Commit Graph

19 Commits

Author SHA1 Message Date
Jan Beulich e26a44a2d6 x86: Use REP BSF unconditionally
Make "REP BSF" unconditional, as per the suggestion of hpa
and Linus, this removes the insane BSF_PREFIX conditional
and simplifies the logic.

Suggested-by: "H. Peter Anvin" <hpa@zytor.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jan Beulich <jbeulich@suse.com>
Link: http://lkml.kernel.org/r/5058741E020000780009C014@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-19 17:26:08 +02:00
Jan Beulich 5870661c09 x86: Prefer TZCNT over BFS
Following a relatively recent compiler change, make use of the
fact that for non-zero input BSF and TZCNT produce the same
result, and that CPUs not knowing of TZCNT will treat the
instruction as BSF (i.e. ignore what looks like a REP prefix to
them). The assumption here is that TZCNT would never have worse
performance than BSF.

For the moment, only do this when the respective generic-CPU
option is selected (as there are no specific-CPU options
covering the CPUs supporting TZCNT), and don't do that when size
optimization was requested.

Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/504DEA1B020000780009A277@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 17:44:01 +02:00
Jan Beulich 1edfbb4153 x86/64: Adjust types of temporaries used by ffs()/fls()/fls64()
The 64-bit special cases of the former two (the thrird one is
64-bit only anyway) don't need to use "long" temporaries, as the
result will always fit in a 32-bit variable, and the functions
return plain "int". This avoids a few REX prefixes, i.e.
minimally reduces code size.

Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/504DE550020000780009A258@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 17:43:58 +02:00
Michael S. Tsirkin d0a69d6321 x86, bitops: note on __test_and_clear_bit atomicity
__test_and_clear_bit is actually atomic with respect
to the local CPU. Add a note saying that KVM on x86
relies on this behaviour so people don't accidentaly break it.
Also warn not to rely on this in portable code.

Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-06-25 12:38:35 +03:00
Borislav Petkov e8f380e008 x86/bitops: Move BIT_64() for a wider use
Needed for shifting 64-bit values on 32-bit, like MSR values,
for example.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frank Arnold <frank.arnold@amd.com>
Link: http://lkml.kernel.org/r/1337684026-19740-1-git-send-email-bp@amd64.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-05-23 17:16:42 +02:00
David Howells ca3d30cc02 x86_64, asm: Optimise fls(), ffs() and fls64()
fls(N), ffs(N) and fls64(N) can be optimised on x86_64.  Currently they use a
CMOV instruction after the BSR/BSF to set the destination register to -1 if the
value to be scanned was 0 (in which case BSR/BSF set the Z flag).

Instead, according to the AMD64 specification, we can make use of the fact that
BSR/BSF doesn't modify its output register if its input is 0.  By preloading
the output with -1 and incrementing the result, we achieve the desired result
without the need for a conditional check.

The Intel x86_64 specification, however, says that the result of BSR/BSF in
such a case is undefined.  That said, when queried, one of the Intel CPU
architects said that the behaviour on all Intel CPUs is that:

 (1) with BSRQ/BSFQ, the 64-bit destination register is written with its
     original value if the source is 0, thus, in essence, giving the effect we
     want.  And,

 (2) with BSRL/BSFL, the lower half of the 64-bit destination register is
     written with its original value if the source is 0, and the upper half is
     cleared, thus giving us the effect we want (we return a 4-byte int).

Further, it was indicated that they (Intel) are unlikely to get away with
changing the behaviour.

It might be possible to optimise the 32-bit versions of these functions, but
there's a lot more variation, and so the effective non-destructive property of
BSRL/BSRF cannot be relied on.

[ hpa: specifically, some 486 chips are known to NOT have this property. ]

I have benchmarked these functions on my Core2 Duo test machine using the
following program:

	#include <stdlib.h>
	#include <stdio.h>

	#ifndef __x86_64__
	#error
	#endif

	#define PAGE_SHIFT 12

	typedef unsigned long long __u64, u64;
	typedef unsigned int __u32, u32;
	#define noinline	__attribute__((noinline))

	static __always_inline int fls64(__u64 x)
	{
		long bitpos = -1;

		asm("bsrq %1,%0"
		    : "+r" (bitpos)
		    : "rm" (x));
		return bitpos + 1;
	}

	static inline unsigned long __fls(unsigned long word)
	{
		asm("bsr %1,%0"
		    : "=r" (word)
		    : "rm" (word));
		return word;
	}
	static __always_inline int old_fls64(__u64 x)
	{
		if (x == 0)
			return 0;
		return __fls(x) + 1;
	}

	static noinline // __attribute__((const))
	int old_get_order(unsigned long size)
	{
		int order;

		size = (size - 1) >> (PAGE_SHIFT - 1);
		order = -1;
		do {
			size >>= 1;
			order++;
		} while (size);
		return order;
	}

	static inline __attribute__((const))
	int get_order_old_fls64(unsigned long size)
	{
		int order;
		size--;
		size >>= PAGE_SHIFT;
		order = old_fls64(size);
		return order;
	}

	static inline __attribute__((const))
	int get_order(unsigned long size)
	{
		int order;
		size--;
		size >>= PAGE_SHIFT;
		order = fls64(size);
		return order;
	}

	unsigned long prevent_optimise_out;

	static noinline unsigned long test_old_get_order(void)
	{
		unsigned long n, total = 0;
		long rep, loop;

		for (rep = 1000000; rep > 0; rep--) {
			for (loop = 0; loop <= 16384; loop += 4) {
				n = 1UL << loop;
				total += old_get_order(n);
			}
		}
		return total;
	}

	static noinline unsigned long test_get_order_old_fls64(void)
	{
		unsigned long n, total = 0;
		long rep, loop;

		for (rep = 1000000; rep > 0; rep--) {
			for (loop = 0; loop <= 16384; loop += 4) {
				n = 1UL << loop;
				total += get_order_old_fls64(n);
			}
		}
		return total;
	}

	static noinline unsigned long test_get_order(void)
	{
		unsigned long n, total = 0;
		long rep, loop;

		for (rep = 1000000; rep > 0; rep--) {
			for (loop = 0; loop <= 16384; loop += 4) {
				n = 1UL << loop;
				total += get_order(n);
			}
		}
		return total;
	}

	int main(int argc, char **argv)
	{
		unsigned long total;

		switch (argc) {
		case 1:  total = test_old_get_order();		break;
		case 2:  total = test_get_order_old_fls64();	break;
		default: total = test_get_order();		break;
		}
		prevent_optimise_out = total;
		return 0;
	}

This allows me to test the use of the old fls64() implementation and the new
fls64() implementation and also to contrast these to the out-of-line loop-based
implementation of get_order().  The results were:

	warthog>time ./get_order
	real    1m37.191s
	user    1m36.313s
	sys     0m0.861s
	warthog>time ./get_order x
	real    0m16.892s
	user    0m16.586s
	sys     0m0.287s
	warthog>time ./get_order x x
	real    0m7.731s
	user    0m7.727s
	sys     0m0.002s

Using the current upstream fls64() as a basis for an inlined get_order() [the
second result above] is much faster than using the current out-of-line
loop-based get_order() [the first result above].

Using my optimised inline fls64()-based get_order() [the third result above]
is even faster still.

[ hpa: changed the selection of 32 vs 64 bits to use CONFIG_X86_64
  instead of comparing BITS_PER_LONG, updated comments, rebased manually
  on top of 83d99df7c4 x86, bitops: Move fls64.h inside __KERNEL__ ]

Signed-off-by: David Howells <dhowells@redhat.com>
Link: http://lkml.kernel.org/r/20111213145654.14362.39868.stgit@warthog.procyon.org.uk
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
2011-12-15 15:16:49 -08:00
H. Peter Anvin 83d99df7c4 x86, bitops: Move fls64.h inside __KERNEL__
We would include <asm-generic/bitops/fls64.h> even without __KERNEL__,
but that doesn't make sense, as:

1. That file provides fls64(), but the corresponding function fls() is
   not exported to user space.
2. The implementation of fls64.h uses kernel-only symbols.
3. fls64.h is not exported to user space.

This appears to have been a bug introduced in checkin:

d57594c203 bitops: use __fls for fls64 on 64-bit archs

Cc: Stephen Hemminger <shemminger@vyatta.com>
Cc: Alexander van Heukelum <heukelum@mailshack.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Link: http://lkml.kernel.org/r/4EEA77E1.6050009@zytor.com
2011-12-15 15:04:07 -08:00
Akinobu Mita 148817ba09 asm-generic: add another generic ext2 atomic bitops
The majority of architectures implement ext2 atomic bitops as
test_and_{set,clear}_bit() without spinlock.

This adds this type of generic implementation in ext2-atomic-setbit.h and
use it wherever possible.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Suggested-by: Andreas Dilger <adilger@dilger.ca>
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-07-26 16:49:46 -07:00
Akinobu Mita 61f2e7b0f4 bitops: remove minix bitops from asm/bitops.h
minix bit operations are only used by minix filesystem and useless by
other modules.  Because byte order of inode and block bitmaps is different
on each architecture like below:

m68k:
	big-endian 16bit indexed bitmaps

h8300, microblaze, s390, sparc, m68knommu:
	big-endian 32 or 64bit indexed bitmaps

m32r, mips, sh, xtensa:
	big-endian 32 or 64bit indexed bitmaps for big-endian mode
	little-endian bitmaps for little-endian mode

Others:
	little-endian bitmaps

In order to move minix bit operations from asm/bitops.h to architecture
independent code in minix filesystem, this provides two config options.

CONFIG_MINIX_FS_BIG_ENDIAN_16BIT_INDEXED is only selected by m68k.
CONFIG_MINIX_FS_NATIVE_ENDIAN is selected by the architectures which use
native byte order bitmaps (h8300, microblaze, s390, sparc, m68knommu,
m32r, mips, sh, xtensa).  The architectures which always use little-endian
bitmaps do not select these options.

Finally, we can remove minix bit operations from asm/bitops.h for all
architectures.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Roman Zippel <zippel@linux-m68k.org>
Cc: Andreas Schwab <schwab@linux-m68k.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Michal Simek <monstr@monstr.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:22 -07:00
Akinobu Mita f312eff816 bitops: remove ext2 non-atomic bitops from asm/bitops.h
As the result of conversions, there are no users of ext2 non-atomic bit
operations except for ext2 filesystem itself.  Now we can put them into
architecture independent code in ext2 filesystem, and remove from
asm/bitops.h for all architectures.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:21 -07:00
Akinobu Mita 861b5ae7cd bitops: introduce little-endian bitops for most architectures
Introduce little-endian bit operations to the big-endian architectures
which do not have native little-endian bit operations and the
little-endian architectures.  (alpha, avr32, blackfin, cris, frv, h8300,
ia64, m32r, mips, mn10300, parisc, sh, sparc, tile, x86, xtensa)

These architectures can just include generic implementation
(asm-generic/bitops/le.h).

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Mikael Starvik <starvik@axis.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Matthew Wilcox <willy@debian.org>
Cc: Grant Grundler <grundler@parisc-linux.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Kazumoto Kojima <kkojima@rr.iij4u.or.jp>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Hans-Christian Egtvedt <hans-christian.egtvedt@atmel.com>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-03-23 19:46:15 -07:00
Akinobu Mita 708ff2a009 bitops: make asm-generic/bitops/find.h more generic
asm-generic/bitops/find.h has the extern declarations of find_next_bit()
and find_next_zero_bit() and the macro definitions of find_first_bit()
and find_first_zero_bit(). It is only usable by the architectures which
enables CONFIG_GENERIC_FIND_NEXT_BIT and disables
CONFIG_GENERIC_FIND_FIRST_BIT.

x86 and tile enable both CONFIG_GENERIC_FIND_NEXT_BIT and
CONFIG_GENERIC_FIND_FIRST_BIT. These architectures cannot include
asm-generic/bitops/find.h in their asm/bitops.h. So ifdefed extern
declarations of find_first_bit and find_first_zero_bit() are put in
linux/bitops.h.

This makes asm-generic/bitops/find.h usable by these architectures
and use it. Also this change is needed for the forthcoming duplicated
extern declarations cleanup.

Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: Chris Metcalf <cmetcalf@tilera.com>
2010-10-09 21:51:44 +02:00
Alexander Chumachenko c9e2fbd909 x86: Avoid 'constant_test_bit()' misoptimization due to cast to non-volatile
While debugging bit_spin_lock() hang, it was tracked down to gcc-4.4
misoptimization of non-inlined constant_test_bit() due to non-volatile
addr when 'const volatile unsigned long *addr' cast to 'unsigned long *'
with subsequent unconditional jump to pause (and not to the test) leading
to hang.

Compiling with gcc-4.3 or disabling CONFIG_OPTIMIZE_INLINING yields inlined
constant_test_bit() and correct jump, thus working around the kernel bug.

Other arches than asm-x86 may implement this slightly differently;
2.6.29 mitigates the misoptimization by changing the function prototype
(commit c4295fbb60) but probably fixing the issue
itself is better.

Signed-off-by: Alexander Chumachenko <ledest@gmail.com>
Signed-off-by: Michael Shigorin <mike@osdn.org.ua>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-09-26 22:43:07 -07:00
Borislav Petkov d61931d89b x86: Add optimized popcnt variants
Add support for the hardware version of the Hamming weight function,
popcnt, present in CPUs which advertize it under CPUID, Function
0x0000_0001_ECX[23]. On CPUs which don't support it, we fallback to the
default lib/hweight.c sw versions.

A synthetic benchmark comparing popcnt with __sw_hweight64 showed almost
a 3x speedup on a F10h machine.

Signed-off-by: Borislav Petkov <borislav.petkov@amd.com>
LKML-Reference: <20100318112015.GC11152@aftab>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2010-04-06 15:52:11 -07:00
Andi Kleen c8399943bd x86, generic: mark complex bitops.h inlines as __always_inline
Impact: reduce kernel image size

Hugh Dickins noticed that older gcc versions when the kernel
is built for code size didn't inline some of the bitops.

Mark all complex x86 bitops that have more than a single
asm statement or two as always inline to avoid this problem.

Probably should be done for other architectures too.

Ingo then found a better fix that only requires
a single line change, but it unfortunately only
works on gcc 4.3.

On older gccs the original patch still makes a ~0.3% defconfig
difference with CONFIG_OPTIMIZE_INLINING=y.

With gcc 4.1 and a defconfig like build:

    6116998 1138540  883788 8139326  7c323e vmlinux-oi-with-patch
    6137043 1138540  883788 8159371  7c808b vmlinux-optimize-inlining

~20k / 0.3% difference.

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-01-13 18:56:30 +01:00
Linus Torvalds c4295fbb60 x86: make 'constant_test_bit()' take an unsigned bit number
Ingo noticed that using signed arithmetic seems to confuse the gcc
inliner, and make it potentially decide that it's all too complicated.

(Yeah, yeah, it's a constant. It's always positive. Still..)

Based-on: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-09 12:49:50 -08:00
Uros Bizjak 838e8bb71d x86: Implement change_bit with immediate operand as "lock xorb"
Impact: Minor optimization.

Implement change_bit with immediate bit count as "lock xorb". This is
similar to  "lock orb" and "lock andb"  for set_bit and clear_bit
functions.

Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-11-05 09:51:02 -08:00
H. Peter Anvin 1965aae3c9 x86: Fix ASM_X86__ header guards
Change header guards named "ASM_X86__*" to "_ASM_X86_*" since:

a. the double underscore is ugly and pointless.
b. no leading underscore violates namespace constraints.

Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22 22:55:23 -07:00
Al Viro bb8985586b x86, um: ... and asm-x86 move
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
2008-10-22 22:55:20 -07:00