VM_FAULT_NOPAGE is expected behaviour for -EBUSY failure path, when
augmenting a page, as this means that the reclaimer thread has been
triggered, and the intention is just to round-trip in ring-3, and
retry with a new page fault.
Fixes: 5a90d2c3f5 ("x86/sgx: Support adding of pages to an initialized enclave")
Signed-off-by: Haitao Huang <haitao.huang@linux.intel.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220906000221.34286-3-jarkko@kernel.org
Unsanitized pages trigger WARN_ON() unconditionally, which can panic the
whole computer, if /proc/sys/kernel/panic_on_warn is set.
In sgx_init(), if misc_register() fails or misc_register() succeeds but
neither sgx_drv_init() nor sgx_vepc_init() succeeds, then ksgxd will be
prematurely stopped. This may leave unsanitized pages, which will result a
false warning.
Refine __sgx_sanitize_pages() to return:
1. Zero when the sanitization process is complete or ksgxd has been
requested to stop.
2. The number of unsanitized pages otherwise.
Fixes: 51ab30eb2a ("x86/sgx: Replace section->init_laundry_list with sgx_dirty_page_list")
Reported-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/linux-sgx/20220825051827.246698-1-jarkko@kernel.org/T/#u
Link: https://lkml.kernel.org/r/20220906000221.34286-2-jarkko@kernel.org
Older Intel CPUs that are not in the affected processor list for MMIO
Stale Data vulnerabilities currently report "Not affected" in sysfs,
which may not be correct. Vulnerability status for these older CPUs is
unknown.
Add known-not-affected CPUs to the whitelist. Report "unknown"
mitigation status for CPUs that are not in blacklist, whitelist and also
don't enumerate MSR ARCH_CAPABILITIES bits that reflect hardware
immunity to MMIO Stale Data vulnerabilities.
Mitigation is not deployed when the status is unknown.
[ bp: Massage, fixup. ]
Fixes: 8d50cdf8b8 ("x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/a932c154772f2121794a5f2eded1a11013114711.1657846269.git.pawan.kumar.gupta@linux.intel.com
(not turned on by default), which also need STIBP enabled (if
available) to be '100% safe' on even the shortest speculation
windows.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmL3fqcRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gnuw/6AighFp+Gp4qXP1DIVU+acVnZsxbdt7GA
WGs/JJfKYsKpWvDGFxnwtF2V1Imq8XVRPVPyFKvLQiBs2h8vNcVkgIvJsdeTFsqQ
uUwUaYgDXuhLYaFpnMGouoeA3iw2zf/CY5ZJX79Nl/CwNwT7FxiLbu+JF/I2Yc0V
yddiQ8xgT0VJhaBcUTsD2qFl8wjpxer7gNBFR4ujiYWXHag3qKyZuaySmqCz4xhd
4nyhJCp34548MsTVXDys2gnYpgLWweB9zOPvH4+GgtiFF3UJxRMhkB9NzfZq1l5W
tCjgGupb3vVoXOVb/xnXyZlPbdFNqSAja7iOXYdmNUSURd7LC0PYHpVxN0rkbFcd
V6noyU3JCCp86ceGTC0u3Iu6LLER6RBGB0gatVlzomWLjTEiC806eo23CVE22cnk
poy7FO3RWa+q1AqWsEzc3wr14ZgSKCBZwwpn6ispT/kjx9fhAFyKtH2/Sznx26GH
yKOF7pPCIXjCpcMnNoUu8cVyzfk0g3kOWQtKjaL9WfeyMtBaHhctngR0s1eCxZNJ
rBlTs+YO7fO42unZEExgvYekBzI70aThIkvxahKEWW48owWph+i/sn5gzdVF+ynR
R4PGeylfd8ZXr21cG2rG9250JLwqzhsxnAGvNjYg1p/hdyrzLTGWHIc9r9BU9000
mmOP9uY6Cjc=
=Ac6x
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-08-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fix from Ingo Molnar:
"Fix the 'IBPB mitigated RETBleed' mode of operation on AMD CPUs (not
turned on by default), which also need STIBP enabled (if available) to
be '100% safe' on even the shortest speculation windows"
* tag 'x86-urgent-2022-08-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/bugs: Enable STIBP for IBPB mitigated RETBleed
Intel eIBRS machines do not sufficiently mitigate against RET
mispredictions when doing a VM Exit therefore an additional RSB,
one-entry stuffing is needed.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLqsGsACgkQEsHwGGHe
VUpXGg//ZEkxhf3Ri7X9PknAWNG6eIEqigKqWcdnOw+Oq/GMVb6q7JQsqowK7KBZ
AKcY5c/KkljTJNohditnfSOePyCG5nDTPgfkjzIawnaVdyJWMRCz/L4X2cv6ykDl
2l2EvQm4Ro8XAogYhE7GzDg/osaVfx93OkLCQj278VrEMWgM/dN2RZLpn+qiIkNt
DyFlQ7cr5UASh/svtKLko268oT4JwhQSbDHVFLMJ52VaLXX36yx4rValZHUKFdox
ZDyj+kiszFHYGsI94KAD0dYx76p6mHnwRc4y/HkVcO8vTacQ2b9yFYBGTiQatITf
0Nk1RIm9m3rzoJ82r/U0xSIDwbIhZlOVNm2QtCPkXqJZZFhopYsZUnq2TXhSWk4x
GQg/2dDY6gb/5MSdyLJmvrTUtzResVyb/hYL6SevOsIRnkwe35P6vDDyp15F3TYK
YvidZSfEyjtdLISBknqYRQD964dgNZu9ewrj+WuJNJr+A2fUvBzUebXjxHREsugN
jWp5GyuagEKTtneVCvjwnii+ptCm6yfzgZYLbHmmV+zhinyE9H1xiwVDvo5T7DDS
ZJCBgoioqMhp5qR59pkWz/S5SNGui2rzEHbAh4grANy8R/X5ASRv7UHT9uAo6ve1
xpw6qnE37CLzuLhj8IOdrnzWwLiq7qZ/lYN7m+mCMVlwRWobbOo=
=a8em
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 eIBRS fixes from Borislav Petkov:
"More from the CPU vulnerability nightmares front:
Intel eIBRS machines do not sufficiently mitigate against RET
mispredictions when doing a VM Exit therefore an additional RSB,
one-entry stuffing is needed"
* tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add LFENCE to RSB fill sequence
x86/speculation: Add RSB VM Exit protections
AMD's "Technical Guidance for Mitigating Branch Type Confusion,
Rev. 1.0 2022-07-12" whitepaper, under section 6.1.2 "IBPB On
Privileged Mode Entry / SMT Safety" says:
Similar to the Jmp2Ret mitigation, if the code on the sibling thread
cannot be trusted, software should set STIBP to 1 or disable SMT to
ensure SMT safety when using this mitigation.
So, like already being done for retbleed=unret, and now also for
retbleed=ibpb, force STIBP on machines that have it, and report its SMT
vulnerability status accordingly.
[ bp: Remove the "we" and remove "[AMD]" applicability parameter which
doesn't work here. ]
Fixes: 3ebc170068 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: stable@vger.kernel.org # 5.10, 5.15, 5.19
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Link: https://lore.kernel.org/r/20220804192201.439596-1-kim.phillips@amd.com
fatfs, autofs, squashfs, procfs, etc.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYu9BeQAKCRDdBJ7gKXxA
jp1DAP4mjCSvAwYzXklrIt+Knv3CEY5oVVdS+pWOAOGiJpldTAD9E5/0NV+VmlD9
kwS/13j38guulSlXRzDLmitbg81zAAI=
=Zfum
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2022-08-06-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc updates from Andrew Morton:
"Updates to various subsystems which I help look after. lib, ocfs2,
fatfs, autofs, squashfs, procfs, etc. A relatively small amount of
material this time"
* tag 'mm-nonmm-stable-2022-08-06-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (72 commits)
scripts/gdb: ensure the absolute path is generated on initial source
MAINTAINERS: kunit: add David Gow as a maintainer of KUnit
mailmap: add linux.dev alias for Brendan Higgins
mailmap: update Kirill's email
profile: setup_profiling_timer() is moslty not implemented
ocfs2: fix a typo in a comment
ocfs2: use the bitmap API to simplify code
ocfs2: remove some useless functions
lib/mpi: fix typo 'the the' in comment
proc: add some (hopefully) insightful comments
bdi: remove enum wb_congested_state
kernel/hung_task: fix address space of proc_dohung_task_timeout_secs
lib/lzo/lzo1x_compress.c: replace ternary operator with min() and min_t()
squashfs: support reading fragments in readahead call
squashfs: implement readahead
squashfs: always build "file direct" version of page actor
Revert "squashfs: provide backing_dev_info in order to disable read-ahead"
fs/ocfs2: Fix spelling typo in comment
ia64: old_rr4 added under CONFIG_HUGETLB_PAGE
proc: fix test for "vsyscall=xonly" boot option
...
- an old(er) binutils build fix,
- a new-GCC build fix,
- and a kexec boot environment fix.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmLuv4URHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1it3A//fGfrzHGtjHraiBy0H1Erlz0dUa4q/r6v
xPQVFYteGwL/Ynv2rOJreiEXNhv9pRv0cXXNS5iWh8IcP8IUNw6rfYmgr1aDpXdq
WkbJvwouX6JSo3g/CMekKd+Mf7NgA4O1OO65E80c4WJnxgd0AYvr6IxJRLR7X0C7
HwU6p6PmP/RHWT5T170z6sgun+6QdDEYSwFYOhxawL+BJaKEBYnQ0LLQgJazhe7z
uVxONQA9OdWBwMzvZygbOuTzc990jCHRPYgvYQhSZ8CUPuVzaa7IB9KUXh6lu93d
a7nqM3GlWTowBULY6Xq7gWJaJ7jsVWXjqo8SWVlb6YwoLR9dgGSW5bCGV0rOA6o3
yPjQhIQ9H4NOx126wPcCRBh3osGFjqlWUXVw7W51aNgd7hCvlbpWWmREeI/Pm1Ew
WBjQqpf4l0S+0On5FEFaF7swAG3b6KSNSKw7WBmpmTNt5eWOot0EtnjGW75ATpxM
+j2fj/1MIZ/Zp+wYaNK/+abM4sXHhYvU9gpPdJslRr+r2AVjy9gCZ/0zuUIVytwC
gOdV9KhqzlXPJCTm+py7fBt2qM2P5rKT2HBQYiJwIquB2njI0kjUBOJWXsGQ/F/y
hGd6WY8uDuwzzg5JtyfwE6fPGovxL5GCc4w9CYz0DbP0txPYuhMOdkHtAYLyraAj
wtdalMt3cT8=
=EM/G
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Ingo Molnar:
- build fix for old(er) binutils
- build fix for new GCC
- kexec boot environment fix
* tag 'x86-urgent-2022-08-06' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry: Build thunk_$(BITS) only if CONFIG_PREEMPTION=y
x86/numa: Use cpumask_available instead of hardcoded NULL check
x86/bus_lock: Don't assume the init value of DEBUGCTLMSR.BUS_LOCK_DETECT to be zero
dynamic. For instance, enclaves can now change enclave page
permissions on the fly.
- Removal of an unused structure member
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmLq2M8ACgkQaDWVMHDJ
krCbAw/+J4nHXxZNMQQX1c8CYJ7XHIr+YtsqNFYwH58rJJstHO/YwQf+mesVOeeu
08BYn+T5cdAbShKcxdkowPB17S6w/WzACtUfVhaoRQC7Md40cBiyc45UiC2e1u9g
W3Osk5+fTVcSYA9WiizPntIQkjVs9e7hcNKjTyVPnSw8W8mFCLg+ZiPb7YvKERTO
o8Wi2+zzX1BGDNOyBEqvnstz9uXDbCbFUTYX6zToBUk+Y1ZPXHwuHgNTtrAqGYaL
qyi0O2zoWnfOUmplzjJ/1aPmzPJDPgDNImC+gjTpYXGmg05Ryds+VZAc64IIjqYn
K+/5674PZFdsp5/YfctubdsQm0l0xen94sccAacd7KfsVurcHs3E2bdQPDw0htxv
svCX0Sai/qv52tPNzw+n9EJRcQsiwd9Pn0rWwx2i8hQcgMFiwCus6DBKhU7uh2Jp
oTwlspqJy2NHu9bici78tmsOio9CORjrh1WOfWX+yHEux4dtQAl889Gw5qzId6V1
Bh1MgoAu/pQ78feo96f3h5yOultOtpbTGyXEC8t4MTSpIVgZ2NzfUxe4RhOCBnhA
kdftVNfZLGOzwBbgFy0gYTe/ukt1DkP4BNHQilf2I+bUP/kZFlN8wfxBipWzr0bs
Skrz4+brBIaTdGoFgzhgt3g5YH16DSasmy/HCkIeV7eaAHFRLoE=
=Y7YA
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v6.0-2022-08-03.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGX updates from Dave Hansen:
"A set of x86/sgx changes focused on implementing the "SGX2" features,
plus a minor cleanup:
- SGX2 ISA support which makes enclave memory management much more
dynamic. For instance, enclaves can now change enclave page
permissions on the fly.
- Removal of an unused structure member"
* tag 'x86_sgx_for_v6.0-2022-08-03.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
x86/sgx: Drop 'page_index' from sgx_backing
selftests/sgx: Page removal stress test
selftests/sgx: Test reclaiming of untouched page
selftests/sgx: Test invalid access to removed enclave page
selftests/sgx: Test faulty enclave behavior
selftests/sgx: Test complete changing of page type flow
selftests/sgx: Introduce TCS initialization enclave operation
selftests/sgx: Introduce dynamic entry point
selftests/sgx: Test two different SGX2 EAUG flows
selftests/sgx: Add test for TCS page permission changes
selftests/sgx: Add test for EPCM permission changes
Documentation/x86: Introduce enclave runtime management section
x86/sgx: Free up EPC pages directly to support large page ranges
x86/sgx: Support complete page removal
x86/sgx: Support modifying SGX page type
x86/sgx: Tighten accessible memory range after enclave initialization
x86/sgx: Support adding of pages to an initialized enclave
x86/sgx: Support restricting of enclave page permissions
x86/sgx: Support VA page allocation without reclaiming
x86/sgx: Export sgx_encl_page_alloc()
...
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmLr+2wUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vxfZg//eChkC2EUdT6K3zuQDbJJhsGcuOQF
lnZuUyDn4xw7BkEoZf8V6YdAnp7VvgKhLOq1/q3Geu/LBbCaczoEogOCaR/WcVOs
C+MsN0RWZQtgfuZKncQoqp25NeLPK9PFToeiIX/xViAYZF7NVjDY7XQiZHQ6JkEA
/7cUqv/4nS3KCMsKjfmiOxGnqohMWtICiw9qjFvJ40PEDnNB1b53rkiVTxBFePpI
ePfsRfi/C7klE3xNfoiEgrPp+Jfw+oShsCwXUsId7bEL2oLBc7ClqP05ZYZD3bTK
QQYyZ12Cq8TysciYpUGBjBnywUHS5DIO5YaV3wxyVAR2Z+6GY2/QVjOa2kKvoK0o
Hba6TJf8bL58AhSI8Q62pBM0sS7dqJSff+9c2BGpZvII5spP/rQQLlJO56TJjwkw
Dlf0d3thhZOc9vSKjKw+0v0FdAyc4L11EOwUsw95jZeT5WWgqJYGFnWPZwqBI1KM
DI1E5wVO5tA2H3NEn+BTTHbLWL+UppqyXPXBHiW52b2q5Bt8fJWMsFvnEEjclxmG
pYCI7VgF8jqbYKxjobxPFY2x6PH9hfaGMxwzZSdOX6e/Eh+1esgyyaC5APpCO+Pp
e4OkJaOzCmggrD0jYeLWu+yDm5KRrYo5cdfKHrKgAof0Am41lAa1OhJ2iH4ckNqP
1qmHereDOe0zNVw=
=9TAR
-----END PGP SIGNATURE-----
Merge tag 'pci-v5.20-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci updates from Bjorn Helgaas:
"Enumeration:
- Consolidate duplicated 'next function' scanning and extend to allow
'isolated functions' on s390, similar to existing hypervisors
(Niklas Schnelle)
Resource management:
- Implement pci_iobar_pfn() for sparc, which allows us to remove the
sparc-specific pci_mmap_page_range() and pci_mmap_resource_range().
This removes the ability to map the entire PCI I/O space using
/proc/bus/pci, but we believe that's already been broken since
v2.6.28 (Arnd Bergmann)
- Move common PCI definitions to asm-generic/pci.h and rework others
to be be more specific and more encapsulated in arches that need
them (Stafford Horne)
Power management:
- Convert drivers to new *_PM_OPS macros to avoid need for '#ifdef
CONFIG_PM_SLEEP' or '__maybe_unused' (Bjorn Helgaas)
Virtualization:
- Add ACS quirk for Broadcom BCM5750x multifunction NICs that isolate
the functions but don't advertise an ACS capability (Pavan Chebbi)
Error handling:
- Clear PCI Status register during enumeration in case firmware left
errors logged (Kai-Heng Feng)
- When we have native control of AER, enable error reporting for all
devices that support AER. Previously only a few drivers enabled
this (Stefan Roese)
- Keep AER error reporting enabled for switches. Previously we
enabled this during enumeration but immediately disabled it (Stefan
Roese)
- Iterate over error counters instead of error strings to avoid
printing junk in AER sysfs counters (Mohamed Khalfella)
ASPM:
- Remove pcie_aspm_pm_state_change() so ASPM config changes, e.g.,
via sysfs, are not lost across power state changes (Kai-Heng Feng)
Endpoint framework:
- Don't stop an EPC when unbinding an EPF from it (Shunsuke Mie)
Endpoint embedded DMA controller driver:
- Simplify and clean up support for the DesignWare embedded DMA
(eDMA) controller (Frank Li, Serge Semin)
Broadcom STB PCIe controller driver:
- Avoid config space accesses when link is down because we can't
recover from the CPU aborts these cause (Jim Quinlan)
- Look for power regulators described under Root Ports in DT and
enable them before scanning the secondary bus (Jim Quinlan)
- Disable/enable regulators in suspend/resume (Jim Quinlan)
Freescale i.MX6 PCIe controller driver:
- Simplify and clean up clock and PHY management (Richard Zhu)
- Disable/enable regulators in suspend/resume (Richard Zhu)
- Set PCIE_DBI_RO_WR_EN before writing DBI registers (Richard Zhu)
- Allow speeds faster than Gen2 (Richard Zhu)
- Make link being down a non-fatal error so controller probe doesn't
fail if there are no Endpoints connected (Richard Zhu)
Loongson PCIe controller driver:
- Add ACPI and MCFG support for Loongson LS7A (Huacai Chen)
- Avoid config reads to non-existent LS2K/LS7A devices because a
hardware defect causes machine hangs (Huacai Chen)
- Work around LS7A integrated devices that report incorrect Interrupt
Pin values (Jianmin Lv)
Marvell Aardvark PCIe controller driver:
- Add support for AER and Slot capability on emulated bridge (Pali
Rohár)
MediaTek PCIe controller driver:
- Add Airoha EN7532 to DT binding (John Crispin)
- Allow building of driver for ARCH_AIROHA (Felix Fietkau)
MediaTek PCIe Gen3 controller driver:
- Print decoded LTSSM state when the link doesn't come up (Jianjun
Wang)
NVIDIA Tegra194 PCIe controller driver:
- Convert DT binding to json-schema (Vidya Sagar)
- Add DT bindings and driver support for Tegra234 Root Port and
Endpoint mode (Vidya Sagar)
- Fix some Root Port interrupt handling issues (Vidya Sagar)
- Set default Max Payload Size to 256 bytes (Vidya Sagar)
- Fix Data Link Feature capability programming (Vidya Sagar)
- Extend Endpoint mode support to devices beyond Controller-5 (Vidya
Sagar)
Qualcomm PCIe controller driver:
- Rework clock, reset, PHY power-on ordering to avoid hangs and
improve consistency (Robert Marko, Christian Marangi)
- Move pipe_clk handling to PHY drivers (Dmitry Baryshkov)
- Add IPQ60xx support (Selvam Sathappan Periakaruppan)
- Allow ASPM L1 and substates for 2.7.0 (Krishna chaitanya chundru)
- Add support for more than 32 MSI interrupts (Dmitry Baryshkov)
Renesas R-Car PCIe controller driver:
- Convert DT binding to json-schema (Herve Codina)
- Add Renesas RZ/N1D (R9A06G032) to rcar-gen2 DT binding and driver
(Herve Codina)
Samsung Exynos PCIe controller driver:
- Fix phy-exynos-pcie driver so it follows the 'phy_init() before
phy_power_on()' PHY programming model (Marek Szyprowski)
Synopsys DesignWare PCIe controller driver:
- Simplify and clean up the DWC core extensively (Serge Semin)
- Fix an issue with programming the ATU for regions that cross a 4GB
boundary (Serge Semin)
- Enable the CDM check if 'snps,enable-cdm-check' exists; previously
we skipped it if 'num-lanes' was absent (Serge Semin)
- Allocate a 32-bit DMA-able page to be MSI target instead of using a
driver data structure that may not be addressable with 32-bit
address (Will McVicker)
- Add DWC core support for more than 32 MSI interrupts (Dmitry
Baryshkov)
Xilinx Versal CPM PCIe controller driver:
- Add DT binding and driver support for Versal CPM5 Gen5 Root Port
(Bharat Kumar Gogada)"
* tag 'pci-v5.20-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (150 commits)
PCI: imx6: Support more than Gen2 speed link mode
PCI: imx6: Set PCIE_DBI_RO_WR_EN before writing DBI registers
PCI: imx6: Reformat suspend callback to keep symmetric with resume
PCI: imx6: Move the imx6_pcie_ltssm_disable() earlier
PCI: imx6: Disable clocks in reverse order of enable
PCI: imx6: Do not hide PHY driver callbacks and refine the error handling
PCI: imx6: Reduce resume time by only starting link if it was up before suspend
PCI: imx6: Mark the link down as non-fatal error
PCI: imx6: Move regulator enable out of imx6_pcie_deassert_core_reset()
PCI: imx6: Turn off regulator when system is in suspend mode
PCI: imx6: Call host init function directly in resume
PCI: imx6: Disable i.MX6QDL clock when disabling ref clocks
PCI: imx6: Propagate .host_init() errors to caller
PCI: imx6: Collect clock enables in imx6_pcie_clk_enable()
PCI: imx6: Factor out ref clock disable to match enable
PCI: imx6: Move imx6_pcie_clk_disable() earlier
PCI: imx6: Move imx6_pcie_enable_ref_clk() earlier
PCI: imx6: Move PHY management functions together
PCI: imx6: Move imx6_pcie_grp_offset(), imx6_pcie_configure_type() earlier
PCI: imx6: Convert to NOIRQ_SYSTEM_SLEEP_PM_OPS()
...
* Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
* Rework of the sysreg access from userspace, with a complete
rewrite of the vgic-v3 view to allign with the rest of the
infrastructure
* Disagregation of the vcpu flags in separate sets to better track
their use model.
* A fix for the GICv2-on-v3 selftest
* A small set of cosmetic fixes
RISC-V:
* Track ISA extensions used by Guest using bitmap
* Added system instruction emulation framework
* Added CSR emulation framework
* Added gfp_custom flag in struct kvm_mmu_memory_cache
* Added G-stage ioremap() and iounmap() functions
* Added support for Svpbmt inside Guest
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
x86:
* Permit guests to ignore single-bit ECC errors
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Use try_cmpxchg64 instead of cmpxchg64
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* Allow NX huge page mitigation to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
* Miscellaneous cleanups:
** MCE MSR emulation
** Use separate namespaces for guest PTEs and shadow PTEs bitmasks
** PIO emulation
** Reorganize rmap API, mostly around rmap destruction
** Do not workaround very old KVM bugs for L0 that runs with nesting enabled
** new selftests API for CPUID
Generic:
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmLnyo4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMtQQf/XjVWiRcWLPR9dqzRM/vvRXpiG+UL
jU93R7m6ma99aqTtrxV/AE+kHgamBlma3Cwo+AcWk9uCVNbIhFjv2YKg6HptKU0e
oJT3zRYp+XIjEo7Kfw+TwroZbTlG6gN83l1oBLFMqiFmHsMLnXSI2mm8MXyi3dNB
vR2uIcTAl58KIprqNNsYJ2dNn74ogOMiXYx9XzoA9/5Xb6c0h4rreHJa5t+0s9RO
Gz7Io3PxumgsbJngjyL1Ve5oxhlIAcZA8DU0PQmjxo3eS+k6BcmavGFd45gNL5zg
iLpCh4k86spmzh8CWkAAwWPQE4dZknK6jTctJc0OFVad3Z7+X7n0E8TFrA==
=PM8o
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Quite a large pull request due to a selftest API overhaul and some
patches that had come in too late for 5.19.
ARM:
- Unwinder implementations for both nVHE modes (classic and
protected), complete with an overflow stack
- Rework of the sysreg access from userspace, with a complete rewrite
of the vgic-v3 view to allign with the rest of the infrastructure
- Disagregation of the vcpu flags in separate sets to better track
their use model.
- A fix for the GICv2-on-v3 selftest
- A small set of cosmetic fixes
RISC-V:
- Track ISA extensions used by Guest using bitmap
- Added system instruction emulation framework
- Added CSR emulation framework
- Added gfp_custom flag in struct kvm_mmu_memory_cache
- Added G-stage ioremap() and iounmap() functions
- Added support for Svpbmt inside Guest
s390:
- add an interface to provide a hypervisor dump for secure guests
- improve selftests to use TAP interface
- enable interpretive execution of zPCI instructions (for PCI
passthrough)
- First part of deferred teardown
- CPU Topology
- PV attestation
- Minor fixes
x86:
- Permit guests to ignore single-bit ECC errors
- Intel IPI virtualization
- Allow getting/setting pending triple fault with
KVM_GET/SET_VCPU_EVENTS
- PEBS virtualization
- Simplify PMU emulation by just using PERF_TYPE_RAW events
- More accurate event reinjection on SVM (avoid retrying
instructions)
- Allow getting/setting the state of the speaker port data bit
- Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls
are inconsistent
- "Notify" VM exit (detect microarchitectural hangs) for Intel
- Use try_cmpxchg64 instead of cmpxchg64
- Ignore benign host accesses to PMU MSRs when PMU is disabled
- Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
- Allow NX huge page mitigation to be disabled on a per-vm basis
- Port eager page splitting to shadow MMU as well
- Enable CMCI capability by default and handle injected UCNA errors
- Expose pid of vcpu threads in debugfs
- x2AVIC support for AMD
- cleanup PIO emulation
- Fixes for LLDT/LTR emulation
- Don't require refcounted "struct page" to create huge SPTEs
- Miscellaneous cleanups:
- MCE MSR emulation
- Use separate namespaces for guest PTEs and shadow PTEs bitmasks
- PIO emulation
- Reorganize rmap API, mostly around rmap destruction
- Do not workaround very old KVM bugs for L0 that runs with nesting enabled
- new selftests API for CPUID
Generic:
- Fix races in gfn->pfn cache refresh; do not pin pages tracked by
the cache
- new selftests API using struct kvm_vcpu instead of a (vm, id)
tuple"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (606 commits)
selftests: kvm: set rax before vmcall
selftests: KVM: Add exponent check for boolean stats
selftests: KVM: Provide descriptive assertions in kvm_binary_stats_test
selftests: KVM: Check stat name before other fields
KVM: x86/mmu: remove unused variable
RISC-V: KVM: Add support for Svpbmt inside Guest/VM
RISC-V: KVM: Use PAGE_KERNEL_IO in kvm_riscv_gstage_ioremap()
RISC-V: KVM: Add G-stage ioremap() and iounmap() functions
KVM: Add gfp_custom flag in struct kvm_mmu_memory_cache
RISC-V: KVM: Add extensible CSR emulation framework
RISC-V: KVM: Add extensible system instruction emulation framework
RISC-V: KVM: Factor-out instruction emulation into separate sources
RISC-V: KVM: move preempt_disable() call in kvm_arch_vcpu_ioctl_run
RISC-V: KVM: Make kvm_riscv_guest_timer_init a void function
RISC-V: KVM: Fix variable spelling mistake
RISC-V: KVM: Improve ISA extension by using a bitmap
KVM, x86/mmu: Fix the comment around kvm_tdp_mmu_zap_leafs()
KVM: SVM: Dump Virtual Machine Save Area (VMSA) to klog
KVM: x86/mmu: Treat NX as a valid SPTE bit for NPT
KVM: x86: Do not block APIC write for non ICR registers
...
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmLnDOwACgkQSfxwEqXe
A65Fiw//Z0YaPejSslQIGitQ1b0XzdWBhyJArYDieaaiQRXMqlaSKlIUqHz38xb7
+FykUY51/SJLjHV2riPxq1OK3/MPmk6VlTd0HHihcHVmg77oZcFcv2tPnDpZoqND
TsBOujLbXKwxP8tNFedRY/4+K7w+ue9BTfDjuH7aCtz7uWd+4cNJmPg3x9FCfkMA
+hbcRluwE9W3Pg4OCKwv+qxL0JF3qQtNKEOp1wpnjGAZZW/I9gFNgFBEkykvcAsj
TkIRDc3agPFj6QgDeRIgLdnf9KCsLubKAg5oJneeCvQztJJUCSkn8nQXxpx+4sLo
GsRgvCdfL/GyJqfSAzQJVYDHKtKMkJiCiWCC/oOALR8dzHJfSlULDAjbY1m/DAr9
at+vi4678Or7TNx2ZSaUlCXXKZ+UT7yWMlQWax9JuxGk1hGYP5/eT1AH5SGjqUwF
w1q8oyzxt1vUcnOzEddFXPFirnqqhAk4dQFtu83+xKM4ZssMVyeB4NZdEhAdW0ng
MX+RjrVj4l5gWWuoS0Cx3LUxDCgV6WT0dN+Vl9axAZkoJJbcXLEmXwQ6NbzTLPWg
1/MT7qFTxNcTCeAArMdZvvFbeh7pOBXO42pafrK/7vDRnTMUIw9tqXNLQUfvdFQp
F5flPgiVRHDU2vSzKIFtnPTyXU0RBBGvNb4n0ss2ehH2DSsCxYE=
=Zy3d
-----END PGP SIGNATURE-----
Merge tag 'random-6.0-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
"Though there's been a decent amount of RNG-related development during
this last cycle, not all of it is coming through this tree, as this
cycle saw a shift toward tackling early boot time seeding issues,
which took place in other trees as well.
Here's a summary of the various patches:
- The CONFIG_ARCH_RANDOM .config option and the "nordrand" boot
option have been removed, as they overlapped with the more widely
supported and more sensible options, CONFIG_RANDOM_TRUST_CPU and
"random.trust_cpu". This change allowed simplifying a bit of arch
code.
- x86's RDRAND boot time test has been made a bit more robust, with
RDRAND disabled if it's clearly producing bogus results. This would
be a tip.git commit, technically, but I took it through random.git
to avoid a large merge conflict.
- The RNG has long since mixed in a timestamp very early in boot, on
the premise that a computer that does the same things, but does so
starting at different points in wall time, could be made to still
produce a different RNG state. Unfortunately, the clock isn't set
early in boot on all systems, so now we mix in that timestamp when
the time is actually set.
- User Mode Linux now uses the host OS's getrandom() syscall to
generate a bootloader RNG seed and later on treats getrandom() as
the platform's RDRAND-like faculty.
- The arch_get_random_{seed_,}_long() family of functions is now
arch_get_random_{seed_,}_longs(), which enables certain platforms,
such as s390, to exploit considerable performance advantages from
requesting multiple CPU random numbers at once, while at the same
time compiling down to the same code as before on platforms like
x86.
- A small cleanup changing a cmpxchg() into a try_cmpxchg(), from
Uros.
- A comment spelling fix"
More info about other random number changes that come in through various
architecture trees in the full commentary in the pull request:
https://lore.kernel.org/all/20220731232428.2219258-1-Jason@zx2c4.com/
* tag 'random-6.0-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random:
random: correct spelling of "overwrites"
random: handle archrandom with multiple longs
um: seed rng using host OS rng
random: use try_cmpxchg in _credit_init_bits
timekeeping: contribute wall clock to rng on time change
x86/rdrand: Remove "nordrand" flag in favor of "random.trust_cpu"
random: remove CONFIG_ARCH_RANDOM
It's possible that this kernel has been kexec'd from a kernel that
enabled bus lock detection, or (hypothetically) BIOS/firmware has set
DEBUGCTLMSR_BUS_LOCK_DETECT.
Disable bus lock detection explicitly if not wanted.
Fixes: ebb1064e7c ("x86/traps: Handle #DB for bus lock")
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20220802033206.21333-1-chenyi.qiang@intel.com
- Respect idle=nomwait when supplied on the kernel cmdline
- Two small cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLntx0ACgkQEsHwGGHe
VUqlRxAAkULobsk6Dx3wrQcYlpA8Mt/ctttTQXWiIQwhK1j7uP0zlGWBqImr5Wsk
T04g1s29azulnPs3PydCF2QlLqSyF4v2PyyUwnpKfTP6CPM+MLtz98Gm6Xcbkt+s
f28ISYgNP+15tskWdNqB5XIVGkuyBdNne9TiFwtnVrJYF47FSwqEWRyqMH+bIOGT
wSZUCfjcw7PtKwfIAmYq4beS2+wbY9bsfVyIz+H0ks2EVFQdjYWb/kH9PgUYEQFe
VEOBsPvTHDOJt0QXEXSJjmoSRUS77Wduw56Y3L2T4jWdXXQFWJ79rqNYDBvXGAdh
Y8BKM5IYFZpzrmfw2RB6jbDY/JWO5PPFvHTXogQf9+wttSerZEffVQdOeTwjT8VD
wc9/ZnNkT7915033VI90V+hdFkwarq8FXuFH8TkzcxP9DQNYG8CRTZBceq0UWBl0
5RpIDwNX9JxGrR+frJi0D24qxz//wLe56UqW9hLp73NP8QtEYEW1nb1q30Q2eM3N
iQblgmh63qQ/dy6JV1GFb3aePiWMUNQwcTrj1pd8YDfNlp4IsFsSswnsdAZWtr1A
l9qewHkBZbbzyTQkBjExUsaIdiaMywFwnUmcQNL+fHqznZIvMhJC/oCJeS0Pe/RH
alTUrYsk6Y87HFpxoXpd85a9+20m8yrA64uY8cSQguGZ9i5Lm8g=
=jkpj
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Remove the vendor check when selecting MWAIT as the default idle
state
- Respect idle=nomwait when supplied on the kernel cmdline
- Two small cleanups
* tag 'x86_cpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Use MSR_IA32_MISC_ENABLE constants
x86: Fix comment for X86_FEATURE_ZEN
x86: Remove vendor checks from prefer_mwait_c1_over_halt
x86: Handle idle=nomwait cmdline properly for x86_idle
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLnjdMACgkQEsHwGGHe
VUoNfw//W/eJCIdTZ4bYku0KVRvA2tP8xXqsevBaLGhi0yh4knoMI+b7pMUnUEYX
SlV2dAF0m85ICB7dN52TB6Bn0eyt1nGj9AHmgyiZ345R2IH+bvC5qig88JOR91gd
5o2HE+CICjXVvItOwwt+FMm8GrykZ2FrciAo92CTTt5TIcZyrkUXWJKwn9c1YNKd
bZFPOmAnrLUcMlweqeoZBTCVxu+yFm/CIYEs3eXISVitCEJ1JRVqxygJicycBwmw
kN1U7glF66ptJ5l1bas5ScsgKeDUbyFFiwKXrBMJI+T/FWU6YxYQW868+5E0/8g3
uhoKpDh4hECH36DdCO/DdEcpt2sBrPskx/3f1gY+LzX/uxWNB8+1996AQlOWyJSQ
W12hZED4HpyamJr6Z5BiVjSmCKhFG8kLk09D0dB35MBIsneBpFVbm4PHmnGm2X1e
0Cm92qMeIRj4unjGEK8rybJV1uy0b6mNzUgqdyXMzRagqespwi0/4rwNTn5uU9uW
gk5gsd7oV0HmbWKw83fHxE9MWj/L4t+9fW8UnVAYJMjehXhJohIUMK+B/dLQk61I
F0mX7XQDmrKgPOyBURGM36vkWqlgUPKISl2BlC/b7qgDOUnEDZmIdnv7Fnrplwt1
Ktwzsk7eTigi9iC4lpZ8mVs+m1ZXUlQnFlibXi2HB8fZe/4pWn4=
=e088
-----END PGP SIGNATURE-----
Merge tag 'x86_vmware_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 vmware cleanup from Borislav Petkov:
- A single statement simplification by using the BIT() macro
* tag 'x86_vmware_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vmware: Use BIT() macro for shifting
when injecting errors on AMD platforms. In some cases, the platform
could prohibit those.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLni2gACgkQEsHwGGHe
VUq1uQ//SeO7mVATL+gtwbh3NGBUsLhYJeZkNOGaIxbiKSxEUiCuHwdUmIZukLIL
dTOAY60Wa9O7wuO9g1p2oeAK8SQO3ZyoIbKX5KZxy+eiCw0lgVyRv12l9qatj/bt
KL+ImDGkoUYp1GMrZP7Lp1B9vVc4lm73qkHSRseNrnjv8EKJbty62Ed6bhgjU+CN
jw+mbTHYGIO8M7XSPvzQhDmIBUSy1N6XVIUcBD2IqWoQCEgecW6woPUHvkoWlI/B
OwQ8KJjM5oRre/AqNN8t7COP5erYY1Qi3xX1+1QnFYlxx8/Z5w4V09X00MDN7NpG
1sJZPIctJ5lcEv6kSG+mI4D2TpmiMWDlWL1ifyZjY/p4Fu7bXEvtCpGTFGlsTWzN
kdiLEjjhA9D+ag2Ah52FBBgL3FpfJxrjDPoL8fYsVkxpzETiwXugqHr7MUh5HeHE
rQldU3aUdXvH94ilQn5Mx9bVwvVMY/egwCXMKQnz/Xzt+V4NnXPYs4didcPNsnDB
QlPpeiCkDmFsqdVQB+GDFq/bh9TeIHh6I+3zY+Esvi2y1m1IjzGbwwqjZgqhpmf3
9dVH7+bucn1muekA7uQL6R34AaPR6cST5QEEM2Lzp/77XnuQ35uvXLH80gHUT4BZ
a3UUiVXRELT5+xjx57efnnJj56NVuGsdTreC2QSA11fIPW91L84=
=Qz6G
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS update from Borislav Petkov:
"A single RAS change:
- Probe whether hardware error injection (direct MSR writes) is
possible when injecting errors on AMD platforms. In some cases, the
platform could prohibit those"
* tag 'ras_core_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Check whether writes to MCA_STATUS are getting ignored
KVM/s390, KVM/x86 and common infrastructure changes for 5.20
x86:
* Permit guests to ignore single-bit ECC errors
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Cleanups for MCE MSR emulation
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
Generic:
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
x86:
* Use try_cmpxchg64 instead of cmpxchg64
* Bugfixes
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
x86 cleanups:
* Use separate namespaces for guest PTEs and shadow PTEs bitmasks
* PIO emulation
* Reorganize rmap API, mostly around rmap destruction
* Do not workaround very old KVM bugs for L0 that runs with nesting enabled
* new selftests API for CPUID
x86/kernel/cpu/cyrix.c now needs to include <linux/isa-dma.h> since the
'isa_dma_bridge_buggy' variable was moved to it.
Fixes this build error:
../arch/x86/kernel/cpu/cyrix.c: In function ‘init_cyrix’:
../arch/x86/kernel/cpu/cyrix.c:277:17: error: ‘isa_dma_bridge_buggy’ undeclared (first use in this function)
277 | isa_dma_bridge_buggy = 2;
Fixes: abb4970ac3 ("PCI: Move isa_dma_bridge_buggy out of asm/dma.h")
Link: https://lore.kernel.org/r/20220725202224.29269-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Stafford Horne <shorne@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
IBRS mitigation for spectre_v2 forces write to MSR_IA32_SPEC_CTRL at
every kernel entry/exit. On Enhanced IBRS parts setting
MSR_IA32_SPEC_CTRL[IBRS] only once at boot is sufficient. MSR writes at
every kernel entry/exit incur unnecessary performance loss.
When Enhanced IBRS feature is present, print a warning about this
unnecessary performance loss.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/2a5eaf54583c2bfe0edc4fea64006656256cca17.1657814857.git.pawan.kumar.gupta@linux.intel.com
Instead of the magic numbers 1<<11 and 1<<12 use the constants
from msr-index.h. This makes it obvious where those bits
of MSR_IA32_MISC_ENABLE are consumed (and in fact that Linux
consumes them at all) to simple minds that grep for
MSR_IA32_MISC_ENABLE_.*_UNAVAIL.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220719174714.2410374-1-pbonzini@redhat.com
On AMD IBRS does not prevent Retbleed; as such use IBPB before a
firmware call to flush the branch history state.
And because in order to do an EFI call, the kernel maps a whole lot of
the kernel page table into the EFI page table, do an IBPB just in case
in order to prevent the scenario of poisoning the BTB and causing an EFI
call using the unprotected RET there.
[ bp: Massage. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com
The decision of whether or not to trust RDRAND is controlled by the
"random.trust_cpu" boot time parameter or the CONFIG_RANDOM_TRUST_CPU
compile time default. The "nordrand" flag was added during the early
days of RDRAND, when there were worries that merely using its values
could compromise the RNG. However, these days, RDRAND values are not
used directly but always go through the RNG's hash function, making
"nordrand" no longer useful.
Rather, the correct switch is "random.trust_cpu", which not only handles
the relevant trust issue directly, but also is general to multiple CPU
types, not just x86.
However, x86 RDRAND does have a history of being occasionally
problematic. Prior, when the kernel would notice something strange, it'd
warn in dmesg and suggest enabling "nordrand". We can improve on that by
making the test a little bit better and then taking the step of
automatically disabling RDRAND if we detect it's problematic.
Also disable RDSEED if the RDRAND test fails.
Cc: x86@kernel.org
Cc: Theodore Ts'o <tytso@mit.edu>
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Borislav Petkov <bp@suse.de>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When RDRAND was introduced, there was much discussion on whether it
should be trusted and how the kernel should handle that. Initially, two
mechanisms cropped up, CONFIG_ARCH_RANDOM, a compile time switch, and
"nordrand", a boot-time switch.
Later the thinking evolved. With a properly designed RNG, using RDRAND
values alone won't harm anything, even if the outputs are malicious.
Rather, the issue is whether those values are being *trusted* to be good
or not. And so a new set of options were introduced as the real
ones that people use -- CONFIG_RANDOM_TRUST_CPU and "random.trust_cpu".
With these options, RDRAND is used, but it's not always credited. So in
the worst case, it does nothing, and in the best case, maybe it helps.
Along the way, CONFIG_ARCH_RANDOM's meaning got sort of pulled into the
center and became something certain platforms force-select.
The old options don't really help with much, and it's a bit odd to have
special handling for these instructions when the kernel can deal fine
with the existence or untrusted existence or broken existence or
non-existence of that CPU capability.
Simplify the situation by removing CONFIG_ARCH_RANDOM and using the
ordinary asm-generic fallback pattern instead, keeping the two options
that are actually used. For now it leaves "nordrand" for now, as the
removal of that will take a different route.
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Patch series "cpumask: Fix invalid uniprocessor assumptions", v4.
On uniprocessor builds, it is currently assumed that any cpumask will
contain the single CPU: cpu0. This assumption is used to provide
optimised implementations.
The current assumption also appears to be wrong, by ignoring the fact that
users can provide empty cpumasks. This can result in bugs as explained in
[1] - for_each_cpu() will run one iteration of the loop even when passed
an empty cpumask.
This series introduces some basic tests, and updates the optimisations for
uniprocessor builds.
The x86 patch was written after the kernel test robot [2] ran into a
failed build. I have tried to list the files potentially affected by the
changes to cpumask.h, in an attempt to find any other cases that fail on
!SMP. I've gone through some of the files manually, and ran a few cross
builds, but nothing else popped up. I (build) checked about half of the
potientally affected files, but I do not have the resources to do them
all. I hope we can fix other issues if/when they pop up later.
[1] https://lore.kernel.org/all/20220530082552.46113-1-sander@svanheule.net/
[2] https://lore.kernel.org/all/202206060858.wA0FOzRy-lkp@intel.com/
This patch (of 5):
The maps to keep track of shared caches between CPUs on SMP systems are
declared in asm/smp.h, among them specifically cpu_llc_shared_map. These
maps are externally defined in cpu/smpboot.c. The latter is only compiled
on CONFIG_SMP=y, which means the declared extern symbols from asm/smp.h do
not have a corresponding definition on uniprocessor builds.
The inline cpu_llc_shared_mask() function from asm/smp.h refers to the map
declaration mentioned above. This function is referenced in cacheinfo.c
inside for_each_cpu() loop macros, to provide cpumask for the loop. On
uniprocessor builds, the symbol for the cpu_llc_shared_map does not exist.
However, the current implementation of for_each_cpu() also (wrongly)
ignores the provided mask.
By sheer luck, the compiler thus optimises out this unused reference to
cpu_llc_shared_map, and the linker therefore does not require the
cpu_llc_shared_mask to actually exist on uniprocessor builds. Only on SMP
bulids does smpboot.o exist to provide the required symbols.
To no longer rely on compiler optimisations for successful uniprocessor
builds, move the definitions of cpu_llc_shared_map and cpu_l2c_shared_map
from smpboot.c to cacheinfo.c.
Link: https://lkml.kernel.org/r/cover.1656777646.git.sander@svanheule.net
Link: https://lkml.kernel.org/r/e8167ddb570f56744a3dc12c2149a660a324d969.1656777646.git.sander@svanheule.net
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Marco Elver <elver@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Yury Norov <yury.norov@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Remove a superfluous ' in the mitigation string.
Fixes: e8ec1b6e08 ("x86/bugs: Enable STIBP for JMP2RET")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Some Intel processors may use alternate predictors for RETs on
RSB-underflow. This condition may be vulnerable to Branch History
Injection (BHI) and intramode-BTI.
Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines,
eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against
such attacks. However, on RSB-underflow, RET target prediction may
fallback to alternate predictors. As a result, RET's predicted target
may get influenced by branch history.
A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback
behavior when in kernel mode. When set, RETs will not take predictions
from alternate predictors, hence mitigating RETs as well. Support for
this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2).
For spectre v2 mitigation, when a user selects a mitigation that
protects indirect CALLs and JMPs against BHI and intramode-BTI, set
RRSBA_DIS_S also to protect RETs for RSB-underflow case.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Storing the 'page_index' value in the sgx_backing struct is
dead code and no longer needed.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220708162124.8442-1-kristen@linux.intel.com
There are some VM configurations which have Skylake model but do not
support IBPB. In those cases, when using retbleed=ibpb, userspace is going
to be killed and kernel is going to panic.
If the CPU does not support IBPB, warn and proceed with the auto option. Also,
do not fallback to IBPB on AMD/Hygon systems if it is not supported.
Fixes: 3ebc170068 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The page reclaimer ensures availability of EPC pages across all
enclaves. In support of this it runs independently from the
individual enclaves in order to take locks from the different
enclaves as it writes pages to swap.
When needing to load a page from swap an EPC page needs to be
available for its contents to be loaded into. Loading an existing
enclave page from swap does not reclaim EPC pages directly if
none are available, instead the reclaimer is woken when the
available EPC pages are found to be below a watermark.
When iterating over a large number of pages in an oversubscribed
environment there is a race between the reclaimer woken up and
EPC pages reclaimed fast enough for the page operations to proceed.
Ensure there are EPC pages available before attempting to load
a page that may potentially be pulled from swap into an available
EPC page.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a0d8f037c4a075d56bf79f432438412985f7ff7a.1652137848.git.reinette.chatre@intel.com
The SGX2 page removal flow was introduced in previous patch and is
as follows:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES introduced in
previous patch.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES introduced here.
Support the final step of the SGX2 page removal flow with ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES. With this ioctl() the user specifies
a page range that should be removed. All pages in the provided
range should have the SGX_PAGE_TYPE_TRIM page type and the request
will fail with EPERM (Operation not permitted) if a page that does
not have the correct type is encountered. Page removal can fail
on any page within the provided range. Support partial success by
returning the number of pages that were successfully removed.
Since actual page removal will succeed even if ENCLU[EACCEPT] was not
run from within the enclave the ENCLU[EMODPR] instruction with RWX
permissions is used as a no-op mechanism to ensure ENCLU[EACCEPT] was
successfully run from within the enclave before the enclave page is
removed.
If the user omits running SGX_IOC_ENCLAVE_REMOVE_PAGES the pages will
still be removed when the enclave is unloaded.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/b75ee93e96774e38bb44a24b8e9bbfb67b08b51b.1652137848.git.reinette.chatre@intel.com
Every enclave contains one or more Thread Control Structures (TCS). The
TCS contains meta-data used by the hardware to save and restore thread
specific information when entering/exiting the enclave. With SGX1 an
enclave needs to be created with enough TCSs to support the largest
number of threads expecting to use the enclave and enough enclave pages
to meet all its anticipated memory demands. In SGX1 all pages remain in
the enclave until the enclave is unloaded.
SGX2 introduces a new function, ENCLS[EMODT], that is used to change
the type of an enclave page from a regular (SGX_PAGE_TYPE_REG) enclave
page to a TCS (SGX_PAGE_TYPE_TCS) page or change the type from a
regular (SGX_PAGE_TYPE_REG) or TCS (SGX_PAGE_TYPE_TCS)
page to a trimmed (SGX_PAGE_TYPE_TRIM) page (setting it up for later
removal).
With the existing support of dynamically adding regular enclave pages
to an initialized enclave and changing the page type to TCS it is
possible to dynamically increase the number of threads supported by an
enclave.
Changing the enclave page type to SGX_PAGE_TYPE_TRIM is the first step
of dynamically removing pages from an initialized enclave. The complete
page removal flow is:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the SGX_IOC_ENCLAVE_MODIFY_TYPES ioctl() introduced here.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl() introduced in the
following patch.
Add ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES to support changing SGX
enclave page types within an initialized enclave. With
SGX_IOC_ENCLAVE_MODIFY_TYPES the user specifies a page range and the
enclave page type to be applied to all pages in the provided range.
The ioctl() itself can return an error code based on failures
encountered by the kernel. It is also possible for SGX specific
failures to be encountered. Add a result output parameter to
communicate the SGX return code. It is possible for the enclave page
type change request to fail on any page within the provided range.
Support partial success by returning the number of pages that were
successfully changed.
After the page type is changed the page continues to be accessible
from the kernel perspective with page table entries and internal
state. The page may be moved to swap. Any access until ENCLU[EACCEPT]
will encounter a page fault with SGX flag set in error code.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/babe39318c5bf16fc65fbfb38896cdee72161575.1652137848.git.reinette.chatre@intel.com
Before an enclave is initialized the enclave's memory range is unknown.
The enclave's memory range is learned at the time it is created via the
SGX_IOC_ENCLAVE_CREATE ioctl() where the provided memory range is
obtained from an earlier mmap() of /dev/sgx_enclave. After an enclave
is initialized its memory can be mapped into user space (mmap()) from
where it can be entered at its defined entry points.
With the enclave's memory range known after it is initialized there is
no reason why it should be possible to map memory outside this range.
Lock down access to the initialized enclave's memory range by denying
any attempt to map memory outside its memory range.
Locking down the memory range also makes adding pages to an initialized
enclave more efficient. Pages are added to an initialized enclave by
accessing memory that belongs to the enclave's memory range but not yet
backed by an enclave page. If it is possible for user space to map
memory that does not form part of the enclave then an access to this
memory would eventually fail. Failures range from a prompt general
protection fault if the access was an ENCLU[EACCEPT] from within the
enclave, or a page fault via the vDSO if it was another access from
within the enclave, or a SIGBUS (also resulting from a page fault) if
the access was from outside the enclave.
Disallowing invalid memory to be mapped in the first place avoids
preventable failures.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/6391460d75ae79cea2e81eef0f6ffc03c6e9cfe7.1652137848.git.reinette.chatre@intel.com
With SGX1 an enclave needs to be created with its maximum memory demands
allocated. Pages cannot be added to an enclave after it is initialized.
SGX2 introduces a new function, ENCLS[EAUG], that can be used to add
pages to an initialized enclave. With SGX2 the enclave still needs to
set aside address space for its maximum memory demands during enclave
creation, but all pages need not be added before enclave initialization.
Pages can be added during enclave runtime.
Add support for dynamically adding pages to an initialized enclave,
architecturally limited to RW permission at creation but allowed to
obtain RWX permissions after trusted enclave runs EMODPE. Add pages
via the page fault handler at the time an enclave address without a
backing enclave page is accessed, potentially directly reclaiming
pages if no free pages are available.
The enclave is still required to run ENCLU[EACCEPT] on the page before
it can be used. A useful flow is for the enclave to run ENCLU[EACCEPT]
on an uninitialized address. This will trigger the page fault handler
that will add the enclave page and return execution to the enclave to
repeat the ENCLU[EACCEPT] instruction, this time successful.
If the enclave accesses an uninitialized address in another way, for
example by expanding the enclave stack to a page that has not yet been
added, then the page fault handler would add the page on the first
write but upon returning to the enclave the instruction that triggered
the page fault would be repeated and since ENCLU[EACCEPT] was not run
yet it would trigger a second page fault, this time with the SGX flag
set in the page fault error code. This can only be recovered by entering
the enclave again and directly running the ENCLU[EACCEPT] instruction on
the now initialized address.
Accessing an uninitialized address from outside the enclave also
triggers this flow but the page will remain inaccessible (access will
result in #PF) until accepted from within the enclave via
ENCLU[EACCEPT].
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/a254a58eabea053803277449b24b6e4963a3883b.1652137848.git.reinette.chatre@intel.com
In the initial (SGX1) version of SGX, pages in an enclave need to be
created with permissions that support all usages of the pages, from the
time the enclave is initialized until it is unloaded. For example,
pages used by a JIT compiler or when code needs to otherwise be
relocated need to always have RWX permissions.
SGX2 includes a new function ENCLS[EMODPR] that is run from the kernel
and can be used to restrict the EPCM permissions of regular enclave
pages within an initialized enclave.
Introduce ioctl() SGX_IOC_ENCLAVE_RESTRICT_PERMISSIONS to support
restricting EPCM permissions. With this ioctl() the user specifies
a page range and the EPCM permissions to be applied to all pages in
the provided range. ENCLS[EMODPR] is run to restrict the EPCM
permissions followed by the ENCLS[ETRACK] flow that will ensure
no cached linear-to-physical address mappings to the changed
pages remain.
It is possible for the permission change request to fail on any
page within the provided range, either with an error encountered
by the kernel or by the SGX hardware while running
ENCLS[EMODPR]. To support partial success the ioctl() returns an
error code based on failures encountered by the kernel as well
as two result output parameters: one for the number of pages
that were successfully changed and one for the SGX return code.
The page table entry permissions are not impacted by the EPCM
permission changes. VMAs and PTEs will continue to allow the
maximum vetted permissions determined at the time the pages
are added to the enclave. The SGX error code in a page fault
will indicate if it was an EPCM permission check that prevented
an access attempt.
No checking is done to ensure that the permissions are actually
being restricted. This is because the enclave may have relaxed
the EPCM permissions from within the enclave without the kernel
knowing. An attempt to relax permissions using this call will
be ignored by the hardware.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/082cee986f3c1a2f4fdbf49501d7a8c5a98446f8.1652137848.git.reinette.chatre@intel.com
struct sgx_encl should be protected with the mutex
sgx_encl->lock. One exception is sgx_encl->page_cnt that
is incremented (in sgx_encl_grow()) when an enclave page
is added to the enclave. The reason the mutex is not held
is to allow the reclaimer to be called directly if there are
no EPC pages (in support of a new VA page) available at the time.
Incrementing sgx_encl->page_cnt without sgc_encl->lock held
is currently (before SGX2) safe from concurrent updates because
all paths in which sgx_encl_grow() is called occur before
enclave initialization and are protected with an atomic
operation on SGX_ENCL_IOCTL.
SGX2 includes support for dynamically adding pages after
enclave initialization where the protection of SGX_ENCL_IOCTL
is not available.
Make direct reclaim of EPC pages optional when new VA pages
are added to the enclave. Essentially the existing "reclaim"
flag used when regular EPC pages are added to an enclave
becomes available to the caller when used to allocate VA pages
instead of always being "true".
When adding pages without invoking the reclaimer it is possible
to do so with sgx_encl->lock held, gaining its protection against
concurrent updates to sgx_encl->page_cnt after enclave
initialization.
No functional change.
Reported-by: Haitao Huang <haitao.huang@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/42c5934c229982ee67982bb97c6ab34bde758620.1652137848.git.reinette.chatre@intel.com
Move sgx_encl_page_alloc() to encl.c and export it so that it can be
used in the implementation for support of adding pages to initialized
enclaves, which requires to allocate new enclave pages.
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/57ae71b4ea17998467670232e12d6617b95c6811.1652137848.git.reinette.chatre@intel.com
In order to use sgx_encl_{grow,shrink}() in the page augmentation code
located in encl.c, export these functions.
Suggested-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d51730acf54b6565710b2261b3099517b38c2ec4.1652137848.git.reinette.chatre@intel.com
SGX2 functions are not allowed on all page types. For example,
ENCLS[EMODPR] is only allowed on regular SGX enclave pages and
ENCLS[EMODPT] is only allowed on TCS and regular pages. If these
functions are attempted on another type of page the hardware would
trigger a fault.
Keep a record of the SGX page type so that there is more
certainty whether an SGX2 instruction can succeed and faults
can be treated as real failures.
The page type is a property of struct sgx_encl_page
and thus does not cover the VA page type. VA pages are maintained
in separate structures and their type can be determined in
a different way. The SGX2 instructions needing the page type do not
operate on VA pages and this is thus not a scenario needing to
be covered at this time.
struct sgx_encl_page hosting this information is maintained for each
enclave page so the space consumed by the struct is important.
The existing sgx_encl_page->vm_max_prot_bits is already unsigned long
while only using three bits. Transition to a bitfield for the two
members to support the additional information without increasing
the space consumed by the struct.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a0a6939eefe7ba26514f6c49723521cde372de64.1652137848.git.reinette.chatre@intel.com
User provided offset and length is validated when parsing the parameters
of the SGX_IOC_ENCLAVE_ADD_PAGES ioctl(). Extract this validation
(with consistent use of IS_ALIGNED) into a utility that can be used
by the SGX2 ioctl()s that will also provide these values.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/767147bc100047abed47fe27c592901adfbb93a2.1652137848.git.reinette.chatre@intel.com
The ETRACK function followed by an IPI to all CPUs within an enclave
is a common pattern with more frequent use in support of SGX2.
Make the (empty) IPI callback function available internally in
preparation for usage by SGX2.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/1179ed4a9c3c1c2abf49d51bfcf2c30b493181cc.1652137848.git.reinette.chatre@intel.com
The SGX reclaimer removes page table entries pointing to pages that are
moved to swap.
SGX2 enables changes to pages belonging to an initialized enclave, thus
enclave pages may have their permission or type changed while the page
is being accessed by an enclave. Supporting SGX2 requires page table
entries to be removed so that any cached mappings to changed pages
are removed. For example, with the ability to change enclave page types
a regular enclave page may be changed to a Thread Control Structure
(TCS) page that may not be accessed by an enclave.
Factor out the code removing page table entries to a separate function
sgx_zap_enclave_ptes(), fixing accuracy of comments in the process,
and make it available to the upcoming SGX2 code.
Place sgx_zap_enclave_ptes() with the rest of the enclave code in
encl.c interacting with the page table since this code is no longer
unique to the reclaimer.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/b010cdf01d7ce55dd0f00e883b7ccbd9db57160a.1652137848.git.reinette.chatre@intel.com
sgx_encl_ewb_cpumask() is no longer unique to the reclaimer where it
is used during the EWB ENCLS leaf function when EPC pages are written
out to main memory and sgx_encl_ewb_cpumask() is used to learn which
CPUs might have executed the enclave to ensure that TLBs are cleared.
Upcoming SGX2 enabling will use sgx_encl_ewb_cpumask() during the
EMODPR and EMODT ENCLS leaf functions that make changes to enclave
pages. The function is needed for the same reason it is used now: to
learn which CPUs might have executed the enclave to ensure that TLBs
no longer point to the changed pages.
Rename sgx_encl_ewb_cpumask() to sgx_encl_cpumask() to reflect the
broader usage.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d4d08c449450a13d8dd3bb6c2b1af03895586d4f.1652137848.git.reinette.chatre@intel.com
Using sgx_encl_ewb_cpumask() to learn which CPUs might have executed
an enclave is useful to ensure that TLBs are cleared when changes are
made to enclave pages.
sgx_encl_ewb_cpumask() is used within the reclaimer when an enclave
page is evicted. The upcoming SGX2 support enables changes to be
made to enclave pages and will require TLBs to not refer to the
changed pages and thus will be needing sgx_encl_ewb_cpumask().
Relocate sgx_encl_ewb_cpumask() to be with the rest of the enclave
code in encl.c now that it is no longer unique to the reclaimer.
Take care to ensure that any future usage maintains the
current context requirement that ETRACK has been called first.
Expand the existing comments to highlight this while moving them
to a more prominent location before the function.
No functional change.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/05b60747fd45130cf9fc6edb1c373a69a18a22c5.1652137848.git.reinette.chatre@intel.com
sgx_encl_load_page() is used to find and load an enclave page into
enclave (EPC) memory, potentially loading it from the backing storage.
Both usages of sgx_encl_load_page() are during an access to the
enclave page from a VMA and thus the permissions of the VMA are
considered before the enclave page is loaded.
SGX2 functions operating on enclave pages belonging to an initialized
enclave requiring the page to be in EPC. It is thus required to
support loading enclave pages into the EPC independent from a VMA.
Split the current sgx_encl_load_page() to support the two usages:
A new call, sgx_encl_load_page_in_vma(), behaves exactly like the
current sgx_encl_load_page() that takes VMA permissions into account,
while sgx_encl_load_page() just loads an enclave page into EPC.
VMA, PTE, and EPCM permissions continue to dictate whether
the pages can be accessed from within an enclave.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d4393513c1f18987c14a490bcf133bfb71a5dc43.1652137848.git.reinette.chatre@intel.com
Add a wrapper for the EAUG ENCLS leaf function used to
add a page to an initialized enclave.
EAUG:
1) Stores all properties of the new enclave page in the SGX
hardware's Enclave Page Cache Map (EPCM).
2) Sets the PENDING bit in the EPCM entry of the enclave page.
This bit is cleared by the enclave by invoking ENCLU leaf
function EACCEPT or EACCEPTCOPY.
Access from within the enclave to the new enclave page is not
possible until the PENDING bit is cleared.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/97a46754fe4764e908651df63694fb760f783d6e.1652137848.git.reinette.chatre@intel.com
Add a wrapper for the EMODT ENCLS leaf function used to
change the type of an enclave page as maintained in the
SGX hardware's Enclave Page Cache Map (EPCM).
EMODT:
1) Updates the EPCM page type of the enclave page.
2) Sets the MODIFIED bit in the EPCM entry of the enclave page.
This bit is reset by the enclave by invoking ENCLU leaf
function EACCEPT or EACCEPTCOPY.
Access from within the enclave to the enclave page is not possible
while the MODIFIED bit is set.
After changing the enclave page type by issuing EMODT the kernel
needs to collaborate with the hardware to ensure that no logical
processor continues to hold a reference to the changed page. This
is required to ensure no required security checks are circumvented
and is required for the enclave's EACCEPT/EACCEPTCOPY to succeed.
Ensuring that no references to the changed page remain is
accomplished with the ETRACK flow.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/dba63a8c0db1d510b940beee1ba2a8207efeb1f1.1652137848.git.reinette.chatre@intel.com
Add a wrapper for the EMODPR ENCLS leaf function used to
restrict enclave page permissions as maintained in the
SGX hardware's Enclave Page Cache Map (EPCM).
EMODPR:
1) Updates the EPCM permissions of an enclave page by treating
the new permissions as a mask. Supplying a value that attempts
to relax EPCM permissions has no effect on EPCM permissions
(PR bit, see below, is changed).
2) Sets the PR bit in the EPCM entry of the enclave page to
indicate that permission restriction is in progress. The bit
is reset by the enclave by invoking ENCLU leaf function
EACCEPT or EACCEPTCOPY.
The enclave may access the page throughout the entire process
if conforming to the EPCM permissions for the enclave page.
After performing the permission restriction by issuing EMODPR
the kernel needs to collaborate with the hardware to ensure that
all logical processors sees the new restricted permissions. This
is required for the enclave's EACCEPT/EACCEPTCOPY to succeed and
is accomplished with the ETRACK flow.
Expand enum sgx_return_code with the possible EMODPR return
values.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d15e7a769e13e4ca671fa2d0a0d3e3aec5aedbd4.1652137848.git.reinette.chatre@intel.com