Add BPF_PROG_RUN command as an alias to BPF_RPOG_TEST_RUN to better
indicate the full range of use cases done by the command.
Suggested-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210519014032.20908-1-alexei.starovoitov@gmail.com
The BPF program loading process performed by libbpf is quite complex
and consists of the following steps:
"open" phase:
- parse elf file and remember relocations, sections
- collect externs and ksyms including their btf_ids in prog's BTF
- patch BTF datasec (since llvm couldn't do it)
- init maps (old style map_def, BTF based, global data map, kconfig map)
- collect relocations against progs and maps
"load" phase:
- probe kernel features
- load vmlinux BTF
- resolve externs (kconfig and ksym)
- load program BTF
- init struct_ops
- create maps
- apply CO-RE relocations
- patch ld_imm64 insns with src_reg=PSEUDO_MAP, PSEUDO_MAP_VALUE, PSEUDO_BTF_ID
- reposition subprograms and adjust call insns
- sanitize and load progs
During this process libbpf does sys_bpf() calls to load BTF, create maps,
populate maps and finally load programs.
Instead of actually doing the syscalls generate a trace of what libbpf
would have done and represent it as the "loader program".
The "loader program" consists of single map with:
- union bpf_attr(s)
- BTF bytes
- map value bytes
- insns bytes
and single bpf program that passes bpf_attr(s) and data into bpf_sys_bpf() helper.
Executing such "loader program" via bpf_prog_test_run() command will
replay the sequence of syscalls that libbpf would have done which will result
the same maps created and programs loaded as specified in the elf file.
The "loader program" removes libelf and majority of libbpf dependency from
program loading process.
kconfig, typeless ksym, struct_ops and CO-RE are not supported yet.
The order of relocate_data and relocate_calls had to change, so that
bpf_gen__prog_load() can see all relocations for a given program with
correct insn_idx-es.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-15-alexei.starovoitov@gmail.com
Add a pointer to 'struct bpf_object' to kernel_supports() helper.
It will be used in the next patch.
No functional changes.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-13-alexei.starovoitov@gmail.com
In order to be able to generate loader program in the later
patches change the order of data and text relocations.
Also improve the test to include data relos.
If the kernel supports "FD array" the map_fd relocations can be processed
before text relos since generated loader program won't need to manually
patch ld_imm64 insns with map_fd.
But ksym and kfunc relocations can only be processed after all calls
are relocated, since loader program will consist of a sequence
of calls to bpf_btf_find_by_name_kind() followed by patching of btf_id
and btf_obj_fd into corresponding ld_imm64 insns. The locations of those
ld_imm64 insns are specified in relocations.
Hence process all data relocations (maps, ksym, kfunc) together after call relos.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210514003623.28033-12-alexei.starovoitov@gmail.com
This adds functions that wrap the netlink API used for adding, manipulating,
and removing traffic control filters.
The API summary:
A bpf_tc_hook represents a location where a TC-BPF filter can be attached.
This means that creating a hook leads to creation of the backing qdisc,
while destruction either removes all filters attached to a hook, or destroys
qdisc if requested explicitly (as discussed below).
The TC-BPF API functions operate on this bpf_tc_hook to attach, replace,
query, and detach tc filters. All functions return 0 on success, and a
negative error code on failure.
bpf_tc_hook_create - Create a hook
Parameters:
@hook - Cannot be NULL, ifindex > 0, attach_point must be set to
proper enum constant. Note that parent must be unset when
attach_point is one of BPF_TC_INGRESS or BPF_TC_EGRESS. Note
that as an exception BPF_TC_INGRESS|BPF_TC_EGRESS is also a
valid value for attach_point.
Returns -EOPNOTSUPP when hook has attach_point as BPF_TC_CUSTOM.
bpf_tc_hook_destroy - Destroy a hook
Parameters:
@hook - Cannot be NULL. The behaviour depends on value of
attach_point. If BPF_TC_INGRESS, all filters attached to
the ingress hook will be detached. If BPF_TC_EGRESS, all
filters attached to the egress hook will be detached. If
BPF_TC_INGRESS|BPF_TC_EGRESS, the clsact qdisc will be
deleted, also detaching all filters. As before, parent must
be unset for these attach_points, and set for BPF_TC_CUSTOM.
It is advised that if the qdisc is operated on by many programs,
then the program at least check that there are no other existing
filters before deleting the clsact qdisc. An example is shown
below:
DECLARE_LIBBPF_OPTS(bpf_tc_hook, .ifindex = if_nametoindex("lo"),
.attach_point = BPF_TC_INGRESS);
/* set opts as NULL, as we're not really interested in
* getting any info for a particular filter, but just
* detecting its presence.
*/
r = bpf_tc_query(&hook, NULL);
if (r == -ENOENT) {
/* no filters */
hook.attach_point = BPF_TC_INGRESS|BPF_TC_EGREESS;
return bpf_tc_hook_destroy(&hook);
} else {
/* failed or r == 0, the latter means filters do exist */
return r;
}
Note that there is a small race between checking for no
filters and deleting the qdisc. This is currently unavoidable.
Returns -EOPNOTSUPP when hook has attach_point as BPF_TC_CUSTOM.
bpf_tc_attach - Attach a filter to a hook
Parameters:
@hook - Cannot be NULL. Represents the hook the filter will be
attached to. Requirements for ifindex and attach_point are
same as described in bpf_tc_hook_create, but BPF_TC_CUSTOM
is also supported. In that case, parent must be set to the
handle where the filter will be attached (using BPF_TC_PARENT).
E.g. to set parent to 1:16 like in tc command line, the
equivalent would be BPF_TC_PARENT(1, 16).
@opts - Cannot be NULL. The following opts are optional:
* handle - The handle of the filter
* priority - The priority of the filter
Must be >= 0 and <= UINT16_MAX
Note that when left unset, they will be auto-allocated by
the kernel. The following opts must be set:
* prog_fd - The fd of the loaded SCHED_CLS prog
The following opts must be unset:
* prog_id - The ID of the BPF prog
The following opts are optional:
* flags - Currently only BPF_TC_F_REPLACE is allowed. It
allows replacing an existing filter instead of
failing with -EEXIST.
The following opts will be filled by bpf_tc_attach on a
successful attach operation if they are unset:
* handle - The handle of the attached filter
* priority - The priority of the attached filter
* prog_id - The ID of the attached SCHED_CLS prog
This way, the user can know what the auto allocated values
for optional opts like handle and priority are for the newly
attached filter, if they were unset.
Note that some other attributes are set to fixed default
values listed below (this holds for all bpf_tc_* APIs):
protocol as ETH_P_ALL, direct action mode, chain index of 0,
and class ID of 0 (this can be set by writing to the
skb->tc_classid field from the BPF program).
bpf_tc_detach
Parameters:
@hook - Cannot be NULL. Represents the hook the filter will be
detached from. Requirements are same as described above
in bpf_tc_attach.
@opts - Cannot be NULL. The following opts must be set:
* handle, priority
The following opts must be unset:
* prog_fd, prog_id, flags
bpf_tc_query
Parameters:
@hook - Cannot be NULL. Represents the hook where the filter lookup will
be performed. Requirements are same as described above in
bpf_tc_attach().
@opts - Cannot be NULL. The following opts must be set:
* handle, priority
The following opts must be unset:
* prog_fd, prog_id, flags
The following fields will be filled by bpf_tc_query upon a
successful lookup:
* prog_id
Some usage examples (using BPF skeleton infrastructure):
BPF program (test_tc_bpf.c):
#include <linux/bpf.h>
#include <bpf/bpf_helpers.h>
SEC("classifier")
int cls(struct __sk_buff *skb)
{
return 0;
}
Userspace loader:
struct test_tc_bpf *skel = NULL;
int fd, r;
skel = test_tc_bpf__open_and_load();
if (!skel)
return -ENOMEM;
fd = bpf_program__fd(skel->progs.cls);
DECLARE_LIBBPF_OPTS(bpf_tc_hook, hook, .ifindex =
if_nametoindex("lo"), .attach_point =
BPF_TC_INGRESS);
/* Create clsact qdisc */
r = bpf_tc_hook_create(&hook);
if (r < 0)
goto end;
DECLARE_LIBBPF_OPTS(bpf_tc_opts, opts, .prog_fd = fd);
r = bpf_tc_attach(&hook, &opts);
if (r < 0)
goto end;
/* Print the auto allocated handle and priority */
printf("Handle=%u", opts.handle);
printf("Priority=%u", opts.priority);
opts.prog_fd = opts.prog_id = 0;
bpf_tc_detach(&hook, &opts);
end:
test_tc_bpf__destroy(skel);
This is equivalent to doing the following using tc command line:
# tc qdisc add dev lo clsact
# tc filter add dev lo ingress bpf obj foo.o sec classifier da
# tc filter del dev lo ingress handle <h> prio <p> bpf
... where the handle and priority can be found using:
# tc filter show dev lo ingress
Another example replacing a filter (extending prior example):
/* We can also choose both (or one), let's try replacing an
* existing filter.
*/
DECLARE_LIBBPF_OPTS(bpf_tc_opts, replace_opts, .handle =
opts.handle, .priority = opts.priority,
.prog_fd = fd);
r = bpf_tc_attach(&hook, &replace_opts);
if (r == -EEXIST) {
/* Expected, now use BPF_TC_F_REPLACE to replace it */
replace_opts.flags = BPF_TC_F_REPLACE;
return bpf_tc_attach(&hook, &replace_opts);
} else if (r < 0) {
return r;
}
/* There must be no existing filter with these
* attributes, so cleanup and return an error.
*/
replace_opts.prog_fd = replace_opts.prog_id = 0;
bpf_tc_detach(&hook, &replace_opts);
return -1;
To obtain info of a particular filter:
/* Find info for filter with handle 1 and priority 50 */
DECLARE_LIBBPF_OPTS(bpf_tc_opts, info_opts, .handle = 1,
.priority = 50);
r = bpf_tc_query(&hook, &info_opts);
if (r == -ENOENT)
printf("Filter not found");
else if (r < 0)
return r;
printf("Prog ID: %u", info_opts.prog_id);
return 0;
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net> # libbpf API design
[ Daniel: also did major patch cleanup ]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210512103451.989420-3-memxor@gmail.com
This change introduces a few helpers to wrap open coded attribute
preparation in netlink.c. It also adds a libbpf_netlink_send_recv() that
is useful to wrap send + recv handling in a generic way. Subsequent patch
will also use this function for sending and receiving a netlink response.
The libbpf_nl_get_link() helper has been removed instead, moving socket
creation into the newly named libbpf_netlink_send_recv().
Every nested attribute's closure must happen using the helper
nlattr_end_nested(), which sets its length properly. NLA_F_NESTED is
enforced using nlattr_begin_nested() helper. Other simple attributes
can be added directly.
The maxsz parameter corresponds to the size of the request structure
which is being filled in, so for instance with req being:
struct {
struct nlmsghdr nh;
struct tcmsg t;
char buf[4096];
} req;
Then, maxsz should be sizeof(req).
This change also converts the open coded attribute preparation with these
helpers. Note that the only failure the internal call to nlattr_add()
could result in the nested helper would be -EMSGSIZE, hence that is what
we return to our caller.
The libbpf_netlink_send_recv() call takes care of opening the socket,
sending the netlink message, receiving the response, potentially invoking
callbacks, and return errors if any, and then finally close the socket.
This allows users to avoid identical socket setup code in different places.
The only user of libbpf_nl_get_link() has been converted to make use of it.
__bpf_set_link_xdp_fd_replace() has also been refactored to use it.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
[ Daniel: major patch cleanup ]
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Link: https://lore.kernel.org/bpf/20210512103451.989420-2-memxor@gmail.com
Detect use of static entry-point BPF programs (those with SEC() markings) and
emit error message. This is similar to
c1cccec9c6 ("libbpf: Reject static maps") but for BPF programs.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20210514195534.1440970-1-andrii@kernel.org
Static maps never really worked with libbpf, because all such maps were always
silently resolved to the very first map. Detect static maps (both legacy and
BTF-defined) and report user-friendly error.
Tested locally by switching few maps (legacy and BTF-defined) in selftests to
static ones and verifying that now libbpf rejects them loudly.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210513233643.194711-2-andrii@kernel.org
Do the same global -> static BTF update for global functions with STV_INTERNAL
visibility to turn on static BPF verification mode.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210507054119.270888-7-andrii@kernel.org
For better future extensibility add per-file linker options. Currently
the set of available options is empty. This changes bpf_linker__add_file()
API, but it's not a breaking change as bpf_linker APIs hasn't been released
yet.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210507054119.270888-3-andrii@kernel.org
Avoids a segv if btf isn't present. Seen on the call path
__bpf_object__open calling bpf_object__collect_externs.
Fixes: 5bd022ec01 (libbpf: Support extern kernel function)
Suggested-by: Stanislav Fomichev <sdf@google.com>
Suggested-by: Petar Penkov <ppenkov@google.com>
Signed-off-by: Ian Rogers <irogers@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210504234910.976501-1-irogers@google.com
One of our benchmarks running in (Google-internal) CI pushes data
through the ringbuf faster htan than userspace is able to consume
it. In this case it seems we're actually able to get >INT_MAX entries
in a single ring_buffer__consume() call. ASAN detected that cnt
overflows in this case.
Fix by using 64-bit counter internally and then capping the result to
INT_MAX before converting to the int return type. Do the same for
the ring_buffer__poll().
Fixes: bf99c936f9 (libbpf: Add BPF ring buffer support)
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210429130510.1621665-1-jackmanb@google.com
Add BTF_KIND_FLOAT support when doing CO-RE field type compatibility check.
Without this, relocations against float/double fields will fail.
Also adjust one error message to emit instruction index instead of less
convenient instruction byte offset.
Fixes: 22541a9eeb ("libbpf: Add BTF_KIND_FLOAT support")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Lorenz Bauer <lmb@cloudflare.com>
Link: https://lore.kernel.org/bpf/20210426192949.416837-3-andrii@kernel.org
Alexei Starovoitov says:
====================
pull-request: bpf-next 2021-04-23
The following pull-request contains BPF updates for your *net-next* tree.
We've added 69 non-merge commits during the last 22 day(s) which contain
a total of 69 files changed, 3141 insertions(+), 866 deletions(-).
The main changes are:
1) Add BPF static linker support for extern resolution of global, from Andrii.
2) Refine retval for bpf_get_task_stack helper, from Dave.
3) Add a bpf_snprintf helper, from Florent.
4) A bunch of miscellaneous improvements from many developers.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Add extra logic to handle map externs (only BTF-defined maps are supported for
linking). Re-use the map parsing logic used during bpf_object__open(). Map
externs are currently restricted to always match complete map definition. So
all the specified attributes will be compared (down to pining, map_flags,
numa_node, etc). In the future this restriction might be relaxed with no
backwards compatibility issues. If any attribute is mismatched between extern
and actual map definition, linker will report an error, pointing out which one
mismatches.
The original intent was to allow for extern to specify attributes that matters
(to user) to enforce. E.g., if you specify just key information and omit
value, then any value fits. Similarly, it should have been possible to enforce
map_flags, pinning, and any other possible map attribute. Unfortunately, that
means that multiple externs can be only partially overlapping with each other,
which means linker would need to combine their type definitions to end up with
the most restrictive and fullest map definition. This requires an extra amount
of BTF manipulation which at this time was deemed unnecessary and would
require further extending generic BTF writer APIs. So that is left for future
follow ups, if there will be demand for that. But the idea seems intresting
and useful, so I want to document it here.
Weak definitions are also supported, but are pretty strict as well, just
like externs: all weak map definitions have to match exactly. In the follow up
patches this most probably will be relaxed, with __weak map definitions being
able to differ between each other (with non-weak definition always winning, of
course).
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-13-andrii@kernel.org
Add BPF static linker logic to resolve extern variables and functions across
multiple linked together BPF object files.
For that, linker maintains a separate list of struct glob_sym structures,
which keeps track of few pieces of metadata (is it extern or resolved global,
is it a weak symbol, which ELF section it belongs to, etc) and ties together
BTF type info and ELF symbol information and keeps them in sync.
With adding support for extern variables/funcs, it's now possible for some
sections to contain both extern and non-extern definitions. This means that
some sections may start out as ephemeral (if only externs are present and thus
there is not corresponding ELF section), but will be "upgraded" to actual ELF
section as symbols are resolved or new non-extern definitions are appended.
Additional care is taken to not duplicate extern entries in sections like
.kconfig and .ksyms.
Given libbpf requires BTF type to always be present for .kconfig/.ksym
externs, linker extends this requirement to all the externs, even those that
are supposed to be resolved during static linking and which won't be visible
to libbpf. With BTF information always present, static linker will check not
just ELF symbol matches, but entire BTF type signature match as well. That
logic is stricter that BPF CO-RE checks. It probably should be re-used by
.ksym resolution logic in libbpf as well, but that's left for follow up
patches.
To make it unnecessary to rewrite ELF symbols and minimize BTF type
rewriting/removal, ELF symbols that correspond to externs initially will be
updated in place once they are resolved. Similarly for BTF type info, VAR/FUNC
and var_secinfo's (sec_vars in struct bpf_linker) are staying stable, but
types they point to might get replaced when extern is resolved. This might
leave some left-over types (even though we try to minimize this for common
cases of having extern funcs with not argument names vs concrete function with
names properly specified). That can be addresses later with a generic BTF
garbage collection. That's left for a follow up as well.
Given BTF type appending phase is separate from ELF symbol
appending/resolution, special struct glob_sym->underlying_btf_id variable is
used to communicate resolution and rewrite decisions. 0 means
underlying_btf_id needs to be appended (it's not yet in final linker->btf), <0
values are used for temporary storage of source BTF type ID (not yet
rewritten), so -glob_sym->underlying_btf_id is BTF type id in obj-btf. But by
the end of linker_append_btf() phase, that underlying_btf_id will be remapped
and will always be > 0. This is the uglies part of the whole process, but
keeps the other parts much simpler due to stability of sec_var and VAR/FUNC
types, as well as ELF symbol, so please keep that in mind while reviewing.
BTF-defined maps require some extra custom logic and is addressed separate in
the next patch, so that to keep this one smaller and easier to review.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-12-andrii@kernel.org
It should never fail, but if it does, it's better to know about this rather
than end up with nonsensical type IDs.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-11-andrii@kernel.org
Add logic to validate extern symbols, plus some other minor extra checks, like
ELF symbol #0 validation, general symbol visibility and binding validations.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-10-andrii@kernel.org
Make skip_mods_and_typedefs(), btf_kind_str(), and btf_func_linkage() helpers
available outside of libbpf.c, to be used by static linker code.
Also do few cleanups (error code fixes, comment clean up, etc) that don't
deserve their own commit.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-9-andrii@kernel.org
Factor out logic for sanity checking SHT_SYMTAB and SHT_REL sections into
separate sections. They are already quite extensive and are suffering from too
deep indentation. Subsequent changes will extend SYMTAB sanity checking
further, so it's better to factor each into a separate function.
No functional changes are intended.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-8-andrii@kernel.org
Refactor BTF-defined maps parsing logic to allow it to be nicely reused by BPF
static linker. Further, at least for BPF static linker, it's important to know
which attributes of a BPF map were defined explicitly, so provide a bit set
for each known portion of BTF map definition. This allows BPF static linker to
do a simple check when dealing with extern map declarations.
The same capabilities allow to distinguish attributes explicitly set to zero
(e.g., __uint(max_entries, 0)) vs the case of not specifying it at all (no
max_entries attribute at all). Libbpf is currently not utilizing that, but it
could be useful for backwards compatibility reasons later.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-7-andrii@kernel.org
Currently libbpf is very strict about parsing BPF program instruction
sections. No gaps are allowed between sequential BPF programs within a given
ELF section. Libbpf enforced that by keeping track of the next section offset
that should start a new BPF (sub)program and cross-checks that by searching
for a corresponding STT_FUNC ELF symbol.
But this is too restrictive once we allow to have weak BPF programs and link
together two or more BPF object files. In such case, some weak BPF programs
might be "overridden" by either non-weak BPF program with the same name and
signature, or even by another weak BPF program that just happened to be linked
first. That, in turn, leaves BPF instructions of the "lost" BPF (sub)program
intact, but there is no corresponding ELF symbol, because no one is going to
be referencing it.
Libbpf already correctly handles such cases in the sense that it won't append
such dead code to actual BPF programs loaded into kernel. So the only change
that needs to be done is to relax the logic of parsing BPF instruction
sections. Instead of assuming next BPF (sub)program section offset, iterate
available STT_FUNC ELF symbols to discover all available BPF subprograms and
programs.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-6-andrii@kernel.org
Define __hidden helper macro in bpf_helpers.h, which is a short-hand for
__attribute__((visibility("hidden"))). Add libbpf support to mark BPF
subprograms marked with __hidden as static in BTF information to enforce BPF
verifier's static function validation algorithm, which takes more information
(caller's context) into account during a subprogram validation.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-5-andrii@kernel.org
When used on externs SEC() macro will trigger compilation warning about
inapplicable `__attribute__((used))`. That's expected for extern declarations,
so suppress it with the corresponding _Pragma.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20210423181348.1801389-4-andrii@kernel.org
Similarly to BPF_SEQ_PRINTF, this macro turns variadic arguments into an
array of u64, making it more natural to call the bpf_snprintf helper.
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210419155243.1632274-6-revest@chromium.org
When initializing the __param array with a one liner, if all args are
const, the initial array value will be placed in the rodata section but
because libbpf does not support relocation in the rodata section, any
pointer in this array will stay NULL.
Fixes: c09add2fbc ("tools/libbpf: Add bpf_iter support")
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210419155243.1632274-5-revest@chromium.org
drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
- keep the ZC code, drop the code related to reinit
net/bridge/netfilter/ebtables.c
- fix build after move to net_generic
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Conflicts:
MAINTAINERS
- keep Chandrasekar
drivers/net/ethernet/mellanox/mlx5/core/en_main.c
- simple fix + trust the code re-added to param.c in -next is fine
include/linux/bpf.h
- trivial
include/linux/ethtool.h
- trivial, fix kdoc while at it
include/linux/skmsg.h
- move to relevant place in tcp.c, comment re-wrapped
net/core/skmsg.c
- add the sk = sk // sk = NULL around calls
net/tipc/crypto.c
- trivial
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The API gives access to inner map for map in map types (array or
hash of map). It will be used to dynamically set max_entries in it.
Signed-off-by: Yauheni Kaliuta <yauheni.kaliuta@redhat.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210408061310.95877-7-yauheni.kaliuta@redhat.com
Prior to this commit xsk_socket__create(_shared) always attempted to create
the rx and tx rings for the socket. However this causes an issue when the
socket being setup is that which shares the fd with the UMEM. If a
previous call to this function failed with this socket after the rings were
set up, a subsequent call would always fail because the rings are not torn
down after the first call and when we try to set them up again we encounter
an error because they already exist. Solve this by remembering whether the
rings were set up by introducing new bools to struct xsk_umem which
represent the ring setup status and using them to determine whether or
not to set up the rings.
Fixes: 1cad078842 ("libbpf: add support for using AF_XDP sockets")
Signed-off-by: Ciara Loftus <ciara.loftus@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210331061218.1647-4-ciara.loftus@intel.com
If the call to xsk_socket__create fails, the user may want to retry the
socket creation using the same umem. Ensure that the umem is in the
same state on exit if the call fails by:
1. ensuring the umem _save pointers are unmodified.
2. not unmapping the set of umem rings that were set up with the umem
during xsk_umem__create, since those maps existed before the call to
xsk_socket__create and should remain in tact even in the event of
failure.
Fixes: 2f6324a393 ("libbpf: Support shared umems between queues and devices")
Signed-off-by: Ciara Loftus <ciara.loftus@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210331061218.1647-3-ciara.loftus@intel.com
Calls to xsk_socket__create dereference the umem to access the
fill_save and comp_save pointers. Make sure the umem is non-NULL
before doing this.
Fixes: 2f6324a393 ("libbpf: Support shared umems between queues and devices")
Signed-off-by: Ciara Loftus <ciara.loftus@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Magnus Karlsson <magnus.karlsson@intel.com>
Link: https://lore.kernel.org/bpf/20210331061218.1647-2-ciara.loftus@intel.com
Currently, if there are multiple xdpsock instances running on a single
interface and in case one of the instances is terminated, the rest of
them are left in an inoperable state due to the fact of unloaded XDP
prog from interface.
Consider the scenario below:
// load xdp prog and xskmap and add entry to xskmap at idx 10
$ sudo ./xdpsock -i ens801f0 -t -q 10
// add entry to xskmap at idx 11
$ sudo ./xdpsock -i ens801f0 -t -q 11
terminate one of the processes and another one is unable to work due to
the fact that the XDP prog was unloaded from interface.
To address that, step away from setting bpf prog in favour of bpf_link.
This means that refcounting of BPF resources will be done automatically
by bpf_link itself.
Provide backward compatibility by checking if underlying system is
bpf_link capable. Do this by looking up/creating bpf_link on loopback
device. If it failed in any way, stick with netlink-based XDP prog.
therwise, use bpf_link-based logic.
When setting up BPF resources during xsk socket creation, check whether
bpf_link for a given ifindex already exists via set of calls to
bpf_link_get_next_id -> bpf_link_get_fd_by_id -> bpf_obj_get_info_by_fd
and comparing the ifindexes from bpf_link and xsk socket.
For case where resources exist but they are not AF_XDP related, bail out
and ask user to remove existing prog and then retry.
Lastly, do a bit of refactoring within __xsk_setup_xdp_prog and pull out
existing code branches based on prog_id value onto separate functions
that are responsible for resource initialization if prog_id was 0 and
for lookup existing resources for non-zero prog_id as that implies that
XDP program is present on the underlying net device. This in turn makes
it easier to follow, especially the teardown part of both branches.
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210329224316.17793-7-maciej.fijalkowski@intel.com
This patch is to make libbpf able to handle the following extern
kernel function declaration and do the needed relocations before
loading the bpf program to the kernel.
extern int foo(struct sock *) __attribute__((section(".ksyms")))
In the collect extern phase, needed changes is made to
bpf_object__collect_externs() and find_extern_btf_id() to collect
extern function in ".ksyms" section. The func in the BTF datasec also
needs to be replaced by an int var. The idea is similar to the existing
handling in extern var. In case the BTF may not have a var, a dummy ksym
var is added at the beginning of bpf_object__collect_externs()
if there is func under ksyms datasec. It will also change the
func linkage from extern to global which the kernel can support.
It also assigns a param name if it does not have one.
In the collect relo phase, it will record the kernel function
call as RELO_EXTERN_FUNC.
bpf_object__resolve_ksym_func_btf_id() is added to find the func
btf_id of the running kernel.
During actual relocation, it will patch the BPF_CALL instruction with
src_reg = BPF_PSEUDO_FUNC_CALL and insn->imm set to the running
kernel func's btf_id.
The required LLVM patch: https://reviews.llvm.org/D93563
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015234.1548923-1-kafai@fb.com
This patch records the extern sym relocs first before recording
subprog relocs. The later patch will have relocs for extern
kernel function call which is also using BPF_JMP | BPF_CALL.
It will be easier to handle the extern symbols first in
the later patch.
is_call_insn() helper is added. The existing is_ldimm64() helper
is renamed to is_ldimm64_insn() for consistency.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015227.1548623-1-kafai@fb.com
This patch renames RELO_EXTERN to RELO_EXTERN_VAR.
It is to avoid the confusion with a later patch adding
RELO_EXTERN_FUNC.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015221.1547722-1-kafai@fb.com
This patch refactors code, that finds kernel btf_id by kind
and symbol name, to a new function find_ksym_btf_id().
It also adds a new helper __btf_kind_str() to return
a string by the numeric kind value.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210325015214.1547069-1-kafai@fb.com