In oom_kill_process(), the variable 'points' is unsigned int. Print it as
such.
Signed-off-by: Wang Long <long.wanglong@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_huge_page and hugetlb_reserve_pages use region_chg to calculate the
number of pages which will be added to the reserve map. Subpool and
global reserve counts are adjusted based on the output of region_chg.
Before the pages are actually added to the reserve map, these routines
could race and add fewer pages than expected. If this happens, the
subpool and global reserve counts are not correct.
Compare the number of pages actually added (region_add) to those expected
to added (region_chg). If fewer pages are actually added, this indicates
a race and adjust counters accordingly.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Modify region_add() to keep track of regions(pages) added to the reserve
map and return this value. The return value can be compared to the return
value of region_chg() to determine if the map was modified between calls.
Make vma_commit_reservation() also pass along the return value of
region_add(). In the normal case, we want vma_commit_reservation to
return the same value as the preceding call to vma_needs_reservation.
Create a common __vma_reservation_common routine to help keep the special
case return values in sync
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While working on hugetlbfs fallocate support, I noticed the following race
in the existing code. It is unlikely that this race is hit very often in
the current code. However, if more functionality to add and remove pages
to hugetlbfs mappings (such as fallocate) is added the likelihood of
hitting this race will increase.
alloc_huge_page and hugetlb_reserve_pages use information from the reserve
map to determine if there are enough available huge pages to complete the
operation, as well as adjust global reserve and subpool usage counts. The
order of operations is as follows:
- call region_chg() to determine the expected change based on reserve map
- determine if enough resources are available for this operation
- adjust global counts based on the expected change
- call region_add() to update the reserve map
The issue is that reserve map could change between the call to region_chg
and region_add. In this case, the counters which were adjusted based on
the output of region_chg will not be correct.
In order to hit this race today, there must be an existing shared hugetlb
mmap created with the MAP_NORESERVE flag. A page fault to allocate a huge
page via this mapping must occur at the same another task is mapping the
same region without the MAP_NORESERVE flag.
The patch set does not prevent the race from happening. Rather, it adds
simple functionality to detect when the race has occurred. If a race is
detected, then the incorrect counts are adjusted.
Review comments pointed out the need for documentation of the existing
region/reserve map routines. This patch set also adds documentation in
this area.
This patch (of 3):
This is a documentation only patch and does not modify any code.
Descriptions of the routines used for reserve map/region tracking are
added.
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kenter/kleave/kdebug are wrapper macros to print functions flow and debug
information. This set was written before pr_devel() was introduced, so it
was controlled by "#if 0" construction. It is questionable if anyone is
using them [1] now.
This patch removes these macros, converts numerous printk(KERN_WARNING,
...) to use general pr_warn(...) and removes debug print line from
validate_mmap_request() function.
Signed-off-by: Leon Romanovsky <leon@leon.nu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have confusing functions to clear pmd, pmd_clear_* and pmd_clear. Add
_huge_ to pmdp_clear functions so that we are clear that they operate on
hugepage pte.
We don't bother about other functions like pmdp_set_wrprotect,
pmdp_clear_flush_young, because they operate on PTE bits and hence
indicate they are operating on hugepage ptes
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Also move the pmd_trans_huge check to generic code.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like ppc64 [1] need to do special things while clearing pmd
before a collapse. For them this operation is largely different from a
normal hugepage pte clear. Hence add a separate function to clear pmd
before collapse. After this patch pmdp_* functions operate only on
hugepage pte, and not on regular pmd_t values pointing to page table.
[1] ppc64 needs to invalidate all the normal page pte mappings we already
have inserted in the hardware hash page table. But before doing that we
need to make sure there are no parallel hash page table insert going on.
So we need to do a kick_all_cpus_sync() before flushing the older hash
table entries. By moving this to a separate function we capture these
details and mention how it is different from a hugepage pte clear.
This patch is a cleanup and only does code movement for clarity. There
should not be any change in functionality.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RAS user space tools like rasdaemon which base on trace event, could
receive mce error event, but no memory recovery result event. So, I want
to add this event to make this scenario complete.
This patch add a event at ras group for memory-failure.
The output like below:
# tracer: nop
#
# entries-in-buffer/entries-written: 2/2 #P:24
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / delay
# TASK-PID CPU# |||| TIMESTAMP FUNCTION
# | | | |||| | |
mce-inject-13150 [001] .... 277.019359: memory_failure_event: pfn 0x19869: recovery action for free buddy page: Delayed
[xiexiuqi@huawei.com: fix build error]
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Jim Davis <jim.epost@gmail.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change type of action_result's param 3 to enum for type consistency,
and rename mf_outcome to mf_result for clearly.
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Jim Davis <jim.epost@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Export 'outcome' and 'action_page_type' to mm.h, so we could use
this emnus outside.
This patch is preparation for adding trace events for memory-failure
recovery action.
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Chen Gong <gong.chen@linux.intel.com>
Cc: Jim Davis <jim.epost@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Historically memcg overhead was high even if memcg was unused. This has
improved a lot but it still showed up in a profile summary as being a
problem.
/usr/src/linux-4.0-vanilla/mm/memcontrol.c 6.6441 395842
mem_cgroup_try_charge 2.950% 175781
__mem_cgroup_count_vm_event 1.431% 85239
mem_cgroup_page_lruvec 0.456% 27156
mem_cgroup_commit_charge 0.392% 23342
uncharge_list 0.323% 19256
mem_cgroup_update_lru_size 0.278% 16538
memcg_check_events 0.216% 12858
mem_cgroup_charge_statistics.isra.22 0.188% 11172
try_charge 0.150% 8928
commit_charge 0.141% 8388
get_mem_cgroup_from_mm 0.121% 7184
That is showing that 6.64% of system CPU cycles were in memcontrol.c and
dominated by mem_cgroup_try_charge. The annotation shows that the bulk
of the cost was checking PageSwapCache which is expected to be cache hot
but is very expensive. The problem appears to be that __SetPageUptodate
is called just before the check which is a write barrier. It is
required to make sure struct page and page data is written before the
PTE is updated and the data visible to userspace. memcg charging does
not require or need the barrier but gets unfairly hit with the cost so
this patch attempts the charging before the barrier. Aside from the
accidental cost to memcg there is the added benefit that the barrier is
avoided if the page cannot be charged. When applied the relevant
profile summary is as follows.
/usr/src/linux-4.0-chargefirst-v2r1/mm/memcontrol.c 3.7907 223277
__mem_cgroup_count_vm_event 1.143% 67312
mem_cgroup_page_lruvec 0.465% 27403
mem_cgroup_commit_charge 0.381% 22452
uncharge_list 0.332% 19543
mem_cgroup_update_lru_size 0.284% 16704
get_mem_cgroup_from_mm 0.271% 15952
mem_cgroup_try_charge 0.237% 13982
memcg_check_events 0.222% 13058
mem_cgroup_charge_statistics.isra.22 0.185% 10920
commit_charge 0.140% 8235
try_charge 0.131% 7716
That brings the overhead down to 3.79% and leaves the memcg fault
accounting to the root cgroup but it's an improvement. The difference
in headline performance of the page fault microbench is marginal as
memcg is such a small component of it.
pft faults
4.0.0 4.0.0
vanilla chargefirst
Hmean faults/cpu-1 1443258.1051 ( 0.00%) 1509075.7561 ( 4.56%)
Hmean faults/cpu-3 1340385.9270 ( 0.00%) 1339160.7113 ( -0.09%)
Hmean faults/cpu-5 875599.0222 ( 0.00%) 874174.1255 ( -0.16%)
Hmean faults/cpu-7 601146.6726 ( 0.00%) 601370.9977 ( 0.04%)
Hmean faults/cpu-8 510728.2754 ( 0.00%) 510598.8214 ( -0.03%)
Hmean faults/sec-1 1432084.7845 ( 0.00%) 1497935.5274 ( 4.60%)
Hmean faults/sec-3 3943818.1437 ( 0.00%) 3941920.1520 ( -0.05%)
Hmean faults/sec-5 3877573.5867 ( 0.00%) 3869385.7553 ( -0.21%)
Hmean faults/sec-7 3991832.0418 ( 0.00%) 3992181.4189 ( 0.01%)
Hmean faults/sec-8 3987189.8167 ( 0.00%) 3986452.2204 ( -0.02%)
It's only visible at single threaded. The overhead is there for higher
threads but other factors dominate.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlb pages uses add_to_page_cache to track shared mappings. This is
OK from the data structure point of view but it is less so from the
NR_FILE_PAGES accounting:
- huge pages are accounted as 4k which is clearly wrong
- this counter is used as the amount of the reclaimable page
cache which is incorrect as well because hugetlb pages are
special and not reclaimable
- the counter is then exported to userspace via /proc/meminfo
(in Cached:), /proc/vmstat and /proc/zoneinfo as
nr_file_pages which is confusing at least:
Cached: 8883504 kB
HugePages_Free: 8348
...
Cached: 8916048 kB
HugePages_Free: 156
...
thats 8192 huge pages allocated which is ~16G accounted as 32M
There are usually not that many huge pages in the system for this to
make any visible difference e.g. by fooling __vm_enough_memory or
zone_pagecache_reclaimable.
Fix this by special casing huge pages in both __delete_from_page_cache
and __add_to_page_cache_locked. replace_page_cache_page is currently
only used by fuse and that shouldn't touch hugetlb pages AFAICS but it
is more robust to check for special casing there as well.
Hugetlb pages shouldn't get to any other paths where we do accounting:
- migration - we have a special handling via
hugetlbfs_migrate_page
- shmem - doesn't handle hugetlb pages directly even for
SHM_HUGETLB resp. MAP_HUGETLB
- swapcache - hugetlb is not swapable
This has a user visible effect but I believe it is reasonable because the
previously exported number is simply bogus.
An alternative would be to account hugetlb pages with their real size and
treat them similar to shmem. But this has some drawbacks.
First we would have to special case in kernel users of NR_FILE_PAGES and
considering how hugetlb is special we would have to do it everywhere. We
do not want Cached exported by /proc/meminfo to include it because the
value would be even more misleading.
__vm_enough_memory and zone_pagecache_reclaimable would have to do the
same thing because those pages are simply not reclaimable. The correction
is even not trivial because we would have to consider all active hugetlb
page sizes properly. Users of the counter outside of the kernel would
have to do the same.
So the question is why to account something that needs to be basically
excluded for each reasonable usage. This doesn't make much sense to me.
It seems that this has been broken since hugetlb was introduced but I
haven't checked the whole history.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The should_alloc_retry() function was meant to encapsulate retry
conditions of the allocator slowpath, but there are still checks
remaining in the main function, and much of how the retrying is
performed also depends on the OOM killer progress. The physical
separation of those conditions make the code hard to follow.
Inline the should_alloc_retry() checks. Notes:
- The __GFP_NOFAIL check is already done in __alloc_pages_may_oom(),
replace it with looping on OOM killer progress
- The pm_suspended_storage() check is meant to skip the OOM killer
when reclaim has no IO available, move to __alloc_pages_may_oom()
- The order <= PAGE_ALLOC_COSTLY order is re-united with its original
counterpart of checking whether reclaim actually made any progress
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The zonelist locking and the oom_sem are two overlapping locks that are
used to serialize global OOM killing against different things.
The historical zonelist locking serializes OOM kills from allocations with
overlapping zonelists against each other to prevent killing more tasks
than necessary in the same memory domain. Only when neither tasklists nor
zonelists from two concurrent OOM kills overlap (tasks in separate memcgs
bound to separate nodes) are OOM kills allowed to execute in parallel.
The younger oom_sem is a read-write lock to serialize OOM killing against
the PM code trying to disable the OOM killer altogether.
However, the OOM killer is a fairly cold error path, there is really no
reason to optimize for highly performant and concurrent OOM kills. And
the oom_sem is just flat-out redundant.
Replace both locking schemes with a single global mutex serializing OOM
kills regardless of context.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Disabling the OOM killer needs to exclude allocators from entering, not
existing victims from exiting.
Right now the only waiter is suspend code, which achieves quiescence by
disabling the OOM killer. But later on we want to add waits that hold
the lock instead to stop new victims from showing up.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that the mechanism to wait for exiting OOM victims is less
generic than it looks: it won't issue wakeups unless the OOM killer is
disabled.
The reason this check was added was the thought that, since only the OOM
disabling code would wait on this queue, wakeup operations could be
saved when that specific consumer is known to be absent.
However, this is quite the handgrenade. Later attempts to reuse the
waitqueue for other purposes will lead to completely unexpected bugs and
the failure mode will appear seemingly illogical. Generally, providers
shouldn't make unnecessary assumptions about consumers.
This could have been replaced with waitqueue_active(), but it only saves
a few instructions in one of the coldest paths in the kernel. Simply
remove it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
exit_oom_victim() already knows that TIF_MEMDIE is set, and nobody else
can clear it concurrently. Use clear_thread_flag() directly.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename unmark_oom_victim() to exit_oom_victim(). Marking and unmarking
are related in functionality, but the interface is not symmetrical at
all: one is an internal OOM killer function used during the killing, the
other is for an OOM victim to signal its own death on exit later on.
This has locking implications, see follow-up changes.
While at it, rename mark_tsk_oom_victim() to mark_oom_victim(), which
is easier on the eye.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Setting oom_killer_disabled to false is atomic, there is no need for
further synchronization with ongoing allocations trying to OOM-kill.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the initial value of order in dissolve_free_huge_page is 64 or
32, which leads to the following warning in static checker:
mm/hugetlb.c:1203 dissolve_free_huge_pages()
warn: potential right shift more than type allows '9,18,64'
This is a potential risk of infinite loop, because 1 << order (== 0) is used
in for-loop like this:
for (pfn =3D start_pfn; pfn < end_pfn; pfn +=3D 1 << order)
...
So this patch fixes it by using global minimum_order calculated at boot time.
text data bss dec hex filename
28313 469 84236 113018 1b97a mm/hugetlb.o
28256 473 84236 112965 1b945 mm/hugetlb.o (patched)
Fixes: c8721bbbdd ("mm: memory-hotplug: enable memory hotplug to handle hugepage")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As noted by Paul the compiler is free to store a temporary result in a
variable on stack, heap or global unless it is explicitly marked as
volatile, see:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4455.html#sample-optimizations
This can result in a race between do_wp_page() and shrink_active_list()
as follows.
In do_wp_page() we can call page_move_anon_rmap(), which sets
page->mapping as follows:
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
page->mapping = (struct address_space *) anon_vma;
The page in question may be on an LRU list, because nowhere in
do_wp_page() we remove it from the list, neither do we take any LRU
related locks. Although the page is locked, shrink_active_list() can
still call page_referenced() on it concurrently, because the latter does
not require an anonymous page to be locked:
CPU0 CPU1
---- ----
do_wp_page shrink_active_list
lock_page page_referenced
PageAnon->yes, so skip trylock_page
page_move_anon_rmap
page->mapping = anon_vma
rmap_walk
PageAnon->no
rmap_walk_file
BUG
page->mapping += PAGE_MAPPING_ANON
This patch fixes this race by explicitly forbidding the compiler to split
page->mapping store in page_move_anon_rmap() with the aid of WRITE_ONCE.
[akpm@linux-foundation.org: tweak comment, per Minchan]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory_failure() is supposed not to handle thp itself, but to split it.
But if something were wrong and page_action() were called on thp,
me_huge_page() (action routine for hugepages) should be better to take
no action, rather than to take wrong action prepared for hugetlb (which
triggers BUG_ON().)
This change is for potential problems, but makes sense to me because thp
is an actively developing feature and this code path can be open in the
future.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stress testing showed that soft offline events for a process iterating
"mmap-pagefault-munmap" loop can trigger
VM_BUG_ON(PAGE_FLAGS_CHECK_AT_PREP) in __free_one_page():
Soft offlining page 0x70fe1 at 0x70100008d000
Soft offlining page 0x705fb at 0x70300008d000
page:ffffea0001c3f840 count:0 mapcount:0 mapping: (null) index:0x2
flags: 0x1fffff80800000(hwpoison)
page dumped because: VM_BUG_ON_PAGE(page->flags & ((1 << 25) - 1))
------------[ cut here ]------------
kernel BUG at /src/linux-dev/mm/page_alloc.c:585!
invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC
Modules linked in: cfg80211 rfkill crc32c_intel microcode ppdev parport_pc pcspkr serio_raw virtio_balloon parport i2c_piix4 virtio_blk virtio_net ata_generic pata_acpi floppy
CPU: 3 PID: 1779 Comm: test_base_madv_ Not tainted 4.0.0-v4.0-150511-1451-00009-g82360a3730e6 #139
RIP: free_pcppages_bulk+0x52a/0x6f0
Call Trace:
drain_pages_zone+0x3d/0x50
drain_local_pages+0x1d/0x30
on_each_cpu_mask+0x46/0x80
drain_all_pages+0x14b/0x1e0
soft_offline_page+0x432/0x6e0
SyS_madvise+0x73c/0x780
system_call_fastpath+0x12/0x17
Code: ff 89 45 b4 48 8b 45 c0 48 83 b8 a8 00 00 00 00 0f 85 e3 fb ff ff 0f 1f 00 0f 0b 48 8b 7d 90 48 c7 c6 e8 95 a6 81 e8 e6 32 02 00 <0f> 0b 8b 45 cc 49 89 47 30 41 8b 47 18 83 f8 ff 0f 85 10 ff ff
RIP [<ffffffff811a806a>] free_pcppages_bulk+0x52a/0x6f0
RSP <ffff88007a117d28>
---[ end trace 53926436e76d1f35 ]---
When soft offline successfully migrates page, the source page is supposed
to be freed. But there is a race condition where a source page looks
isolated (i.e. the refcount is 0 and the PageHWPoison is set) but
somewhat linked to pcplist. Then another soft offline event calls
drain_all_pages() and tries to free such hwpoisoned page, which is
forbidden.
This odd page state seems to happen due to the race between put_page() in
putback_lru_page() and __pagevec_lru_add_fn(). But I don't want to play
with tweaking drain code as done in commit 9ab3b598d2 "mm: hwpoison:
drop lru_add_drain_all() in __soft_offline_page()", or to change page
freeing code for this soft offline's purpose.
Instead, let's think about the difference between hard offline and soft
offline. There is an interesting difference in how to isolate the in-use
page between these, that is, hard offline marks PageHWPoison of the target
page at first, and doesn't free it by keeping its refcount 1. OTOH, soft
offline tries to free the target page then marks PageHWPoison. This
difference might be the source of complexity and result in bugs like the
above. So making soft offline isolate with keeping refcount can be a
solution for this problem.
We can pass to page migration code the "reason" which shows the caller, so
let's use this more to avoid calling putback_lru_page() when called from
soft offline, which effectively does the isolation for soft offline. With
this change, target pages of soft offline never be reused without changing
migratetype, so this patch also removes the related code.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory_failure() can run in 2 different mode (specified by
MF_COUNT_INCREASED) in page refcount perspective. When
MF_COUNT_INCREASED is set, memory_failure() assumes that the caller
takes a refcount of the target page. And if cleared, memory_failure()
takes it in it's own.
In current code, however, refcounting is done differently in each caller.
For example, madvise_hwpoison() uses get_user_pages_fast() and
hwpoison_inject() uses get_page_unless_zero(). So this inconsistent
refcounting causes refcount failure especially for thp tail pages.
Typical user visible effects are like memory leak or
VM_BUG_ON_PAGE(!page_count(page)) in isolate_lru_page().
To fix this refcounting issue, this patch introduces get_hwpoison_page()
to handle thp tail pages in the same manner for each caller of hwpoison
code.
memory_failure() might fail to split thp and in such case it returns
without completing page isolation. This is not good because PageHWPoison
on the thp is still set and there's no easy way to unpoison such thps. So
this patch try to roll back any action to the thp in "non anonymous thp"
case and "thp split failed" case, expecting an MCE(SRAR) generated by
later access afterward will properly free such thps.
[akpm@linux-foundation.org: fix CONFIG_HWPOISON_INJECT=m]
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memory_failure() doesn't handle thp itself at this time and need to split
it before doing isolation. Currently thp is split in the middle of
hwpoison_user_mappings(), but there're corner cases where memory_failure()
wrongly tries to handle thp without splitting.
1) "non anonymous" thp, which is not a normal operating mode of thp,
but a memory error could hit a thp before anon_vma is initialized. In
such case, split_huge_page() fails and me_huge_page() (intended for
hugetlb) is called for thp, which triggers BUG_ON in page_hstate().
2) !PageLRU case, where hwpoison_user_mappings() returns with
SWAP_SUCCESS and the result is the same as case 1.
memory_failure() can't avoid splitting, so let's split it more earlier,
which also reduces code which are prepared for both of normal page and
thp.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The name SWAP implies that we are dealing with anonymous pages only. In
fact, the original patch that introduced the min_unmapped_ratio logic
was to fix an issue related to file pages. Rename it to RECLAIM_UNMAP
to match what does.
Historically, commit a6dc60f897 ("vmscan: rename sc.may_swap to
may_unmap") renamed .may_swap to .may_unmap, leaving RECLAIM_SWAP
behind. commit 2e2e425989 ("vmscan,memcg: reintroduce sc->may_swap")
reintroduced .may_swap for memory controller.
Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based upon 675becce15 ("mm: vmscan: do not throttle based on pfmemalloc
reserves if node has no ZONE_NORMAL") from Mel.
We have a system with the following topology:
# numactl -H
available: 3 nodes (0,2-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31
node 0 size: 28273 MB
node 0 free: 27323 MB
node 2 cpus:
node 2 size: 16384 MB
node 2 free: 0 MB
node 3 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
node 3 size: 30533 MB
node 3 free: 13273 MB
node distances:
node 0 2 3
0: 10 20 20
2: 20 10 20
3: 20 20 10
Node 2 has no free memory, because:
# cat /sys/devices/system/node/node2/hugepages/hugepages-16777216kB/nr_hugepages
1
This leads to the following zoneinfo:
Node 2, zone DMA
pages free 0
min 1840
low 2300
high 2760
scanned 0
spanned 262144
present 262144
managed 262144
...
all_unreclaimable: 1
If one then attempts to allocate some normal 16M hugepages via
echo 37 > /proc/sys/vm/nr_hugepages
The echo never returns and kswapd2 consumes CPU cycles.
This is because throttle_direct_reclaim ends up calling
wait_event(pfmemalloc_wait, pfmemalloc_watermark_ok...).
pfmemalloc_watermark_ok() in turn checks all zones on the node if there
are any reserves, and if so, then indicates the watermarks are ok, by
seeing if there are sufficient free pages.
675becce15 added a condition already for memoryless nodes. In this case,
though, the node has memory, it is just all consumed (and not
reclaimable). Effectively, though, the result is the same on this call to
pfmemalloc_watermark_ok() and thus seems like a reasonable additional
condition.
With this change, the afore-mentioned 16M hugepage allocation attempt
succeeds and correctly round-robins between Nodes 1 and 3.
Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Anton Blanchard <anton@samba.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's been five years now that KM_* kmap flags have been removed and that
we can call clear_highpage from any context. So we remove prep_zero_pages
accordingly.
Signed-off-by: Anisse Astier <anisse@astier.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
My commit 8d63d99a5d ("mm: avoid tail page refcounting on non-THP
compound pages") which was merged during 4.1 merge window caused
regression:
page:ffffea0010a15040 count:0 mapcount:1 mapping: (null) index:0x0
flags: 0x8000000000008014(referenced|dirty|tail)
page dumped because: VM_BUG_ON_PAGE(page_mapcount(page) != 0)
------------[ cut here ]------------
kernel BUG at mm/swap.c:134!
The problem can be reproduced by playing *two* audio files at the same
time and then stopping one of players. I used two mplayers to trigger
this.
The VM_BUG_ON_PAGE() which triggers the bug is bogus:
Sound subsystem uses compound pages for its buffers, but unlike most
__GFP_COMP sound maps compound pages to userspace with PTEs.
In our case with two players map the buffer twice and therefore elevates
page_mapcount() on tail pages by two. When one of players exits it
unmaps the VMA and drops page_mapcount() to one and try to release
reference on the page with put_page().
My commit changes which path it takes under put_compound_page(). It hits
put_unrefcounted_compound_page() where VM_BUG_ON_PAGE() is. It sees
page_mapcount() == 1. The function wrongly assumes that subpages of
compound page cannot be be mapped by itself with PTEs..
The solution is simply drop the VM_BUG_ON_PAGE().
Note: there's no need to move the check under put_page_testzero().
Allocator will check the mapcount by itself before putting on free list.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Borislav Petkov <bp@alien8.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For !CONFIG_NUMA, hashdist will always be 0, since it's setter is
otherwise compiled out. So we can save 4 bytes of data and some .text
(although mostly in __init functions) by only defining it for
CONFIG_NUMA.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some architectures would like to be triggered when a memory area is moved
through the mremap system call.
This patch introduces a new arch_remap() mm hook which is placed in the
path of mremap, and is called before the old area is unmapped (and the
arch_unmap() hook is called).
Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have many duplicates in definitions of huge_pmd_unshare. In
all architectures this function just returns 0 when
CONFIG_ARCH_WANT_HUGE_PMD_SHARE is N.
This patch puts the default implementation in mm/hugetlb.c and lets these
architectures use the common code.
Signed-off-by: Zhang Zhen <zhenzhang.zhang@huawei.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: David Rientjes <rientjes@google.com>
Cc: James Yang <James.Yang@freescale.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On mlock(2) we trigger COW on private writable VMA to avoid faults in
future.
mm/gup.c:
840 long populate_vma_page_range(struct vm_area_struct *vma,
841 unsigned long start, unsigned long end, int *nonblocking)
842 {
...
855 * We want to touch writable mappings with a write fault in order
856 * to break COW, except for shared mappings because these don't COW
857 * and we would not want to dirty them for nothing.
858 */
859 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
860 gup_flags |= FOLL_WRITE;
But we miss this case when we make VM_LOCKED VMA writeable via
mprotect(2). The test case:
#define _GNU_SOURCE
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#define PAGE_SIZE 4096
int main(int argc, char **argv)
{
struct rusage usage;
long before;
char *p;
int fd;
/* Create a file and populate first page of page cache */
fd = open("/tmp", O_TMPFILE | O_RDWR, S_IRUSR | S_IWUSR);
write(fd, "1", 1);
/* Create a *read-only* *private* mapping of the file */
p = mmap(NULL, PAGE_SIZE, PROT_READ, MAP_PRIVATE, fd, 0);
/*
* Since the mapping is read-only, mlock() will populate the mapping
* with PTEs pointing to page cache without triggering COW.
*/
mlock(p, PAGE_SIZE);
/*
* Mapping became read-write, but it's still populated with PTEs
* pointing to page cache.
*/
mprotect(p, PAGE_SIZE, PROT_READ | PROT_WRITE);
getrusage(RUSAGE_SELF, &usage);
before = usage.ru_minflt;
/* Trigger COW: fault in mlock()ed VMA. */
*p = 1;
getrusage(RUSAGE_SELF, &usage);
printf("faults: %ld\n", usage.ru_minflt - before);
return 0;
}
$ ./test
faults: 1
Let's fix it by triggering populating of VMA in mprotect_fixup() on this
condition. We don't care about population error as we don't in other
similar cases i.e. mremap.
[akpm@linux-foundation.org: tweak comment text]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
khugepaged_do_scan() checks in every iteration whether freezing(current)
is true, and in such case breaks out of the loop, which causes
try_to_freeze() to be called immediately afterwards in
khugepaged_wait_work().
If nothing else, this causes unnecessary freezing(current) test, and also
makes the way khugepaged enters freezer a bit less obvious than necessary.
Let's just try to freeze directly, instead of splitting it into two
(directly adjacent) phases.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All the items mentioned here have been either addressed, or were not
really needed. So just remove the comment.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here's another comment fix for hwpoison.
It describes the "guiding principle" on when to add new
memory error recovery code.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the initialization of the size_index table slightly
earlier so that the first few kmem_cache_node's can be safely allocated
when KMALLOC_MIN_SIZE is large.
There are currently two ways to generate indices into kmalloc_caches (via
kmalloc_index() and via the size_index table in slab_common.c) and on some
arches (possibly only MIPS) they potentially disagree with each other
until create_kmalloc_caches() has been called. It seems that the
intention is that the size_index table is a fast equivalent to
kmalloc_index() and that create_kmalloc_caches() patches the table to
return the correct value for the cases where kmalloc_index()'s
if-statements apply.
The failing sequence was:
* kmalloc_caches contains NULL elements
* kmem_cache_init initialises the element that 'struct
kmem_cache_node' will be allocated to. For 32-bit Mips, this is a
56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7).
* init_list is called which calls kmalloc_node to allocate a 'struct
kmem_cache_node'.
* kmalloc_slab selects the kmem_caches element using
size_index[size_index_elem(size)]. For MIPS, size is 56, and the
expression returns 6.
* This element of kmalloc_caches is NULL and allocation fails.
* If it had not already failed, it would have called
create_kmalloc_caches() at this point which would have changed
size_index[size_index_elem(size)] to 7.
I don't believe the bug to be LLVM specific but GCC doesn't normally
encounter the problem. I haven't been able to identify exactly what GCC
is doing better (probably inlining) but it seems that GCC is managing to
optimize to the point that it eliminates the problematic allocations.
This theory is supported by the fact that GCC can be made to fail in the
same way by changing inline, __inline, __inline__, and __always_inline in
include/linux/compiler-gcc.h such that they don't actually inline things.
Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The slub_debug=PU,kmalloc-xx cannot work because in the
create_kmalloc_caches() the s->name is created after the
create_kmalloc_cache() is called. The name is NULL in the
create_kmalloc_cache() so the kmem_cache_flags() would not set the
slub_debug flags to the s->flags. The fix here set up a kmalloc_names
string array for the initialization purpose and delete the dynamic name
creation of kmalloc_caches.
[akpm@linux-foundation.org: s/kmalloc_names/kmalloc_info/, tweak comment text]
Signed-off-by: Gavin Guo <gavin.guo@canonical.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull networking updates from David Miller:
1) Add TX fast path in mac80211, from Johannes Berg.
2) Add TSO/GRO support to ibmveth, from Thomas Falcon
3) Move away from cached routes in ipv6, just like ipv4, from Martin
KaFai Lau.
4) Lots of new rhashtable tests, from Thomas Graf.
5) Run ingress qdisc lockless, from Alexei Starovoitov.
6) Allow servers to fetch TCP packet headers for SYN packets of new
connections, for fingerprinting. From Eric Dumazet.
7) Add mode parameter to pktgen, for testing receive. From Alexei
Starovoitov.
8) Cache access optimizations via simplifications of build_skb(), from
Alexander Duyck.
9) Move page frag allocator under mm/, also from Alexander.
10) Add xmit_more support to hv_netvsc, from KY Srinivasan.
11) Add a counter guard in case we try to perform endless reclassify
loops in the packet scheduler.
12) Extern flow dissector to be programmable and use it in new "Flower"
classifier. From Jiri Pirko.
13) AF_PACKET fanout rollover fixes, performance improvements, and new
statistics. From Willem de Bruijn.
14) Add netdev driver for GENEVE tunnels, from John W Linville.
15) Add ingress netfilter hooks and filtering, from Pablo Neira Ayuso.
16) Fix handling of epoll edge triggers in TCP, from Eric Dumazet.
17) Add an ECN retry fallback for the initial TCP handshake, from Daniel
Borkmann.
18) Add tail call support to BPF, from Alexei Starovoitov.
19) Add several pktgen helper scripts, from Jesper Dangaard Brouer.
20) Add zerocopy support to AF_UNIX, from Hannes Frederic Sowa.
21) Favor even port numbers for allocation to connect() requests, and
odd port numbers for bind(0), in an effort to help avoid
ip_local_port_range exhaustion. From Eric Dumazet.
22) Add Cavium ThunderX driver, from Sunil Goutham.
23) Allow bpf programs to access skb_iif and dev->ifindex SKB metadata,
from Alexei Starovoitov.
24) Add support for T6 chips in cxgb4vf driver, from Hariprasad Shenai.
25) Double TCP Small Queues default to 256K to accomodate situations
like the XEN driver and wireless aggregation. From Wei Liu.
26) Add more entropy inputs to flow dissector, from Tom Herbert.
27) Add CDG congestion control algorithm to TCP, from Kenneth Klette
Jonassen.
28) Convert ipset over to RCU locking, from Jozsef Kadlecsik.
29) Track and act upon link status of ipv4 route nexthops, from Andy
Gospodarek.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1670 commits)
bridge: vlan: flush the dynamically learned entries on port vlan delete
bridge: multicast: add a comment to br_port_state_selection about blocking state
net: inet_diag: export IPV6_V6ONLY sockopt
stmmac: troubleshoot unexpected bits in des0 & des1
net: ipv4 sysctl option to ignore routes when nexthop link is down
net: track link-status of ipv4 nexthops
net: switchdev: ignore unsupported bridge flags
net: Cavium: Fix MAC address setting in shutdown state
drivers: net: xgene: fix for ACPI support without ACPI
ip: report the original address of ICMP messages
net/mlx5e: Prefetch skb data on RX
net/mlx5e: Pop cq outside mlx5e_get_cqe
net/mlx5e: Remove mlx5e_cq.sqrq back-pointer
net/mlx5e: Remove extra spaces
net/mlx5e: Avoid TX CQE generation if more xmit packets expected
net/mlx5e: Avoid redundant dev_kfree_skb() upon NOP completion
net/mlx5e: Remove re-assignment of wq type in mlx5e_enable_rq()
net/mlx5e: Use skb_shinfo(skb)->gso_segs rather than counting them
net/mlx5e: Static mapping of netdev priv resources to/from netdev TX queues
net/mlx4_en: Use HW counters for rx/tx bytes/packets in PF device
...
file_remove_suid() is a misnomer since it removes also file capabilities
stored in xattrs and sets S_NOSEC flag. Also should_remove_suid() tells
something else than whether file_remove_suid() call is necessary which
leads to bugs.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull scheduler updates from Ingo Molnar:
"The main changes are:
- lockless wakeup support for futexes and IPC message queues
(Davidlohr Bueso, Peter Zijlstra)
- Replace spinlocks with atomics in thread_group_cputimer(), to
improve scalability (Jason Low)
- NUMA balancing improvements (Rik van Riel)
- SCHED_DEADLINE improvements (Wanpeng Li)
- clean up and reorganize preemption helpers (Frederic Weisbecker)
- decouple page fault disabling machinery from the preemption
counter, to improve debuggability and robustness (David
Hildenbrand)
- SCHED_DEADLINE documentation updates (Luca Abeni)
- topology CPU masks cleanups (Bartosz Golaszewski)
- /proc/sched_debug improvements (Srikar Dronamraju)"
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (79 commits)
sched/deadline: Remove needless parameter in dl_runtime_exceeded()
sched: Remove superfluous resetting of the p->dl_throttled flag
sched/deadline: Drop duplicate init_sched_dl_class() declaration
sched/deadline: Reduce rq lock contention by eliminating locking of non-feasible target
sched/deadline: Make init_sched_dl_class() __init
sched/deadline: Optimize pull_dl_task()
sched/preempt: Add static_key() to preempt_notifiers
sched/preempt: Fix preempt notifiers documentation about hlist_del() within unsafe iteration
sched/stop_machine: Fix deadlock between multiple stop_two_cpus()
sched/debug: Add sum_sleep_runtime to /proc/<pid>/sched
sched/debug: Replace vruntime with wait_sum in /proc/sched_debug
sched/debug: Properly format runnable tasks in /proc/sched_debug
sched/numa: Only consider less busy nodes as numa balancing destinations
Revert 095bebf61a ("sched/numa: Do not move past the balance point if unbalanced")
sched/fair: Prevent throttling in early pick_next_task_fair()
preempt: Reorganize the notrace definitions a bit
preempt: Use preempt_schedule_context() as the official tracing preemption point
sched: Make preempt_schedule_context() function-tracing safe
x86: Remove cpu_sibling_mask() and cpu_core_mask()
x86: Replace cpu_**_mask() with topology_**_cpumask()
...
Pull vfs updates from Al Viro:
"In this pile: pathname resolution rewrite.
- recursion in link_path_walk() is gone.
- nesting limits on symlinks are gone (the only limit remaining is
that the total amount of symlinks is no more than 40, no matter how
nested).
- "fast" (inline) symlinks are handled without leaving rcuwalk mode.
- stack footprint (independent of the nesting) is below kilobyte now,
about on par with what it used to be with one level of nested
symlinks and ~2.8 times lower than it used to be in the worst case.
- struct nameidata is entirely private to fs/namei.c now (not even
opaque pointers are being passed around).
- ->follow_link() and ->put_link() calling conventions had been
changed; all in-tree filesystems converted, out-of-tree should be
able to follow reasonably easily.
For out-of-tree conversions, see Documentation/filesystems/porting
for details (and in-tree filesystems for examples of conversion).
That has sat in -next since mid-May, seems to survive all testing
without regressions and merges clean with v4.1"
* 'for-linus-1' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (131 commits)
turn user_{path_at,path,lpath,path_dir}() into static inlines
namei: move saved_nd pointer into struct nameidata
inline user_path_create()
inline user_path_parent()
namei: trim do_last() arguments
namei: stash dfd and name into nameidata
namei: fold path_cleanup() into terminate_walk()
namei: saner calling conventions for filename_parentat()
namei: saner calling conventions for filename_create()
namei: shift nameidata down into filename_parentat()
namei: make filename_lookup() reject ERR_PTR() passed as name
namei: shift nameidata inside filename_lookup()
namei: move putname() call into filename_lookup()
namei: pass the struct path to store the result down into path_lookupat()
namei: uninline set_root{,_rcu}()
namei: be careful with mountpoint crossings in follow_dotdot_rcu()
Documentation: remove outdated information from automount-support.txt
get rid of assorted nameidata-related debris
lustre: kill unused helper
lustre: kill unused macro (LOOKUP_CONTINUE)
...
It appears that, at some point last year, XFS made directory handling
changes which bring it into lockdep conflict with shmem_zero_setup():
it is surprising that mmap() can clone an inode while holding mmap_sem,
but that has been so for many years.
Since those few lockdep traces that I've seen all implicated selinux,
I'm hoping that we can use the __shmem_file_setup(,,,S_PRIVATE) which
v3.13's commit c727709092 ("security: shmem: implement kernel private
shmem inodes") introduced to avoid LSM checks on kernel-internal inodes:
the mmap("/dev/zero") cloned inode is indeed a kernel-internal detail.
This also covers the !CONFIG_SHMEM use of ramfs to support /dev/zero
(and MAP_SHARED|MAP_ANONYMOUS). I thought there were also drivers
which cloned inode in mmap(), but if so, I cannot locate them now.
Reported-and-tested-by: Prarit Bhargava <prarit@redhat.com>
Reported-and-tested-by: Daniel Wagner <wagi@monom.org>
Reported-and-tested-by: Morten Stevens <mstevens@fedoraproject.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This was using module_init, but there is no way this code can
be modular. In the non-modular case, a module_init becomes a
device_initcall, but this really isn't a device. So we should
choose a more appropriate initcall bucket to put it in.
In order of execution, our close choices are:
fs_initcall(fn)
rootfs_initcall(fn)
device_initcall(fn)
late_initcall(fn)
..and since the initcall here goes after debugfs, we really
should be post-rootfs, which means late_initcall makes the
most sense here.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Compiling some arm/m68k configs with "# CONFIG_MMU is not set" reveals
two more instances of module_init being used for code that can't
possibly be modular, as CONFIG_MMU is either on or off.
We replace them with subsys_initcall as per what was done in other
mmu-enabled code.
Note that direct use of __initcall is discouraged, vs. one of the
priority categorized subgroups. As __initcall gets mapped onto
device_initcall, our use of subsys_initcall (which makes sense for these
files) will thus change this registration from level 6-device to level
4-subsys (i.e. slightly earlier).
One might think that core_initcall (l2) or postcore_initcall (l3) would
be more appropriate for anything in mm/ but if we look at the actual init
functions themselves, we see they are just sysctl setup stuff, and
hence the choice of subsys_initcall (l4) seems reasonable. At the same
time it minimizes the risk of changing the priority too drastically all
at once. We can adjust further in the future.
Also, a couple instances of missing ";" at EOL are fixed.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
If zs_create_pool()->create_handle_cache()->kmem_cache_create() or
pool->name allocation fails, zs_create_pool()->destroy_handle_cache()
will dereference the NULL pool->handle_cachep.
Modify destroy_handle_cache() to avoid this.
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On -rt, the VM_BUG_ON(!irqs_disabled()) triggers inside the memcg
swapout path because the spin_lock_irq(&mapping->tree_lock) in the
caller doesn't actually disable the hardware interrupts - which is fine,
because on -rt the tophalves run in process context and so we are still
safe from preemption while updating the statistics.
Remove the VM_BUG_ON() but keep the comment of what we rely on.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Clark Williams <williams@redhat.com>
Cc: Fernando Lopez-Lezcano <nando@ccrma.Stanford.EDU>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When trimming memcg consumption excess (see memory.high), we call
try_to_free_mem_cgroup_pages without checking if we are allowed to sleep
in the current context, which can result in a deadlock. Fix this.
Fixes: 241994ed86 ("mm: memcontrol: default hierarchy interface for memory")
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Izumi found the following oops when hot re-adding a node:
BUG: unable to handle kernel paging request at ffffc90008963690
IP: __wake_up_bit+0x20/0x70
Oops: 0000 [#1] SMP
CPU: 68 PID: 1237 Comm: rs:main Q:Reg Not tainted 4.1.0-rc5 #80
Hardware name: FUJITSU PRIMEQUEST2800E/SB, BIOS PRIMEQUEST 2000 Series BIOS Version 1.87 04/28/2015
task: ffff880838df8000 ti: ffff880017b94000 task.ti: ffff880017b94000
RIP: 0010:[<ffffffff810dff80>] [<ffffffff810dff80>] __wake_up_bit+0x20/0x70
RSP: 0018:ffff880017b97be8 EFLAGS: 00010246
RAX: ffffc90008963690 RBX: 00000000003c0000 RCX: 000000000000a4c9
RDX: 0000000000000000 RSI: ffffea101bffd500 RDI: ffffc90008963648
RBP: ffff880017b97c08 R08: 0000000002000020 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000000 R12: ffff8a0797c73800
R13: ffffea101bffd500 R14: 0000000000000001 R15: 00000000003c0000
FS: 00007fcc7ffff700(0000) GS:ffff880874800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc90008963690 CR3: 0000000836761000 CR4: 00000000001407e0
Call Trace:
unlock_page+0x6d/0x70
generic_write_end+0x53/0xb0
xfs_vm_write_end+0x29/0x80 [xfs]
generic_perform_write+0x10a/0x1e0
xfs_file_buffered_aio_write+0x14d/0x3e0 [xfs]
xfs_file_write_iter+0x79/0x120 [xfs]
__vfs_write+0xd4/0x110
vfs_write+0xac/0x1c0
SyS_write+0x58/0xd0
system_call_fastpath+0x12/0x76
Code: 5d c3 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 55 48 89 e5 48 83 ec 20 65 48 8b 04 25 28 00 00 00 48 89 45 f8 31 c0 48 8d 47 48 <48> 39 47 48 48 c7 45 e8 00 00 00 00 48 c7 45 f0 00 00 00 00 48
RIP [<ffffffff810dff80>] __wake_up_bit+0x20/0x70
RSP <ffff880017b97be8>
CR2: ffffc90008963690
Reproduce method (re-add a node)::
Hot-add nodeA --> remove nodeA --> hot-add nodeA (panic)
This seems an use-after-free problem, and the root cause is
zone->wait_table was not set to *NULL* after free it in
try_offline_node.
When hot re-add a node, we will reuse the pgdat of it, so does the zone
struct, and when add pages to the target zone, it will init the zone
first (including the wait_table) if the zone is not initialized. The
judgement of zone initialized is based on zone->wait_table:
static inline bool zone_is_initialized(struct zone *zone)
{
return !!zone->wait_table;
}
so if we do not set the zone->wait_table to *NULL* after free it, the
memory hotplug routine will skip the init of new zone when hot re-add
the node, and the wait_table still points to the freed memory, then we
will access the invalid address when trying to wake up the waiting
people after the i/o operation with the page is done, such as mentioned
above.
Signed-off-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reported-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Reviewed by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On wb_congested_get_create() failure, cgwb_create() forgot to set @ret
to -ENOMEM ending up returning 0. Fix it so that it returns -ENOMEM.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The mechanism for detecting whether an inode should switch its wb
(bdi_writeback) association is now in place. This patch build the
framework for the actual switching.
This patch adds a new inode flag I_WB_SWITCHING, which has two
functions. First, the easy one, it ensures that there's only one
switching in progress for a give inode. Second, it's used as a
mechanism to synchronize wb stat updates.
The two stats, WB_RECLAIMABLE and WB_WRITEBACK, aren't event counters
but track the current number of dirty pages and pages under writeback
respectively. As such, when an inode is moved from one wb to another,
the inode's portion of those stats have to be transferred together;
unfortunately, this is a bit tricky as those stat updates are percpu
operations which are performed without holding any lock in some
places.
This patch solves the problem in a similar way as memcg. Each such
lockless stat updates are wrapped in transaction surrounded by
unlocked_inode_to_wb_begin/end(). During normal operation, they map
to rcu_read_lock/unlock(); however, if I_WB_SWITCHING is asserted,
mapping->tree_lock is grabbed across the transaction.
In turn, the switching path sets I_WB_SWITCHING and waits for a RCU
grace period to pass before actually starting to switch, which
guarantees that all stat update paths are synchronizing against
mapping->tree_lock.
This patch still doesn't implement the actual switching.
v3: Updated on top of the recent cancel_dirty_page() updates.
unlocked_inode_to_wb_begin() now nests inside
mem_cgroup_begin_page_stat() to match the locking order.
v2: The i_wb access transaction will be used for !stat accesses too.
Function names and comments updated accordingly.
s/inode_wb_stat_unlocked_{begin|end}/unlocked_inode_to_wb_{begin|end}/
s/switch_wb/switch_wbs/
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, for cgroup writeback, the IO submission paths directly
associate the bio's with the blkcg from inode_to_wb_blkcg_css();
however, it'd be necessary to keep more writeback context to implement
foreign inode writeback detection. wbc (writeback_control) is the
natural fit for the extra context - it persists throughout the
writeback of each inode and is passed all the way down to IO
submission paths.
This patch adds wbc_attach_and_unlock_inode(), wbc_detach_inode(), and
wbc_attach_fdatawrite_inode() which are used to associate wbc with the
inode being written back. IO submission paths now use wbc_init_bio()
instead of directly associating bio's with blkcg themselves. This
leaves inode_to_wb_blkcg_css() w/o any user. The function is removed.
wbc currently only tracks the associated wb (bdi_writeback). Future
patches will add more for foreign inode detection. The association is
established under i_lock which will be depended upon when migrating
foreign inodes to other wb's.
As currently, once established, inode to wb association never changes,
going through wbc when initializing bio's doesn't cause any behavior
changes.
v2: submit_blk_blkcg() now checks whether the wbc is associated with a
wb before dereferencing it. This can happen when pageout() is
writing pages directly without going through the usual writeback
path. As pageout() path is single-threaded, we don't want it to
be blocked behind a slow cgroup and ultimately want it to delegate
actual writing to the usual writeback path.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, majority of cgroup writeback support including all the
above functions are implemented in include/linux/backing-dev.h and
mm/backing-dev.c; however, the portion closely related to writeback
logic implemented in include/linux/writeback.h and mm/page-writeback.c
will expand to support foreign writeback detection and correction.
This patch moves wb[_try]_get() and wb_put() to
include/linux/backing-dev-defs.h so that they can be used from
writeback.h and inode_{attach|detach}_wb() to writeback.h and
page-writeback.c.
This is pure reorganization and doesn't introduce any functional
changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Because writeback wasn't cgroup aware before, the usual dirty
throttling mechanism in balance_dirty_pages() didn't work for
processes under memcg limit. The writeback path didn't know how much
memory is available or how fast the dirty pages are being written out
for a given memcg and balance_dirty_pages() didn't have any measure of
IO back pressure for the memcg.
To work around the issue, memcg implemented an ad-hoc dirty throttling
mechanism in the direct reclaim path by stalling on pages under
writeback which are encountered during direct reclaim scan. This is
rather ugly and crude - none of the configurability, fairness, or
bandwidth-proportional distribution of the normal path.
The previous patches implemented proper memcg aware dirty throttling
when cgroup writeback is in use making the ad-hoc mechanism
unnecessary. This patch disables direct reclaim stalling for such
case.
Note: I disabled the parts which seemed obvious and it behaves fine
while testing but my understanding of this code path is
rudimentary and it's quite possible that I got something wrong.
Please let me know if I got some wrong or more global_reclaim()
sites should be updated.
v2: The original patch removed the direct stalling mechanism which
breaks legacy hierarchies. Conditionalize instead of removing.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
While cgroup writeback support now connects memcg and blkcg so that
writeback IOs are properly attributed and controlled, the IO back
pressure propagation mechanism implemented in balance_dirty_pages()
and its subroutines wasn't aware of cgroup writeback.
Processes belonging to a memcg may have access to only subset of total
memory available in the system and not factoring this into dirty
throttling rendered it completely ineffective for processes under
memcg limits and memcg ended up building a separate ad-hoc degenerate
mechanism directly into vmscan code to limit page dirtying.
The previous patches updated balance_dirty_pages() and its subroutines
so that they can deal with multiple wb_domain's (writeback domains)
and defined per-memcg wb_domain. Processes belonging to a non-root
memcg are bound to two wb_domains, global wb_domain and memcg
wb_domain, and should be throttled according to IO pressures from both
domains. This patch updates dirty throttling code so that it repeats
similar calculations for the two domains - the differences between the
two are few and minor - and applies the lower of the two sets of
resulting constraints.
wb_over_bg_thresh(), which controls when background writeback
terminates, is also updated to consider both global and memcg
wb_domains. It returns true if dirty is over bg_thresh for either
domain.
This makes the dirty throttling mechanism operational for memcg
domains including writeback-bandwidth-proportional dirty page
distribution inside them but the ad-hoc memcg throttling mechanism in
vmscan is still in place. The next patch will rip it out.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The amount of available memory to a memcg wb_domain can change as
memcg configuration changes. A domain's ->dirty_limit exists to
smooth out sudden drops in dirty threshold; however, when a domain's
size actually drops significantly, it hinders the dirty throttling
from adjusting to the new configuration leading to unexpected
behaviors including unnecessary OOM kills.
This patch resolves the issue by adding wb_domain_size_changed() which
resets ->dirty_limit[_tstmp] and making memcg call it on configuration
changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Dirtyable memory is distributed to a wb (bdi_writeback) according to
the relative bandwidth the wb is writing out in the whole system.
This distribution is global - each wb is measured against all other
wb's and gets the proportinately sized portion of the memory in the
whole system.
For cgroup writeback, the amount of dirtyable memory is scoped by
memcg and thus each wb would need to be measured and controlled in its
memcg. IOW, a wb will belong to two writeback domains - the global
and memcg domains.
The previous patches laid the groundwork to support the two wb_domains
and this patch implements memcg wb_domain. memcg->cgwb_domain is
initialized on css online and destroyed on css release,
wb->memcg_completions is added, and __wb_writeout_inc() is updated to
increment completions against both global and memcg wb_domains.
The following patches will update balance_dirty_pages() and its
subroutines to actually consider memcg wb_domain for throttling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
wb_over_bg_thresh() currently uses global_dirty_limits() and
wb_dirty_limit() both of which are wrappers around operations which
take dirty_throttle_control. For cgroup writeback support, the
function will be updated to also consider memcg wb_domains which
requires the context information carried in dirty_throttle_control.
This patch updates wb_over_bg_thresh() so that it uses the underlying
wb_domain aware operations directly and builds the global
dirty_throttle_control in the process.
This patch doesn't introduce any behavioral changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
and rename it to wb_over_bg_thresh(). The function is closely tied to
the dirty throttling mechanism implemented in page-writeback.c. This
relocation will allow future updates necessary for cgroup writeback
support.
While at it, add function comment.
This is pure reorganization and doesn't introduce any behavioral
changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
global_dirty_limits() calculates thresh and bg_thresh (confusingly
called *pdirty and *pbackground in the function) assuming
global_wb_domain; however, cgroup writeback support requires
considering per-memcg wb_domain too.
This patch separates out domain_dirty_limits() which takes
dirty_throttle_control out of global_dirty_limits(). As thresh and
bg_thresh calculation needs the amount of dirtyable memory in the
domain, dirty_throttle_control->avail is added. The new function
calculates the two thresholds and store them directly in the
dirty_throttle_control.
Also, as memcg domains can't follow vm_dirty_bytes and
dirty_background_bytes settings directly. If those are set and
domain_dirty_limits() is invoked for a !global domain, the settings
are translated to ratios by scaling them against globally available
memory. dirty_throttle_control->gdtc is added to enable this when
CONFIG_CGROUP_WRITEBACK.
global_dirty_limits() is now a thin wrapper around
domain_dirty_limits() and balance_dirty_pages() is updated to use the
new function too.
This patch doesn't introduce any behavioral changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently __wb_writeout_inc() and hard_dirty_limit() assume
global_wb_domain; however, cgroup writeback support requires
considering per-memcg wb_domain too.
This patch separates out domain-specific part of __wb_writeout_inc()
into wb_domain_writeout_inc() which takes wb_domain as a parameter and
adds the parameter to hard_dirty_limit(). This will allow these two
functions to handle per-memcg wb_domains.
This patch doesn't introduce any behavioral changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently all dirty throttle operations use global_wb_domain; however,
cgroup writeback support requires considering per-memcg wb_domain too.
This patch adds dirty_throttle_control->dom and updates functions
which are directly using globabl_wb_domain to use it instead.
As this makes global_update_bandwidth() a misnomer, the function is
renamed to domain_update_bandwidth().
This patch doesn't introduce any behavioral changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
wb->completions measures the wb's proportional write bandwidth in
global_wb_domain and thus naturally tied to the wb_domain. This patch
adds dirty_throttle_control->wb_completions which is initialized to
wb->completions by GDTC_INIT() and updates __wb_dirty_limits() to use
it instead of dereferencing wb->completions directly.
This will allow dirty_throttle_control to represent different
wb_domains and the matching wb completions.
This patch doesn't introduce any behavioral changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
wb_position_ratio() is used to calculate pos_ratio, which is used for
two purposes. wb_update_dirty_ratelimit() uses it to adjust
wb->[balanced_]dirty_ratelimit gradually and balance_dirty_pages() to
immediately adjust dirty_ratelimit right before applying it to
determine pause duration.
While wb_update_dirty_ratelimit() is separately rate limited from
balance_dirty_pages(), on the run where the ratelimit is updated, we
end up calculating pos_ratio twice with the same parameters.
This patch adds dirty_throttle_control->pos_ratio.
balance_dirty_pages() calculates it once per run and
wb_update_dirty_ratelimit() uses the value stored in
dirty_throttle_control.
This removes the duplicate calculation and also will help implementing
memcg wb_domain.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
wb_calc_thresh() calculates wb_thresh by scaling thresh according to
the wb's portion in the system-wide write bandwidth. cgroup writeback
support would need to calculate wb_thresh against memcg domain too.
This patch renames wb_calc_thresh() to __wb_calc_thresh() and makes it
take dirty_throttle_control so that the function can later be updated
to calculate against different domains according to
dirty_throttle_control.
wb_calc_thresh() is now a thin wrapper around __wb_calc_thresh().
v2: The original version was incorrectly scaling dtc->dirty instead of
dtc->thresh. This was due to the extremely confusing function and
variable names. Added a rename patch and fixed this one.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
wb_bg_thresh is currently treated as a second-class citizen. It's
only used when BDI_CAP_STRICTLIMIT is set and balance_dirty_pages()
doesn't calculate it unless the cap is set. When the cap is set, the
calculated value is not passed around but instead recalculated
whenever it's used.
wb_position_ratio() calculates it by scaling wb_thresh proportional to
bg_thresh / thresh. wb_update_dirty_ratelimit() uses wb_dirty_limit()
on bg_thresh, which should generally lead to a similar result as the
proportional scaling but can also be way off in the presence of
max/min_ratio settings.
Avoiding wb_bg_thresh calculation saves us one u64 multiplication and
divsion when BDI_CAP_STRICTLIMIT is not set. Given that
balance_dirty_pages() is already ratelimited, this doesn't justify the
incurred extra complexity.
This patch adds wb_bg_thresh to dirty_throttle_control and makes
wb_dirty_limits() always calculate it and updates the users to use the
pre-calculated value.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Dirty throttling implemented in balance_dirty_pages() and its
subroutines makes use of a number of parameters which are passed
around individually. This renders these functions somewhat unwieldy
and makes it difficult to add or change the involved parameters. Also
some functions use different or conflicting naming schemes for the
same parameters making the code confusing to follow.
This patch consolidates the main parameters into struct
dirty_throttle_control so that they can be passed around easily and
adding new paramters isn't painful. This also unifies how a given
parameter is named and accessed. The drawback of using this type of
control structure rather than explicit paramters is that it isn't
immediately obvious which function accesses and modifies what;
however, it's fairly clear that the benefits outweigh in this case.
GDTC_INIT() macro is provided to ease initializing
dirty_throttle_control for the global_wb_domain and
balance_dirty_pages() uses a separate pointer to point to its global
dirty_throttle_control. This is to make it uniform with memcg domain
handling which will be added later.
This patch doesn't introduce any behavioral changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
This patch is a part of the series to define wb_domain which
represents a domain that wb's (bdi_writeback's) belong to and are
measured against each other in. This will enable IO backpressure
propagation for cgroup writeback.
global_dirty_limit exists to regulate the global dirty threshold which
is a property of the wb_domain. This patch moves hard_dirty_limit,
dirty_lock, and update_time into wb_domain.
This is pure reorganization and doesn't introduce any behavioral
changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Dirtyable memory is distributed to a wb (bdi_writeback) according to
the relative bandwidth the wb is writing out in the whole system.
This distribution is global - each wb is measured against all other
wb's and gets the proportinately sized portion of the memory in the
whole system.
For cgroup writeback, the amount of dirtyable memory is scoped by
memcg and thus each wb would need to be measured and controlled in its
memcg. IOW, a wb will belong to two writeback domains - the global
and memcg domains.
Currently, what constitutes the global writeback domain are scattered
across a number of global states. This patch starts collecting them
into struct wb_domain.
* fprop_global which serves as the basis for proportional bandwidth
measurement and its period timer are moved into struct wb_domain.
* global_wb_domain hosts the states for the global domain.
* While at it, flatten wb_writeout_fraction() into its callers. This
thin wrapper doesn't provide any actual benefits while getting in
the way.
This is pure reorganization and doesn't introduce any behavioral
changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
__wb_update_bandwidth() is called from two places -
fs/fs-writeback.c::balance_dirty_pages() and
mm/page-writeback.c::wb_writeback(). The latter updates only the
write bandwidth while the former also deals with the dirty ratelimit.
The two callsites are distinguished by whether @thresh parameter is
zero or not, which is cryptic. In addition, the two files define
their own different versions of wb_update_bandwidth() on top of
__wb_update_bandwidth(), which is confusing to say the least. This
patch cleans up [__]wb_update_bandwidth() in the following ways.
* __wb_update_bandwidth() now takes explicit @update_ratelimit
parameter to gate dirty ratelimit handling.
* mm/page-writeback.c::wb_update_bandwidth() is flattened into its
caller - balance_dirty_pages().
* fs/fs-writeback.c::wb_update_bandwidth() is moved to
mm/page-writeback.c and __wb_update_bandwidth() is made static.
* While at it, add a lockdep assertion to __wb_update_bandwidth().
Except for the lockdep addition, this is pure reorganization and
doesn't introduce any behavioral changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
The function name wb_dirty_limit(), its argument @dirty and the local
variable @wb_dirty are mortally confusing given that the function
calculates per-wb threshold value not dirty pages, especially given
that @dirty and @wb_dirty are used elsewhere for dirty pages.
Let's rename the function to wb_calc_thresh() and wb_dirty to
wb_thresh.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
cpu_possible_mask represents the CPUs which are actually possible
during that boot instance. For systems which don't support CPU
hotplug, this will match cpu_online_mask exactly in most cases. Even
for systems which support CPU hotplug, the number of possible CPU
slots is highly unlikely to diverge greatly from the number of online
CPUs. The only cases where the difference between possible and online
caused problems were when the boot code failed to initialize the
possible mask and left it fully set at NR_CPUS - 1.
As such, most per-cpu constructs allocate for all possible CPUs and
often iterate over the possibles, which also has the benefit of
avoiding the blocking CPU hotplug synchronization.
memcg open codes per-cpu stat counting for mem_cgroup_read_stat() and
mem_cgroup_read_events(), which iterates over online CPUs and handles
CPU hotplug operations explicitly. This complexity doesn't actually
buy anything. Switch to iterating over the possibles and drop the
explicit CPU hotplug handling.
Eventually, we want to convert memcg to use percpu_counter instead of
its own custom implementation which also benefits from quick access
w/o summing for cases where larger error margin is acceptable.
This will allow mem_cgroup_read_stat() to be called from non-sleepable
contexts which will be used by cgroup writeback.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
If the completion of a wb_writeback_work can be waited upon by setting
its ->done to a struct completion and waiting on it; however, for
cgroup writeback support, it's necessary to issue multiple work items
to multiple bdi_writebacks and wait for the completion of all.
This patch implements wb_completion which can wait for multiple work
items and replaces the struct completion with it. It can be defined
using DEFINE_WB_COMPLETION_ONSTACK(), used for multiple work items and
waited for by wb_wait_for_completion().
Nobody currently issues multiple work items and this patch doesn't
introduce any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_start_background_writeback() currently takes @bdi and kicks the
root wb (bdi_writeback). In preparation for cgroup writeback support,
make it take wb instead.
This patch doesn't make any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
writeback_in_progress() currently takes @bdi and returns whether
writeback is in progress on its root wb (bdi_writeback). In
preparation for cgroup writeback support, make it take wb instead.
While at it, make it an inline function.
This patch doesn't make any functional difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
For cgroup writeback support, all bdi-wide operations should be
distributed to all its wb's (bdi_writeback's).
This patch updates laptop_mode_timer_fn() so that it invokes
wb_start_writeback() on all wb's rather than just the root one. As
the intent is writing out all dirty data, there's no reason to split
the number of pages to write.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_start_writeback() is a thin wrapper on top of
__wb_start_writeback() which is used only by laptop_mode_timer_fn().
This patches removes bdi_start_writeback(), renames
__wb_start_writeback() to wb_start_writeback() and makes
laptop_mode_timer_fn() use it instead.
This doesn't cause any functional difference and will ease making
laptop_mode_timer_fn() cgroup writeback aware.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi->min/max_ratio are user-configurable per-bdi knobs which regulate
dirty limit of each bdi. For cgroup writeback, they need to be
further distributed across wb's (bdi_writeback's) belonging to the
configured bdi.
This patch introduces wb_min_max_ratio() which distributes
bdi->min/max_ratio according to a wb's proportion in the total active
bandwidth of its bdi.
v2: Update wb_min_max_ratio() to fix a bug where both min and max were
assigned the min value and avoid calculations when possible.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
bdi_has_dirty_io() used to only reflect whether the root wb
(bdi_writeback) has dirty inodes. For cgroup writeback support, it
needs to take all active wb's into account. If any wb on the bdi has
dirty inodes, bdi_has_dirty_io() should return true.
To achieve that, as inode_wb_list_{move|del}_locked() now keep track
of the dirty state transition of each wb, the number of dirty wbs can
be counted in the bdi; however, bdi is already aggregating
wb->avg_write_bandwidth which can easily be guaranteed to be > 0 when
there are any dirty inodes by ensuring wb->avg_write_bandwidth can't
dip below 1. bdi_has_dirty_io() can simply test whether
bdi->tot_write_bandwidth is zero or not.
While this bumps the value of wb->avg_write_bandwidth to one when it
used to be zero, this shouldn't cause any meaningful behavior
difference.
bdi_has_dirty_io() is made an inline function which tests whether
->tot_write_bandwidth is non-zero. Also, WARN_ON_ONCE()'s on its
value are added to inode_wb_list_{move|del}_locked().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
cgroup writeback support needs to keep track of the sum of
avg_write_bandwidth of all wb's (bdi_writeback's) with dirty inodes to
distribute write workload. This patch adds bdi->tot_write_bandwidth
and updates inode_wb_list_move_locked(), inode_wb_list_del_locked()
and wb_update_write_bandwidth() to adjust it as wb's gain and lose
dirty inodes and its avg_write_bandwidth gets updated.
As the update events are not synchronized with each other,
bdi->tot_write_bandwidth is an atomic_long_t.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, wb_has_dirty_io() determines whether a wb (bdi_writeback)
has any dirty inode by testing all three IO lists on each invocation
without actively keeping track. For cgroup writeback support, a
single bdi will host multiple wb's each of which will host dirty
inodes separately and we'll need to make bdi_has_dirty_io(), which
currently only represents the root wb, aggregate has_dirty_io from all
member wb's, which requires tracking transitions in has_dirty_io state
on each wb.
This patch introduces inode_wb_list_{move|del}_locked() to consolidate
IO list operations leaving queue_io() the only other function which
directly manipulates IO lists (via move_expired_inodes()). All three
functions are updated to call wb_io_lists_[de]populated() which keep
track of whether the wb has dirty inodes or not and record it using
the new WB_has_dirty_io flag. inode_wb_list_moved_locked()'s return
value indicates whether the wb had no dirty inodes before.
mark_inode_dirty() is restructured so that the return value of
inode_wb_list_move_locked() can be used for deciding whether to wake
up the wb.
While at it, change {bdi|wb}_has_dirty_io()'s return values to bool.
These functions were returning 0 and 1 before. Also, add a comment
explaining the synchronization of wb_state flags.
v2: Updated to accommodate b_dirty_time.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
In several places, bdi_congested() and its wrappers are used to
determine whether more IOs should be issued. With cgroup writeback
support, this question can't be answered solely based on the bdi
(backing_dev_info). It's dependent on whether the filesystem and bdi
support cgroup writeback and the blkcg the inode is associated with.
This patch implements inode_congested() and its wrappers which take
@inode and determines the congestion state considering cgroup
writeback. The new functions replace bdi_*congested() calls in places
where the query is about specific inode and task.
There are several filesystem users which also fit this criteria but
they should be updated when each filesystem implements cgroup
writeback support.
v2: Now that a given inode is associated with only one wb, congestion
state can be determined independent from the asking task. Drop
@task. Spotted by Vivek. Also, converted to take @inode instead
of @mapping and renamed to inode_congested().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, all congestion functions take bdi (backing_dev_info) and
always operate on the root wb (bdi->wb) and the congestion state from
the block layer is propagated only for the root blkcg. This patch
introduces {set|clear}_wb_congested() and wb_congested() which take a
bdi_writeback_congested and bdi_writeback respectively. The bdi
counteparts are now wrappers invoking the wb based functions on
@bdi->wb.
While converting clear_bdi_congested() to clear_wb_congested(), the
local variable declaration order between @wqh and @bit is swapped for
cosmetic reason.
This patch just adds the new wb based functions. The following
patches will apply them.
v2: Updated for bdi_writeback_congested.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, balance_dirty_pages() always work on bdi->wb. This patch
updates it to work on the wb (bdi_writeback) matching memcg and blkcg
of the current task as that's what the inode is being dirtied against.
balance_dirty_pages_ratelimited() now pins the current wb and passes
it to balance_dirty_pages().
As no filesystem has FS_CGROUP_WRITEBACK yet, this doesn't lead to
visible behavior differences.
v2: Updated for per-inode wb association.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Until now, all WB_* stats were accounted against the root wb
(bdi_writeback), now that multiple wb (bdi_writeback) support is in
place, let's attributes the stats to the respective per-cgroup wb's.
As no filesystem has FS_CGROUP_WRITEBACK yet, this doesn't lead to
visible behavior differences.
v2: Updated for per-inode wb association.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
For the planned cgroup writeback support, on each bdi
(backing_dev_info), each memcg will be served by a separate wb
(bdi_writeback). This patch updates bdi so that a bdi can host
multiple wbs (bdi_writebacks).
On the default hierarchy, blkcg implicitly enables memcg. This allows
using memcg's page ownership for attributing writeback IOs, and every
memcg - blkcg combination can be served by its own wb by assigning a
dedicated wb to each memcg. This means that there may be multiple
wb's of a bdi mapped to the same blkcg. As congested state is per
blkcg - bdi combination, those wb's should share the same congested
state. This is achieved by tracking congested state via
bdi_writeback_congested structs which are keyed by blkcg.
bdi->wb remains unchanged and will keep serving the root cgroup.
cgwb's (cgroup wb's) for non-root cgroups are created on-demand or
looked up while dirtying an inode according to the memcg of the page
being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree
by its memcg id. Once an inode is associated with its wb, it can be
retrieved using inode_to_wb().
Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all
pages will keep being associated with bdi->wb.
v3: inode_attach_wb() in account_page_dirtied() moved inside
mapping_cap_account_dirty() block where it's known to be !NULL.
Also, an unnecessary NULL check before kfree() removed. Both
detected by the kbuild bot.
v2: Updated so that wb association is per inode and wb is per memcg
rather than blkcg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a wb's (bdi_writeback) congestion state is carried in its
->state field; however, cgroup writeback support will require multiple
wb's sharing the same congestion state. This patch separates out
congestion state into its own struct - struct bdi_writeback_congested.
A new field wb field, wb_congested, points to its associated congested
struct. The default wb, bdi->wb, always points to bdi->wb_congested.
While this patch adds a layer of indirection, it doesn't introduce any
behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
wb_init() currently always uses GFP_KERNEL but the planned cgroup
writeback support needs using other allocation masks. Add @gfp to
wb_init().
This patch doesn't introduce any behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Now that bdi definitions are moved to backing-dev-defs.h,
backing-dev.h can include blkdev.h and inline inode_to_bdi() without
worrying about introducing circular include dependency. The function
gets called from hot paths and fairly trivial.
This patch makes inode_to_bdi() and sb_is_blkdev_sb() that the
function calls inline. blockdev_superblock and noop_backing_dev_info
are EXPORT_GPL'd to allow the inline functions to be used from
modules.
While at it, make sb_is_blkdev_sb() return bool instead of int.
v2: Fixed typo in description as suggested by Jan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
With the planned cgroup writeback support, backing-dev related
declarations will be more widely used across block and cgroup;
unfortunately, including backing-dev.h from include/linux/blkdev.h
makes cyclic include dependency quite likely.
This patch separates out backing-dev-defs.h which only has the
essential definitions and updates blkdev.h to include it. c files
which need access to more backing-dev details now include
backing-dev.h directly. This takes backing-dev.h off the common
include dependency chain making it a lot easier to use it across block
and cgroup.
v2: fs/fat build failure fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Move wb_shutdown(), bdi_register(), bdi_register_dev(),
bdi_prune_sb(), bdi_remove_from_list() and bdi_unregister() so that
init / exit functions are grouped together. This will make updating
init / exit paths for cgroup writeback support easier.
This is pure source file reorganization.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback)
and the role of the separation is unclear. For cgroup support for
writeback IOs, a bdi will be updated to host multiple wb's where each
wb serves writeback IOs of a different cgroup on the bdi. To achieve
that, a wb should carry all states necessary for servicing writeback
IOs for a cgroup independently.
This patch moves bdi->wb_lock and ->worklist into wb.
* The lock protects bdi->worklist and bdi->wb.dwork scheduling. While
moving, rename it to wb->work_lock as wb->wb_lock is confusing.
Also, move wb->dwork downwards so that it's colocated with the new
->work_lock and ->work_list fields.
* bdi_writeback_workfn() -> wb_workfn()
bdi_wakeup_thread_delayed(bdi) -> wb_wakeup_delayed(wb)
bdi_wakeup_thread(bdi) -> wb_wakeup(wb)
bdi_queue_work(bdi, ...) -> wb_queue_work(wb, ...)
__bdi_start_writeback(bdi, ...) -> __wb_start_writeback(wb, ...)
get_next_work_item(bdi) -> get_next_work_item(wb)
* bdi_wb_shutdown() is renamed to wb_shutdown() and now takes @wb.
The function contained parts which belong to the containing bdi
rather than the wb itself - testing cap_writeback_dirty and
bdi_remove_from_list() invocation. Those are moved to
bdi_unregister().
* bdi_wb_{init|exit}() are renamed to wb_{init|exit}().
Initializations of the moved bdi->wb_lock and ->work_list are
relocated from bdi_init() to wb_init().
* As there's still only one bdi_writeback per backing_dev_info, all
uses of bdi->state are mechanically replaced with bdi->wb.state
introducing no behavior changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
Writeback operations will now be per wb (bdi_writeback) instead of
bdi. Replace the relevant bdi references in symbol names and comments
with wb. This patch is purely cosmetic and doesn't make any
functional changes.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Currently, a bdi (backing_dev_info) embeds single wb (bdi_writeback)
and the role of the separation is unclear. For cgroup support for
writeback IOs, a bdi will be updated to host multiple wb's where each
wb serves writeback IOs of a different cgroup on the bdi. To achieve
that, a wb should carry all states necessary for servicing writeback
IOs for a cgroup independently.
This patch moves bandwidth related fields from backing_dev_info into
bdi_writeback.
* The moved fields are: bw_time_stamp, dirtied_stamp, written_stamp,
write_bandwidth, avg_write_bandwidth, dirty_ratelimit,
balanced_dirty_ratelimit, completions and dirty_exceeded.
* writeback_chunk_size() and over_bground_thresh() now take @wb
instead of @bdi.
* bdi_writeout_fraction(bdi, ...) -> wb_writeout_fraction(wb, ...)
bdi_dirty_limit(bdi, ...) -> wb_dirty_limit(wb, ...)
bdi_position_ration(bdi, ...) -> wb_position_ratio(wb, ...)
bdi_update_writebandwidth(bdi, ...) -> wb_update_write_bandwidth(wb, ...)
[__]bdi_update_bandwidth(bdi, ...) -> [__]wb_update_bandwidth(wb, ...)
bdi_{max|min}_pause(bdi, ...) -> wb_{max|min}_pause(wb, ...)
bdi_dirty_limits(bdi, ...) -> wb_dirty_limits(wb, ...)
* Init/exits of the relocated fields are moved to bdi_wb_init/exit()
respectively. Note that explicit zeroing is dropped in the process
as wb's are cleared in entirety anyway.
* As there's still only one bdi_writeback per backing_dev_info, all
uses of bdi->stat[] are mechanically replaced with bdi->wb.stat[]
introducing no behavior changes.
v2: Typo in description fixed as suggested by Jan.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>