys=X len=16k)
|
|- get_extent_skip_holes(start=0 len=64k)
| |- btrfs_get_extent_fiemap(start=0 len=64k)
| |- btrfs_get_extent(start=16k len=48k)
| | Found on-disk (ino, EXTENT_DATA, 16k)
| |- add_extent_mapping()
| | |- try_merge_map()
| | Merge with previous em start=0 len=16k
| | resulting em start=0 len=32k
| |- Return (em->start=0, len=32K) << Merged result
|- Stripe off the unrelated range (0~16K) of return em
|- fiemap_fill_next_extent(logic=16K phys=X+16K len=16K)
^^^ Causing split fiemap extent.
And since in add_extent_mapping(), em is already merged, in next
fiemap() call, we will get merged result.
[FIX]
Here we introduce a new structure, fiemap_cache, which records previous
fiemap extent.
And will always try to merge current fiemap_cache result before calling
fiemap_fill_next_extent().
Only when we failed to merge current fiemap extent with cached one, we
will call fiemap_fill_next_extent() to submit cached one.
So by this method, we can merge all fiemap extents.
It can also be done in fs/ioctl.c, however the problem is if
fieinfo->fi_extents_max == 0, we have no space to cache previous fiemap
extent.
So I choose to merge it in btrfs.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pull btrfs updates from Chris Mason:
"This has fixes and cleanups Dave Sterba collected for the merge
window.
The biggest functional fixes are between btrfs raid5/6 and scrub, and
raid5/6 and device replacement. Some of our pending qgroup fixes are
included as well while I bash on the rest in testing.
We also have the usual set of cleanups, including one that makes
__btrfs_map_block() much more maintainable, and conversions from
atomic_t to refcount_t"
* 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (71 commits)
btrfs: fix the gfp_mask for the reada_zones radix tree
Btrfs: fix reported number of inode blocks
Btrfs: send, fix file hole not being preserved due to inline extent
Btrfs: fix extent map leak during fallocate error path
Btrfs: fix incorrect space accounting after failure to insert inline extent
Btrfs: fix invalid attempt to free reserved space on failure to cow range
btrfs: Handle delalloc error correctly to avoid ordered extent hang
btrfs: Fix metadata underflow caused by btrfs_reloc_clone_csum error
btrfs: check if the device is flush capable
btrfs: delete unused member nobarriers
btrfs: scrub: Fix RAID56 recovery race condition
btrfs: scrub: Introduce full stripe lock for RAID56
btrfs: Use ktime_get_real_ts for root ctime
Btrfs: handle only applicable errors returned by btrfs_get_extent
btrfs: qgroup: Fix qgroup corruption caused by inode_cache mount option
btrfs: use q which is already obtained from bdev_get_queue
Btrfs: switch to div64_u64 if with a u64 divisor
Btrfs: update scrub_parity to use u64 stripe_len
Btrfs: enable repair during read for raid56 profile
btrfs: use clear_page where appropriate
...
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many code paths opencoding kvmalloc. Let's use the helper
instead. The main difference to kvmalloc is that those users are
usually not considering all the aspects of the memory allocator. E.g.
allocation requests <= 32kB (with 4kB pages) are basically never failing
and invoke OOM killer to satisfy the allocation. This sounds too
disruptive for something that has a reasonable fallback - the vmalloc.
On the other hand those requests might fallback to vmalloc even when the
memory allocator would succeed after several more reclaim/compaction
attempts previously. There is no guarantee something like that happens
though.
This patch converts many of those places to kv[mz]alloc* helpers because
they are more conservative.
Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390
Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim
Acked-by: David Sterba <dsterba@suse.com> # btrfs
Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph
Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Santosh Raspatur <santosh@chelsio.com>
Cc: Hariprasad S <hariprasad@chelsio.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: "Yan, Zheng" <zyan@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commits cc8385b59e and 7ef70b4d99 added preallocation for the
reada radix trees and also switched them over to GFP_KERNEL for the
default gfp mask.
Since we're doing radix tree insertions under spinlocks, we need
to make sure the mask doesn't allow sleeping. This fix keeps
the radix preallocation but switches back to the original gfp_mask.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
Pull block layer updates from Jens Axboe:
- Add BFQ IO scheduler under the new blk-mq scheduling framework. BFQ
was initially a fork of CFQ, but subsequently changed to implement
fairness based on B-WF2Q+, a modified variant of WF2Q. BFQ is meant
to be used on desktop type single drives, providing good fairness.
From Paolo.
- Add Kyber IO scheduler. This is a full multiqueue aware scheduler,
using a scalable token based algorithm that throttles IO based on
live completion IO stats, similary to blk-wbt. From Omar.
- A series from Jan, moving users to separately allocated backing
devices. This continues the work of separating backing device life
times, solving various problems with hot removal.
- A series of updates for lightnvm, mostly from Javier. Includes a
'pblk' target that exposes an open channel SSD as a physical block
device.
- A series of fixes and improvements for nbd from Josef.
- A series from Omar, removing queue sharing between devices on mostly
legacy drivers. This helps us clean up other bits, if we know that a
queue only has a single device backing. This has been overdue for
more than a decade.
- Fixes for the blk-stats, and improvements to unify the stats and user
windows. This both improves blk-wbt, and enables other users to
register a need to receive IO stats for a device. From Omar.
- blk-throttle improvements from Shaohua. This provides a scalable
framework for implementing scalable priotization - particularly for
blk-mq, but applicable to any type of block device. The interface is
marked experimental for now.
- Bucketized IO stats for IO polling from Stephen Bates. This improves
efficiency of polled workloads in the presence of mixed block size
IO.
- A few fixes for opal, from Scott.
- A few pulls for NVMe, including a lot of fixes for NVMe-over-fabrics.
From a variety of folks, mostly Sagi and James Smart.
- A series from Bart, improving our exposed info and capabilities from
the blk-mq debugfs support.
- A series from Christoph, cleaning up how handle WRITE_ZEROES.
- A series from Christoph, cleaning up the block layer handling of how
we track errors in a request. On top of being a nice cleanup, it also
shrinks the size of struct request a bit.
- Removal of mg_disk and hd (sorry Linus) by Christoph. The former was
never used by platforms, and the latter has outlived it's usefulness.
- Various little bug fixes and cleanups from a wide variety of folks.
* 'for-4.12/block' of git://git.kernel.dk/linux-block: (329 commits)
block: hide badblocks attribute by default
blk-mq: unify hctx delay_work and run_work
block: add kblock_mod_delayed_work_on()
blk-mq: unify hctx delayed_run_work and run_work
nbd: fix use after free on module unload
MAINTAINERS: bfq: Add Paolo as maintainer for the BFQ I/O scheduler
blk-mq-sched: alloate reserved tags out of normal pool
mtip32xx: use runtime tag to initialize command header
scsi: Implement blk_mq_ops.show_rq()
blk-mq: Add blk_mq_ops.show_rq()
blk-mq: Show operation, cmd_flags and rq_flags names
blk-mq: Make blk_flags_show() callers append a newline character
blk-mq: Move the "state" debugfs attribute one level down
blk-mq: Unregister debugfs attributes earlier
blk-mq: Only unregister hctxs for which registration succeeded
blk-mq-debugfs: Rename functions for registering and unregistering the mq directory
blk-mq: Let blk_mq_debugfs_register() look up the queue name
blk-mq: Register <dev>/queue/mq after having registered <dev>/queue
ide-pm: always pass 0 error to ide_complete_rq in ide_do_devset
ide-pm: always pass 0 error to __blk_end_request_all
..
Pull btrfs fix from Chris Mason:
"We have one more fix for btrfs.
This gets rid of a new WARN_ON from rc1 that ended up making more
noise than we really want. The larger fix for the underflow got
delayed a bit and it's better for now to put it under
CONFIG_BTRFS_DEBUG"
* 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: qgroup: move noisy underflow warning to debugging build
Currently when there are buffered writes that were not yet flushed and
they fall within allocated ranges of the file (that is, not in holes or
beyond eof assuming there are no prealloc extents beyond eof), btrfs
simply reports an incorrect number of used blocks through the stat(2)
system call (or any of its variants), regardless of mount options or
inode flags (compress, compress-force, nodatacow). This is because the
number of blocks used that is reported is based on the current number
of bytes in the vfs inode plus the number of dealloc bytes in the btrfs
inode. The later covers bytes that both fall within allocated regions
of the file and holes.
Example scenarios where the number of reported blocks is wrong while the
buffered writes are not flushed:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ xfs_io -f -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (259.336 MiB/sec and 66390.0415 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (192.308 MiB/sec and 49230.7692 ops/sec)
# The following should have reported 64K...
$ du -h /mnt/sdc/foo1
128K /mnt/sdc/foo1
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo1
64K /mnt/sdc/foo1
$ xfs_io -f -c "falloc -k 0 128K" -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (520.833 MiB/sec and 133333.3333 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 64K 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 65536
64 KiB, 16 ops; 0.0000 sec (260.417 MiB/sec and 66666.6667 ops/sec)
# The following should have reported 128K...
$ du -h /mnt/sdc/foo2
192K /mnt/sdc/foo2
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo2
128K /mnt/sdc/foo2
So the number of used file blocks is simply incorrect, unlike in other
filesystems such as ext4 and xfs for example, but only while the buffered
writes are not flushed.
Fix this by tracking the number of delalloc bytes that fall within holes
and beyond eof of a file, and use instead this new counter when reporting
the number of used blocks for an inode.
Another different problem that exists is that the delalloc bytes counter
is reset when writeback starts (by clearing the EXTENT_DEALLOC flag from
the respective range in the inode's iotree) and the vfs inode's bytes
counter is only incremented when writeback finishes (through
insert_reserved_file_extent()). Therefore while writeback is ongoing we
simply report a wrong number of blocks used by an inode if the write
operation covers a range previously unallocated. While this change does
not fix this problem, it does minimizes it a lot by shortening that time
window, as the new dealloc bytes counter (new_delalloc_bytes) is only
decremented when writeback finishes right before updating the vfs inode's
bytes counter. Fully fixing this second problem is not trivial and will
be addressed later by a different patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Normally we don't have inline extents followed by regular extents, but
there's currently at least one harmless case where this happens. For
example, when the page size is 4Kb and compression is enabled:
$ mkfs.btrfs -f /dev/sdb
$ mount -o compress /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0xaa 0 4K" -c "fsync" /mnt/foobar
$ xfs_io -c "pwrite -S 0xbb 8K 4K" -c "fsync" /mnt/foobar
In this case we get a compressed inline extent, representing 4Kb of
data, followed by a hole extent and then a regular data extent. The
inline extent was not expanded/converted to a regular extent exactly
because it represents 4Kb of data. This does not cause any apparent
problem (such as the issue solved by commit e1699d2d7b
("btrfs: add missing memset while reading compressed inline extents"))
except trigger an unexpected case in the incremental send code path
that makes us issue an operation to write a hole when it's not needed,
resulting in more writes at the receiver and wasting space at the
receiver.
So teach the incremental send code to deal with this particular case.
The issue can be currently triggered by running fstests btrfs/137 with
compression enabled (MOUNT_OPTIONS="-o compress" ./check btrfs/137).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
If the call to btrfs_qgroup_reserve_data() failed, we were leaking an
extent map structure. The failure can happen either due to an -ENOMEM
condition or, when quotas are enabled, due to -EDQUOT for example.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[BUG]
If run_delalloc_range() returns error and there is already some ordered
extents created, btrfs will be hanged with the following backtrace:
Call Trace:
__schedule+0x2d4/0xae0
schedule+0x3d/0x90
btrfs_start_ordered_extent+0x160/0x200 [btrfs]
? wake_atomic_t_function+0x60/0x60
btrfs_run_ordered_extent_work+0x25/0x40 [btrfs]
btrfs_scrubparity_helper+0x1c1/0x620 [btrfs]
btrfs_flush_delalloc_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
[CAUSE]
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<>| |<---------- cleanup range --------->|
||
\_=> First page handled by end_extent_writepage() in __extent_writepage()
The problem is caused by error handler of run_delalloc_range(), which
doesn't handle any created ordered extents, leaving them waiting on
btrfs_finish_ordered_io() to finish.
However after run_delalloc_range() returns error, __extent_writepage()
won't submit bio, so btrfs_writepage_end_io_hook() won't be triggered
except the first page, and btrfs_finish_ordered_io() won't be triggered
for created ordered extents either.
So OE 2~n will hang forever, and if OE 1 is larger than one page, it
will also hang.
[FIX]
Introduce btrfs_cleanup_ordered_extents() function to cleanup created
ordered extents and finish them manually.
The function is based on existing
btrfs_endio_direct_write_update_ordered() function, and modify it to
act just like btrfs_writepage_endio_hook() but handles specified range
other than one page.
After fix, delalloc error will be handled like:
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<>|<-------- ----------->|<------ old error handler --------->|
|| ||
|| \_=> Cleaned up by cleanup_ordered_extents()
\_=> First page handled by end_extent_writepage() in __extent_writepage()
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
[BUG]
When btrfs_reloc_clone_csum() reports error, it can underflow metadata
and leads to kernel assertion on outstanding extents in
run_delalloc_nocow() and cow_file_range().
BTRFS info (device vdb5): relocating block group 12582912 flags data
BTRFS info (device vdb5): found 1 extents
assertion failed: inode->outstanding_extents >= num_extents, file: fs/btrfs//extent-tree.c, line: 5858
Currently, due to another bug blocking ordered extents, the bug is only
reproducible under certain block group layout and using error injection.
a) Create one data block group with one 4K extent in it.
To avoid the bug that hangs btrfs due to ordered extent which never
finishes
b) Make btrfs_reloc_clone_csum() always fail
c) Relocate that block group
[CAUSE]
run_delalloc_nocow() and cow_file_range() handles error from
btrfs_reloc_clone_csum() wrongly:
(The ascii chart shows a more generic case of this bug other than the
bug mentioned above)
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<----------- cleanup range --------------->|
|<----------- ----------->|
\/
btrfs_finish_ordered_io() range
So error handler, which calls extent_clear_unlock_delalloc() with
EXTENT_DELALLOC and EXTENT_DO_ACCOUNT bits, and btrfs_finish_ordered_io()
will both cover OE n, and free its metadata, causing metadata under flow.
[Fix]
The fix is to ensure after calling btrfs_add_ordered_extent(), we only
call error handler after increasing the iteration offset, so that
cleanup range won't cover any created ordered extent.
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<----------- ----------->|<---------- cleanup range --------->|
\/
btrfs_finish_ordered_io() range
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Allocate struct backing_dev_info separately instead of embedding it
inside superblock. This unifies handling of bdi among users.
CC: Chris Mason <clm@fb.com>
CC: Josef Bacik <jbacik@fb.com>
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
The WARN_ON and warning from report_reserved_underflow can become very
noisy and is visible unconditionally although this is namely for
debugging. The patch "btrfs: Add WARN_ON for qgroup reserved underflow"
(18dc22c19b) went to 4.11-rc1 and the plan
was to get the fix as well, but this hasn't happened.
CC: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The block layer call chain from submit_bio will check if the write cache
is enabled for the given queue before submitting the flush. This will
add a code to fail fast if its not.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ updated changelog to reflect current code stat, blkdev_issue_flush is
not used yet ]
Signed-off-by: David Sterba <dsterba@suse.com>
The last consumer of nobarriers is removed by the commit [1] and sync
won't fail with EOPNOTSUPP anymore. Thus, now when write cache is write
through it just return success without actually transpiring such a
request to the block device/lun.
[1]
commit b25de9d6da
block: remove BIO_EOPNOTSUPP
And, as the device/lun write cache state may change dynamically saving
such as state won't help either. So deleting the member nobarriers.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When scrubbing a RAID5 which has recoverable data corruption (only one
data stripe is corrupted), sometimes scrub will report more csum errors
than expected. Sometimes even unrecoverable error will be reported.
The problem can be easily reproduced by the following steps:
1) Create a btrfs with RAID5 data profile with 3 devs
2) Mount it with nospace_cache or space_cache=v2
To avoid extra data space usage.
3) Create a 128K file and sync the fs, unmount it
Now the 128K file lies at the beginning of the data chunk
4) Locate the physical bytenr of data chunk on dev3
Dev3 is the 1st data stripe.
5) Corrupt the first 64K of the data chunk stripe on dev3
6) Mount the fs and scrub it
The correct csum error number should be 16 (assuming using x86_64).
Larger csum error number can be reported in a 1/3 chance.
And unrecoverable error can also be reported in a 1/10 chance.
The root cause of the problem is RAID5/6 recover code has race
condition, due to the fact that full scrub is initiated per device.
While for other mirror based profiles, each mirror is independent with
each other, so race won't cause any big problem.
For example:
Corrupted | Correct | Correct |
| Scrub dev3 (D1) | Scrub dev2 (D2) | Scrub dev1(P) |
------------------------------------------------------------------------
Read out D1 |Read out D2 |Read full stripe |
Check csum |Check csum |Check parity |
Csum mismatch |Csum match, continue |Parity mismatch |
handle_errored_block | |handle_errored_block |
Read out full stripe | | Read out full stripe|
D1 csum error(err++) | | D1 csum error(err++)|
Recover D1 | | Recover D1 |
So D1's csum error is accounted twice, just because
handle_errored_block() doesn't have enough protection, and race can happen.
On even worse case, for example D1's recovery code is re-writing
D1/D2/P, and P's recovery code is just reading out full stripe, then we
can cause unrecoverable error.
This patch will use previously introduced lock_full_stripe() and
unlock_full_stripe() to protect the whole scrub_handle_errored_block()
function for RAID56 recovery.
So no extra csum error nor unrecoverable error.
Reported-by: Goffredo Baroncelli <kreijack@libero.it>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Unlike mirror based profiles, RAID5/6 recovery needs to read out the
whole full stripe.
And if we don't do proper protection, it can easily cause race condition.
Introduce 2 new functions: lock_full_stripe() and unlock_full_stripe()
for RAID5/6.
Which store a rb_tree of mutexes for full stripes, so scrub callers can
use them to lock a full stripe to avoid race.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_root_item maintains the ctime for root updates. This is not part
of vfs_inode.
Since current_time() uses struct inode* as an argument as Linus
suggested, this cannot be used to update root times unless, we modify
the signature to use inode.
Since btrfs uses nanosecond time granularity, it can also use
ktime_get_real_ts directly to obtain timestamp for the root. It is
necessary to use the timespec time api here because the same
btrfs_set_stack_timespec_*() apis are used for vfs inode times as well.
These can be transitioned to using timespec64 when btrfs internally
changes to use timespec64 as well.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_get_extent() never returns NULL pointers, so this code introduces
a static checker warning.
The btrfs_get_extent() is a bit complex, but trust me that it doesn't
return NULLs and also if it did we would trigger the BUG_ON(!em) before
the last return statement.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
[ updated subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The easist way to reproduce the bug is:
------
# mkfs.btrfs -f $dev -n 16K
# mount $dev $mnt -o inode_cache
# btrfs quota enable $mnt
# btrfs quota rescan -w $mnt
# btrfs qgroup show $mnt
qgroupid rfer excl
-------- ---- ----
0/5 32.00KiB 32.00KiB
^^ Twice the correct value
------
And fstests/btrfs qgroup test group can easily detect them with
inode_cache mount option.
Although some of them are false alerts since old test cases are using
fixed golden output.
While new test cases will use "btrfs check" to detect qgroup mismatch.
[CAUSE]
Inode_cache mount option will make commit_fs_roots() to call
btrfs_save_ino_cache() to update fs/subvol trees, and generate new
delayed refs.
However we call btrfs_qgroup_prepare_account_extents() too early, before
commit_fs_roots().
This makes the "old_roots" for newly generated extents are always NULL.
For freeing extent case, this makes both new_roots and old_roots to be
empty, while correct old_roots should not be empty.
This causing qgroup numbers not decreased correctly.
[FIX]
Modify the timing of calling btrfs_qgroup_prepare_account_extents() to
just before btrfs_qgroup_account_extents(), and add needed delayed_refs
handler.
So qgroup can handle inode_map mount options correctly.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have already assigned q from bdev_get_queue() so use it.
And rearrange the code for better view.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is fixing code pieces where we use div_u64 when passing a u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 3d8da67817 ("Btrfs: fix divide error upon chunk's stripe_len")
changed stripe_len in struct map_lookup to u64, but didn't update
stripe_len in struct scrub_parity.
This updates the type and switches to div64_u64_rem to match u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that scrub can fix data errors with the help of parity for raid56
profile, repair during read is able to as well.
Although the mirror num in raid56 scenario has different meanings, i.e.
0 or 1: read data directly
> 1: do recover with parity,
it could be fit into how we repair bad block during read.
The trick is to use BTRFS_MAP_READ instead of BTRFS_MAP_WRITE to get the
device and position on it.
Cc: David Sterba <dsterba@suse.cz>
Tested-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a helper to clear whole page, with a arch-specific optimized
code. The replaced cases do not seem to be in performace critical code,
but we still might get some percent gain.
Signed-off-by: David Sterba <dsterba@suse.com>
scrub_setup_recheck_block() calls btrfs_map_sblock() and then accesses
bbio without protection of bio_counter.
This can lead to use-after-free if racing with dev replace cancel.
Fix it by increasing bio_counter before calling btrfs_map_sblock() and
decreasing the bio_counter when corresponding recover is finished.
Cc: Liu Bo <bo.li.liu@oracle.com>
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When raid56 dev-replace is cancelled by running scrub, we will free
target device without waiting for in-flight bios, causing the following
NULL pointer deference or general protection failure.
BUG: unable to handle kernel NULL pointer dereference at 00000000000005e0
IP: generic_make_request_checks+0x4d/0x610
CPU: 1 PID: 11676 Comm: kworker/u4:14 Tainted: G O 4.11.0-rc2 #72
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
Workqueue: btrfs-endio-raid56 btrfs_endio_raid56_helper [btrfs]
task: ffff88002875b4c0 task.stack: ffffc90001334000
RIP: 0010:generic_make_request_checks+0x4d/0x610
Call Trace:
? generic_make_request+0xc7/0x360
generic_make_request+0x24/0x360
? generic_make_request+0xc7/0x360
submit_bio+0x64/0x120
? page_in_rbio+0x4d/0x80 [btrfs]
? rbio_orig_end_io+0x80/0x80 [btrfs]
finish_rmw+0x3f4/0x540 [btrfs]
validate_rbio_for_rmw+0x36/0x40 [btrfs]
raid_rmw_end_io+0x7a/0x90 [btrfs]
bio_endio+0x56/0x60
end_workqueue_fn+0x3c/0x40 [btrfs]
btrfs_scrubparity_helper+0xef/0x620 [btrfs]
btrfs_endio_raid56_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
RIP: generic_make_request_checks+0x4d/0x610 RSP: ffffc90001337bb8
In btrfs_dev_replace_finishing(), we will call
btrfs_rm_dev_replace_blocked() to wait bios before destroying the target
device when scrub is finished normally.
However when dev-replace is aborted, either due to error or cancelled by
scrub, we didn't wait for bios, this can lead to use-after-free if there
are bios holding the target device.
Furthermore, for raid56 scrub, at least 2 places are calling
btrfs_map_sblock() without protection of bio_counter, leading to the
problem.
This patch fixes the problem:
1) Wait for bio_counter before freeing target device when canceling
replace
2) When calling btrfs_map_sblock() for raid56, use bio_counter to
protect the call.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the following situation, scrub will calculate wrong parity to
overwrite the correct one:
RAID5 full stripe:
Before
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0x0000 (Bad) | 0xcdcd | 0x0000 |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
After scrubbing dev3 only:
| Dev 1 | Dev 2 | Dev 3 |
| Data stripe 1 | Data stripe 2 | Parity Stripe |
--------------------------------------------------- 0
| 0xcdcd (Good) | 0xcdcd | 0xcdcd (Bad) |
--------------------------------------------------- 4K
| 0xcdcd | 0xcdcd | 0x0000 |
...
| 0xcdcd | 0xcdcd | 0x0000 |
--------------------------------------------------- 64K
The reason is that after raid56 read rebuild rbio->stripe_pages are all
correctly recovered (0xcd for data stripes).
However when we check and repair parity in
scrub_parity_check_and_repair(), we will append pages in sparity->spages
list to rbio->bio_pages[], which contains old on-disk data.
And when we submit parity data to disk, we calculate parity using
rbio->bio_pages[] first, if rbio->bio_pages[] not found, then fallback
to rbio->stripe_pages[].
The patch fix it by not appending pages from sparity->spages.
So finish_parity_scrub() will use rbio->stripe_pages[] which is correct.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Newly introduced qgroup reserved space trace points are normally nested
into several common qgroup operations.
While some other trace points are not well placed to co-operate with
them, causing confusing output.
This patch re-arrange trace_btrfs_qgroup_release_data() and
trace_btrfs_qgroup_free_delayed_ref() trace points so they are triggered
before reserved space ones.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce the following trace points:
qgroup_update_reserve
qgroup_meta_reserve
These trace points are handy to trace qgroup reserve space related
problems.
Also export btrfs_qgroup structure, as now we directly pass btrfs_qgroup
structure to trace points, so that structure needs to be exported.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In raid56 scenario, after trying parity recovery, we didn't set
mirror_num for btrfs_bio with failed mirror_num, hence
end_bio_extent_readpage() will report a random mirror_num in dmesg
log.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Scrub repairs data by the unit called scrub_block, which may contain
several pages. Scrub always tries to look up a good copy of a whole
block, but if there's no such copy, it tries to do repair page by page.
If we don't set page's io_error when checking this bad copy, in the last
step, we may skip this page when repairing bad copy from good copy.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several operations, usually started from ioctls, that cannot
run concurrently. The status is tracked in
mutually_exclusive_operation_running as an atomic_t. We can easily track
the status as one of the per-filesystem flag bits with same
synchronization guarantees.
The conversion replaces:
* atomic_xchg(..., 1) -> test_and_set_bit(FLAG, ...)
* atomic_set(..., 0) -> clear_bit(FLAG, ...)
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are facing the same problem with EDQUOT which was experienced with
ENOSPC. Not sure if we require a full ticketing system such as ENOSPC, but
here is a quick fix, which may be too big a hammer.
Quotas are reserved during the start of an operation, incrementing
qg->reserved. However, it is written to disk in a commit_transaction
which could take as long as commit_interval. In the meantime there
could be deletions which are not accounted for because deletions are
accounted for only while committed (free_refroot). So, when we get
a EDQUOT flush the data to disk and try again.
This fixes fstests btrfs/139.
Here is a sample script which shows this issue.
DEVICE=/dev/vdb
MOUNTPOINT=/mnt
TESTVOL=$MOUNTPOINT/tmp
QUOTA=5
PROG=btrfs
DD_BS="4k"
DD_COUNT="256"
RUN_TIMES=5000
mkfs.btrfs -f $DEVICE
mount -o commit=240 $DEVICE $MOUNTPOINT
$PROG subvolume create $TESTVOL
$PROG quota enable $TESTVOL
$PROG qgroup limit ${QUOTA}G $TESTVOL
typeset -i DD_RUN_GOOD
typeset -i QUOTA
function _check_cmd() {
if [[ ${?} > 0 ]]; then
echo -n "$(date) E: Running previous command"
echo ${*}
echo "Without sync"
$PROG qgroup show -pcreFf ${TESTVOL}
echo "With sync"
$PROG qgroup show -pcreFf --sync ${TESTVOL}
exit 1
fi
}
while true; do
DD_RUN_GOOD=$RUN_TIMES
while (( ${DD_RUN_GOOD} != 0 )); do
dd if=/dev/zero of=${TESTVOL}/quotatest${DD_RUN_GOOD} bs=${DD_BS} count=${DD_COUNT}
_check_cmd "dd if=/dev/zero of=${TESTVOL}/quotatest${DD_RUN_GOOD} bs=${DD_BS} count=${DD_COUNT}"
DD_RUN_GOOD=(${DD_RUN_GOOD}-1)
done
$PROG qgroup show -pcref $TESTVOL
echo "----------- Cleanup ---------- "
rm $TESTVOL/quotatest*
done
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Define the SEQ_LAST macro to replace (u64)-1 in places where said
value triggers a special-case ref search behavior.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace hardcoded numeric values for __merge_refs 'mode' argument
with descriptive constants.
Signed-off-by: Edmund Nadolski <enadolski@suse.com>
Reviewed-by: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The members have been effectively unused since "Btrfs: rework qgroup
accounting" (fcebe4562d), there's no substitute for
assert_qgroups_uptodate so it's removed as well.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The name is misleading and the local variable serves no purpose.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can preallocate the node so insertion does not have to do that under
the lock. The GFP flags for the global radix tree are initialized to
GFP_NOFS & ~__GFP_DIRECT_RECLAIM
but we can use GFP_KERNEL, because readahead is optional and not on any
critical writeout path.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We can preallocate the node so insertion does not have to do that under
the lock. The GFP flags for the per-device radix tree are initialized to
GFP_NOFS & ~__GFP_DIRECT_RECLAIM
but we can use GFP_KERNEL, same as an allocation above anyway, but also
because readahead is optional and not on any critical writeout path.
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Code cleanup.
The code block is for !(*flags & MS_RDONLY). We don't need
to check it again.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We also don't bother to flush free space cache while with free space
tree.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two BUG_ON()s would never be true, ensured by callers' logic.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This adds a helper to show directly whether ops require full stripe.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With this, we can avoid allocating memory for dev replace copies if the
target dev is not available.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since this part is mostly independent, this moves it to a separate
function.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
As the part of getting extra mirror in __btrfs_map_block is
independent, this puts it into a separate function.
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since DISCARD is not as important as an operation like write, we don't
copy it to target device during replace, and it makes __btrfs_map_block
less complex.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>