The rules for nd->root are messy:
* if we have LOOKUP_ROOT, it doesn't contribute to refcounts
* if we have LOOKUP_RCU, it doesn't contribute to refcounts
* if nd->root.mnt is NULL, it doesn't contribute to refcounts
* otherwise it does contribute
terminate_walk() needs to drop the references if they are contributing.
So everything else should be careful not to confuse it, leading to
rather convoluted code.
It's easier to keep track of whether we'd grabbed the reference(s)
explicitly. Use a new flag for that. Don't bother with zeroing
nd->root.mnt on unlazy failures and in terminate_walk - it's not
needed anymore (terminate_walk() won't care and the next path_init()
will zero nd->root in !LOOKUP_ROOT case anyway).
Resulting rules for nd->root refcounts are much simpler: they are
contributing iff LOOKUP_ROOT_GRABBED is set in nd->flags.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The former has no users left; the latter was only to get LOOKUP_...
values to remapper in audit_inode() and that's an ex-parrot now.
All places that use symbols from namei.h include it either directly
or (in a few cases) via a local header, like fs/autofs/autofs_i.h
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Don't fetch fcaps when umount2 is called to avoid a process hang while
it waits for the missing resource to (possibly never) re-appear.
Note the comment above user_path_mountpoint_at():
* A umount is a special case for path walking. We're not actually interested
* in the inode in this situation, and ESTALE errors can be a problem. We
* simply want track down the dentry and vfsmount attached at the mountpoint
* and avoid revalidating the last component.
This can happen on ceph, cifs, 9p, lustre, fuse (gluster) or NFS.
Please see the github issue tracker
https://github.com/linux-audit/audit-kernel/issues/100
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
[PM: merge fuzz in audit_log_fcaps()]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Alter the dynroot mount so that cells created by manipulation of
/proc/fs/afs/cells and /proc/fs/afs/rootcell and by specification of a root
cell as a module parameter will cause directories for those cells to be
created in the dynamic root superblock for the network namespace[*].
To this end:
(1) Only one dynamic root superblock is now created per network namespace
and this is shared between all attempts to mount it. This makes it
easier to find the superblock to modify.
(2) When a dynamic root superblock is created, the list of cells is walked
and directories created for each cell already defined.
(3) When a new cell is added, if a dynamic root superblock exists, a
directory is created for it.
(4) When a cell is destroyed, the directory is removed.
(5) These directories are created by calling lookup_one_len() on the root
dir which automatically creates them if they don't exist.
[*] Inasmuch as network namespaces are currently supported here.
Signed-off-by: David Howells <dhowells@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
new flag: LOOKUP_DOWN. If the starting point is overmounted, cross
into whatever's mounted on top, triggering referrals et.al.
Use that instead of follow_down_one() loop in mntns_install(), handle
errors properly.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This reverts commit 3c9fe8cdff.
As Miklos points out in commit c1b2cc1a76, the "lookup_hash()" helper
is now unused, and in fact, with the hash salting changes, since the
hash of a dentry name now depends on the directory dentry it is in, the
helper function isn't even really likely to be useful.
So rather than keep it around in case somebody else might end up finding
a use for it, let's just remove the helper and not trick people into
thinking it might be a useful thing.
For example, I had obviously completely missed how the helper didn't
follow the normal dentry hashing patterns, and how the hash salting
patch broke overlayfs. Things would quietly build and look sane, but
not work.
Suggested-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The /dev/ptmx device node is changed to lookup the directory entry "pts"
in the same directory as the /dev/ptmx device node was opened in. If
there is a "pts" entry and that entry is a devpts filesystem /dev/ptmx
uses that filesystem. Otherwise the open of /dev/ptmx fails.
The DEVPTS_MULTIPLE_INSTANCES configuration option is removed, so that
userspace can now safely depend on each mount of devpts creating a new
instance of the filesystem.
Each mount of devpts is now a separate and equal filesystem.
Reserved ttys are now available to all instances of devpts where the
mounter is in the initial mount namespace.
A new vfs helper path_pts is introduced that finds a directory entry
named "pts" in the directory of the passed in path, and changes the
passed in path to point to it. The helper path_pts uses a function
path_parent_directory that was factored out of follow_dotdot.
In the implementation of devpts:
- devpts_mnt is killed as it is no longer meaningful if all mounts of
devpts are equal.
- pts_sb_from_inode is replaced by just inode->i_sb as all cached
inodes in the tty layer are now from the devpts filesystem.
- devpts_add_ref is rolled into the new function devpts_ptmx. And the
unnecessary inode hold is removed.
- devpts_del_ref is renamed devpts_release and reduced to just a
deacrivate_super.
- The newinstance mount option continues to be accepted but is now
ignored.
In devpts_fs.h definitions for when !CONFIG_UNIX98_PTYS are removed as
they are never used.
Documentation/filesystems/devices.txt is updated to describe the current
situation.
This has been verified to work properly on openwrt-15.05, centos5,
centos6, centos7, debian-6.0.2, debian-7.9, debian-8.2, ubuntu-14.04.3,
ubuntu-15.10, fedora23, magia-5, mint-17.3, opensuse-42.1,
slackware-14.1, gentoo-20151225 (13.0?), archlinux-2015-12-01. With the
caveat that on centos6 and on slackware-14.1 that there wind up being
two instances of the devpts filesystem mounted on /dev/pts, the lower
copy does not end up getting used.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg KH <greg@kroah.com>
Cc: Peter Hurley <peter@hurleysoftware.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Serge Hallyn <serge.hallyn@ubuntu.com>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: One Thousand Gnomes <gnomes@lxorguk.ukuu.org.uk>
Cc: Jann Horn <jann@thejh.net>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: Florian Weimer <fw@deneb.enyo.de>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Overlayfs needs lookup without inode_permission() and already has the name
hash (in form of dentry->d_name on overlayfs dentry). It also doesn't
support filesystems with d_op->d_hash() so basically it only needs
the actual hashed lookup from lookup_one_len_unlocked()
So add a new helper that does unlocked lookup of a hashed name.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
... and make mountpoint_last() use it. That makes all
candidates for lookup with parent locked shared go
through lookup_slow().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We need information about exports when crossing mountpoints during
lookup or NFSv4 readdir. If we don't already have that information
cached, we may have to ask (and wait for) rpc.mountd.
In both cases we currently hold the i_mutex on the parent of the
directory we're asking rpc.mountd about. We've seen situations where
rpc.mountd performs some operation on that directory that tries to take
the i_mutex again, resulting in deadlock.
With some care, we may be able to avoid that in rpc.mountd. But it
seems better just to avoid holding a mutex while waiting on userspace.
It appears that lookup_one_len is pretty much the only operation that
needs the i_mutex. So we could just drop the i_mutex elsewhere and do
something like
mutex_lock()
lookup_one_len()
mutex_unlock()
In many cases though the lookup would have been cached and not required
the i_mutex, so it's more efficient to create a lookup_one_len() variant
that only takes the i_mutex when necessary.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only restriction is that on the total amount of symlinks
crossed; how they are nested does not matter
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
a) instead of storing the symlink body (via nd_set_link()) and returning
an opaque pointer later passed to ->put_link(), ->follow_link() _stores_
that opaque pointer (into void * passed by address by caller) and returns
the symlink body. Returning ERR_PTR() on error, NULL on jump (procfs magic
symlinks) and pointer to symlink body for normal symlinks. Stored pointer
is ignored in all cases except the last one.
Storing NULL for opaque pointer (or not storing it at all) means no call
of ->put_link().
b) the body used to be passed to ->put_link() implicitly (via nameidata).
Now only the opaque pointer is. In the cases when we used the symlink body
to free stuff, ->follow_link() now should store it as opaque pointer in addition
to returning it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* RCU-delayed freeing of vfsmounts
* vfsmount_lock replaced with a seqlock (mount_lock)
* sequence number from mount_lock is stored in nameidata->m_seq and
used when we exit RCU mode
* new vfsmount flag - MNT_SYNC_UMOUNT. Set by umount_tree() when its
caller knows that vfsmount will have no surviving references.
* synchronize_rcu() done between unlocking namespace_sem in namespace_unlock()
and doing pending mntput().
* new helper: legitimize_mnt(mnt, seq). Checks the mount_lock sequence
number against seq, then grabs reference to mnt. Then it rechecks mount_lock
again to close the race and either returns success or drops the reference it
has acquired. The subtle point is that in case of MNT_SYNC_UMOUNT we can
simply decrement the refcount and sod off - aforementioned synchronize_rcu()
makes sure that final mntput() won't come until we leave RCU mode. We need
that, since we don't want to end up with some lazy pathwalk racing with
umount() and stealing the final mntput() from it - caller of umount() may
expect it to return only once the fs is shut down and we don't want to break
that. In other cases (i.e. with MNT_SYNC_UMOUNT absent) we have to do
full-blown mntput() in case of mount_lock sequence number mismatch happening
just as we'd grabbed the reference, but in those cases we won't be stealing
the final mntput() from anything that would care.
* mntput_no_expire() doesn't lock anything on the fast path now. Incidentally,
SMP and UP cases are handled the same way - no ifdefs there.
* normal pathname resolution does *not* do any writes to mount_lock. It does,
of course, bump the refcounts of vfsmount and dentry in the very end, but that's
it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Christopher reported a regression where he was unable to unmount a NFS
filesystem where the root had gone stale. The problem is that
d_revalidate handles the root of the filesystem differently from other
dentries, but d_weak_revalidate does not. We could simply fix this by
making d_weak_revalidate return success on IS_ROOT dentries, but there
are cases where we do want to revalidate the root of the fs.
A umount is really a special case. We generally aren't interested in
anything but the dentry and vfsmount that's attached at that point. If
the inode turns out to be stale we just don't care since the intent is
to stop using it anyway.
Try to handle this situation better by treating umount as a special
case in the lookup code. Have it resolve the parent using normal
means, and then do a lookup of the final dentry without revalidating
it. In most cases, the final lookup will come out of the dcache, but
the case where there's a trailing symlink or !LAST_NORM entry on the
end complicates things a bit.
Cc: Neil Brown <neilb@suse.de>
Reported-by: Christopher T Vogan <cvogan@us.ibm.com>
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This solves:
In file included from fs/ext3/symlink.c:20:0:
include/linux/namei.h: In function 'retry_estale':
include/linux/namei.h:114:19: error: 'ESTALE' undeclared (first use in this function)
Signed-off-by: Stephen Warren <swarren@wwwdotorg.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Where we can pass in LOOKUP_DIRECTORY or LOOKUP_REVAL. Any other flags
passed in here are currently ignored.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This function is expected to be called from path-based syscalls to help
them decide whether to try the lookup and call again in the event that
they got an -ESTALE return back on an earier try.
Currently, we only retry the call once on an ESTALE error, but in the
event that we decide that that's not enough in the future, we should be
able to change the logic in this helper without too much effort.
Signed-off-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a helper that abstracts out the jump to an already parsed struct path
from ->follow_link operation from procfs. Not only does this clean up
the code by moving the two sides of this game into a single helper, but
it also prepares for making struct nameidata private to namei.c
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all callers want the same thing, actually - a kinda-sorta analog of
kern_path_create(). I.e. they want parent vfsmount/dentry (with
->i_mutex held, to make sure the child dentry is still their child)
+ the child dentry.
Signed-off-by Al Viro <viro@zeniv.linux.org.uk>
All users of open intents have been converted to use ->atomic_{open,create}.
This patch gets rid of nd->intent.open and related infrastructure.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Since the commit below which added O_PATH support to the *at() calls, the
error return for readlink/readlinkat for the empty pathname has switched
from ENOENT to EINVAL:
commit 65cfc67223
Author: Al Viro <viro@zeniv.linux.org.uk>
Date: Sun Mar 13 15:56:26 2011 -0400
readlinkat(), fchownat() and fstatat() with empty relative pathnames
This is both unexpected for userspace and makes readlink/readlinkat
inconsistant with all other interfaces; and inconsistant with our stated
return for these pathnames.
As the readlinkat call does not have a flags parameter we cannot use the
AT_EMPTY_PATH approach used in the other calls. Therefore expose whether
the original path is infact entry via a new user_path_at_empty() path
lookup function. Use this to determine whether to default to EINVAL or
ENOENT for failures.
Addresses http://bugs.launchpad.net/bugs/817187
[akpm@linux-foundation.org: remove unused getname_flags()]
Signed-off-by: Andy Whitcroft <apw@canonical.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
That flag no longer makes sense, since we don't look up automount points
as eagerly any more. Additionally, it turns out that the NO_AUTOMOUNT
handling was buggy to begin with: it would avoid automounting even for
cases where we really *needed* to do the automount handling, and could
return ENOENT for autofs entries that hadn't been instantiated yet.
With our new non-eager automount semantics, one discussion has been
about adding a AT_AUTOMOUNT flag to vfs_fstatat (and thus the
newfstatat() and fstatat64() system calls), but it's probably not worth
it: you can always force at least directory automounting by simply
adding the final '/' to the filename, which works for *all* of the stat
family system calls, old and new.
So AT_NO_AUTOMOUNT (and thus LOOKUP_NO_AUTOMOUNT) really were just a
result of our bad default behavior.
Acked-by: Ian Kent <raven@themaw.net>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since we've now turned around and made LOOKUP_FOLLOW *not* force an
automount, we want to add the ability to force an automount event on
lookup even if we don't happen to have one of the other flags that force
it implicitly (LOOKUP_OPEN, LOOKUP_DIRECTORY, LOOKUP_PARENT..)
Most cases will never want to use this, since you'd normally want to
delay automounting as long as possible, which usually implies
LOOKUP_OPEN (when we open a file or directory, we really cannot avoid
the automount any more).
But Trond argued sufficiently forcefully that at a minimum bind mounting
a file and quotactl will want to force the automount lookup. Some other
cases (like nfs_follow_remote_path()) could use it too, although
LOOKUP_DIRECTORY would work there as well.
This commit just adds the flag and logic, no users yet, though. It also
doesn't actually touch the LOOKUP_NO_AUTOMOUNT flag that is related, and
was made irrelevant by the same change that made us not follow on
LOOKUP_FOLLOW.
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Ian Kent <raven@themaw.net>
Cc: Jeff Layton <jlayton@redhat.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Greg KH <gregkh@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
combination of kern_path_parent() and lookup_create(). Does *not*
expose struct nameidata to caller. Syscalls converted to that...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For name_to_handle_at(2) we'll want both ...at()-style syscall that
would be usable for non-directory descriptors (with empty relative
pathname). Introduce new flag (AT_EMPTY_PATH) to deal with that and
corresponding LOOKUP_EMPTY; teach user_path_at() and path_init() to
deal with the latter.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
New lookup flag: LOOKUP_ROOT. nd->root is set (and held) by caller,
path_init() starts walking from that place and all pathname resolution
machinery never drops nd->root if that flag is set. That turns
vfs_path_lookup() into a special case of do_path_lookup() *and*
gets us down to 3 callers of link_path_walk(), making it finally
feasible to rip the handling of trailing symlink out of link_path_walk().
That will not only simply the living hell out of it, but make life
much simpler for unionfs merge. Trailing symlink handling will
become iterative, which is a good thing for stack footprint in
a lot of situations as well.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Don't stash the struct file * used as starting point of walk in nameidata;
pass file ** to path_init() instead.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
instead of ad-hackery around need_reval_dot(), do the following:
set a flag (LOOKUP_JUMPED) in the beginning of path, on absolute
symlink traversal, on ".." and on procfs-style symlinks. Clear on
normal components, leave unchanged on ".". Non-nested callers of
link_path_walk() call handle_reval_path(), which checks that flag
is set and that fs does want the final revalidate thing, then does
->d_revalidate(). In link_path_walk() all the return_reval stuff
is gone.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
all remaining callers pass LOOKUP_PARENT to it, so
flags argument can die; renamed to kern_path_parent()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add an AT_NO_AUTOMOUNT flag to suppress terminal automounting of automount
point directories. This can be used by fstatat() users to permit the
gathering of attributes on an automount point and also prevent
mass-automounting of a directory of automount points by ls.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Ian Kent <raven@themaw.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add a dentry op (d_manage) to permit a filesystem to hold a process and make it
sleep when it tries to transit away from one of that filesystem's directories
during a pathwalk. The operation is keyed off a new dentry flag
(DCACHE_MANAGE_TRANSIT).
The filesystem is allowed to be selective about which processes it holds and
which it permits to continue on or prohibits from transiting from each flagged
directory. This will allow autofs to hold up client processes whilst letting
its userspace daemon through to maintain the directory or the stuff behind it
or mounted upon it.
The ->d_manage() dentry operation:
int (*d_manage)(struct path *path, bool mounting_here);
takes a pointer to the directory about to be transited away from and a flag
indicating whether the transit is undertaken by do_add_mount() or
do_move_mount() skipping through a pile of filesystems mounted on a mountpoint.
It should return 0 if successful and to let the process continue on its way;
-EISDIR to prohibit the caller from skipping to overmounted filesystems or
automounting, and to use this directory; or some other error code to return to
the user.
->d_manage() is called with namespace_sem writelocked if mounting_here is true
and no other locks held, so it may sleep. However, if mounting_here is true,
it may not initiate or wait for a mount or unmount upon the parameter
directory, even if the act is actually performed by userspace.
Within fs/namei.c, follow_managed() is extended to check with d_manage() first
on each managed directory, before transiting away from it or attempting to
automount upon it.
follow_down() is renamed follow_down_one() and should only be used where the
filesystem deliberately intends to avoid management steps (e.g. autofs).
A new follow_down() is added that incorporates the loop done by all other
callers of follow_down() (do_add/move_mount(), autofs and NFSD; whilst AFS, NFS
and CIFS do use it, their use is removed by converting them to use
d_automount()). The new follow_down() calls d_manage() as appropriate. It
also takes an extra parameter to indicate if it is being called from mount code
(with namespace_sem writelocked) which it passes to d_manage(). follow_down()
ignores automount points so that it can be used to mount on them.
__follow_mount_rcu() is made to abort rcu-walk mode if it hits a directory with
DCACHE_MANAGE_TRANSIT set on the basis that we're probably going to have to
sleep. It would be possible to enter d_manage() in rcu-walk mode too, and have
that determine whether to abort or not itself. That would allow the autofs
daemon to continue on in rcu-walk mode.
Note that DCACHE_MANAGE_TRANSIT on a directory should be cleared when it isn't
required as every tranist from that directory will cause d_manage() to be
invoked. It can always be set again when necessary.
==========================
WHAT THIS MEANS FOR AUTOFS
==========================
Autofs currently uses the lookup() inode op and the d_revalidate() dentry op to
trigger the automounting of indirect mounts, and both of these can be called
with i_mutex held.
autofs knows that the i_mutex will be held by the caller in lookup(), and so
can drop it before invoking the daemon - but this isn't so for d_revalidate(),
since the lock is only held on _some_ of the code paths that call it. This
means that autofs can't risk dropping i_mutex from its d_revalidate() function
before it calls the daemon.
The bug could manifest itself as, for example, a process that's trying to
validate an automount dentry that gets made to wait because that dentry is
expired and needs cleaning up:
mkdir S ffffffff8014e05a 0 32580 24956
Call Trace:
[<ffffffff885371fd>] :autofs4:autofs4_wait+0x674/0x897
[<ffffffff80127f7d>] avc_has_perm+0x46/0x58
[<ffffffff8009fdcf>] autoremove_wake_function+0x0/0x2e
[<ffffffff88537be6>] :autofs4:autofs4_expire_wait+0x41/0x6b
[<ffffffff88535cfc>] :autofs4:autofs4_revalidate+0x91/0x149
[<ffffffff80036d96>] __lookup_hash+0xa0/0x12f
[<ffffffff80057a2f>] lookup_create+0x46/0x80
[<ffffffff800e6e31>] sys_mkdirat+0x56/0xe4
versus the automount daemon which wants to remove that dentry, but can't
because the normal process is holding the i_mutex lock:
automount D ffffffff8014e05a 0 32581 1 32561
Call Trace:
[<ffffffff80063c3f>] __mutex_lock_slowpath+0x60/0x9b
[<ffffffff8000ccf1>] do_path_lookup+0x2ca/0x2f1
[<ffffffff80063c89>] .text.lock.mutex+0xf/0x14
[<ffffffff800e6d55>] do_rmdir+0x77/0xde
[<ffffffff8005d229>] tracesys+0x71/0xe0
[<ffffffff8005d28d>] tracesys+0xd5/0xe0
which means that the system is deadlocked.
This patch allows autofs to hold up normal processes whilst the daemon goes
ahead and does things to the dentry tree behind the automouter point without
risking a deadlock as almost no locks are held in d_manage() and none in
d_automount().
Signed-off-by: David Howells <dhowells@redhat.com>
Was-Acked-by: Ian Kent <raven@themaw.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Perform common cases of path lookups without any stores or locking in the
ancestor dentry elements. This is called rcu-walk, as opposed to the current
algorithm which is a refcount based walk, or ref-walk.
This results in far fewer atomic operations on every path element,
significantly improving path lookup performance. It also avoids cacheline
bouncing on common dentries, significantly improving scalability.
The overall design is like this:
* LOOKUP_RCU is set in nd->flags, which distinguishes rcu-walk from ref-walk.
* Take the RCU lock for the entire path walk, starting with the acquiring
of the starting path (eg. root/cwd/fd-path). So now dentry refcounts are
not required for dentry persistence.
* synchronize_rcu is called when unregistering a filesystem, so we can
access d_ops and i_ops during rcu-walk.
* Similarly take the vfsmount lock for the entire path walk. So now mnt
refcounts are not required for persistence. Also we are free to perform mount
lookups, and to assume dentry mount points and mount roots are stable up and
down the path.
* Have a per-dentry seqlock to protect the dentry name, parent, and inode,
so we can load this tuple atomically, and also check whether any of its
members have changed.
* Dentry lookups (based on parent, candidate string tuple) recheck the parent
sequence after the child is found in case anything changed in the parent
during the path walk.
* inode is also RCU protected so we can load d_inode and use the inode for
limited things.
* i_mode, i_uid, i_gid can be tested for exec permissions during path walk.
* i_op can be loaded.
When we reach the destination dentry, we lock it, recheck lookup sequence,
and increment its refcount and mountpoint refcount. RCU and vfsmount locks
are dropped. This is termed "dropping rcu-walk". If the dentry refcount does
not match, we can not drop rcu-walk gracefully at the current point in the
lokup, so instead return -ECHILD (for want of a better errno). This signals the
path walking code to re-do the entire lookup with a ref-walk.
Aside from the final dentry, there are other situations that may be encounted
where we cannot continue rcu-walk. In that case, we drop rcu-walk (ie. take
a reference on the last good dentry) and continue with a ref-walk. Again, if
we can drop rcu-walk gracefully, we return -ECHILD and do the whole lookup
using ref-walk. But it is very important that we can continue with ref-walk
for most cases, particularly to avoid the overhead of double lookups, and to
gain the scalability advantages on common path elements (like cwd and root).
The cases where rcu-walk cannot continue are:
* NULL dentry (ie. any uncached path element)
* parent with d_inode->i_op->permission or ACLs
* dentries with d_revalidate
* Following links
In future patches, permission checks and d_revalidate become rcu-walk aware. It
may be possible eventually to make following links rcu-walk aware.
Uncached path elements will always require dropping to ref-walk mode, at the
very least because i_mutex needs to be grabbed, and objects allocated.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Just set f_flags when shoving struct file into nameidata; don't
postpone that until __dentry_open(). do_filp_open() has correct
value; lookup_instantiate_filp() doesn't - we lose the difference
between O_RDWR and 3 by that point.
We still set .intent.open.flags, so no fs code needs to be changed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
By teaching sysfs_revalidate to hide a dentry for
a sysfs_dirent if the sysfs_dirent has been renamed,
and by teaching sysfs_lookup to return the original
dentry if the sysfs dirent has been renamed. I can
show the results of renames correctly without having to
update the dcache during the directory rename.
This massively simplifies the rename logic allowing a lot
of weird sysfs special cases to be removed along with
a lot of now unnecesary helper code.
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Eric W. Biederman <ebiederm@aristanetworks.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>