Commit #cdacbe1f91264 ("rcu: Add fastpath bypassing funnel locking")
turns out to be a pessimization at high load because it forces a tree
full of tasks to wait for an expedited grace period that they probably
do not need. This commit therefore removes this optimization.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
As of commit dae6e64d2b ("rcu: Introduce proper blocking to no-CBs kthreads
GP waits") the RCU subsystem started making use of wait queues.
Here we convert all additions of RCU wait queues to use simple wait queues,
since they don't need the extra overhead of the full wait queue features.
Originally this was done for RT kernels[1], since we would get things like...
BUG: sleeping function called from invalid context at kernel/rtmutex.c:659
in_atomic(): 1, irqs_disabled(): 1, pid: 8, name: rcu_preempt
Pid: 8, comm: rcu_preempt Not tainted
Call Trace:
[<ffffffff8106c8d0>] __might_sleep+0xd0/0xf0
[<ffffffff817d77b4>] rt_spin_lock+0x24/0x50
[<ffffffff8106fcf6>] __wake_up+0x36/0x70
[<ffffffff810c4542>] rcu_gp_kthread+0x4d2/0x680
[<ffffffff8105f910>] ? __init_waitqueue_head+0x50/0x50
[<ffffffff810c4070>] ? rcu_gp_fqs+0x80/0x80
[<ffffffff8105eabb>] kthread+0xdb/0xe0
[<ffffffff8106b912>] ? finish_task_switch+0x52/0x100
[<ffffffff817e0754>] kernel_thread_helper+0x4/0x10
[<ffffffff8105e9e0>] ? __init_kthread_worker+0x60/0x60
[<ffffffff817e0750>] ? gs_change+0xb/0xb
...and hence simple wait queues were deployed on RT out of necessity
(as simple wait uses a raw lock), but mainline might as well take
advantage of the more streamline support as well.
[1] This is a carry forward of work from v3.10-rt; the original conversion
was by Thomas on an earlier -rt version, and Sebastian extended it to
additional post-3.10 added RCU waiters; here I've added a commit log and
unified the RCU changes into one, and uprev'd it to match mainline RCU.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-6-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
rcu_nocb_gp_cleanup() is called while holding rnp->lock. Currently,
this is okay because the wake_up_all() in rcu_nocb_gp_cleanup() will
not enable the IRQs. lockdep is happy.
By switching over using swait this is not true anymore. swake_up_all()
enables the IRQs while processing the waiters. __do_softirq() can now
run and will eventually call rcu_process_callbacks() which wants to
grap nrp->lock.
Let's move the rcu_nocb_gp_cleanup() call outside the lock before we
switch over to swait.
If we would hold the rnp->lock and use swait, lockdep reports
following:
=================================
[ INFO: inconsistent lock state ]
4.2.0-rc5-00025-g9a73ba0 #136 Not tainted
---------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
rcu_preempt/8 [HC0[0]:SC0[0]:HE1:SE1] takes:
(rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
{IN-SOFTIRQ-W} state was registered at:
[<ffffffff81109b9f>] __lock_acquire+0xd5f/0x21e0
[<ffffffff8110be0f>] lock_acquire+0xdf/0x2b0
[<ffffffff81841cc9>] _raw_spin_lock_irqsave+0x59/0xa0
[<ffffffff81136991>] rcu_process_callbacks+0x141/0x3c0
[<ffffffff810b1a9d>] __do_softirq+0x14d/0x670
[<ffffffff810b2214>] irq_exit+0x104/0x110
[<ffffffff81844e96>] smp_apic_timer_interrupt+0x46/0x60
[<ffffffff81842e70>] apic_timer_interrupt+0x70/0x80
[<ffffffff810dba66>] rq_attach_root+0xa6/0x100
[<ffffffff810dbc2d>] cpu_attach_domain+0x16d/0x650
[<ffffffff810e4b42>] build_sched_domains+0x942/0xb00
[<ffffffff821777c2>] sched_init_smp+0x509/0x5c1
[<ffffffff821551e3>] kernel_init_freeable+0x172/0x28f
[<ffffffff8182cdce>] kernel_init+0xe/0xe0
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
irq event stamp: 76
hardirqs last enabled at (75): [<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
hardirqs last disabled at (76): [<ffffffff8184116f>] _raw_spin_lock_irq+0x1f/0x90
softirqs last enabled at (0): [<ffffffff810a8df2>] copy_process.part.26+0x602/0x1cf0
softirqs last disabled at (0): [< (null)>] (null)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(rcu_node_1);
<Interrupt>
lock(rcu_node_1);
*** DEADLOCK ***
1 lock held by rcu_preempt/8:
#0: (rcu_node_1){+.?...}, at: [<ffffffff811387c7>] rcu_gp_kthread+0xb97/0xeb0
stack backtrace:
CPU: 0 PID: 8 Comm: rcu_preempt Not tainted 4.2.0-rc5-00025-g9a73ba0 #136
Hardware name: Dell Inc. PowerEdge R820/066N7P, BIOS 2.0.20 01/16/2014
0000000000000000 000000006d7e67d8 ffff881fb081fbd8 ffffffff818379e0
0000000000000000 ffff881fb0812a00 ffff881fb081fc38 ffffffff8110813b
0000000000000000 0000000000000001 ffff881f00000001 ffffffff8102fa4f
Call Trace:
[<ffffffff818379e0>] dump_stack+0x4f/0x7b
[<ffffffff8110813b>] print_usage_bug+0x1db/0x1e0
[<ffffffff8102fa4f>] ? save_stack_trace+0x2f/0x50
[<ffffffff811087ad>] mark_lock+0x66d/0x6e0
[<ffffffff81107790>] ? check_usage_forwards+0x150/0x150
[<ffffffff81108898>] mark_held_locks+0x78/0xa0
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff81108a28>] trace_hardirqs_on_caller+0x168/0x220
[<ffffffff81108aed>] trace_hardirqs_on+0xd/0x10
[<ffffffff81841330>] _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810fd1c7>] swake_up_all+0xb7/0xe0
[<ffffffff811386e1>] rcu_gp_kthread+0xab1/0xeb0
[<ffffffff811089bf>] ? trace_hardirqs_on_caller+0xff/0x220
[<ffffffff81841341>] ? _raw_spin_unlock_irq+0x41/0x60
[<ffffffff81137c30>] ? rcu_barrier+0x20/0x20
[<ffffffff810d2014>] kthread+0x104/0x120
[<ffffffff81841330>] ? _raw_spin_unlock_irq+0x30/0x60
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
[<ffffffff8184231f>] ret_from_fork+0x3f/0x70
[<ffffffff810d1f10>] ? kthread_create_on_node+0x260/0x260
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: linux-rt-users@vger.kernel.org
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1455871601-27484-5-git-send-email-wagi@monom.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In patch:
"rcu: Add transitivity to remaining rcu_node ->lock acquisitions"
All locking operations on rcu_node::lock are replaced with the wrappers
because of the need of transitivity, which indicates we should never
write code using LOCK primitives alone(i.e. without a proper barrier
following) on rcu_node::lock outside those wrappers. We could detect
this kind of misuses on rcu_node::lock in the future by adding __private
modifier on rcu_node::lock.
To privatize rcu_node::lock, unlock wrappers are also needed. Replacing
spinlock unlocks with these wrappers not only privatizes rcu_node::lock
but also makes it easier to figure out critical sections of rcu_node.
This patch adds __private modifier to rcu_node::lock and makes every
access to it wrapped by ACCESS_PRIVATE(). Besides, unlock wrappers are
added and raw_spin_unlock(&rnp->lock) and its friends are replaced with
those wrappers.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, ->gp_state is printed as an integer, which slows debugging.
This commit therefore prints a symbolic name in addition to the integer.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Updated to fix relational operator called out by Dan Carpenter. ]
[ paulmck: More "const", as suggested by Josh Triplett. ]
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Currently, the piggybacked-work checks carried out by sync_exp_work_done()
atomically increment a small set of variables (the ->expedited_workdone0,
->expedited_workdone1, ->expedited_workdone2, ->expedited_workdone3
fields in the rcu_state structure), which will form a memory-contention
bottleneck given a sufficiently large number of CPUs concurrently invoking
either synchronize_rcu_expedited() or synchronize_sched_expedited().
This commit therefore moves these for fields to the per-CPU rcu_data
structure, eliminating the memory contention. The show_rcuexp() function
also changes to sum up each field in the rcu_data structures.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Analogy with the ->qsmaskinitnext field might lead one to believe that
->expmaskinitnext tracks online CPUs. This belief is incorrect: Any CPU
that has ever been online will have its bit set in the ->expmaskinitnext
field. This commit therefore adds a comment to make this clear, at
least to people who read comments.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Providing RCU's memory-ordering guarantees requires that the rcu_node
tree's locking provide transitive memory ordering, which the Linux kernel's
spinlocks currently do not provide unless smp_mb__after_unlock_lock()
is used. Having a separate smp_mb__after_unlock_lock() after each and
every lock acquisition is error-prone, hard to read, and a bit annoying,
so this commit provides wrapper functions that pull in the
smp_mb__after_unlock_lock() invocations.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit makes the RCU CPU stall warning message print online/offline
indications immediately after the CPU number. A "O" indicates global
offline, a "." global online, and a "o" indicates RCU believes that the
CPU is offline for the current grace period and "." otherwise, and an
"N" indicates that RCU believes that the CPU will be offline for the
next grace period, and "." otherwise, all right after the CPU number.
So for CPU 10, you would normally see "10-...:" indicating that everything
believes that the CPU is online.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This reverts commit af859beaab (rcu: Silence lockdep false positive
for expedited grace periods). Because synchronize_rcu_expedited()
no longer invokes synchronize_sched_expedited(), ->exp_funnel_mutex
acquisition is no longer nested, so the false positive no longer happens.
This commit therefore removes the extra lockdep data structures, as they
are no longer needed.
This commit switches synchronize_sched_expedited() from stop_one_cpu_nowait()
to smp_call_function_single(), thus moving from an IPI and a pair of
context switches to an IPI and a single pass through the scheduler.
Of course, if the scheduler actually does decide to switch to a different
task, there will still be a pair of context switches, but there would
likely have been a pair of context switches anyway, just a bit later.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit corrects the comment for the values of the ->gp_state field,
which previously incorrectly said that these were for the ->gp_flags
field.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Commit commit 4cdfc175c2 ("rcu: Move quiescent-state forcing
into kthread") started the process of folding the old ->fqs_state into
->gp_state, but did not complete it. This situation does not cause
any malfunction, but can result in extremely confusing trace output.
This commit completes this task of eliminating ->fqs_state in favor
of ->gp_state.
The old ->fqs_state was also used to decide when to collect dyntick-idle
snapshots. For this purpose, we add a boolean variable into the kthread,
which is set on the first call to rcu_gp_fqs() for a given grace period
and clear otherwise.
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
We have had the call_rcu_func_t typedef for a quite awhile, but we still
use explicit function pointer types in some places. These types can
confuse cscope and can be hard to read. This patch therefore replaces
these types with the call_rcu_func_t typedef.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
As we now have rcu_callback_t typedefs as the type of rcu callbacks, we
should use it in call_rcu*() and friends as the type of parameters. This
could save us a few lines of code and make it clear which function
requires an rcu callbacks rather than other callbacks as its argument.
Besides, this can also help cscope to generate a better database for
code reading.
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
This commit converts the rcu_data structure's ->cpu_no_qs field
to a union. The bytewise side of this union allows individual access
to indications as to whether this CPU needs to find a quiescent state
for a normal (.norm) and/or expedited (.exp) grace period. The setwise
side of the union allows testing whether or not a quiescent state is
needed at all, for either type of grace period.
For now, only .norm is used. A later commit will introduce the expedited
usage.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit inverts the sense of the rcu_data structure's ->passed_quiesce
field and renames it to ->cpu_no_qs. This will allow a later commit to
use an "aggregate OR" operation to test expedited as well as normal grace
periods without added overhead.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
An upcoming commit needs to invert the sense of the ->passed_quiesce
rcu_data structure field, so this commit is taking this opportunity
to clarify things a bit by renaming ->qs_pending to ->core_needs_qs.
So if !rdp->core_needs_qs, then this CPU need not concern itself with
quiescent states, in particular, it need not acquire its leaf rcu_node
structure's ->lock to check. Otherwise, it needs to report the next
quiescent state.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Currently, synchronize_sched_expedited() uses a single global counter
to track the number of remaining context switches that the current
expedited grace period must wait on. This is problematic on large
systems, where the resulting memory contention can be pathological.
This commit therefore makes synchronize_sched_expedited() instead use
the combining tree in the same manner as synchronize_rcu_expedited(),
keeping memory contention down to a dull roar.
This commit creates a temporary function sync_sched_exp_select_cpus()
that is very similar to sync_rcu_exp_select_cpus(). A later commit
will consolidate these two functions, which becomes possible when
synchronize_sched_expedited() switches from stop_one_cpu_nowait() to
smp_call_function_single().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit replaces sync_rcu_preempt_exp_init1(() and
sync_rcu_preempt_exp_init2() with sync_exp_reset_tree_hotplug()
and sync_exp_reset_tree(), which will also be used by
synchronize_sched_expedited(), and sync_rcu_exp_select_nodes(), which
contains code specific to synchronize_rcu_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
RCU is the only thing that uses smp_mb__after_unlock_lock(), and is
likely the only thing that ever will use it, so this commit makes this
macro private to RCU.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org>
In a CONFIG_PREEMPT=y kernel, synchronize_rcu_expedited()
acquires the ->exp_funnel_mutex in rcu_preempt_state, then invokes
synchronize_sched_expedited, which acquires the ->exp_funnel_mutex in
rcu_sched_state. There can be no deadlock because rcu_preempt_state
->exp_funnel_mutex acquisition always precedes that of rcu_sched_state.
But lockdep does not know that, so it gives false-positive splats.
This commit therefore associates a separate lock_class_key structure
with the rcu_sched_state structure's ->exp_funnel_mutex, allowing
lockdep to see the lock ordering, avoiding the false positives.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
In the common case, there will be only one expedited grace period in
the system at a given time, in which case it is not helpful to use
funnel locking. This commit therefore adds a fastpath that bypasses
funnel locking when the root ->exp_funnel_mutex is not held.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The grace-period kthread sleeps waiting to do a force-quiescent-state
scan, and when awakened sets rsp->gp_state to RCU_GP_DONE_FQS.
However, this is confusing because the kthread has not done the
force-quiescent-state, but is instead just starting to do it. This commit
therefore renames RCU_GP_DONE_FQS to RCU_GP_DOING_FQS in order to make
things a bit easier on reviewers.
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although synchronize_sched_expedited() historically has no RCU CPU stall
warnings, the availability of the rcupdate.rcu_expedited boot parameter
invalidates the old assumption that synchronize_sched()'s stall warnings
would suffice. This commit therefore adds RCU CPU stall warnings to
synchronize_sched_expedited().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The strictly rcu_node based funnel-locking scheme works well in many
cases, but systems with CONFIG_RCU_FANOUT_LEAF=64 won't necessarily get
all that much concurrency. This commit therefore extends the funnel
locking into the per-CPU rcu_data structure, providing concurrency equal
to the number of CPUs.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_seq operations were open-coded in _rcu_barrier(), so this commit
replaces the open-coding with the shiny new rcu_seq operations.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Sequentially stopping the CPUs slows down expedited grace periods by
at least a factor of two, based on rcutorture's grace-period-per-second
rate. This is a conservative measure because rcutorture uses unusually
long RCU read-side critical sections and because rcutorture periodically
quiesces the system in order to test RCU's ability to ramp down to and
up from the idle state. This commit therefore replaces the stop_one_cpu()
with stop_one_cpu_nowait(), using an atomic-counter scheme to determine
when all CPUs have passed through the stopped state.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit gets rid of synchronize_sched_expedited()'s mutex_trylock()
polling loop in favor of a funnel-locking scheme based on the rcu_node
tree. The work-done check is done at each level of the tree, allowing
high-contention situations to be resolved quickly with reasonable levels
of mutex contention.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Now that synchronize_sched_expedited() have a mutex, it can use simpler
work-already-done detection scheme. This commit simplifies this scheme
by using something similar to the sequence-locking counter scheme.
A counter is incremented before and after each grace period, so that
the counter is odd in the midst of the grace period and even otherwise.
So if the counter has advanced to the second even number that is
greater than or equal to the snapshot, the required grace period has
already happened.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The synchronize_sched_expedited() currently invokes try_stop_cpus(),
which schedules the stopper kthreads on each online non-idle CPU,
and waits until all those kthreads are running before letting any
of them stop. This is disastrous for real-time workloads, which
get hit with a preemption that is as long as the longest scheduling
latency on any CPU, including any non-realtime housekeeping CPUs.
This commit therefore switches to using stop_one_cpu() on each CPU
in turn. This avoids inflicting the worst-case scheduling latency
on the worst-case CPU onto all other CPUs, and also simplifies the
code a little bit.
Follow-up commits will simplify the counter-snapshotting algorithm
and convert a number of the counters that are now protected by the
new ->expedited_mutex to non-atomic.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
[ paulmck: Kept stop_one_cpu(), dropped disabling of "guardrails". ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The CONFIG_RCU_CPU_STALL_INFO has been default-y for a couple of
releases with no complaints, so it is time to eliminate this Kconfig
option entirely, so that the long-form RCU CPU stall warnings cannot
be disabled. This commit does just that.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Because gcc does not realize a loop would not be entered ever
(i.e. in case of rcu_num_lvls == 1):
for (i = 1; i < rcu_num_lvls; i++)
rsp->level[i] = rsp->level[i - 1] + levelcnt[i - 1];
some compiler (pre- 5.x?) versions give a bogus warning:
kernel/rcu/tree.c: In function ‘rcu_init_one.isra.55’:
kernel/rcu/tree.c:4108:13: warning: array subscript is above array bounds [-Warray-bounds]
rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
^
Fix that warning by adding an extra item to rcu_state::level[]
array. Once the bogus warning is fixed in gcc and kernel drops
support of older versions, the dummy item may be removed from
the array.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Suggested-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This update makes arithmetic to calculate number of RCU nodes
more straight and easy to read.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although a number of RCU levels may be less than the current
maximum of four, some static data associated with each level
are allocated for all four levels. As result, the extra data
never get accessed and just wast memory. This update limits
count of allocated items to the number of used RCU levels.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Members rcu_state::levelcnt[] and rcu_state::levelspread[]
are only used at init. There is no reason to keep them
afterwards.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Number of items in rcu_capacity[] array is defined by macro
MAX_RCU_LVLS. However, that array is never accessed beyond
RCU_NUM_LVLS index. Therefore, we can limit the array to
RCU_NUM_LVLS items and eliminate MAX_RCU_LVLS. As result,
in most cases the memory is conserved.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Variable rcu_num_lvls is limited by RCU_NUM_LVLS macro.
In turn, rcu_state::levelcnt[] array is never accessed
beyond rcu_num_lvls. Thus, rcu_state::levelcnt[] is safe
to limit to RCU_NUM_LVLS items.
Since rcu_num_lvls could be changed during boot (as result
of rcutree.rcu_fanout_leaf kernel parameter update) one might
assume a new value could overflow the value of RCU_NUM_LVLS.
However, that is not the case, since leaf-level fanout is only
permitted to increase, resulting in rcu_num_lvls possibly to
decrease.
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Alexander Gordeev <agordeev@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit introduces an RCU_FANOUT_LEAF C-preprocessor macro so
that RCU will build even when CONFIG_RCU_FANOUT_LEAF is undefined.
The RCU_FANOUT_LEAF macro is set to the value of CONFIG_RCU_FANOUT_LEAF
when defined, otherwise it is set to 32 for 32-bit systems and 64 for
64-bit systems. This commit then makes CONFIG_RCU_FANOUT_LEAF depend
on CONFIG_RCU_EXPERT, so that Kconfig users won't be asked about
CONFIG_RCU_FANOUT_LEAF unless they want to be.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
This commit introduces an RCU_FANOUT C-preprocessor macro so that RCU will
build even when CONFIG_RCU_FANOUT is undefined. The RCU_FANOUT macro is
set to the value of CONFIG_RCU_FANOUT when defined, otherwise it is set
to 32 for 32-bit systems and 64 for 64-bit systems. This commit then
makes CONFIG_RCU_FANOUT depend on CONFIG_RCU_EXPERT, so that Kconfig
users won't be asked about CONFIG_RCU_FANOUT unless they want to be.
Reported-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
rcu_bh_data, rcu_sched_data and rcu_preempt_data are never used outside
kernel/rcu/tree.c and thus can be made static.
Doing so fixes a section mismatch warning reported by clang when
building LLVMLinux with -Wsection, because these variables were declared
in .data..percpu and defined in .data..percpu..shared_aligned since
commit 11bbb235c2 ("rcu: Use DEFINE_PER_CPU_SHARED_ALIGNED for
rcu_data").
Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit removes a few RCU_BOOST #ifdefs, replacing them with
IS_ENABLED()-protected return statements. This relies on the
optimizer to remove any resulting dead code. There are several other
RCU_BOOST #ifdefs, however these rely on some per-CPU variables that
are available only under RCU_BOOST. These might be converted later,
if the simplification proves to outweigh the increase in memory footprint.
One hoped-for advantage is more easily locating compiler errors in
obscure combinations of Kconfig parameters.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: <linux-rt-users@vger.kernel.org>
Because that RCU grace-period initialization need no longer exclude
CPU-hotplug operations, this commit eliminates the ->onoff_mutex and
its uses.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Races between CPU hotplug and grace periods can be difficult to resolve,
so the ->onoff_mutex is used to exclude the two events. Unfortunately,
this means that it is impossible for an outgoing CPU to perform the
last bits of its offlining from its last pass through the idle loop,
because sleeplocks cannot be acquired in that context.
This commit avoids these problems by buffering online and offline events
in a new ->qsmaskinitnext field in the leaf rcu_node structures. When a
grace period starts, the events accumulated in this mask are applied to
the ->qsmaskinit field, and, if needed, up the rcu_node tree. The special
case of all CPUs corresponding to a given leaf rcu_node structure being
offline while there are still elements in that structure's ->blkd_tasks
list is handled using a new ->wait_blkd_tasks field. In this case,
propagating the offline bits up the tree is deferred until the beginning
of the grace period after all of the tasks have exited their RCU read-side
critical sections and removed themselves from the list, at which point
the ->wait_blkd_tasks flag is cleared. If one of that leaf rcu_node
structure's CPUs comes back online before the list empties, then the
->wait_blkd_tasks flag is simply cleared.
This of course means that RCU's notion of which CPUs are offline can be
out of date. This is OK because RCU need only wait on CPUs that were
online at the time that the grace period started. In addition, RCU's
force-quiescent-state actions will handle the case where a CPU goes
offline after the grace period starts.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Although cond_resched_rcu_qs() only applies to TASKS_RCU, it is used
in places where it would be useful for it to apply to the normal RCU
flavors, rcu_preempt, rcu_sched, and rcu_bh. This is especially the
case for workloads that aggressively overload the system, particularly
those that generate large numbers of RCU updates on systems running
NO_HZ_FULL CPUs. This commit therefore communicates quiescent states
from cond_resched_rcu_qs() to the normal RCU flavors.
Note that it is unfortunately necessary to leave the old ->passed_quiesce
mechanism in place to allow quiescent states that apply to only one
flavor to be recorded. (Yes, we could decrement ->rcu_qs_ctr_snap in
that case, but that is not so good for debugging of RCU internals.)
In addition, if one of the RCU flavor's grace period has stalled, this
will invoke rcu_momentary_dyntick_idle(), resulting in a heavy-weight
quiescent state visible from other CPUs.
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
[ paulmck: Merge commit from Sasha Levin fixing a bug where __this_cpu()
was used in preemptible code. ]
Long ago, the various ->completed fields were of type long, but now are
unsigned long due to signed-integer-overflow concerns. However, the
various _batches_completed() functions remained of type long, even though
their only purpose in life is to return the corresponding ->completed
field. This patch cleans this up by changing these functions' return
types to unsigned long.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Subtle race conditions can result if a CPU stays in dyntick-idle mode
long enough for the ->gpnum and ->completed fields to wrap. For
example, consider the following sequence of events:
o CPU 1 encounters a quiescent state while waiting for grace period
5 to complete, but then enters dyntick-idle mode.
o While CPU 1 is in dyntick-idle mode, the grace-period counters
wrap around so that the grace period number is now 4.
o Just as CPU 1 exits dyntick-idle mode, grace period 4 completes
and grace period 5 begins.
o The quiescent state that CPU 1 passed through during the old
grace period 5 looks like it applies to the new grace period
5. Therefore, the new grace period 5 completes without CPU 1
having passed through a quiescent state.
This could clearly be a fatal surprise to any long-running RCU read-side
critical section that happened to be running on CPU 1 at the time. At one
time, this was not a problem, given that it takes significant time for
the grace-period counters to overflow even on 32-bit systems. However,
with the advent of NO_HZ_FULL and SMP embedded systems, arbitrarily long
idle periods are now becoming quite feasible. It is therefore time to
close this race.
This commit therefore avoids this race condition by having the
quiescent-state forcing code detect when a CPU is falling too far
behind, and setting a new rcu_data field ->gpwrap when this happens.
Whenever this new ->gpwrap field is set, the CPU's ->gpnum and ->completed
fields are known to be untrustworthy, and can be ignored, along with
any associated quiescent states.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current RCU CPU stall warning code will print "Stall ended before
state dump start" any time that the stall-warning code is triggered on
a CPU that has already reported a quiescent state for the current grace
period and if all quiescent states have been reported for the current
grace period. However, a true stall can result in these symptoms, for
example, by preventing RCU's grace-period kthreads from ever running
This commit therefore checks for this condition, reporting the end of
the stall only if one of the grace-period counters has actually advanced.
Otherwise, it reports the last time that the grace-period kthread made
meaningful progress. (In normal situations, the grace-period kthread
should make meaningful progress at least every jiffies_till_next_fqs
jiffies.)
Reported-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Miroslav Benes <mbenes@suse.cz>
One way that an RCU CPU stall warning can happen is if the grace-period
kthread is not allowed to execute. One proxy for this kthread's
forward progress is the number of force-quiescent-state (fqs) scans.
This commit therefore adds the number of fqs scans to the RCU CPU stall
warning printouts when CONFIG_RCU_CPU_STALL_INFO=y.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The patch dfeb9765ce ("Allow post-unlock reference for rt_mutex")
ensured rcu-boost safe even the rt_mutex has post-unlock reference.
But rt_mutex allowing post-unlock reference is definitely a bug and it was
fixed by the commit 27e35715df ("rtmutex: Plug slow unlock race").
This fix made the previous patch (dfeb9765ce) useless.
And even worse, the priority-inversion introduced by the the previous
patch still exists.
rcu_read_unlock_special() {
rt_mutex_unlock(&rnp->boost_mtx);
/* Priority-Inversion:
* the current task had been deboosted and preempted as a low
* priority task immediately, it could wait long before reschedule in,
* and the rcu-booster also waits on this low priority task and sleeps.
* This priority-inversion makes rcu-booster can't work
* as expected.
*/
complete(&rnp->boost_completion);
}
Just revert the patch to avoid it.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When the last CPU associated with a given leaf rcu_node structure
goes offline, something must be done about the tasks queued on that
rcu_node structure. Each of these tasks has been preempted on one of
the leaf rcu_node structure's CPUs while in an RCU read-side critical
section that it have not yet exited. Handling these tasks is the job of
rcu_preempt_offline_tasks(), which migrates them from the leaf rcu_node
structure to the root rcu_node structure.
Unfortunately, this migration has to be done one task at a time because
each tasks allegiance must be shifted from the original leaf rcu_node to
the root, so that future attempts to deal with these tasks will acquire
the root rcu_node structure's ->lock rather than that of the leaf.
Worse yet, this migration must be done with interrupts disabled, which
is not so good for realtime response, especially given that there is
no bound on the number of tasks on a given rcu_node structure's list.
(OK, OK, there is a bound, it is just that it is unreasonably large,
especially on 64-bit systems.) This was not considered a problem back
when rcu_preempt_offline_tasks() was first written because realtime
systems were assumed not to do CPU-hotplug operations while real-time
applications were running. This assumption has proved of dubious validity
given that people are starting to run multiple realtime applications
on a single SMP system and that it is common practice to offline then
online a CPU before starting its real-time application in order to clear
extraneous processing off of that CPU. So we now need CPU hotplug
operations to avoid undue latencies.
This commit therefore avoids migrating these tasks, instead letting
them be dequeued one by one from the original leaf rcu_node structure
by rcu_read_unlock_special(). This means that the clearing of bits
from the upper-level rcu_node structures must be deferred until the
last such task has been dequeued, because otherwise subsequent grace
periods won't wait on them. This commit has the beneficial side effect
of simplifying the CPU-hotplug code for TREE_PREEMPT_RCU, especially in
CONFIG_RCU_BOOST builds.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit abstracts rcu_cleanup_dead_rnp() from rcu_cleanup_dead_cpu()
in preparation for the rework of RCU priority boosting. This new function
will be invoked from rcu_read_unlock_special() in the reworked scheme,
which is why rcu_cleanup_dead_rnp() assumes that the leaf rcu_node
structure's ->qsmaskinit field has already been updated.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The 48a7639ce8 ("rcu: Make callers awaken grace-period kthread")
removed the irq_work_queue(), so the TREE_RCU doesn't need
irq work any more. This commit therefore updates RCU's Kconfig and
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_barrier() no-callbacks check for no-CBs CPUs has race conditions.
It checks a given CPU's lists of callbacks, and if all three no-CBs lists
are empty, ignores that CPU. However, these three lists could potentially
be empty even when callbacks are present if the check executed just as
the callbacks were being moved from one list to another. It turns out
that recent versions of rcutorture can spot this race.
This commit plugs this hole by consolidating the per-list counts of
no-CBs callbacks into a single count, which is incremented before
the corresponding callback is posted and after it is invoked. Then
rcu_barrier() checks this single count to reliably determine whether
the corresponding CPU has no-CBs callbacks.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The "cpu" argument to rcu_cleanup_after_idle() is always the current
CPU, so drop it. This moves the smp_processor_id() from the caller to
rcu_cleanup_after_idle(), saving argument-passing overhead. Again,
the anticipated cross-CPU uses of these functions has been replaced
by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
The "cpu" argument to rcu_prepare_for_idle() is always the current
CPU, so drop it. This in turn allows two of the uses of "cpu" in
this function to be replaced with a this_cpu_ptr() and the third by
smp_processor_id(), replacing that of the call to rcu_prepare_for_idle().
Again, the anticipated cross-CPU uses of these functions has been replaced
by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
The "cpu" argument to rcu_note_context_switch() is always the current
CPU, so drop it. This in turn allows the "cpu" argument to
rcu_preempt_note_context_switch() to be removed, which allows the sole
use of "cpu" in both functions to be replaced with a this_cpu_ptr().
Again, the anticipated cross-CPU uses of these functions has been
replaced by NO_HZ_FULL.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
Because rcu_preempt_check_callbacks()'s argument is guaranteed to
always be the current CPU, drop the argument and replace per_cpu()
with __this_cpu_read().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
For some functions in kernel/rcu/tree* the rdtp parameter is always
this_cpu_ptr(rdtp). Remove the parameter if constant and calculate the
pointer in function.
This will have the advantage that it is obvious that the address are
all per cpu offsets and thus it will enable the use of this_cpu_ops in
the future.
Signed-off-by: Christoph Lameter <cl@linux.com>
[ paulmck: Forward-ported to rcu/dev, whitespace adjustment. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
PREEMPT_RCU and TREE_PREEMPT_RCU serve the same function after
TINY_PREEMPT_RCU has been removed. This patch removes TREE_PREEMPT_RCU
and uses PREEMPT_RCU config option in its place.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit 35ce7f29a4 (rcu: Create rcuo kthreads only for onlined CPUs)
avoids creating rcuo kthreads for CPUs that never come online. This
fixes a bug in many instances of firmware: Instead of lying about their
age, these systems instead lie about the number of CPUs that they have.
Before commit 35ce7f29a4, this could result in huge numbers of useless
rcuo kthreads being created.
It appears that experience indicates that I should have told the
people suffering from this problem to fix their broken firmware, but
I instead produced what turned out to be a partial fix. The missing
piece supplied by this commit makes sure that rcu_barrier() knows not to
post callbacks for no-CBs CPUs that have not yet come online, because
otherwise rcu_barrier() will hang on systems having firmware that lies
about the number of CPUs.
It is tempting to simply have rcu_barrier() refuse to post a callback on
any no-CBs CPU that does not have an rcuo kthread. This unfortunately
does not work because rcu_barrier() is required to wait for all pending
callbacks. It is therefore required to wait even for those callbacks
that cannot possibly be invoked. Even if doing so hangs the system.
Given that posting a callback to a no-CBs CPU that does not yet have an
rcuo kthread can hang rcu_barrier(), It is tempting to report an error
in this case. Unfortunately, this will result in false positives at
boot time, when it is perfectly legal to post callbacks to the boot CPU
before the scheduler has started, in other words, before it is legal
to invoke rcu_barrier().
So this commit instead has rcu_barrier() avoid posting callbacks to
CPUs having neither rcuo kthread nor pending callbacks, and has it
complain bitterly if it finds CPUs having no rcuo kthread but some
pending callbacks. And when rcu_barrier() does find CPUs having no rcuo
kthread but pending callbacks, as noted earlier, it has no choice but
to hang indefinitely.
Reported-by: Yanko Kaneti <yaneti@declera.com>
Reported-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Reported-by: Meelis Roos <mroos@linux.ee>
Reported-by: Eric B Munson <emunson@akamai.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Eric B Munson <emunson@akamai.com>
Tested-by: Jay Vosburgh <jay.vosburgh@canonical.com>
Tested-by: Yanko Kaneti <yaneti@declera.com>
Tested-by: Kevin Fenzi <kevin@scrye.com>
Tested-by: Meelis Roos <mroos@linux.ee>
RCU currently uses for_each_possible_cpu() to spawn rcuo kthreads,
which can result in more rcuo kthreads than one would expect, for
example, derRichard reported 64 CPUs worth of rcuo kthreads on an
8-CPU image. This commit therefore creates rcuo kthreads only for
those CPUs that actually come online.
This was reported by derRichard on the OFTC IRC network.
Reported-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Currently, RCU spawns kthreads from several different early_initcall()
functions. Although this has served RCU well for quite some time,
as more kthreads are added a more deterministic approach is required.
This commit therefore causes all of RCU's early-boot kthreads to be
spawned from a single early_initcall() function.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Currently TASKS_RCU would ignore a CPU running a task in nohz_full=
usermode execution. There would be neither a context switch nor a
scheduling-clock interrupt to tell TASKS_RCU that the task in question
had passed through a quiescent state. The grace period would therefore
extend indefinitely. This commit therefore makes RCU's dyntick-idle
subsystem record the task_struct structure of the task that is running
in dyntick-idle mode on each CPU. The TASKS_RCU grace period can
then access this information and record a quiescent state on
behalf of any CPU running in dyntick-idle usermode.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit 96d3fd0d31 (rcu: Break call_rcu() deadlock involving scheduler
and perf) covered the case where __call_rcu_nocb_enqueue() needs to wake
the rcuo kthread due to the queue being initially empty, but did not
do anything for the case where the queue was overflowing. This commit
therefore also defers wakeup for the overflow case.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The nocb callbacks generated before the nocb kthreads are spawned are
enqueued in the nocb queue for later processing. Commit fbce7497ee ("rcu:
Parallelize and economize NOCB kthread wakeups") introduced nocb leader kthreads
which checked the nocb_leader_wake flag to see if there were any such pending
callbacks. A case was reported in which newly spawned leader kthreads were not
processing the pending callbacks as this flag was not set, which led to a boot
hang.
The following commit ensures that the newly spawned nocb kthreads process the
pending callbacks by allowing the kthreads to run immediately after spawning
instead of waiting. This is done by inverting the logic of nocb_leader_wake
tests to nocb_leader_sleep which allows us to use the default initialization of
this flag to 0 to let the kthreads run.
Reported-by: Amit Shah <amit.shah@redhat.com>
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Link: http://www.spinics.net/lists/kernel/msg1802899.html
[ paulmck: Backported to v3.17-rc2. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Amit Shah <amit.shah@redhat.com>
RCU priority boosting currently checks for boosting via a pointer in
task_struct. However, this is not needed: As Oleg noted, if the
rt_mutex is placed in the rcu_node instead of on the booster's stack,
the boostee can simply check it see if it owns the lock. This commit
makes this change, shrinking task_struct by one pointer and the kernel
by thirteen lines.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The current approach to RCU priority boosting uses an rt_mutex strictly
for its priority-boosting side effects. The rt_mutex_init_proxy_locked()
function is used by the booster to initialize the lock as held by the
boostee. The booster then uses rt_mutex_lock() to acquire this rt_mutex,
which priority-boosts the boostee. When the boostee reaches the end
of its outermost RCU read-side critical section, it checks a field in
its task structure to see whether it has been boosted, and, if so, uses
rt_mutex_unlock() to release the rt_mutex. The booster can then go on
to boost the next task that is blocking the current RCU grace period.
But reasonable implementations of rt_mutex_unlock() might result in the
boostee referencing the rt_mutex's data after releasing it. But the
booster might have re-initialized the rt_mutex between the time that the
boostee released it and the time that it later referenced it. This is
clearly asking for trouble, so this commit introduces a completion that
forces the booster to wait until the boostee has completely finished with
the rt_mutex, thus avoiding the case where the booster is re-initializing
the rt_mutex before the last boostee's last reference to that rt_mutex.
This of course does introduce some overhead, but the priority-boosting
code paths are miles from any possible fastpath, and the overhead of
executing the completion will normally be quite small compared to the
overhead of priority boosting and deboosting, so this should be OK.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
An 80-CPU system with a context-switch-heavy workload can require so
many NOCB kthread wakeups that the RCU grace-period kthreads spend several
tens of percent of a CPU just awakening things. This clearly will not
scale well: If you add enough CPUs, the RCU grace-period kthreads would
get behind, increasing grace-period latency.
To avoid this problem, this commit divides the NOCB kthreads into leaders
and followers, where the grace-period kthreads awaken the leaders each of
whom in turn awakens its followers. By default, the number of groups of
kthreads is the square root of the number of CPUs, but this default may
be overridden using the rcutree.rcu_nocb_leader_stride boot parameter.
This reduces the number of wakeups done per grace period by the RCU
grace-period kthread by the square root of the number of CPUs, but of
course by shifting those wakeups to the leaders. In addition, because
the leaders do grace periods on behalf of their respective followers,
the number of wakeups of the followers decreases by up to a factor of two.
Instead of being awakened once when new callbacks arrive and again
at the end of the grace period, the followers are awakened only at
the end of the grace period.
For a numerical example, in a 4096-CPU system, the grace-period kthread
would awaken 64 leaders, each of which would awaken its 63 followers
at the end of the grace period. This compares favorably with the 79
wakeups for the grace-period kthread on an 80-CPU system.
Reported-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Commit ac1bea8578 (Make cond_resched() report RCU quiescent states)
fixed a problem where a CPU looping in the kernel with but one runnable
task would give RCU CPU stall warnings, even if the in-kernel loop
contained cond_resched() calls. Unfortunately, in so doing, it introduced
performance regressions in Anton Blanchard's will-it-scale "open1" test.
The problem appears to be not so much the increased cond_resched() path
length as an increase in the rate at which grace periods complete, which
increased per-update grace-period overhead.
This commit takes a different approach to fixing this bug, mainly by
moving the RCU-visible quiescent state from cond_resched() to
rcu_note_context_switch(), and by further reducing the check to a
simple non-zero test of a single per-CPU variable. However, this
approach requires that the force-quiescent-state processing send
resched IPIs to the offending CPUs. These will be sent only once
the grace period has reached an age specified by the boot/sysfs
parameter rcutree.jiffies_till_sched_qs, or once the grace period
reaches an age halfway to the point at which RCU CPU stall warnings
will be emitted, whichever comes first.
Reported-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Mike Galbraith <umgwanakikbuti@gmail.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
[ paulmck: Made rcu_momentary_dyntick_idle() as suggested by the
ktest build robot. Also fixed smp_mb() comment as noted by
Oleg Nesterov. ]
Merge with e552592e (Reduce overhead of cond_resched() checks for RCU)
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit allows rcutorture to print additional state for the
RCU grace-period kthreads in cases where RCU seems reluctant to
start a new grace period.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The rcu_start_gp_advanced() function currently uses irq_work_queue()
to defer wakeups of the RCU grace-period kthread. This deferring
is necessary to avoid RCU-scheduler deadlocks involving the rcu_node
structure's lock, meaning that RCU cannot call any of the scheduler's
wake-up functions while holding one of these locks.
Unfortunately, the second and subsequent calls to irq_work_queue() are
ignored, and the first call will be ignored (aside from queuing the work
item) if the scheduler-clock tick is turned off. This is OK for many
uses, especially those where irq_work_queue() is called from an interrupt
or softirq handler, because in those cases the scheduler-clock-tick state
will be re-evaluated, which will turn the scheduler-clock tick back on.
On the next tick, any deferred work will then be processed.
However, this strategy does not always work for RCU, which can be invoked
at process level from idle CPUs. In this case, the tick might never
be turned back on, indefinitely defering a grace-period start request.
Note that the RCU CPU stall detector cannot see this condition, because
there is no RCU grace period in progress. Therefore, we can (and do!)
see long tens-of-seconds stalls in grace-period handling. In theory,
we could see a full grace-period hang, but rcutorture testing to date
has seen only the tens-of-seconds stalls. Event tracing demonstrates
that irq_work_queue() is being called repeatedly to no effect during
these stalls: The "newreq" event appears repeatedly from a task that is
not one of the grace-period kthreads.
In theory, irq_work_queue() might be fixed to avoid this sort of issue,
but RCU's requirements are unusual and it is quite straightforward to pass
wake-up responsibility up through RCU's call chain, so that the wakeup
happens when the offending locks are released.
This commit therefore makes this change. The rcu_start_gp_advanced(),
rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(),
__note_gp_changes(), and rcu_start_gp() functions now return a boolean
which indicates when a wake-up is needed. A new rcu_gp_kthread_wake()
does the wakeup when it is necessary and safe to do so: No self-wakes,
no wake-ups if the ->gp_flags field indicates there is no need (as in
someone else did the wake-up before we got around to it), and no wake-ups
before the grace-period kthread has been created.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The ->preemptible field in rcu_data is only initialized in the function
rcu_init_percpu_data(), and never used. This commit therefore removes
this field.
Signed-off-by: Iulia Manda <iulia.manda21@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
In the old days, the only source of requests for future grace periods
was NOCB CPUs. This has changed: CPUs routinely post requests for
future grace periods in order to promote power efficiency and reduce
OS jitter with minimal impact on grace-period latency. This commit
therefore updates cpu_needs_another_gp() to invoke rcu_future_needs_gp()
instead of rcu_nocb_needs_gp(). The latter is no longer used, so is
now removed. This commit also adds tracing for the irq_work_queue()
wakeup case.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
All of the RCU source files have the usual GPL header, which contains a
long-obsolete postal address for FSF. To avoid the need to track the
FSF office's movements, this commit substitutes the URL where GPL may
be found.
Reported-by: Greg KH <gregkh@linuxfoundation.org>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Whenever a CPU receives a scheduling-clock interrupt, RCU checks to see
if the RCU core needs anything from this CPU. If so, RCU raises
RCU_SOFTIRQ to carry out any needed processing.
This approach has worked well historically, but it is undesirable on
NO_HZ_FULL CPUs. Such CPUs are expected to spend almost all of their time
in userspace, so that scheduling-clock interrupts can be disabled while
there is only one runnable task on the CPU in question. Unfortunately,
raising any softirq has the potential to wake up ksoftirqd, which would
provide the second runnable task on that CPU, preventing disabling of
scheduling-clock interrupts.
What is needed instead is for RCU to leave NO_HZ_FULL CPUs alone,
relying on the grace-period kthreads' quiescent-state forcing to
do any needed RCU work on behalf of those CPUs.
This commit therefore refrains from raising RCU_SOFTIRQ on any
NO_HZ_FULL CPUs during any grace periods that have been in effect
for less than one second. The one-second limit handles the case
where an inappropriate workload is running on a NO_HZ_FULL CPU
that features lots of scheduling-clock interrupts, but no idle
or userspace time.
Reported-by: Mike Galbraith <bitbucket@online.de>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Mike Galbraith <bitbucket@online.de>
Toasted-by: Frederic Weisbecker <fweisbec@gmail.com>
Dave Jones got the following lockdep splat:
> ======================================================
> [ INFO: possible circular locking dependency detected ]
> 3.12.0-rc3+ #92 Not tainted
> -------------------------------------------------------
> trinity-child2/15191 is trying to acquire lock:
> (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50
>
> but task is already holding lock:
> (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> which lock already depends on the new lock.
>
>
> the existing dependency chain (in reverse order) is:
>
> -> #3 (&ctx->lock){-.-...}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0
> [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0
> [<ffffffff81732052>] __schedule+0x1d2/0xa20
> [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0
> [<ffffffff817352b6>] retint_kernel+0x26/0x30
> [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50
> [<ffffffff813f0504>] pty_write+0x54/0x60
> [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0
> [<ffffffff813e5838>] tty_write+0x158/0x2d0
> [<ffffffff811c4850>] vfs_write+0xc0/0x1f0
> [<ffffffff811c52cc>] SyS_write+0x4c/0xa0
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> -> #2 (&rq->lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80
> [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0
> [<ffffffff81054336>] do_fork+0x126/0x460
> [<ffffffff81054696>] kernel_thread+0x26/0x30
> [<ffffffff8171ff93>] rest_init+0x23/0x140
> [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403
> [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c
> [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4
>
> -> #1 (&p->pi_lock){-.-.-.}:
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff810979d1>] try_to_wake_up+0x31/0x350
> [<ffffffff81097d62>] default_wake_function+0x12/0x20
> [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40
> [<ffffffff8108ea38>] __wake_up_common+0x58/0x90
> [<ffffffff8108ff59>] __wake_up+0x39/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111b8d>] call_rcu+0x1d/0x20
> [<ffffffff81093697>] cpu_attach_domain+0x287/0x360
> [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0
> [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a
> [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202
> [<ffffffff817200be>] kernel_init+0xe/0x190
> [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0
>
> -> #0 (&rdp->nocb_wq){......}:
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
>
> other info that might help us debug this:
>
> Chain exists of:
> &rdp->nocb_wq --> &rq->lock --> &ctx->lock
>
> Possible unsafe locking scenario:
>
> CPU0 CPU1
> ---- ----
> lock(&ctx->lock);
> lock(&rq->lock);
> lock(&ctx->lock);
> lock(&rdp->nocb_wq);
>
> *** DEADLOCK ***
>
> 1 lock held by trinity-child2/15191:
> #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230
>
> stack backtrace:
> CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92
> ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40
> ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0
> ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0
> Call Trace:
> [<ffffffff8172a363>] dump_stack+0x4e/0x82
> [<ffffffff81726741>] print_circular_bug+0x200/0x20f
> [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0
> [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60
> [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80
> [<ffffffff810cc243>] lock_acquire+0x93/0x200
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90
> [<ffffffff8108ff43>] ? __wake_up+0x23/0x50
> [<ffffffff8108ff43>] __wake_up+0x23/0x50
> [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0
> [<ffffffff81111450>] __call_rcu+0x140/0x820
> [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50
> [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30
> [<ffffffff81149abf>] put_ctx+0x4f/0x70
> [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230
> [<ffffffff81056b8d>] do_exit+0x30d/0xcc0
> [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0
> [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10
> [<ffffffff8105893c>] do_group_exit+0x4c/0xc0
> [<ffffffff810589c4>] SyS_exit_group+0x14/0x20
> [<ffffffff8173d4e4>] tracesys+0xdd/0xe2
The underlying problem is that perf is invoking call_rcu() with the
scheduler locks held, but in NOCB mode, call_rcu() will with high
probability invoke the scheduler -- which just might want to use its
locks. The reason that call_rcu() needs to invoke the scheduler is
to wake up the corresponding rcuo callback-offload kthread, which
does the job of starting up a grace period and invoking the callbacks
afterwards.
One solution (championed on a related problem by Lai Jiangshan) is to
simply defer the wakeup to some point where scheduler locks are no longer
held. Since we don't want to unnecessarily incur the cost of such
deferral, the task before us is threefold:
1. Determine when it is likely that a relevant scheduler lock is held.
2. Defer the wakeup in such cases.
3. Ensure that all deferred wakeups eventually happen, preferably
sooner rather than later.
We use irqs_disabled_flags() as a proxy for relevant scheduler locks
being held. This works because the relevant locks are always acquired
with interrupts disabled. We may defer more often than needed, but that
is at least safe.
The wakeup deferral is tracked via a new field in the per-CPU and
per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup.
This flag is checked by the RCU core processing. The __rcu_pending()
function now checks this flag, which causes rcu_check_callbacks()
to initiate RCU core processing at each scheduling-clock interrupt
where this flag is set. Of course this is not sufficient because
scheduling-clock interrupts are often turned off (the things we used to
be able to count on!). So the flags are also checked on entry to any
state that RCU considers to be idle, which includes both NO_HZ_IDLE idle
state and NO_HZ_FULL user-mode-execution state.
This approach should allow call_rcu() to be invoked regardless of what
locks you might be holding, the key word being "should".
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
When an RCU CPU stall warning occurs, the CPU invokes resched_cpu() on
itself. This can help move the grace period forward in some situations,
but it would be even better to do this -before- the RCU CPU stall warning.
This commit therefore causes resched_cpu() to be called every five jiffies
once the system is halfway to an RCU CPU stall warning.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>