-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYCegywAKCRCRxhvAZXjc
ouJ6AQDlf+7jCQlQdeKKoN9QDFfMzG1ooemat36EpRRTONaGuAD8D9A4sUsG4+5f
4IU5Lj9oY4DEmF8HenbWK2ZHsesL2Qg=
=yPaw
-----END PGP SIGNATURE-----
Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull idmapped mounts from Christian Brauner:
"This introduces idmapped mounts which has been in the making for some
time. Simply put, different mounts can expose the same file or
directory with different ownership. This initial implementation comes
with ports for fat, ext4 and with Christoph's port for xfs with more
filesystems being actively worked on by independent people and
maintainers.
Idmapping mounts handle a wide range of long standing use-cases. Here
are just a few:
- Idmapped mounts make it possible to easily share files between
multiple users or multiple machines especially in complex
scenarios. For example, idmapped mounts will be used in the
implementation of portable home directories in
systemd-homed.service(8) where they allow users to move their home
directory to an external storage device and use it on multiple
computers where they are assigned different uids and gids. This
effectively makes it possible to assign random uids and gids at
login time.
- It is possible to share files from the host with unprivileged
containers without having to change ownership permanently through
chown(2).
- It is possible to idmap a container's rootfs and without having to
mangle every file. For example, Chromebooks use it to share the
user's Download folder with their unprivileged containers in their
Linux subsystem.
- It is possible to share files between containers with
non-overlapping idmappings.
- Filesystem that lack a proper concept of ownership such as fat can
use idmapped mounts to implement discretionary access (DAC)
permission checking.
- They allow users to efficiently changing ownership on a per-mount
basis without having to (recursively) chown(2) all files. In
contrast to chown (2) changing ownership of large sets of files is
instantenous with idmapped mounts. This is especially useful when
ownership of a whole root filesystem of a virtual machine or
container is changed. With idmapped mounts a single syscall
mount_setattr syscall will be sufficient to change the ownership of
all files.
- Idmapped mounts always take the current ownership into account as
idmappings specify what a given uid or gid is supposed to be mapped
to. This contrasts with the chown(2) syscall which cannot by itself
take the current ownership of the files it changes into account. It
simply changes the ownership to the specified uid and gid. This is
especially problematic when recursively chown(2)ing a large set of
files which is commong with the aforementioned portable home
directory and container and vm scenario.
- Idmapped mounts allow to change ownership locally, restricting it
to specific mounts, and temporarily as the ownership changes only
apply as long as the mount exists.
Several userspace projects have either already put up patches and
pull-requests for this feature or will do so should you decide to pull
this:
- systemd: In a wide variety of scenarios but especially right away
in their implementation of portable home directories.
https://systemd.io/HOME_DIRECTORY/
- container runtimes: containerd, runC, LXD:To share data between
host and unprivileged containers, unprivileged and privileged
containers, etc. The pull request for idmapped mounts support in
containerd, the default Kubernetes runtime is already up for quite
a while now: https://github.com/containerd/containerd/pull/4734
- The virtio-fs developers and several users have expressed interest
in using this feature with virtual machines once virtio-fs is
ported.
- ChromeOS: Sharing host-directories with unprivileged containers.
I've tightly synced with all those projects and all of those listed
here have also expressed their need/desire for this feature on the
mailing list. For more info on how people use this there's a bunch of
talks about this too. Here's just two recent ones:
https://www.cncf.io/wp-content/uploads/2020/12/Rootless-Containers-in-Gitpod.pdfhttps://fosdem.org/2021/schedule/event/containers_idmap/
This comes with an extensive xfstests suite covering both ext4 and
xfs:
https://git.kernel.org/brauner/xfstests-dev/h/idmapped_mounts
It covers truncation, creation, opening, xattrs, vfscaps, setid
execution, setgid inheritance and more both with idmapped and
non-idmapped mounts. It already helped to discover an unrelated xfs
setgid inheritance bug which has since been fixed in mainline. It will
be sent for inclusion with the xfstests project should you decide to
merge this.
In order to support per-mount idmappings vfsmounts are marked with
user namespaces. The idmapping of the user namespace will be used to
map the ids of vfs objects when they are accessed through that mount.
By default all vfsmounts are marked with the initial user namespace.
The initial user namespace is used to indicate that a mount is not
idmapped. All operations behave as before and this is verified in the
testsuite.
Based on prior discussions we want to attach the whole user namespace
and not just a dedicated idmapping struct. This allows us to reuse all
the helpers that already exist for dealing with idmappings instead of
introducing a whole new range of helpers. In addition, if we decide in
the future that we are confident enough to enable unprivileged users
to setup idmapped mounts the permission checking can take into account
whether the caller is privileged in the user namespace the mount is
currently marked with.
The user namespace the mount will be marked with can be specified by
passing a file descriptor refering to the user namespace as an
argument to the new mount_setattr() syscall together with the new
MOUNT_ATTR_IDMAP flag. The system call follows the openat2() pattern
of extensibility.
The following conditions must be met in order to create an idmapped
mount:
- The caller must currently have the CAP_SYS_ADMIN capability in the
user namespace the underlying filesystem has been mounted in.
- The underlying filesystem must support idmapped mounts.
- The mount must not already be idmapped. This also implies that the
idmapping of a mount cannot be altered once it has been idmapped.
- The mount must be a detached/anonymous mount, i.e. it must have
been created by calling open_tree() with the OPEN_TREE_CLONE flag
and it must not already have been visible in the filesystem.
The last two points guarantee easier semantics for userspace and the
kernel and make the implementation significantly simpler.
By default vfsmounts are marked with the initial user namespace and no
behavioral or performance changes are observed.
The manpage with a detailed description can be found here:
1d7b902e28
In order to support idmapped mounts, filesystems need to be changed
and mark themselves with the FS_ALLOW_IDMAP flag in fs_flags. The
patches to convert individual filesystem are not very large or
complicated overall as can be seen from the included fat, ext4, and
xfs ports. Patches for other filesystems are actively worked on and
will be sent out separately. The xfstestsuite can be used to verify
that port has been done correctly.
The mount_setattr() syscall is motivated independent of the idmapped
mounts patches and it's been around since July 2019. One of the most
valuable features of the new mount api is the ability to perform
mounts based on file descriptors only.
Together with the lookup restrictions available in the openat2()
RESOLVE_* flag namespace which we added in v5.6 this is the first time
we are close to hardened and race-free (e.g. symlinks) mounting and
path resolution.
While userspace has started porting to the new mount api to mount
proper filesystems and create new bind-mounts it is currently not
possible to change mount options of an already existing bind mount in
the new mount api since the mount_setattr() syscall is missing.
With the addition of the mount_setattr() syscall we remove this last
restriction and userspace can now fully port to the new mount api,
covering every use-case the old mount api could. We also add the
crucial ability to recursively change mount options for a whole mount
tree, both removing and adding mount options at the same time. This
syscall has been requested multiple times by various people and
projects.
There is a simple tool available at
https://github.com/brauner/mount-idmapped
that allows to create idmapped mounts so people can play with this
patch series. I'll add support for the regular mount binary should you
decide to pull this in the following weeks:
Here's an example to a simple idmapped mount of another user's home
directory:
u1001@f2-vm:/$ sudo ./mount --idmap both:1000:1001:1 /home/ubuntu/ /mnt
u1001@f2-vm:/$ ls -al /home/ubuntu/
total 28
drwxr-xr-x 2 ubuntu ubuntu 4096 Oct 28 22:07 .
drwxr-xr-x 4 root root 4096 Oct 28 04:00 ..
-rw------- 1 ubuntu ubuntu 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 ubuntu ubuntu 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 ubuntu ubuntu 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 ubuntu ubuntu 807 Feb 25 2020 .profile
-rw-r--r-- 1 ubuntu ubuntu 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 ubuntu ubuntu 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ ls -al /mnt/
total 28
drwxr-xr-x 2 u1001 u1001 4096 Oct 28 22:07 .
drwxr-xr-x 29 root root 4096 Oct 28 22:01 ..
-rw------- 1 u1001 u1001 3154 Oct 28 22:12 .bash_history
-rw-r--r-- 1 u1001 u1001 220 Feb 25 2020 .bash_logout
-rw-r--r-- 1 u1001 u1001 3771 Feb 25 2020 .bashrc
-rw-r--r-- 1 u1001 u1001 807 Feb 25 2020 .profile
-rw-r--r-- 1 u1001 u1001 0 Oct 16 16:11 .sudo_as_admin_successful
-rw------- 1 u1001 u1001 1144 Oct 28 00:43 .viminfo
u1001@f2-vm:/$ touch /mnt/my-file
u1001@f2-vm:/$ setfacl -m u:1001:rwx /mnt/my-file
u1001@f2-vm:/$ sudo setcap -n 1001 cap_net_raw+ep /mnt/my-file
u1001@f2-vm:/$ ls -al /mnt/my-file
-rw-rwxr--+ 1 u1001 u1001 0 Oct 28 22:14 /mnt/my-file
u1001@f2-vm:/$ ls -al /home/ubuntu/my-file
-rw-rwxr--+ 1 ubuntu ubuntu 0 Oct 28 22:14 /home/ubuntu/my-file
u1001@f2-vm:/$ getfacl /mnt/my-file
getfacl: Removing leading '/' from absolute path names
# file: mnt/my-file
# owner: u1001
# group: u1001
user::rw-
user:u1001:rwx
group::rw-
mask::rwx
other::r--
u1001@f2-vm:/$ getfacl /home/ubuntu/my-file
getfacl: Removing leading '/' from absolute path names
# file: home/ubuntu/my-file
# owner: ubuntu
# group: ubuntu
user::rw-
user:ubuntu:rwx
group::rw-
mask::rwx
other::r--"
* tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: (41 commits)
xfs: remove the possibly unused mp variable in xfs_file_compat_ioctl
xfs: support idmapped mounts
ext4: support idmapped mounts
fat: handle idmapped mounts
tests: add mount_setattr() selftests
fs: introduce MOUNT_ATTR_IDMAP
fs: add mount_setattr()
fs: add attr_flags_to_mnt_flags helper
fs: split out functions to hold writers
namespace: only take read lock in do_reconfigure_mnt()
mount: make {lock,unlock}_mount_hash() static
namespace: take lock_mount_hash() directly when changing flags
nfs: do not export idmapped mounts
overlayfs: do not mount on top of idmapped mounts
ecryptfs: do not mount on top of idmapped mounts
ima: handle idmapped mounts
apparmor: handle idmapped mounts
fs: make helpers idmap mount aware
exec: handle idmapped mounts
would_dump: handle idmapped mounts
...
Collect some nfsd stats per export in addition to the global stats.
A new nfsdfs export_stats file is created. It uses the same ops as the
exports file to iterate the export entries and we use the file's name to
determine the reported info per export. For example:
$ cat /proc/fs/nfsd/export_stats
# Version 1.1
# Path Client Start-time
# Stats
/test localhost 92
fh_stale: 0
io_read: 9
io_write: 1
Every export entry reports the start time when stats collection
started, so stats collecting scripts can know if stats where reset
between samples.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
nfsd stats counters can be updated by concurrent nfsd threads without any
protection.
Convert some nfsd_stats and nfsd_net struct members to use percpu counters.
The longest_chain* members of struct nfsd_net remain unprotected.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The various vfs_*() helpers are called by filesystems or by the vfs
itself to perform core operations such as create, link, mkdir, mknod, rename,
rmdir, tmpfile and unlink. Enable them to handle idmapped mounts. If the
inode is accessed through an idmapped mount map it into the
mount's user namespace and pass it down. Afterwards the checks and
operations are identical to non-idmapped mounts. If the initial user
namespace is passed nothing changes so non-idmapped mounts will see
identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-15-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
In order to handle idmapped mounts we will extend the vfs rename helper
to take two new arguments in follow up patches. Since this operations
already takes a bunch of arguments add a simple struct renamedata and
make the current helper use it before we extend it.
Link: https://lore.kernel.org/r/20210121131959.646623-14-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When interacting with extended attributes the vfs verifies that the
caller is privileged over the inode with which the extended attribute is
associated. For posix access and posix default extended attributes a uid
or gid can be stored on-disk. Let the functions handle posix extended
attributes on idmapped mounts. If the inode is accessed through an
idmapped mount we need to map it according to the mount's user
namespace. Afterwards the checks are identical to non-idmapped mounts.
This has no effect for e.g. security xattrs since they don't store uids
or gids and don't perform permission checks on them like posix acls do.
Link: https://lore.kernel.org/r/20210121131959.646623-10-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Signed-off-by: Tycho Andersen <tycho@tycho.pizza>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
When file attributes are changed most filesystems rely on the
setattr_prepare(), setattr_copy(), and notify_change() helpers for
initialization and permission checking. Let them handle idmapped mounts.
If the inode is accessed through an idmapped mount map it into the
mount's user namespace. Afterwards the checks are identical to
non-idmapped mounts. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Helpers that perform checks on the ia_uid and ia_gid fields in struct
iattr assume that ia_uid and ia_gid are intended values and have already
been mapped correctly at the userspace-kernelspace boundary as we
already do today. If the initial user namespace is passed nothing
changes so non-idmapped mounts will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-8-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
The two helpers inode_permission() and generic_permission() are used by
the vfs to perform basic permission checking by verifying that the
caller is privileged over an inode. In order to handle idmapped mounts
we extend the two helpers with an additional user namespace argument.
On idmapped mounts the two helpers will make sure to map the inode
according to the mount's user namespace and then peform identical
permission checks to inode_permission() and generic_permission(). If the
initial user namespace is passed nothing changes so non-idmapped mounts
will see identical behavior as before.
Link: https://lore.kernel.org/r/20210121131959.646623-6-christian.brauner@ubuntu.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Howells <dhowells@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: linux-fsdevel@vger.kernel.org
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: James Morris <jamorris@linux.microsoft.com>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Don't set PF_LOCAL_THROTTLE on remote filesystems like NFS, since they
aren't expected to ever be subject to double buffering.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
It's not uncommon for some workloads to do a bunch of I/O to a file and
delete it just afterward. If knfsd has a cached open file however, then
the file may still be open when the dentry is unlinked. If the
underlying filesystem is nfs, then that could trigger it to do a
sillyrename.
On a REMOVE or RENAME scan the nfsd_file cache for open files that
correspond to the inode, and proactively unhash and put their
references. This should prevent any delete-on-last-close activity from
occurring, solely due to knfsd's open file cache.
This must be done synchronously though so we use the variants that call
flush_delayed_fput. There are deadlock possibilities if you call
flush_delayed_fput while holding locks, however. In the case of
nfsd_rename, we don't even do the lookups of the dentries to be renamed
until we've locked for rename.
Once we've figured out what the target dentry is for a rename, check to
see whether there are cached open files associated with it. If there
are, then unwind all of the locking, close them all, and then reattempt
the rename.
None of this is really necessary for "typical" filesystems though. It's
mostly of use for NFS, so declare a new export op flag and use that to
determine whether to close the files beforehand.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: Lance Shelton <lance.shelton@hammerspace.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Squelch some sparse warnings:
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2264:13: warning: incorrect type in assignment (different base types)
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2264:13: expected int err
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2264:13: got restricted __be32
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2266:24: warning: incorrect type in return expression (different base types)
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2266:24: expected restricted __be32
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2266:24: got int err
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2288:13: warning: incorrect type in assignment (different base types)
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2288:13: expected int err
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2288:13: got restricted __be32
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2290:24: warning: incorrect type in return expression (different base types)
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2290:24: expected restricted __be32
/home/cel/src/linux/linux/fs/nfsd/vfs.c:2290:24: got int err
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Since the NFSv4.2 extended attributes extension defines 3 new access
bits for xattr operations, take them in to account when validating
what the client is asking for, and when checking permissions.
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
This adds the filehandle based functions for the xattr operations
that call in to the vfs layer to do the actual work.
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
[ cel: address checkpatch.pl complaint ]
Signed-off-by: Chuck Lever <chuck.lever@oracle.com>
The server is failing to apply the umask when creating new objects on
filesystems without ACL support.
To reproduce this, you need to use NFSv4.2 and a client and server
recent enough to support umask, and you need to export a filesystem that
lacks ACL support (for example, ext4 with the "noacl" mount option).
Filesystems with ACL support are expected to take care of the umask
themselves (usually by calling posix_acl_create).
For filesystems without ACL support, this is up to the caller of
vfs_create(), vfs_mknod(), or vfs_mkdir().
Reported-by: Elliott Mitchell <ehem+debian@m5p.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Tested-by: Salvatore Bonaccorso <carnil@debian.org>
Fixes: 47057abde5 ("nfsd: add support for the umask attribute")
Cc: stable@vger.kernel.org
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
PF_LESS_THROTTLE exists for loop-back nfsd (and a similar need in the
loop block driver and callers of prctl(PR_SET_IO_FLUSHER)), where a
daemon needs to write to one bdi (the final bdi) in order to free up
writes queued to another bdi (the client bdi).
The daemon sets PF_LESS_THROTTLE and gets a larger allowance of dirty
pages, so that it can still dirty pages after other processses have been
throttled. The purpose of this is to avoid deadlock that happen when
the PF_LESS_THROTTLE process must write for any dirty pages to be freed,
but it is being thottled and cannot write.
This approach was designed when all threads were blocked equally,
independently on which device they were writing to, or how fast it was.
Since that time the writeback algorithm has changed substantially with
different threads getting different allowances based on non-trivial
heuristics. This means the simple "add 25%" heuristic is no longer
reliable.
The important issue is not that the daemon needs a *larger* dirty page
allowance, but that it needs a *private* dirty page allowance, so that
dirty pages for the "client" bdi that it is helping to clear (the bdi
for an NFS filesystem or loop block device etc) do not affect the
throttling of the daemon writing to the "final" bdi.
This patch changes the heuristic so that the task is not throttled when
the bdi it is writing to has a dirty page count below below (or equal
to) the free-run threshold for that bdi. This ensures it will always be
able to have some pages in flight, and so will not deadlock.
In a steady-state, it is expected that PF_LOCAL_THROTTLE tasks might
still be throttled by global threshold, but that is acceptable as it is
only the deadlock state that is interesting for this flag.
This approach of "only throttle when target bdi is busy" is consistent
with the other use of PF_LESS_THROTTLE in current_may_throttle(), were
it causes attention to be focussed only on the target bdi.
So this patch
- renames PF_LESS_THROTTLE to PF_LOCAL_THROTTLE,
- removes the 25% bonus that that flag gives, and
- If PF_LOCAL_THROTTLE is set, don't delay at all unless the
global and the local free-run thresholds are exceeded.
Note that previously realtime threads were treated the same as
PF_LESS_THROTTLE threads. This patch does *not* change the behvaiour
for real-time threads, so it is now different from the behaviour of nfsd
and loop tasks. I don't know what is wanted for realtime.
[akpm@linux-foundation.org: coding style fixes]
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Chuck Lever <chuck.lever@oracle.com> [nfsd]
Cc: Christoph Hellwig <hch@lst.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Link: http://lkml.kernel.org/r/87ftbf7gs3.fsf@notabene.neil.brown.name
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When doing an unstable write, we need to ensure that we sample the
write verifier before releasing the lock, and allowing a commit to
the same file to proceed.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
When we have a successful commit, ensure we sample the commit verifier
before releasing the lock.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Ensure that we can distinguish between synchronous CLONE and
WRITE errors, and that we can assign them correctly.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Needed in order to fix exclusion w.r.t. writes.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
We don't know if the error returned by the fsync() call is
exclusive to the data written by the stable write, so play it
safe.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Strictly speaking, a stable write error needs to reflect the
write + the commit of that write (and only that write). To
ensure that we don't pick up the write errors from other
writebacks, add a rw_semaphore to provide exclusion.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Needed in order to fix stable writes.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Fixes coccicheck warning:
fs/nfsd/vfs.c:1389:5-13: WARNING: Assignment of 0/1 to bool variable
fs/nfsd/vfs.c:1398:5-13: WARNING: Assignment of 0/1 to bool variable
fs/nfsd/vfs.c:1415:2-10: WARNING: Assignment of 0/1 to bool variable
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Guardtime handling in nfs3 differs between 32-bit and 64-bit
architectures, and uses the deprecated time_t type.
Change it to using time64_t, which behaves the same way on
64-bit and 32-bit architectures, treating the number as an
unsigned 32-bit entity with a range of year 1970 to 2106
consistently, and avoiding the y2038 overflow.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
vfs_clone_file_range() can modify the metadata on the source file too,
so we need to commit that to stable storage as well.
Reported-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Acked-by: Dave Chinner <david@fromorbit.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
We must allow for the fact that iov_iter_write() could have returned
a short write (e.g. if there was an ENOSPC issue).
Fixes: d890be159a "nfsd: Add I/O trace points in the NFSv4 write path"
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
vfs_rmdir and vfs_unlink can return -EBUSY if the
target is a mountpoint. This currently gets passed to
nfserrno() by nfsd_unlink(), and that results in a WARNing,
which is not user-friendly.
Possibly the best NFSv4 error is NFS4ERR_FILE_OPEN, because
there is a sense in which the object is currently in use
by some other task. The Linux NFSv4 client will map this
back to EBUSY, which is an added benefit.
For NFSv3, the best we can do is probably NFS3ERR_ACCES, which isn't
true, but is not less true than the other options.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The NFSv4.2 CLONE operation has implicit persistence requirements on the
target file, since there is no protocol requirement that the client issue
a separate operation to persist data.
For that reason, we should call vfs_fsync_range() on the destination file
after a successful call to vfs_clone_file_range().
Fixes: ffa0160a10 ("nfsd: implement the NFSv4.2 CLONE operation")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: stable@vger.kernel.org # v4.5+
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Currently, the knfsd server assumes that a short read indicates an
end of file. That assumption is incorrect. The short read means that
either we've hit the end of file, or we've hit a read error.
In the case of a read error, the client may want to retry (as per the
implementation recommendations in RFC1813 and RFC7530), but currently it
is being told that it hit an eof.
Move the code to detect eof from version specific code into the generic
nfsd read.
Report eof only in the two following cases:
1) read() returns a zero length short read with no error.
2) the offset+length of the read is >= the file size.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
If multiple clients are writing to the same file, then due to the fact
we share a single file descriptor between all NFSv3 clients writing
to the file, we have a situation where clients can miss the fact that
their file data was not persisted. While this should be rare, it
could cause silent data loss in situations where multiple clients
are using NLM locking or O_DIRECT to write to the same file.
Unfortunately, the stateless nature of NFSv3 and the fact that we
can only identify clients by their IP address means that we cannot
trivially cache errors; we would not know when it is safe to
release them from the cache.
So the solution is to declare a reboot. We understand that this
should be a rare occurrence, since disks are usually stable. The
most frequent occurrence is likely to be ENOSPC, at which point
all writes to the given filesystem are likely to fail anyway.
So the expectation is that clients will be forced to retry their
writes until they hit the fatal error.
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
It's not uncommon for some workloads to do a bunch of I/O to a file and
delete it just afterward. If knfsd has a cached open file however, then
the file may still be open when the dentry is unlinked. If the
underlying filesystem is nfs, then that could trigger it to do a
sillyrename.
On a REMOVE or RENAME scan the nfsd_file cache for open files that
correspond to the inode, and proactively unhash and put their
references. This should prevent any delete-on-last-close activity from
occurring, solely due to knfsd's open file cache.
This must be done synchronously though so we use the variants that call
flush_delayed_fput. There are deadlock possibilities if you call
flush_delayed_fput while holding locks, however. In the case of
nfsd_rename, we don't even do the lookups of the dentries to be renamed
until we've locked for rename.
Once we've figured out what the target dentry is for a rename, check to
see whether there are cached open files associated with it. If there
are, then unwind all of the locking, close them all, and then reattempt
the rename.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
The raparms cache was set up in order to ensure that we carry readahead
information forward from one RPC call to the next. In other words, it
was set up because each RPC call was forced to open a struct file, then
close it, causing the loss of readahead information that is normally
cached in that struct file, and used to keep the page cache filled when
a user calls read() multiple times on the same file descriptor.
Now that we cache the struct file, and reuse it for all the I/O calls
to a given file by a given user, we no longer have to keep a separate
readahead cache.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Use cached filps if possible instead of opening a new one every time.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Currently, NFSv2/3 reads and writes have to open a file, do the read or
write and then close it again for each RPC. This is highly inefficient,
especially when the underlying filesystem has a relatively slow open
routine.
This patch adds a new open file cache to knfsd. Rather than doing an
open for each RPC, the read/write handlers can call into this cache to
see if there is one already there for the correct filehandle and
NFS_MAY_READ/WRITE flags.
If there isn't an entry, then we create a new one and attempt to
perform the open. If there is, then we wait until the entry is fully
instantiated and return it if it is at the end of the wait. If it's
not, then we attempt to take over construction.
Since the main goal is to speed up NFSv2/3 I/O, we don't want to
close these files on last put of these objects. We need to keep them
around for a little while since we never know when the next READ/WRITE
will come in.
Cache entries have a hardcoded 1s timeout, and we have a recurring
workqueue job that walks the cache and purges any entries that have
expired.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Signed-off-by: Weston Andros Adamson <dros@primarydata.com>
Signed-off-by: Richard Sharpe <richard.sharpe@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@primarydata.com>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
fh_want_write() can now be called twice, but I'm also fixing up the
callers not to do that.
Other cases include setattr and create.
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
If the parameter 'count' is non-zero, nfsd4_clone_file_range() will
currently clobber all errors returned by vfs_clone_file_range() and
replace them with EINVAL.
Fixes: 42ec3d4c02 ("vfs: make remap_file_range functions take and...")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
As the man(2) page for utime/utimes states, EPERM is returned when the
second parameter of utime or utimes is not NULL, the caller's effective UID
does not match the owner of the file, and the caller is not privileged.
However, in a NFS directory mounted from knfsd, it will return EACCES
(from nfsd_setattr-> fh_verify->nfsd_permission). This patch fixes
that.
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Rework the vfs_clone_file_range and vfs_dedupe_file_range infrastructure to use
a common .remap_file_range method and supply generic bounds and sanity checking
functions that are shared with the data write path. The current VFS
infrastructure has problems with rlimit, LFS file sizes, file time stamps,
maximum filesystem file sizes, stripping setuid bits, etc and so they are
addressed in these commits.
We also introduce the ability for the ->remap_file_range methods to return short
clones so that clones for vfs_copy_file_range() don't get rejected if the entire
range can't be cloned. It also allows filesystems to sliently skip deduplication
of partial EOF blocks if they are not capable of doing so without requiring
errors to be thrown to userspace.
All existing filesystems are converted to user the new .remap_file_range method,
and both XFS and ocfs2 are modified to make use of the new generic checking
infrastructure.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJb29gEAAoJEK3oKUf0dfodpOAQAL2VbHjvKXEwNMDTKscSRMmZ
Z0xXo3gamFKQ+VGOqy2g2lmAYQs9SAnTuCGTJ7zIAp7u+q8gzUy5FzKAwLS4Id6L
8siaY6nzlicfO04d0MdXnWz0f3xykChgzfdQfVUlUi7WrDioBUECLPmx4a+USsp1
DQGjLOZfoOAmn2rijdnH9RTEaHqg+8mcTaLN9TRav4gGqrWxldFKXw2y6ouFC7uo
/hxTRNXR9VI+EdbDelwBNXl9nU9gQA0WLOvRKwgUrtv6bSJohTPsmXt7EbBtNcVR
cl3zDNc1sLD1bLaRLEUAszI/33wXaaQgom1iB51obIcHHef+JxRNG/j6rUMfzxZI
VaauGv5EIvtaKN0LTAqVVLQ8t2MQFYfOr8TykmO+1UFog204aKRANdVMHDSjxD/0
dTGKJGcq+HnKQ+JHDbTdvuXEL8sUUl1FiLjOQbZPw63XmuddLKFUA2TOjXn6htbU
1h1MG5d9KjGLpabp2BQheczD08NuSmcrOBNt7IoeI3+nxr3HpMwprfB9TyaERy9X
iEgyVXmjjc9bLLRW7A2wm77aW64NvPs51wKMnvuNgNwnCewrGS6cB8WVj2zbQjH1
h3f3nku44s9ctNPSBzb/sJLnpqmZQ5t0oSmrMSN+5+En6rNTacoJCzxHRJBA7z/h
Z+C6y1GTZw0euY6Zjiwu
=CE/A
-----END PGP SIGNATURE-----
Merge tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull vfs dedup fixes from Dave Chinner:
"This reworks the vfs data cloning infrastructure.
We discovered many issues with these interfaces late in the 4.19 cycle
- the worst of them (data corruption, setuid stripping) were fixed for
XFS in 4.19-rc8, but a larger rework of the infrastructure fixing all
the problems was needed. That rework is the contents of this pull
request.
Rework the vfs_clone_file_range and vfs_dedupe_file_range
infrastructure to use a common .remap_file_range method and supply
generic bounds and sanity checking functions that are shared with the
data write path. The current VFS infrastructure has problems with
rlimit, LFS file sizes, file time stamps, maximum filesystem file
sizes, stripping setuid bits, etc and so they are addressed in these
commits.
We also introduce the ability for the ->remap_file_range methods to
return short clones so that clones for vfs_copy_file_range() don't get
rejected if the entire range can't be cloned. It also allows
filesystems to sliently skip deduplication of partial EOF blocks if
they are not capable of doing so without requiring errors to be thrown
to userspace.
Existing filesystems are converted to user the new remap_file_range
method, and both XFS and ocfs2 are modified to make use of the new
generic checking infrastructure"
* tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (28 commits)
xfs: remove [cm]time update from reflink calls
xfs: remove xfs_reflink_remap_range
xfs: remove redundant remap partial EOF block checks
xfs: support returning partial reflink results
xfs: clean up xfs_reflink_remap_blocks call site
xfs: fix pagecache truncation prior to reflink
ocfs2: remove ocfs2_reflink_remap_range
ocfs2: support partial clone range and dedupe range
ocfs2: fix pagecache truncation prior to reflink
ocfs2: truncate page cache for clone destination file before remapping
vfs: clean up generic_remap_file_range_prep return value
vfs: hide file range comparison function
vfs: enable remap callers that can handle short operations
vfs: plumb remap flags through the vfs dedupe functions
vfs: plumb remap flags through the vfs clone functions
vfs: make remap_file_range functions take and return bytes completed
vfs: remap helper should update destination inode metadata
vfs: pass remap flags to generic_remap_checks
vfs: pass remap flags to generic_remap_file_range_prep
vfs: combine the clone and dedupe into a single remap_file_range
...
Pull AFS updates from Al Viro:
"AFS series, with some iov_iter bits included"
* 'work.afs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (26 commits)
missing bits of "iov_iter: Separate type from direction and use accessor functions"
afs: Probe multiple fileservers simultaneously
afs: Fix callback handling
afs: Eliminate the address pointer from the address list cursor
afs: Allow dumping of server cursor on operation failure
afs: Implement YFS support in the fs client
afs: Expand data structure fields to support YFS
afs: Get the target vnode in afs_rmdir() and get a callback on it
afs: Calc callback expiry in op reply delivery
afs: Fix FS.FetchStatus delivery from updating wrong vnode
afs: Implement the YFS cache manager service
afs: Remove callback details from afs_callback_break struct
afs: Commit the status on a new file/dir/symlink
afs: Increase to 64-bit volume ID and 96-bit vnode ID for YFS
afs: Don't invoke the server to read data beyond EOF
afs: Add a couple of tracepoints to log I/O errors
afs: Handle EIO from delivery function
afs: Fix TTL on VL server and address lists
afs: Implement VL server rotation
afs: Improve FS server rotation error handling
...
already supported COPY, by copying a limited amount of data and then
returning a short result, letting the client resend. The asynchronous
protocol should offer better performance at the expense of some
complexity.
The other highlight is Trond's work to convert the duplicate reply cache
to a red-black tree, and to move it and some other server caches to RCU.
(Previously these have meant taking global spinlocks on every RPC.)
Otherwise, some RDMA work and miscellaneous bugfixes.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJb2KWzAAoJECebzXlCjuG+gcQP/3DldB86CFxgSFx0t+h+s+TV
CdYJDPyLyRkEMiD+4dCPPuhueve+j5BPHVsDbn98FTWrEn131NMIs6uhU/VGTtAU
6a8f/ExtZ5U7s39MJCzlk2ozVElBc3QPp7p3p9NKn0Wi0PXbVgjuIqR5o2vwa8Si
KOVdLm6ylfav/HTH8DO6zFPJRsTgTwcJOivXXshjpglMKAcw8AuqSsGgBrDeGpgU
u91Vi0EM1vt96+CA6a01mTgC/sFX7EqGvxUUHOrKWf5cIjnpT3FDvouYPxi+GH8Z
SIDlaMQyXF5m4m6MhELNTP4v97XAHyPJtvLkEe5lggTyABPiA2heo9e8onysWkzV
1v8OZHCVFa1UL34mDlnFxbFCYVr7FFKMGjTBR/ntinobPfAbWRCO1Hdd+bBGPDD4
byf7ctDVp7KQ2bSatIdlYavikuGDHWFDZHzPHlqkD3gpIZSNvhe26sV3NZqIFlXO
cMUega2Y5mXmULauHhxAcNGtDK7dF5hHoMWKJy0DNxiyDiDLylwDOIfwt1De3Q7V
ycd/wUytUS2LkAhyS2mvoDK6eXTBAeQwzmXAqveh6rewwO83HC/t9mtKBBDomvKG
xRpRPmmbj9ijbwkilEBmijjR47wrihmEVIFahznEerZ+//QOfVVOB0MNtzIyU9/k
CnP1ZNvOs3LR1pxxwFa8
=TTo0
-----END PGP SIGNATURE-----
Merge tag 'nfsd-4.20' of git://linux-nfs.org/~bfields/linux
Pull nfsd updates from Bruce Fields:
"Olga added support for the NFSv4.2 asynchronous copy protocol. We
already supported COPY, by copying a limited amount of data and then
returning a short result, letting the client resend. The asynchronous
protocol should offer better performance at the expense of some
complexity.
The other highlight is Trond's work to convert the duplicate reply
cache to a red-black tree, and to move it and some other server caches
to RCU. (Previously these have meant taking global spinlocks on every
RPC)
Otherwise, some RDMA work and miscellaneous bugfixes"
* tag 'nfsd-4.20' of git://linux-nfs.org/~bfields/linux: (30 commits)
lockd: fix access beyond unterminated strings in prints
nfsd: Fix an Oops in free_session()
nfsd: correctly decrement odstate refcount in error path
svcrdma: Increase the default connection credit limit
svcrdma: Remove try_module_get from backchannel
svcrdma: Remove ->release_rqst call in bc reply handler
svcrdma: Reduce max_send_sges
nfsd: fix fall-through annotations
knfsd: Improve lookup performance in the duplicate reply cache using an rbtree
knfsd: Further simplify the cache lookup
knfsd: Simplify NFS duplicate replay cache
knfsd: Remove dead code from nfsd_cache_lookup
SUNRPC: Simplify TCP receive code
SUNRPC: Replace the cache_detail->hash_lock with a regular spinlock
SUNRPC: Remove non-RCU protected lookup
NFS: Fix up a typo in nfs_dns_ent_put
NFS: Lockless DNS lookups
knfsd: Lockless lookup of NFSv4 identities.
SUNRPC: Lockless server RPCSEC_GSS context lookup
knfsd: Allow lockless lookups of the exports
...
Plumb a remap_flags argument through the {do,vfs}_clone_file_range
functions so that clone can take advantage of it.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Change the remap_file_range functions to take a number of bytes to
operate upon and return the number of bytes they operated on. This is a
requirement for allowing fs implementations to return short clone/dedupe
results to the user, which will enable us to obey resource limits in a
graceful manner.
A subsequent patch will enable copy_file_range to signal to the
->clone_file_range implementation that it can handle a short length,
which will be returned in the function's return value. For now the
short return is not implemented anywhere so the behavior won't change --
either copy_file_range manages to clone the entire range or it tries an
alternative.
Neither clone ioctl can take advantage of this, alas.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Replace "fallthru" with a proper "fall through" annotation.
Also, add an annotation were it is expected to fall through.
These fixes are part of the ongoing efforts to enabling
-Wimplicit-fallthrough
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
In the iov_iter struct, separate the iterator type from the iterator
direction and use accessor functions to access them in most places.
Convert a bunch of places to use switch-statements to access them rather
then chains of bitwise-AND statements. This makes it easier to add further
iterator types. Also, this can be more efficient as to implement a switch
of small contiguous integers, the compiler can use ~50% fewer compare
instructions than it has to use bitwise-and instructions.
Further, cease passing the iterator type into the iterator setup function.
The iterator function can set that itself. Only the direction is required.
Signed-off-by: David Howells <dhowells@redhat.com>
Fixes gcc '-Wunused-but-set-variable' warning:
fs/nfsd/vfs.c: In function 'nfsd_create':
fs/nfsd/vfs.c:1279:16: warning:
variable 'dirp' set but not used [-Wunused-but-set-variable]
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Commit 031a072a0b ("vfs: call vfs_clone_file_range() under freeze
protection") created a wrapper do_clone_file_range() around
vfs_clone_file_range() moving the freeze protection to former, so
overlayfs could call the latter.
The more common vfs practice is to call do_xxx helpers from vfs_xxx
helpers, where freeze protecction is taken in the vfs_xxx helper, so
this anomality could be a source of confusion.
It seems that commit 8ede205541 ("ovl: add reflink/copyfile/dedup
support") may have fallen a victim to this confusion -
ovl_clone_file_range() calls the vfs_clone_file_range() helper in the
hope of getting freeze protection on upper fs, but in fact results in
overlayfs allowing to bypass upper fs freeze protection.
Swap the names of the two helpers to conform to common vfs practice
and call the correct helpers from overlayfs and nfsd.
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>