Scott reports that when the new GSS krb5 Kunit tests are built as
a separate module and loaded, the RFC 6803 and RFC 8009 checksum
tests all fail, even though they pass when run under kunit.py.
It appears that passing a buffer backed by static const memory to
gss_krb5_checksum() is a problem. A printk in checksum_case() shows
the correct plaintext, but by the time the buffer has been converted
to a scatterlist and arrives at checksummer(), it contains all
zeroes.
Replacing this buffer with one that is dynamically allocated fixes
the issue.
Reported-by: Scott Mayhew <smayhew@redhat.com>
Fixes: 02142b2ca8 ("SUNRPC: Add checksum KUnit tests for the RFC 6803 encryption types")
Tested-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The usage_data[] array in rfc6803_encrypt_case() is uninitialised, so clear
it as it may cause the tests to fail otherwise.
Fixes: b958cff6b2 ("SUNRPC: Add encryption KUnit tests for the RFC 6803 encryption types")
Link: https://lore.kernel.org/r/380323.1681314997@warthog.procyon.org.uk/
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Chuck Lever <chuck.lever@oracle.com>
cc: Scott Mayhew <smayhew@redhat.com>
cc: Herbert Xu <herbert@gondor.apana.org.au>
cc: linux-nfs@vger.kernel.org
cc: linux-crypto@vger.kernel.org
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Unable to handle kernel paging request at virtual address 73657420 when execute
[73657420] *pgd=00000000
Internal error: Oops: 80000005 [#1] ARM
CPU: 0 PID: 1 Comm: swapper Tainted: G N 6.2.0-rc7-00133-g373f26a81164-dirty #9
Hardware name: Generic DT based system
PC is at 0x73657420
LR is at kunit_run_tests+0x3e0/0x5f4
On x86 with GCC 12, the missing array terminators did not seem to
matter. Other platforms appear to be more picky.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Allow the new GSS Kerberos encryption type test suites to run
outside of the kunit infrastructure. Replace the assertion that
fires when lookup_enctype() so that the case is skipped instead of
failing outright.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
With the KUnit infrastructure recently added, we are free to define
other unit tests particular to our implementation. As an example,
I've added a self-test that encrypts then decrypts a string, and
checks the result.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
RFC 8009 provides sample encryption results. Add KUnit tests to
ensure our implementation derives the expected results for the
provided sample input.
I hate how large this test is, but using non-standard key usage
values means rfc8009_encrypt_case() can't simply reuse ->import_ctx
to allocate and key its ciphers; and the test provides its own
confounders, which means krb5_etm_encrypt() can't be used directly.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
RFC 8009 provides sample checksum results. Add KUnit tests to ensure
our implementation derives the expected results for the provided
sample input.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
RFC 8009 provides sample key derivation results, so Kunit tests are
added to ensure our implementation derives the expected keys for the
provided sample input.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The Camellia enctypes use a new KDF, so add some tests to ensure it
is working properly.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Add Kunit tests for ENCTYPE_AES128_CTS_HMAC_SHA1_96. The test
vectors come from RFC 3962 Appendix B.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
RFC 3961 Appendix A provides tests for the KDF specified in that
document as well as other parts of Kerberos. The other three usage
scenarios in Section 10 are not implemented by the Linux kernel's
RPCSEC GSS Kerberos 5 mechanism, so tests are not added for those.
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The Kerberos RFCs provide test vectors to verify the operation of
an implementation. Introduce a KUnit test framework to exercise the
Linux kernel's implementation of Kerberos.
Start with test cases for the RFC 3961-defined n-fold function. The
sample vectors for that are found in RFC 3961 Section 10.
Run the GSS Kerberos 5 mechanism's unit tests with this command:
$ ./tools/testing/kunit/kunit.py run \
--kunitconfig ./net/sunrpc/.kunitconfig
Tested-by: Scott Mayhew <smayhew@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>