VPE is a block which consists of a single memory to memory path which
can perform chrominance up/down sampling, de-interlacing, scaling, and
color space conversion of raster or tiled YUV420 coplanar, YUV422
coplanar or YUV422 interleaved video formats.
We create a mem2mem driver based primarily on the mem2mem-testdev
example. The de-interlacer, scaler and color space converter are all
bypassed for now to keep the driver simple. Chroma up/down sampler
blocks are implemented, so conversion beteen different YUV formats is
possible.
Each mem2mem context allocates a buffer for VPE MMR values which it will
use when it gets access to the VPE HW via the mem2mem queue, it also
allocates a VPDMA descriptor list to which configuration and data
descriptors are added.
Based on the information received via v4l2 ioctls for the source and
destination queues, the driver configures the values for the MMRs, and
stores them in the buffer. There are also some VPDMA parameters like
frame start and line mode which needs to be configured, these are
configured by direct register writes via the VPDMA helper functions.
The driver's device_run() mem2mem op will add each descriptor based on
how the source and destination queues are set up for the given ctx, once
the list is prepared, it's submitted to VPDMA, these descriptors when
parsed by VPDMA will upload MMR registers, start DMA of video buffers on
the various input and output clients/ports.
When the list is parsed completely(and the DMAs on all the output ports
done), an interrupt is generated which we use to notify that the source
and destination buffers are done. The rest of the driver is quite
similar to other mem2mem drivers, we use the multiplane v4l2 ioctls as
the HW support coplanar formats.
Signed-off-by: Archit Taneja <archit@ti.com>
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Kamil Debski <k.debski@samsung.com>
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
The VSP1 is a video processing engine that includes a blender, scalers,
filters and statistics computation. Configurable data path routing logic
allows ordering the internal blocks in a flexible way.
Due to the configurable nature of the pipeline the driver implements the
media controller API and doesn't use the V4L2 mem-to-mem framework, even
though the device usually operates in memory to memory mode.
Only the read pixel formatters, up/down scalers, write pixel formatters
and LCDC interface are supported at this stage.
Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
Acked-by: Sakari Ailus <sakari.ailus@iki.fi>
Signed-off-by: Mauro Carvalho Chehab <m.chehab@samsung.com>
The s5p-fimc directory now contains drivers for multiple IP blocks
found in multiple Samsung application processors. This includes FIMC
(CAMIF), MIPI CSIS and FIMC LITE. FIMC-IS (Imaging Subsystem) driver
is going to be put into same directory. Hence we rename it to
exynos4-is as s5p-fimc was only relevant for early version of this
driver, when it only supported FIMC IP block.
The imaging subsystem drivers for Exynos4 SoC series and S5PV210 will
be included in drivers/media/platform/exynos4-is directory, with some
modules shared with exynos5 series, while the rest of exynos5 specific
modules will find their home in drivers/media/platform/exynos5-is.
Signed-off-by: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Video Engine Unit (VEU) is an IP block, found in multiple SuperH and ARM-
based sh-mobile and r-mobile SoCs, capable of processing video data. It
can perform colour-space conversion, scaling and several filtering
transformations. This patch adds an initial implementation of a mem2mem
V4L2 driver for VEU. So far only conversion from NV12 to RGB565 is
supported. Further functionality shall be added in the future.
This driver is based on a VEU vidix driver by Magnus Damm.
Signed-off-by: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
Acked-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
This patch adds V4L2 driver for Samsung S3C24XX/S3C64XX SoC series
camera interface. The driver exposes a subdev device node for CAMIF
pixel resolution and crop control and two video capture nodes - for
the "codec" and "preview" data paths. It has been tested on Mini2440
(s3c2440) and Mini6410 (s3c6410) board with gstreamer and mplayer.
Signed-off-by: Sylwester Nawrocki <sylvester.nawrocki@gmail.com>
Signed-off-by: Tomasz Figa <tomasz.figa@gmail.com>
Signed-off-by: Andrey Gusakov <dron0gus@gmail.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
-EMISSINGMAKEFILE
Without a Makefile, the driver will not compile, causing
breakages for arm exynos5 sub-architecture.
Cc: Shaik Ameer Basha <shaik.ameer@samsung.com>
Cc: Sungchun Kang <sungchun.kang@samsung.com>
Cc: "Seung-Woo Kim/Mobile S/W Platform Lab(DMC)/E4" <sw0312.kim@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Sylwester Nawrocki <s.nawrocki@samsung.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
drivers/built-in.o: In function `imx074_s_power':
imx074.c:(.text+0x1de93d0): undefined reference to `soc_camera_power_on'
imx074.c:(.text+0x1de93f3): undefined reference to `soc_camera_power_off'
drivers/built-in.o: In function `mt9m001_s_mbus_config':
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
A trivial fix so that vino can find the saa7191.h header.
[mchehab@redhat.com: Fix merge conflict]
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
That helps to better organize the soc_camera items.
While here, cleanup Makefiles, removing uneeded include dirs.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
The remaining drivers are mostly platform drivers. Name the
dir to reflect it.
It makes sense to latter break it into a few other dirs.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>