Free cgroup via call_rcu(). The actual work is done through
workqueue.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Implement cgroup_rightmost_descendant() which returns the right most
descendant of the specified cgroup. This can be used to skip the
cgroup's subtree while iterating with
cgroup_for_each_descendant_pre().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
5edee61ede ("cgroup: cgroup_subsys->fork() should be called after the
task is added to css_set") removed cgroup_fork_callbacks() but forgot
to remove its dummy version for !CONFIG_CGROUPS. Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Herton Ronaldo Krzesinski <herton.krzesinski@canonical.com>
'guarantee' is already removed from cgroup_task_migrate, so remove
the corresponding comments. Some other typos in cgroup are also
changed.
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
With the introduction of generic cgroup hierarchy iterators, css_id is
being phased out. It was unnecessarily complex, id'ing the wrong
thing (cgroups need IDs, not CSSes) and has other oddities like not
being available at ->css_alloc().
This patch adds cgroup->id, which is a simple per-hierarchy
ida-allocated ID which is assigned before ->css_alloc() and released
after ->css_free().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Currently CGRP_CPUSET_CLONE_CHILDREN triggers ->post_clone(). Now
that clone_children is cpuset specific, there's no reason to have this
rather odd option activation mechanism in cgroup core. cpuset can
check the flag from its ->css_allocate() and take the necessary
action.
Move cpuset_post_clone() logic to the end of cpuset_css_alloc() and
remove cgroup_subsys->post_clone().
Loosely based on Glauber's "generalize post_clone into post_create"
patch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Glauber Costa <glommer@parallels.com>
Original-patch: <1351686554-22592-2-git-send-email-glommer@parallels.com>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Glauber Costa <glommer@parallels.com>
clone_children is only meaningful for cpuset and will stay that way.
Rename the flag to reflect that and update documentation. Also, drop
clone_children() wrapper in cgroup.c. The thin wrapper is used only a
few times and one of them will go away soon.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge E. Hallyn <serge.hallyn@ubuntu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Glauber Costa <glommer@parallels.com>
Rename cgroup_subsys css lifetime related callbacks to better describe
what their roles are. Also, update documentation.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
There could be cases where controllers want to do initialization
operations which may fail from ->post_create(). This patch makes
->post_create() return -errno to indicate failure and online_css()
relay such failures.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Glauber Costa <glommer@parallels.com>
New helpers on/offline_css() respectively wrap ->post_create() and
->pre_destroy() invocations. online_css() sets CSS_ONLINE after
->post_create() is complete and offline_css() invokes ->pre_destroy()
iff CSS_ONLINE is set and clears it while also handling the temporary
dropping of cgroup_mutex.
This patch doesn't introduce any behavior change at the moment but
will be used to improve cgroup_create() failure path and allow
->post_create() to fail.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, CSS_* flags are defined as bit positions and manipulated
using atomic bitops. There's no reason to use atomic bitops for them
and bit positions are clunkier to deal with than bit masks. Make
CSS_* bit masks instead and use the usual C bitwise operators to
access them.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup->dentry is marked and used as a RCU pointer; however, it isn't
one - the final dentry put doesn't go through call_rcu(). cgroup and
dentry share the same RCU freeing rule via synchronize_rcu() in
cgroup_diput() (kfree_rcu() used on cgrp is unnecessary). If cgrp is
accessible under RCU read lock, so is its dentry and dereferencing
cgrp->dentry doesn't need any further RCU protection or annotation.
While not being accurate, before the previous patch, the RCU accessors
served a purpose as memory barriers - cgroup->dentry used to be
assigned after the cgroup was made visible to cgroup_path(), so the
assignment and dereferencing in cgroup_path() needed the memory
barrier pair. Now that list_add_tail_rcu() happens after
cgroup->dentry is assigned, this no longer is necessary.
Remove the now unnecessary and misleading RCU annotations from
cgroup->dentry. To make up for the removal of rcu_dereference_check()
in cgroup_path(), add an explicit rcu_lockdep_assert(), which asserts
the dereference rule of @cgrp, not cgrp->dentry.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, cgroup doesn't provide any generic helper for walking a
given cgroup's children or descendants. This patch adds the following
three macros.
* cgroup_for_each_child() - walk immediate children of a cgroup.
* cgroup_for_each_descendant_pre() - visit all descendants of a cgroup
in pre-order tree traversal.
* cgroup_for_each_descendant_post() - visit all descendants of a
cgroup in post-order tree traversal.
All three only require the user to hold RCU read lock during
traversal. Verifying that each iterated cgroup is online is the
responsibility of the user. When used with proper synchronization,
cgroup_for_each_descendant_pre() can be used to propagate state
updates to descendants in reliable way. See comments for details.
v2: s/config/state/ in commit message and comments per Michal. More
documentation on synchronization rules.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujisu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Use RCU safe list operations for cgroup->children. This will be used
to implement cgroup children / descendant walking which can be used by
controllers.
Note that cgroup_create() now puts a new cgroup at the end of the
->children list instead of head. This isn't strictly necessary but is
done so that the iteration order is more conventional.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, there's no way for a controller to find out whether a new
cgroup finished all ->create() allocatinos successfully and is
considered "live" by cgroup.
This becomes a problem later when we add generic descendants walking
to cgroup which can be used by controllers as controllers don't have a
synchronization point where it can synchronize against new cgroups
appearing in such walks.
This patch adds ->post_create(). It's called after all ->create()
succeeded and the cgroup is linked into the generic cgroup hierarchy.
This plays the counterpart of ->pre_destroy().
When used in combination with the to-be-added generic descendant
iterators, ->post_create() can be used to implement reliable state
inheritance. It will be explained with the descendant iterators.
v2: Added a paragraph about its future use w/ descendant iterators per
Michal.
v3: Forgot to add ->post_create() invocation to cgroup_load_subsys().
Fixed.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Glauber Costa <glommer@parallels.com>
Pull rmdir updates into for-3.8 so that further callback updates can
be put on top. This pull created a trivial conflict between the
following two commits.
8c7f6edbda ("cgroup: mark subsystems with broken hierarchy support and whine if cgroups are nested for them")
ed95779340 ("cgroup: kill cgroup_subsys->__DEPRECATED_clear_css_refs")
The former added a field to cgroup_subsys and the latter removed one
from it. They happen to be colocated causing the conflict. Keeping
what's added and removing what's removed resolves the conflict.
Signed-off-by: Tejun Heo <tj@kernel.org>
All ->pre_destory() implementations return 0 now, which is the only
allowed return value. Make it return void.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
CGRP_WAIT_ON_RMDIR is another kludge which was added to make cgroup
destruction rollback somewhat working. cgroup_rmdir() used to drain
CSS references and CGRP_WAIT_ON_RMDIR and the associated waitqueue and
helpers were used to allow the task performing rmdir to wait for the
next relevant event.
Unfortunately, the wait is visible to controllers too and the
mechanism got exposed to memcg by 887032670d ("cgroup avoid permanent
sleep at rmdir").
Now that the draining and retries are gone, CGRP_WAIT_ON_RMDIR is
unnecessary. Remove it and all the mechanisms supporting it. Note
that memcontrol.c changes are essentially revert of 887032670d
("cgroup avoid permanent sleep at rmdir").
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
CSS_REMOVED is one of the several contortions which were necessary to
support css reference draining on cgroup removal. All css->refcnts
which need draining should be deactivated and verified to equal zero
atomically w.r.t. css_tryget(). If any one isn't zero, all refcnts
needed to be re-activated and css_tryget() shouldn't fail in the
process.
This was achieved by letting css_tryget() busy-loop until either the
refcnt is reactivated (failed removal attempt) or CSS_REMOVED is set
(committing to removal).
Now that css refcnt draining is no longer used, there's no need for
atomic rollback mechanism. css_tryget() simply can look at the
reference count and fail if it's deactivated - it's never getting
re-activated.
This patch removes CSS_REMOVED and updates __css_tryget() to fail if
the refcnt is deactivated. As deactivation and removal are a single
step now, they no longer need to be protected against css_tryget()
happening from irq context. Remove local_irq_disable/enable() from
cgroup_rmdir().
Note that this removes css_is_removed() whose only user is VM_BUG_ON()
in memcontrol.c. We can replace it with a check on the refcnt but
given that the only use case is a debug assert, I think it's better to
simply unexport it.
v2: Comment updated and explanation on local_irq_disable/enable()
added per Michal Hocko.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
2ef37d3fe4 ("memcg: Simplify mem_cgroup_force_empty_list error
handling") removed the last user of __DEPRECATED_clear_css_refs. This
patch removes __DEPRECATED_clear_css_refs and mechanisms to support
it.
* Conditionals dependent on __DEPRECATED_clear_css_refs removed.
* cgroup_clear_css_refs() can no longer fail. All that needs to be
done are deactivating refcnts, setting CSS_REMOVED and putting the
base reference on each css. Remove cgroup_clear_css_refs() and the
failure path, and open-code the loops into cgroup_rmdir().
This patch keeps the two for_each_subsys() loops separate while open
coding them. They can be merged now but there are scheduled changes
which need them to be separate, so keep them separate to reduce the
amount of churn.
local_irq_save/restore() from cgroup_clear_css_refs() are replaced
with local_irq_disable/enable() for simplicity. This is safe as
cgroup_rmdir() is always called with IRQ enabled. Note that this IRQ
switching is necessary to ensure that css_tryget() isn't called from
IRQ context on the same CPU while lower context is between CSS
deactivation and setting CSS_REMOVED as css_tryget() would hang
forever in such cases waiting for CSS to be re-activated or
CSS_REMOVED set. This will go away soon.
v2: cgroup_call_pre_destroy() removal dropped per Michal. Commit
message updated to explain local_irq_disable/enable() conversion.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizefan@huawei.com>
cgroup core has a bug which violates a basic rule about event
notifications - when a new entity needs to be added, you add that to
the notification list first and then make the new entity conform to
the current state. If done in the reverse order, an event happening
inbetween will be lost.
cgroup_subsys->fork() is invoked way before the new task is added to
the css_set. Currently, cgroup_freezer is the only user of ->fork()
and uses it to make new tasks conform to the current state of the
freezer. If FROZEN state is requested while fork is in progress
between cgroup_fork_callbacks() and cgroup_post_fork(), the child
could escape freezing - the cgroup isn't frozen when ->fork() is
called and the freezer couldn't see the new task on the css_set.
This patch moves cgroup_subsys->fork() invocation to
cgroup_post_fork() after the new task is added to the css_set.
cgroup_fork_callbacks() is removed.
Because now a task may be migrated during cgroup_subsys->fork(),
freezer_fork() is updated so that it adheres to the usual RCU locking
and the rather pointless comment on why locking can be different there
is removed (if it doesn't make anything simpler, why even bother?).
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org
Pull cgroup hierarchy update from Tejun Heo:
"Currently, different cgroup subsystems handle nested cgroups
completely differently. There's no consistency among subsystems and
the behaviors often are outright broken.
People at least seem to agree that the broken hierarhcy behaviors need
to be weeded out if any progress is gonna be made on this front and
that the fallouts from deprecating the broken behaviors should be
acceptable especially given that the current behaviors don't make much
sense when nested.
This patch makes cgroup emit warning messages if cgroups for
subsystems with broken hierarchy behavior are nested to prepare for
fixing them in the future. This was put in a separate branch because
more related changes were expected (didn't make it this round) and the
memory cgroup wanted to pull in this and make changes on top."
* 'for-3.7-hierarchy' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: mark subsystems with broken hierarchy support and whine if cgroups are nested for them
Currently, cgroup hierarchy support is a mess. cpu related subsystems
behave correctly - configuration, accounting and control on a parent
properly cover its children. blkio and freezer completely ignore
hierarchy and treat all cgroups as if they're directly under the root
cgroup. Others show yet different behaviors.
These differing interpretations of cgroup hierarchy make using cgroup
confusing and it impossible to co-mount controllers into the same
hierarchy and obtain sane behavior.
Eventually, we want full hierarchy support from all subsystems and
probably a unified hierarchy. Users using separate hierarchies
expecting completely different behaviors depending on the mounted
subsystem is deterimental to making any progress on this front.
This patch adds cgroup_subsys.broken_hierarchy and sets it to %true
for controllers which are lacking in hierarchy support. The goal of
this patch is two-fold.
* Move users away from using hierarchy on currently non-hierarchical
subsystems, so that implementing proper hierarchy support on those
doesn't surprise them.
* Keep track of which controllers are broken how and nudge the
subsystems to implement proper hierarchy support.
For now, start with a single warning message. We can whine louder
later on.
v2: Fixed a typo spotted by Michal. Warning message updated.
v3: Updated memcg part so that it doesn't generate warning in the
cases where .use_hierarchy=false doesn't make the behavior
different from root.use_hierarchy=true. Fixed a typo spotted by
Glauber.
v4: Check ->broken_hierarchy after cgroup creation is complete so that
->create() can affect the result per Michal. Dropped unnecessary
memcg root handling per Michal.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Serge E. Hallyn <serue@us.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Turner <pjt@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Thomas Graf <tgraf@suug.ch>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Cc: Neil Horman <nhorman@tuxdriver.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Since we know exactly how many subsystems exists at compile time we are
able to define CGROUP_SUBSYS_COUNT correctly. CGROUP_SUBSYS_COUNT will
be at max 12 (all controllers enabled). Depending on the architecture
we safe either 32 - 12 pointers (80 bytes) or 64 - 12 pointers (416
bytes) per cgroup.
With this change we can also remove the temporary placeholder to avoid
compilation errors.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: Gao feng <gaofeng@cn.fujitsu.com>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: John Fastabend <john.r.fastabend@intel.com>
Cc: netdev@vger.kernel.org
Cc: cgroups@vger.kernel.org
WARNING: With this change it is impossible to load external built
controllers anymore.
In case where CONFIG_NETPRIO_CGROUP=m and CONFIG_NET_CLS_CGROUP=m is
set, corresponding subsys_id should also be a constant. Up to now,
net_prio_subsys_id and net_cls_subsys_id would be of the type int and
the value would be assigned during runtime.
By switching the macro definition IS_SUBSYS_ENABLED from IS_BUILTIN
to IS_ENABLED, all *_subsys_id will have constant value. That means we
need to remove all the code which assumes a value can be assigned to
net_prio_subsys_id and net_cls_subsys_id.
A close look is necessary on the RCU part which was introduces by
following patch:
commit f845172531
Author: Herbert Xu <herbert@gondor.apana.org.au> Mon May 24 09:12:34 2010
Committer: David S. Miller <davem@davemloft.net> Mon May 24 09:12:34 2010
cls_cgroup: Store classid in struct sock
Tis code was added to init_cgroup_cls()
/* We can't use rcu_assign_pointer because this is an int. */
smp_wmb();
net_cls_subsys_id = net_cls_subsys.subsys_id;
respectively to exit_cgroup_cls()
net_cls_subsys_id = -1;
synchronize_rcu();
and in module version of task_cls_classid()
rcu_read_lock();
id = rcu_dereference(net_cls_subsys_id);
if (id >= 0)
classid = container_of(task_subsys_state(p, id),
struct cgroup_cls_state, css)->classid;
rcu_read_unlock();
Without an explicit explaination why the RCU part is needed. (The
rcu_deference was fixed by exchanging it to rcu_derefence_index_check()
in a later commit, but that is a minor detail.)
So here is my pondering why it was introduced and why it safe to
remove it now. Note that this code was copied over to net_prio the
reasoning holds for that subsystem too.
The idea behind the RCU use for net_cls_subsys_id is to make sure we
get a valid pointer back from task_subsys_state(). task_subsys_state()
is just blindly accessing the subsys array and returning the
pointer. Obviously, passing in -1 as id into task_subsys_state()
returns an invalid value (out of lower bound).
So this code makes sure that only after module is loaded and the
subsystem registered, the id is assigned.
Before unregistering the module all old readers must have left the
critical section. This is done by assigning -1 to the id and issuing a
synchronized_rcu(). Any new readers wont call task_subsys_state()
anymore and therefore it is safe to unregister the subsystem.
The new code relies on the same trick, but it looks at the subsys
pointer return by task_subsys_state() (remember the id is constant
and therefore we allways have a valid index into the subsys
array).
No precautions need to be taken during module loading
module. Eventually, all CPUs will get a valid pointer back from
task_subsys_state() because rebind_subsystem() which is called after
the module init() function will assigned subsys[net_cls_subsys_id] the
newly loaded module subsystem pointer.
When the subsystem is about to be removed, rebind_subsystem() will
called before the module exit() function. In this case,
rebind_subsys() will assign subsys[net_cls_subsys_id] a NULL pointer
and then it calls synchronize_rcu(). All old readers have left by then
the critical section. Any new reader wont access the subsystem
anymore. At this point we are safe to unregister the subsystem. No
synchronize_rcu() call is needed.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Gao feng <gaofeng@cn.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: John Fastabend <john.r.fastabend@intel.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: netdev@vger.kernel.org
Cc: cgroups@vger.kernel.org
Before we are able to define all subsystem ids at compile time we need
a more fine grained control what gets defined when we include
cgroup_subsys.h. For example we define the enums for the subsystems or
to declare for struct cgroup_subsys (builtin subsystem) by including
cgroup_subsys.h and defining SUBSYS accordingly.
Currently, the decision if a subsys is used is defined inside the
header by testing if CONFIG_*=y is true. By moving this test outside
of cgroup_subsys.h we are able to control it on the include level.
This is done by introducing IS_SUBSYS_ENABLED which then is defined
according the task, e.g. is CONFIG_*=y or CONFIG_*=m.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: Gao feng <gaofeng@cn.fujitsu.com>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: John Fastabend <john.r.fastabend@intel.com>
Cc: netdev@vger.kernel.org
Cc: cgroups@vger.kernel.org
CGROUP_BUILTIN_SUBSYS_COUNT is used as start index or stop index when
looping over the subsys array looking either at the builtin or the
module subsystems. Since all the builtin subsystems have an id which
is lower then CGROUP_BUILTIN_SUBSYS_COUNT we know that any module will
have an id larger than CGROUP_BUILTIN_SUBSYS_COUNT. In short the ids
are sorted.
We are about to change id assignment to happen only at compile time
later in this series. That means we can't rely on the above trick
since all ids will always be defined at compile time. Furthermore,
ordering the builtin subsystems and the module subsystems is not
really necessary.
So we need a different way to know which subsystem is a builtin or a
module one. We can use the subsys[]->module pointer for this. Any
place where we need to know if a subsys is module we just check for
the pointer. If it is NULL then the subsystem is a builtin one.
With this we are able to drop the CGROUP_BUILTIN_SUBSYS_COUNT
enum. Though we need to introduce a temporary placeholder so that we
don't get a compilation error when only CONFIG_CGROUP is selected and
no single controller. An empty enum definition is not valid. Later in
this series we are able to remove the placeholder again.
And with this change we get a fix for this:
kernel/cgroup.c: In function ‘cgroup_load_subsys’:
kernel/cgroup.c:4326:38: warning: array subscript is below array bounds [-Warray-bounds]
when CONFIG_CGROUP=y and no built in controller was enabled.
Signed-off-by: Daniel Wagner <daniel.wagner@bmw-carit.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Cc: Gao feng <gaofeng@cn.fujitsu.com>
Cc: Jamal Hadi Salim <jhs@mojatatu.com>
Cc: John Fastabend <john.r.fastabend@intel.com>
Cc: netdev@vger.kernel.org
Cc: cgroups@vger.kernel.org
This is one of the items in the plumber's wish list.
For use cases:
>> What would the use case be for this?
>
> Attaching meta information to services, in an easily discoverable
> way. For example, in systemd we create one cgroup for each service, and
> could then store data like the main pid of the specific service as an
> xattr on the cgroup itself. That way we'd have almost all service state
> in the cgroupfs, which would make it possible to terminate systemd and
> later restart it without losing any state information. But there's more:
> for example, some very peculiar services cannot be terminated on
> shutdown (i.e. fakeraid DM stuff) and it would be really nice if the
> services in question could just mark that on their cgroup, by setting an
> xattr. On the more desktopy side of things there are other
> possibilities: for example there are plans defining what an application
> is along the lines of a cgroup (i.e. an app being a collection of
> processes). With xattrs one could then attach an icon or human readable
> program name on the cgroup.
>
> The key idea is that this would allow attaching runtime meta information
> to cgroups and everything they model (services, apps, vms), that doesn't
> need any complex userspace infrastructure, has good access control
> (i.e. because the file system enforces that anyway, and there's the
> "trusted." xattr namespace), notifications (inotify), and can easily be
> shared among applications.
>
> Lennart
v7:
- no changes
v6:
- remove user xattr namespace, only allow trusted and security
v5:
- check for capabilities before setting/removing xattrs
v4:
- no changes
v3:
- instead of config option, use mount option to enable xattr support
Original-patch-by: Li Zefan <lizefan@huawei.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Lennart Poettering <lpoetter@redhat.com>
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
It was introduced for memcg to iterate cgroup hierarchy without
holding cgroup_mutex, but soon after that it was replaced with
a lockless way in memcg.
No one used hierarchy_mutex since that, so remove it.
Signed-off-by: Li Zefan <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
With memcg converted, cgroup_subsys->populate() doesn't have any user
left. Remove it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizefan@huawei.com>
Currently, cgroup removal tries to drain all css references. If there
are active css references, the removal logic waits and retries
->pre_detroy() until either all refs drop to zero or removal is
cancelled.
This semantics is unusual and adds non-trivial complexity to cgroup
core and IMHO is fundamentally misguided in that it couples internal
implementation details (references to internal data structure) with
externally visible operation (rmdir). To userland, this is a behavior
peculiarity which is unnecessary and difficult to expect (css refs is
otherwise invisible from userland), and, to policy implementations,
this is an unnecessary restriction (e.g. blkcg wants to hold css refs
for caching purposes but can't as that becomes visible as rmdir hang).
Unfortunately, memcg currently depends on ->pre_destroy() retrials and
cgroup removal vetoing and can't be immmediately switched to the new
behavior. This patch introduces the new behavior of not waiting for
css refs to drain and maintains the old behavior for subsystems which
have __DEPRECATED_clear_css_refs set.
Once, memcg is updated, we can drop the code paths for the old
behavior as proposed in the following patch. Note that the following
patch is incorrect in that dput work item is in cgroup and may lose
some of dputs when multiples css's are released back-to-back, and
__css_put() triggers check_for_release() when refcnt reaches 0 instead
of 1; however, it shows what part can be removed.
http://thread.gmane.org/gmane.linux.kernel.containers/22559/focus=75251
Note that, in not-too-distant future, cgroup core will start emitting
warning messages for subsys which require the old behavior, so please
get moving.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
When a cgroup is about to be removed, cgroup_clear_css_refs() is
called to check and ensure that there are no active css references.
This is currently achieved by dropping the refcnt to zero iff it has
only the base ref. If all css refs could be dropped to zero, ref
clearing is successful and CSS_REMOVED is set on all css. If not, the
base ref is restored. While css ref is zero w/o CSS_REMOVED set, any
css_tryget() attempt on it busy loops so that they are atomic
w.r.t. the whole css ref clearing.
This does work but dropping and re-instating the base ref is somewhat
hairy and makes it difficult to add more logic to the put path as
there are two of them - the regular css_put() and the reversible base
ref clearing.
This patch updates css ref clearing such that blocking new
css_tryget() and putting the base ref are separate operations.
CSS_DEACT_BIAS, defined as INT_MIN, is added to css->refcnt and
css_tryget() busy loops while refcnt is negative. After all css refs
are deactivated, if they were all one, ref clearing succeeded and
CSS_REMOVED is set and the base ref is put using the regular
css_put(); otherwise, CSS_DEACT_BIAS is subtracted from the refcnts
and the original postive values are restored.
css_refcnt() accessor which always returns the unbiased positive
reference counts is added and used to simplify refcnt usages. While
at it, relocate and reformat comments in cgroup_has_css_refs().
This separates css->refcnt deactivation and putting the base ref,
which enables the next patch to make ref clearing optional.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Implement cgroup_rm_cftypes() which removes an array of cftypes from a
subsystem. It can be called whether the target subsys is attached or
not. cgroup core will remove the specified file from all existing
cgroups.
This will be used to improve sub-subsys modularity and will be helpful
for unified hierarchy.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
This patch adds cfent (cgroup file entry) which is the association
between a cgroup and a file. This is in-cgroup representation of
files under a cgroup directory. This simplifies walking walking
cgroup files and thus cgroup_clear_directory(), which is now
implemented in two parts - cgroup_rm_file() and a loop around it.
cgroup_rm_file() will be used to implement cftype removal and cfent is
scheduled to serve cgroup specific per-file data (e.g. for sysfs-like
"sever" semantics).
v2: - cfe was freed from cgroup_rm_file() which led to use-after-free
if the file had openers at the time of removal. Moved to
cgroup_diput().
- cgroup_clear_directory() triggered WARN_ON_ONCE() if d_subdirs
wasn't empty after removing all files. This triggered
spuriously if some files were open during directory clearing.
Removed.
v3: - In cgroup_diput(), WARN_ONCE(!list_empty(&cfe->node)) could be
spuriously triggered for root cgroups because they don't go
through cgroup_clear_directory() on unmount. Don't trigger WARN
for root cgroups.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Glauber Costa <glommer@parallels.com>
No controller is using cgroup_add_files[s](). Unexport them, and
convert cgroup_add_files() to handle NULL entry terminated array
instead of taking count explicitly and continue creation on failure
for internal use.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Currently, cgroup directories are populated by subsys->populate()
callback explicitly creating files on each cgroup creation. This
level of flexibility isn't needed or desirable. It provides largely
unused flexibility which call for abuses while severely limiting what
the core layer can do through the lack of structure and conventions.
Per each cgroup file type, the only distinction that cgroup users is
making is whether a cgroup is root or not, which can easily be
expressed with flags.
This patch introduces cgroup_add_cftypes(). These deal with cftypes
instead of individual files - controllers indicate that certain types
of files exist for certain subsystem. Newly added CFTYPE_*_ON_ROOT
flags indicate whether a cftype should be excluded or created only on
the root cgroup.
cgroup_add_cftypes() can be called any time whether the target
subsystem is currently attached or not. cgroup core will create files
on the existing cgroups as necessary.
Also, cgroup_subsys->base_cftypes is added to ease registration of the
base files for the subsystem. If non-NULL on subsys init, the cftypes
pointed to by ->base_cftypes are automatically registered on subsys
init / load.
Further patches will convert the existing users and remove the file
based interface. Note that this interface allows dynamic addition of
files to an active controller. This will be used for sub-controller
modularity and unified hierarchy in the longer term.
This patch implements the new mechanism but doesn't apply it to any
user.
v2: replaced DECLARE_CGROUP_CFTYPES[_COND]() with
cgroup_subsys->base_cftypes, which works better for cgroup_subsys
which is loaded as module.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Build a list of all cgroups anchored at cgroupfs_root->allcg_list and
going through cgroup->allcg_node. The list is protected by
cgroup_mutex and will be used to improve cgroup file handling.
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Commit c1e2ee2dc4 ("memcg: replace ss->id_lock with a rwlock") has now
been seen to cause the unfair behavior we should have expected from
converting a spinlock to an rwlock: softlockup in cgroup_mkdir(), whose
get_new_cssid() is waiting for the wlock, while there are 19 tasks using
the rlock in css_get_next() to get on with their memcg workload (in an
artificial test, admittedly). Yet lib/idr.c was made suitable for RCU
way back: revert that commit, restoring ss->id_lock to a spinlock.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The argument is not used at all, and it's not necessary, because
a specific callback handler of course knows which subsys it
belongs to.
Now only ->pupulate() takes this argument, because the handlers of
this callback always call cgroup_add_file()/cgroup_add_files().
So we reduce a few lines of code, though the shrinking of object size
is minimal.
16 files changed, 113 insertions(+), 162 deletions(-)
text data bss dec hex filename
5486240 656987 7039960 13183187 c928d3 vmlinux.o.orig
5486170 656987 7039960 13183117 c9288d vmlinux.o
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
It's just a wrapper of cgroup_attach_task_all(), and it's no longer
used after commit 87d6a412bd
(vhost: fix attach to cgroups regression)
Signed-off-by: Li Zefan <lizf@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
* 'for-3.3' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (21 commits)
cgroup: fix to allow mounting a hierarchy by name
cgroup: move assignement out of condition in cgroup_attach_proc()
cgroup: Remove task_lock() from cgroup_post_fork()
cgroup: add sparse annotation to cgroup_iter_start() and cgroup_iter_end()
cgroup: mark cgroup_rmdir_waitq and cgroup_attach_proc() as static
cgroup: only need to check oldcgrp==newgrp once
cgroup: remove redundant get/put of task struct
cgroup: remove redundant get/put of old css_set from migrate
cgroup: Remove unnecessary task_lock before fetching css_set on migration
cgroup: Drop task_lock(parent) on cgroup_fork()
cgroups: remove redundant get/put of css_set from css_set_check_fetched()
resource cgroups: remove bogus cast
cgroup: kill subsys->can_attach_task(), pre_attach() and attach_task()
cgroup, cpuset: don't use ss->pre_attach()
cgroup: don't use subsys->can_attach_task() or ->attach_task()
cgroup: introduce cgroup_taskset and use it in subsys->can_attach(), cancel_attach() and attach()
cgroup: improve old cgroup handling in cgroup_attach_proc()
cgroup: always lock threadgroup during migration
threadgroup: extend threadgroup_lock() to cover exit and exec
threadgroup: rename signal->threadgroup_fork_lock to ->group_rwsem
...
Fix up conflict in kernel/cgroup.c due to commit e0197aae59e5: "cgroups:
fix a css_set not found bug in cgroup_attach_proc" that already
mentioned that the bug is fixed (differently) in Tejun's cgroup
patchset. This one, in other words.
These three methods are no longer used. Kill them.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Menage <paul@paulmenage.org>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Currently, there's no way to pass multiple tasks to cgroup_subsys
methods necessitating the need for separate per-process and per-task
methods. This patch introduces cgroup_taskset which can be used to
pass multiple tasks and their associated cgroups to cgroup_subsys
methods.
Three methods - can_attach(), cancel_attach() and attach() - are
converted to use cgroup_taskset. This unifies passed parameters so
that all methods have access to all information. Conversions in this
patchset are identical and don't introduce any behavior change.
-v2: documentation updated as per Paul Menage's suggestion.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Menage <paul@paulmenage.org>
Acked-by: Li Zefan <lizf@cn.fujitsu.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: James Morris <jmorris@namei.org>
While back-porting Johannes Weiner's patch "mm: memcg-aware global
reclaim" for an internal effort, we noticed a significant performance
regression during page-reclaim heavy workloads due to high contention of
the ss->id_lock. This lock protects idr map, and serializes calls to
idr_get_next() in css_get_next() (which is used during the memcg hierarchy
walk).
Since idr_get_next() is just doing a look up, we need only serialize it
with respect to idr_remove()/idr_get_new(). By making the ss->id_lock a
rwlock, contention is greatly reduced and performance improves.
Tested: cat a 256m file from a ramdisk in a 128m container 50 times on
each core (one file + container per core) in parallel on a NUMA machine.
Result is the time for the test to complete in 1 of the containers.
Both kernels included Johannes' memcg-aware global reclaim patches.
Before rwlock patch: 1710.778s
After rwlock patch: 152.227s
Signed-off-by: Andrew Bresticker <abrestic@google.com>
Cc: Paul Menage <menage@gmail.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since ca5ecddf (rcu: define __rcu address space modifier for sparse)
rcu_dereference_check use rcu_read_lock_held as a part of condition
automatically so callers do not have to do that as well.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The ns_cgroup is an annoying cgroup at the namespace / cgroup frontier and
leads to some problems:
* cgroup creation is out-of-control
* cgroup name can conflict when pids are looping
* it is not possible to have a single process handling a lot of
namespaces without falling in a exponential creation time
* we may want to create a namespace without creating a cgroup
The ns_cgroup was replaced by a compatibility flag 'clone_children',
where a newly created cgroup will copy the parent cgroup values.
The userspace has to manually create a cgroup and add a task to
the 'tasks' file.
This patch removes the ns_cgroup as suggested in the following thread:
https://lists.linux-foundation.org/pipermail/containers/2009-June/018616.html
The 'cgroup_clone' function is removed because it is no longer used.
This is a userspace-visible change. Commit 45531757b4 ("cgroup: notify
ns_cgroup deprecated") (merged into 2.6.27) caused the kernel to emit a
printk warning users that the feature is planned for removal. Since that
time we have heard from XXX users who were affected by this.
Signed-off-by: Daniel Lezcano <daniel.lezcano@free.fr>
Signed-off-by: Serge E. Hallyn <serge.hallyn@canonical.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jamal Hadi Salim <hadi@cyberus.ca>
Reviewed-by: Li Zefan <lizf@cn.fujitsu.com>
Acked-by: Paul Menage <menage@google.com>
Acked-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cgroup subsystem callbacks for per-thread attachment in atomic contexts
Add can_attach_task(), pre_attach(), and attach_task() as new callbacks
for cgroups's subsystem interface. Unlike can_attach and attach, these
are for per-thread operations, to be called potentially many times when
attaching an entire threadgroup.
Also, the old "bool threadgroup" interface is removed, as replaced by
this. All subsystems are modified for the new interface - of note is
cpuset, which requires from/to nodemasks for attach to be globally scoped
(though per-cpuset would work too) to persist from its pre_attach to
attach_task and attach.
This is a pre-patch for cgroup-procs-writable.patch.
Signed-off-by: Ben Blum <bblum@andrew.cmu.edu>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Matt Helsley <matthltc@us.ibm.com>
Reviewed-by: Paul Menage <menage@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miao Xie <miaox@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>