Commit Graph

113 Commits

Author SHA1 Message Date
Linus Torvalds 7dd86cf801 Livepatching changes for 6.3
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmP01jEACgkQUqAMR0iA
 lPIH1g/9G3CLt9+by3d0FiS5AsbK6vohZRzKxqCTyX9b2p2sLQuiTu8TodJ9IOur
 axpaOuPOIjQ253yfqrYL2YZHdfr/632nSTGsT18p7k8a9m6ghQ6cW+uq23Ro9W43
 uubjyvFMTeLBnkDTSJquciENdMtyPwyiTN0+ZvDOsAOKoBt7i3Rt7lcorjDuALwb
 2SQ80qCjYLy1r6mkQyy3IhLQVSeRiaqkR6IAdxR5EeXmbSi0YYh0Jxz5AzPMeDw6
 F1w7Whe6Vf8vf4JHVDqNazB3f+JH4JrmRvk6LxlGU33z9uJac4NIbboGDXzRP21h
 A0UGqwJimeoi8dji9Y3cXRIYRc+HqyqL0IadSHHLCou746/CJDBQN1EjNNBgZgu6
 cTELnRL9TsV9tWt9boqbMK0KfCFnOsGPMDAXXDH5G/ZUsvyDweGMNelgNTXURHFX
 f1cTfdDj2T/iG3XDZHf35/rSI56BDQJcJ1G1fQc3sl+G9jDGxX3PBJYNAUpvC6cy
 iewDeROcAAXmwUqaC8epJJfN2m9zJJpDgR1t4mZTnKkmRF090ZApyDA4M769kn0J
 ioHvE8Pe9+GjY8syGzq3EJRyQnfXgTbAyKfiTpGWefLPrgkQ9LfFQRQ1S21sy483
 Bz/KrNl1tMWFsSmngNYaiOZifjxVj8pYoIz1W2s0ore9sYu78YM=
 =xdQJ
 -----END PGP SIGNATURE-----

Merge tag 'livepatching-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching

Pull livepatching updates from Petr Mladek:

 - Allow reloading a livepatched module by clearing livepatch-specific
   relocations in the livepatch module.

   Otherwise, the repeated load would fail on consistency checks.

* tag 'livepatching-for-6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching:
  livepatch,x86: Clear relocation targets on a module removal
  x86/module: remove unused code in __apply_relocate_add
2023-02-23 14:00:10 -08:00
Song Liu 0c05e7bd2d livepatch,x86: Clear relocation targets on a module removal
Josh reported a bug:

  When the object to be patched is a module, and that module is
  rmmod'ed and reloaded, it fails to load with:

  module: x86/modules: Skipping invalid relocation target, existing value is nonzero for type 2, loc 00000000ba0302e9, val ffffffffa03e293c
  livepatch: failed to initialize patch 'livepatch_nfsd' for module 'nfsd' (-8)
  livepatch: patch 'livepatch_nfsd' failed for module 'nfsd', refusing to load module 'nfsd'

  The livepatch module has a relocation which references a symbol
  in the _previous_ loading of nfsd. When apply_relocate_add()
  tries to replace the old relocation with a new one, it sees that
  the previous one is nonzero and it errors out.

He also proposed three different solutions. We could remove the error
check in apply_relocate_add() introduced by commit eda9cec4c9
("x86/module: Detect and skip invalid relocations"). However the check
is useful for detecting corrupted modules.

We could also deny the patched modules to be removed. If it proved to be
a major drawback for users, we could still implement a different
approach. The solution would also complicate the existing code a lot.

We thus decided to reverse the relocation patching (clear all relocation
targets on x86_64). The solution is not
universal and is too much arch-specific, but it may prove to be simpler
in the end.

Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Originally-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Song Liu <song@kernel.org>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com>
Tested-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20230125185401.279042-2-song@kernel.org
2023-02-03 11:28:22 +01:00
Zhen Lei 07cc2c931e livepatch: Improve the search performance of module_kallsyms_on_each_symbol()
Currently we traverse all symbols of all modules to find the specified
function for the specified module. But in reality, we just need to find
the given module and then traverse all the symbols in it.

Let's add a new parameter 'const char *modname' to function
module_kallsyms_on_each_symbol(), then we can compare the module names
directly in this function and call hook 'fn' after matching. If 'modname'
is NULL, the symbols of all modules are still traversed for compatibility
with other usage cases.

Phase1: mod1-->mod2..(subsequent modules do not need to be compared)
                |
Phase2:          -->f1-->f2-->f3

Assuming that there are m modules, each module has n symbols on average,
then the time complexity is reduced from O(m * n) to O(m) + O(n).

Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Link: https://lore.kernel.org/r/20230116101009.23694-2-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-19 17:07:15 -08:00
Zhen Lei 4f1354d5c6 livepatch: Call klp_match_callback() in klp_find_callback() to avoid code duplication
The implementation of function klp_match_callback() is identical to the
partial implementation of function klp_find_callback(). So call function
klp_match_callback() in function klp_find_callback() instead of the
duplicated code.

Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Song Liu <song@kernel.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Suggested-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-12-12 18:30:58 -08:00
Zhen Lei 9cb37357df livepatch: Use kallsyms_on_each_match_symbol() to improve performance
Based on the test results of kallsyms_on_each_match_symbol() and
kallsyms_on_each_symbol(), the average performance can be improved by
more than 1500 times.

Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
2022-11-12 18:47:36 -08:00
Linus Torvalds 4de65c5830 Livepatching changes for 6.1
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmM9Y/gACgkQUqAMR0iA
 lPJxwg//SJsMwv3zDDP3YAzhROongc9mlNL9yTNo5zMFYaLIF6j0UkN7zP7+ChTY
 u3rfiOYOiSNVyylC4+Auznqi219wjEPedDtJkP6Gx6mHJIArXoFltOGct1fz3CH6
 xJjBYPpRVQTP54HQ/OEM4kfxn7eG1HXpErxIYUfeRzM5REJR0iZFfI6FwyXVhjsL
 1lDTHc/qlLlaDMqik2sQ/3yJ391SQKodAwkJY9d2wS06OjMmvtX+dADZJkXwv14f
 5wnBXG/4Zr0HSR2JW3VgU7AwZptaRLYF2PtYdDp+yI0DSsmjPq4d+0YqTVbgLNSq
 r0XmewMpnNUNojEuFpW4/+RGZo0pnlJpjUOYfKTbDecnYfMjUFtSGPLVTMnN1OT+
 xcW/Q8jO4nQ24993xrQbOr/vBT6nIsePkJAOJkTPzzAxkPF3X7ik3lZyjb7ntDlV
 mTfUpmTiFtmdMsDaKFxbgRknPre7z4XASMAiErHU4TGNyKBHsRDXmAdtC8hNn7ZU
 z2NGlDrBKuHL8IcKQ6uH/SYtyG3HIVCeiWqkRd9Sm9RKoz4p+sGl3I4D367O+fGX
 GGwXj8b5wvjl/BGXHoM+kQKmclYB8kD/8iQSwd64qooTkiDtt1HDPGr2Ewa5thiz
 fDoVyy98vyRSNmXtst9S7+IMmdjQ7mjmW9AlAITOwIo89UW+7GQ=
 =+qS1
 -----END PGP SIGNATURE-----

Merge tag 'livepatching-for-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching

Pull livepatching updates from Petr Mladek:

 - Fix race between fork and livepatch transition revert

 - Add sysfs entry that shows "patched" state for each object (module)
   that can be livepatched by the given livepatch

 - Some clean up

* tag 'livepatching-for-6.1' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching:
  selftests/livepatch: add sysfs test
  livepatch: add sysfs entry "patched" for each klp_object
  selftests/livepatch: normalize sysctl error message
  livepatch: Add a missing newline character in klp_module_coming()
  livepatch: fix race between fork and KLP transition
2022-10-10 11:36:19 -07:00
Petr Mladek 59b2a38c6a Merge branch 'for-6.1/sysfs-patched-object' into for-linus 2022-10-05 13:00:03 +02:00
Miguel Ojeda b8a94bfb33 kallsyms: increase maximum kernel symbol length to 512
Rust symbols can become quite long due to namespacing introduced
by modules, types, traits, generics, etc. For instance,
the following code:

    pub mod my_module {
        pub struct MyType;
        pub struct MyGenericType<T>(T);

        pub trait MyTrait {
            fn my_method() -> u32;
        }

        impl MyTrait for MyGenericType<MyType> {
            fn my_method() -> u32 {
                42
            }
        }
    }

generates a symbol of length 96 when using the upcoming v0 mangling scheme:

    _RNvXNtCshGpAVYOtgW1_7example9my_moduleINtB2_13MyGenericTypeNtB2_6MyTypeENtB2_7MyTrait9my_method

At the moment, Rust symbols may reach up to 300 in length.
Setting 512 as the maximum seems like a reasonable choice to
keep some headroom.

Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Co-developed-by: Alex Gaynor <alex.gaynor@gmail.com>
Signed-off-by: Alex Gaynor <alex.gaynor@gmail.com>
Co-developed-by: Wedson Almeida Filho <wedsonaf@google.com>
Signed-off-by: Wedson Almeida Filho <wedsonaf@google.com>
Co-developed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Gary Guo <gary@garyguo.net>
Co-developed-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
2022-09-28 08:56:25 +02:00
Song Liu bb26cfd9e7 livepatch: add sysfs entry "patched" for each klp_object
Add per klp_object sysfs entry "patched". It makes it easier to debug
typos in the module name.

Signed-off-by: Song Liu <song@kernel.org>
Reviewed-by: Joe Lawrence <joe.lawrence@redhat.com>
[pmladek@suse.com: Updated kernel version when the sysfs file will be introduced]
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220902205208.3117798-2-song@kernel.org
2022-09-23 16:06:18 +02:00
Zhen Lei 66d8529d0f livepatch: Add a missing newline character in klp_module_coming()
The error message is not printed immediately because it does not end with
a newline character.

Before:
root@localhost:~# insmod vmlinux.ko
insmod: ERROR: could not insert module vmlinux.ko: Invalid parameters

After:
root@localhost:~# insmod vmlinux.ko
[   43.982558] livepatch: vmlinux.ko: invalid module name
insmod: ERROR: could not insert module vmlinux.ko: Invalid parameters

Fixes: dcf550e52f ("livepatch: Disallow vmlinux.ko")
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20220830112855.749-1-thunder.leizhen@huawei.com
2022-09-01 16:27:59 +02:00
Christophe Leroy 2f293651ec livepatch: Fix build failure on 32 bits processors
Trying to build livepatch on powerpc/32 results in:

	kernel/livepatch/core.c: In function 'klp_resolve_symbols':
	kernel/livepatch/core.c:221:23: warning: cast to pointer from integer of different size [-Wint-to-pointer-cast]
	  221 |                 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
	      |                       ^
	kernel/livepatch/core.c:221:21: error: assignment to 'Elf32_Sym *' {aka 'struct elf32_sym *'} from incompatible pointer type 'Elf64_Sym *' {aka 'struct elf64_sym *'} [-Werror=incompatible-pointer-types]
	  221 |                 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
	      |                     ^
	kernel/livepatch/core.c: In function 'klp_apply_section_relocs':
	kernel/livepatch/core.c:312:35: error: passing argument 1 of 'klp_resolve_symbols' from incompatible pointer type [-Werror=incompatible-pointer-types]
	  312 |         ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
	      |                                   ^~~~~~~
	      |                                   |
	      |                                   Elf32_Shdr * {aka struct elf32_shdr *}
	kernel/livepatch/core.c:193:44: note: expected 'Elf64_Shdr *' {aka 'struct elf64_shdr *'} but argument is of type 'Elf32_Shdr *' {aka 'struct elf32_shdr *'}
	  193 | static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
	      |                                ~~~~~~~~~~~~^~~~~~~

Fix it by using the right types instead of forcing 64 bits types.

Fixes: 7c8e2bdd5f ("livepatch: Apply vmlinux-specific KLP relocations early")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Petr Mladek <pmladek@suse.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/5288e11b018a762ea3351cc8fb2d4f15093a4457.1640017960.git.christophe.leroy@csgroup.eu
2022-02-07 21:03:10 +11:00
Yang Yingliang 50a0f3f55e livepatch: Fix missing unlock on error in klp_enable_patch()
Add missing unlock when try_module_get() fails in klp_enable_patch().

Fixes: 5ef3dd2055 ("livepatch: Fix kobject refcount bug on klp_init_patch_early failure path")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Acked-by: David Vernet <void@manifault.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20211225025115.475348-1-yangyingliang@huawei.com
2022-01-04 13:57:19 +01:00
David Vernet 5ef3dd2055 livepatch: Fix kobject refcount bug on klp_init_patch_early failure path
When enabling a klp patch with klp_enable_patch(), klp_init_patch_early()
is invoked to initialize the kobjects for the patch itself, as well as the
'struct klp_object' and 'struct klp_func' objects that comprise it.
However, there are some error paths in klp_enable_patch() where some
kobjects may have been initialized with kobject_init(), but an error code
is still returned due to e.g. a 'struct klp_object' having a NULL funcs
pointer.

In these paths, the initial reference of the kobject of the 'struct
klp_patch' may never be released, along with one or more of its objects and
their functions, as kobject_put() is not invoked on the cleanup path if
klp_init_patch_early() returns an error code.

For example, if an object entry such as the following were added to the
sample livepatch module's klp patch, it would cause the vmlinux klp_object,
and its klp_func which updates 'cmdline_proc_show', to never be released:

static struct klp_object objs[] = {
	{
		/* name being NULL means vmlinux */
		.funcs = funcs,
	},
	{
		/* NULL funcs -- would cause reference leak */
		.name = "kvm",
	}, { }
};

Without this change, if CONFIG_DEBUG_KOBJECT is enabled, and the sample klp
patch is loaded, the kobjects (the patch, the vmlinux 'struct klp_object',
and its func) are observed as initialized, but never released, in the dmesg
log output.  With the change, these kobject references no longer fail to be
released as the error case is properly handled before they are initialized.

Signed-off-by: David Vernet <void@manifault.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2022-01-04 13:54:24 +01:00
Christoph Hellwig 013c1667cf kallsyms: refactor {,module_}kallsyms_on_each_symbol
Require an explicit call to module_kallsyms_on_each_symbol to look
for symbols in modules instead of the call from kallsyms_on_each_symbol,
and acquire module_mutex inside of module_kallsyms_on_each_symbol instead
of leaving that up to the caller.  Note that this slightly changes the
behavior for the livepatch code in that the symbols from vmlinux are not
iterated anymore if objname is set, but that actually is the desired
behavior in this case.

Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2021-02-08 12:22:08 +01:00
Christoph Hellwig a006050575 module: use RCU to synchronize find_module
Allow for a RCU-sched critical section around find_module, following
the lower level find_module_all helper, and switch the two callers
outside of module.c to use such a RCU-sched critical section instead
of module_mutex.

Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
2021-02-08 12:21:40 +01:00
Samuel Zou a4ae16f65c livepatch: Make klp_apply_object_relocs static
Fix the following sparse warning:

kernel/livepatch/core.c:748:5: warning: symbol 'klp_apply_object_relocs' was
not declared.

The klp_apply_object_relocs() has only one call site within core.c;
it should be static

Fixes: 7c8e2bdd5f ("livepatch: Apply vmlinux-specific KLP relocations early")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Samuel Zou <zou_wei@huawei.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-05-11 00:31:38 +02:00
Josh Poimboeuf 5b384f9335 x86/module: Use text_mutex in apply_relocate_add()
Now that the livepatch code no longer needs the text_mutex for changing
module permissions, move its usage down to apply_relocate_add().

Note the s390 version of apply_relocate_add() doesn't need to use the
text_mutex because it already uses s390_kernel_write_lock, which
accomplishes the same task.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-05-08 00:12:43 +02:00
Josh Poimboeuf d556e1be33 livepatch: Remove module_disable_ro() usage
With arch_klp_init_object_loaded() gone, and apply_relocate_add() now
using text_poke(), livepatch no longer needs to use module_disable_ro().

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-05-08 00:12:43 +02:00
Josh Poimboeuf ca376a9374 livepatch: Prevent module-specific KLP rela sections from referencing vmlinux symbols
Prevent module-specific KLP rela sections from referencing vmlinux
symbols.  This helps prevent ordering issues with module special section
initializations.  Presumably such symbols are exported and normal relas
can be used instead.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-05-08 00:12:42 +02:00
Peter Zijlstra 1d05334d28 livepatch: Remove .klp.arch
After the previous patch, vmlinux-specific KLP relocations are now
applied early during KLP module load.  This means that .klp.arch
sections are no longer needed for *vmlinux-specific* KLP relocations.

One might think they're still needed for *module-specific* KLP
relocations.  If a to-be-patched module is loaded *after* its
corresponding KLP module is loaded, any corresponding KLP relocations
will be delayed until the to-be-patched module is loaded.  If any
special sections (.parainstructions, for example) rely on those
relocations, their initializations (apply_paravirt) need to be done
afterwards.  Thus the apparent need for arch_klp_init_object_loaded()
and its corresponding .klp.arch sections -- it allows some of the
special section initializations to be done at a later time.

But... if you look closer, that dependency between the special sections
and the module-specific KLP relocations doesn't actually exist in
reality.  Looking at the contents of the .altinstructions and
.parainstructions sections, there's not a realistic scenario in which a
KLP module's .altinstructions or .parainstructions section needs to
access a symbol in a to-be-patched module.  It might need to access a
local symbol or even a vmlinux symbol; but not another module's symbol.
When a special section needs to reference a local or vmlinux symbol, a
normal rela can be used instead of a KLP rela.

Since the special section initializations don't actually have any real
dependency on module-specific KLP relocations, .klp.arch and
arch_klp_init_object_loaded() no longer have a reason to exist.  So
remove them.

As Peter said much more succinctly:

  So the reason for .klp.arch was that .klp.rela.* stuff would overwrite
  paravirt instructions. If that happens you're doing it wrong. Those
  RELAs are core kernel, not module, and thus should've happened in
  .rela.* sections at patch-module loading time.

  Reverting this removes the two apply_{paravirt,alternatives}() calls
  from the late patching path, and means we don't have to worry about
  them when removing module_disable_ro().

[ jpoimboe: Rewrote patch description.  Tweaked klp_init_object_loaded()
	    error path. ]

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-05-08 00:12:42 +02:00
Josh Poimboeuf 7c8e2bdd5f livepatch: Apply vmlinux-specific KLP relocations early
KLP relocations are livepatch-specific relocations which are applied to
a KLP module's text or data.  They exist for two reasons:

  1) Unexported symbols: replacement functions often need to access
     unexported symbols (e.g. static functions), which "normal"
     relocations don't allow.

  2) Late module patching: this is the ability for a KLP module to
     bypass normal module dependencies, such that the KLP module can be
     loaded *before* a to-be-patched module.  This means that
     relocations which need to access symbols in the to-be-patched
     module might need to be applied to the KLP module well after it has
     been loaded.

Non-late-patched KLP relocations are applied from the KLP module's init
function.  That usually works fine, unless the patched code wants to use
alternatives, paravirt patching, jump tables, or some other special
section which needs relocations.  Then we run into ordering issues and
crashes.

In order for those special sections to work properly, the KLP
relocations should be applied *before* the special section init code
runs, such as apply_paravirt(), apply_alternatives(), or
jump_label_apply_nops().

You might think the obvious solution would be to move the KLP relocation
initialization earlier, but it's not necessarily that simple.  The
problem is the above-mentioned late module patching, for which KLP
relocations can get applied well after the KLP module is loaded.

To "fix" this issue in the past, we created .klp.arch sections:

  .klp.arch.{module}..altinstructions
  .klp.arch.{module}..parainstructions

Those sections allow KLP late module patching code to call
apply_paravirt() and apply_alternatives() after the module-specific KLP
relocations (.klp.rela.{module}.{section}) have been applied.

But that has a lot of drawbacks, including code complexity, the need for
arch-specific code, and the (per-arch) danger that we missed some
special section -- for example the __jump_table section which is used
for jump labels.

It turns out there's a simpler and more functional approach.  There are
two kinds of KLP relocation sections:

  1) vmlinux-specific KLP relocation sections

     .klp.rela.vmlinux.{sec}

     These are relocations (applied to the KLP module) which reference
     unexported vmlinux symbols.

  2) module-specific KLP relocation sections

     .klp.rela.{module}.{sec}:

     These are relocations (applied to the KLP module) which reference
     unexported or exported module symbols.

Up until now, these have been treated the same.  However, they're
inherently different.

Because of late module patching, module-specific KLP relocations can be
applied very late, thus they can create the ordering headaches described
above.

But vmlinux-specific KLP relocations don't have that problem.  There's
nothing to prevent them from being applied earlier.  So apply them at
the same time as normal relocations, when the KLP module is being
loaded.

This means that for vmlinux-specific KLP relocations, we no longer have
any ordering issues.  vmlinux-referencing jump labels, alternatives, and
paravirt patching will work automatically, without the need for the
.klp.arch hacks.

All that said, for module-specific KLP relocations, the ordering
problems still exist and we *do* still need .klp.arch.  Or do we?  Stay
tuned.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-05-08 00:12:42 +02:00
Josh Poimboeuf dcf550e52f livepatch: Disallow vmlinux.ko
This is purely a theoretical issue, but if there were a module named
vmlinux.ko, the livepatch relocation code wouldn't be able to
distinguish between vmlinux-specific and vmlinux.o-specific KLP
relocations.

If CONFIG_LIVEPATCH is enabled, don't allow a module named vmlinux.ko.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2020-05-08 00:12:42 +02:00
Petr Mladek 92c9abf5e5 livepatch: Allow to distinguish different version of system state changes
The atomic replace runs pre/post (un)install callbacks only from the new
livepatch. There are several reasons for this:

  + Simplicity: clear ordering of operations, no interactions between
	old and new callbacks.

  + Reliability: only new livepatch knows what changes can already be made
	by older livepatches and how to take over the state.

  + Testing: the atomic replace can be properly tested only when a newer
	livepatch is available. It might be too late to fix unwanted effect
	of callbacks from older	livepatches.

It might happen that an older change is not enough and the same system
state has to be modified another way. Different changes need to get
distinguished by a version number added to struct klp_state.

The version can also be used to prevent loading incompatible livepatches.
The check is done when the livepatch is enabled. The rules are:

  + Any completely new system state modification is allowed.

  + System state modifications with the same or higher version are allowed
    for already modified system states.

  + Cumulative livepatches must handle all system state modifications from
    already installed livepatches.

  + Non-cumulative livepatches are allowed to touch already modified
    system states.

Link: http://lkml.kernel.org/r/20191030154313.13263-4-pmladek@suse.com
To: Jiri Kosina <jikos@kernel.org>
Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: live-patching@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-11-01 13:08:19 +01:00
Petr Mladek 7e35e4eb7e livepatch: Keep replaced patches until post_patch callback is called
Pre/post (un)patch callbacks might manipulate the system state. Cumulative
livepatches might need to take over the changes made by the replaced
ones. For this they might need to access some data stored or referenced
by the old livepatches.

Therefore the replaced livepatches have to stay around until post_patch()
callback is called. It is achieved by calling the free functions later.
It is the same location where disabled livepatches have already been
freed.

Link: http://lkml.kernel.org/r/20191030154313.13263-2-pmladek@suse.com
To: Jiri Kosina <jikos@kernel.org>
Cc: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: live-patching@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-11-01 13:08:08 +01:00
Miroslav Benes 4ff96fb52c livepatch: Nullify obj->mod in klp_module_coming()'s error path
klp_module_coming() is called for every module appearing in the system.
It sets obj->mod to a patched module for klp_object obj. Unfortunately
it leaves it set even if an error happens later in the function and the
patched module is not allowed to be loaded.

klp_is_object_loaded() uses obj->mod variable and could currently give a
wrong return value. The bug is probably harmless as of now.

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-08-19 13:03:37 +02:00
Linus Torvalds 6a71398c6a This includes the following fixes:
- Out of range read of stack trace output
  - Fix for NULL pointer dereference in trace_uprobe_create()
  - Fix to a livepatching / ftrace permission race in the module code
  - Fix for NULL pointer dereference in free_ftrace_func_mapper()
  - A couple of build warning clean ups
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXQToxhQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qusmAP4/mmJPgsDchnu5ui0wB8BByzJlsPn8
 luXFDuqI4f34zgD+JCmeYbj5LLh98D9XkaaEgP4yz3yKsWeSdwWPCU0vTgo=
 =M/+E
 -----END PGP SIGNATURE-----

Merge tag 'trace-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing fixes from Steven Rostedt:

 - Out of range read of stack trace output

 - Fix for NULL pointer dereference in trace_uprobe_create()

 - Fix to a livepatching / ftrace permission race in the module code

 - Fix for NULL pointer dereference in free_ftrace_func_mapper()

 - A couple of build warning clean ups

* tag 'trace-v5.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
  ftrace: Fix NULL pointer dereference in free_ftrace_func_mapper()
  module: Fix livepatch/ftrace module text permissions race
  tracing/uprobe: Fix obsolete comment on trace_uprobe_create()
  tracing/uprobe: Fix NULL pointer dereference in trace_uprobe_create()
  tracing: Make two symbols static
  tracing: avoid build warning with HAVE_NOP_MCOUNT
  tracing: Fix out-of-range read in trace_stack_print()
2019-06-15 07:24:11 -10:00
Josh Poimboeuf 9f255b632b module: Fix livepatch/ftrace module text permissions race
It's possible for livepatch and ftrace to be toggling a module's text
permissions at the same time, resulting in the following panic:

  BUG: unable to handle page fault for address: ffffffffc005b1d9
  #PF: supervisor write access in kernel mode
  #PF: error_code(0x0003) - permissions violation
  PGD 3ea0c067 P4D 3ea0c067 PUD 3ea0e067 PMD 3cc13067 PTE 3b8a1061
  Oops: 0003 [#1] PREEMPT SMP PTI
  CPU: 1 PID: 453 Comm: insmod Tainted: G           O  K   5.2.0-rc1-a188339ca5 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
  RIP: 0010:apply_relocate_add+0xbe/0x14c
  Code: fa 0b 74 21 48 83 fa 18 74 38 48 83 fa 0a 75 40 eb 08 48 83 38 00 74 33 eb 53 83 38 00 75 4e 89 08 89 c8 eb 0a 83 38 00 75 43 <89> 08 48 63 c1 48 39 c8 74 2e eb 48 83 38 00 75 32 48 29 c1 89 08
  RSP: 0018:ffffb223c00dbb10 EFLAGS: 00010246
  RAX: ffffffffc005b1d9 RBX: 0000000000000000 RCX: ffffffff8b200060
  RDX: 000000000000000b RSI: 0000004b0000000b RDI: ffff96bdfcd33000
  RBP: ffffb223c00dbb38 R08: ffffffffc005d040 R09: ffffffffc005c1f0
  R10: ffff96bdfcd33c40 R11: ffff96bdfcd33b80 R12: 0000000000000018
  R13: ffffffffc005c1f0 R14: ffffffffc005e708 R15: ffffffff8b2fbc74
  FS:  00007f5f447beba8(0000) GS:ffff96bdff900000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: ffffffffc005b1d9 CR3: 000000003cedc002 CR4: 0000000000360ea0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   klp_init_object_loaded+0x10f/0x219
   ? preempt_latency_start+0x21/0x57
   klp_enable_patch+0x662/0x809
   ? virt_to_head_page+0x3a/0x3c
   ? kfree+0x8c/0x126
   patch_init+0x2ed/0x1000 [livepatch_test02]
   ? 0xffffffffc0060000
   do_one_initcall+0x9f/0x1c5
   ? kmem_cache_alloc_trace+0xc4/0xd4
   ? do_init_module+0x27/0x210
   do_init_module+0x5f/0x210
   load_module+0x1c41/0x2290
   ? fsnotify_path+0x3b/0x42
   ? strstarts+0x2b/0x2b
   ? kernel_read+0x58/0x65
   __do_sys_finit_module+0x9f/0xc3
   ? __do_sys_finit_module+0x9f/0xc3
   __x64_sys_finit_module+0x1a/0x1c
   do_syscall_64+0x52/0x61
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

The above panic occurs when loading two modules at the same time with
ftrace enabled, where at least one of the modules is a livepatch module:

CPU0					CPU1
klp_enable_patch()
  klp_init_object_loaded()
    module_disable_ro()
    					ftrace_module_enable()
					  ftrace_arch_code_modify_post_process()
				    	    set_all_modules_text_ro()
      klp_write_object_relocations()
        apply_relocate_add()
	  *patches read-only code* - BOOM

A similar race exists when toggling ftrace while loading a livepatch
module.

Fix it by ensuring that the livepatch and ftrace code patching
operations -- and their respective permissions changes -- are protected
by the text_mutex.

Link: http://lkml.kernel.org/r/ab43d56ab909469ac5d2520c5d944ad6d4abd476.1560474114.git.jpoimboe@redhat.com

Reported-by: Johannes Erdfelt <johannes@erdfelt.com>
Fixes: 444d13ff10 ("modules: add ro_after_init support")
Acked-by: Jessica Yu <jeyu@kernel.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-06-14 17:01:50 -04:00
Thomas Gleixner 1ccea77e2a treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 13
Based on 2 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not see http www gnu org licenses

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details [based]
  [from] [clk] [highbank] [c] you should have received a copy of the
  gnu general public license along with this program if not see http
  www gnu org licenses

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 355 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Jilayne Lovejoy <opensource@jilayne.com>
Reviewed-by: Steve Winslow <swinslow@gmail.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 11:28:45 +02:00
Linus Torvalds d2d8b14604 The major changes in this tracing update includes:
- Removing of non-DYNAMIC_FTRACE from 32bit x86
 
  - Removing of mcount support from x86
 
  - Emulating a call from int3 on x86_64, fixes live kernel patching
 
  - Consolidated Tracing Error logs file
 
 Minor updates:
 
  - Removal of klp_check_compiler_support()
 
  - kdb ftrace dumping output changes
 
  - Accessing and creating ftrace instances from inside the kernel
 
  - Clean up of #define if macro
 
  - Introduction of TRACE_EVENT_NOP() to disable trace events based on config
    options
 
 And other minor fixes and clean ups
 -----BEGIN PGP SIGNATURE-----
 
 iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXNxMZxQccm9zdGVkdEBn
 b29kbWlzLm9yZwAKCRAp5XQQmuv6qq4PAP44kP6VbwL8CHyI2A3xuJ6Hwxd+2Z2r
 ip66RtzyJ+2iCgEA2QCuWUlEt2bLpF9a8IQ4N9tWenSeW2i7gunPb+tioQw=
 =RVQo
 -----END PGP SIGNATURE-----

Merge tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace

Pull tracing updates from Steven Rostedt:
 "The major changes in this tracing update includes:

   - Removal of non-DYNAMIC_FTRACE from 32bit x86

   - Removal of mcount support from x86

   - Emulating a call from int3 on x86_64, fixes live kernel patching

   - Consolidated Tracing Error logs file

  Minor updates:

   - Removal of klp_check_compiler_support()

   - kdb ftrace dumping output changes

   - Accessing and creating ftrace instances from inside the kernel

   - Clean up of #define if macro

   - Introduction of TRACE_EVENT_NOP() to disable trace events based on
     config options

  And other minor fixes and clean ups"

* tag 'trace-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (44 commits)
  x86: Hide the int3_emulate_call/jmp functions from UML
  livepatch: Remove klp_check_compiler_support()
  ftrace/x86: Remove mcount support
  ftrace/x86_32: Remove support for non DYNAMIC_FTRACE
  tracing: Simplify "if" macro code
  tracing: Fix documentation about disabling options using trace_options
  tracing: Replace kzalloc with kcalloc
  tracing: Fix partial reading of trace event's id file
  tracing: Allow RCU to run between postponed startup tests
  tracing: Fix white space issues in parse_pred() function
  tracing: Eliminate const char[] auto variables
  ring-buffer: Fix mispelling of Calculate
  tracing: probeevent: Fix to make the type of $comm string
  tracing: probeevent: Do not accumulate on ret variable
  tracing: uprobes: Re-enable $comm support for uprobe events
  ftrace/x86_64: Emulate call function while updating in breakpoint handler
  x86_64: Allow breakpoints to emulate call instructions
  x86_64: Add gap to int3 to allow for call emulation
  tracing: kdb: Allow ftdump to skip all but the last few entries
  tracing: Add trace_total_entries() / trace_total_entries_cpu()
  ...
2019-05-15 16:05:47 -07:00
Jiri Kosina 56e33afd77 livepatch: Remove klp_check_compiler_support()
The only purpose of klp_check_compiler_support() is to make sure that we
are not using ftrace on x86 via mcount (because that's executed only after
prologue has already happened, and that's too late for livepatching
purposes).

Now that mcount is not supported by ftrace any more, there is no need for
klp_check_compiler_support() either.

Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1905102346100.17054@cbobk.fhfr.pm

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-05-10 17:53:29 -04:00
Linus Torvalds cf482a49af Driver core/kobject patches for 5.2-rc1
Here is the "big" set of driver core patches for 5.2-rc1
 
 There are a number of ACPI patches in here as well, as Rafael said they
 should go through this tree due to the driver core changes they
 required.  They have all been acked by the ACPI developers.
 
 There are also a number of small subsystem-specific changes in here, due
 to some changes to the kobject core code.  Those too have all been acked
 by the various subsystem maintainers.
 
 As for content, it's pretty boring outside of the ACPI changes:
   - spdx cleanups
   - kobject documentation updates
   - default attribute groups for kobjects
   - other minor kobject/driver core fixes
 
 All have been in linux-next for a while with no reported issues.
 
 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
 -----BEGIN PGP SIGNATURE-----
 
 iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXNHDbw8cZ3JlZ0Brcm9h
 aC5jb20ACgkQMUfUDdst+ynDAgCfbb4LBR6I50wFXb8JM/R6cAS7qrsAn1unshKV
 8XCYcif2RxjtdJWXbjdm
 =/rLh
 -----END PGP SIGNATURE-----

Merge tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core

Pull driver core/kobject updates from Greg KH:
 "Here is the "big" set of driver core patches for 5.2-rc1

  There are a number of ACPI patches in here as well, as Rafael said
  they should go through this tree due to the driver core changes they
  required. They have all been acked by the ACPI developers.

  There are also a number of small subsystem-specific changes in here,
  due to some changes to the kobject core code. Those too have all been
  acked by the various subsystem maintainers.

  As for content, it's pretty boring outside of the ACPI changes:
   - spdx cleanups
   - kobject documentation updates
   - default attribute groups for kobjects
   - other minor kobject/driver core fixes

  All have been in linux-next for a while with no reported issues"

* tag 'driver-core-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (47 commits)
  kobject: clean up the kobject add documentation a bit more
  kobject: Fix kernel-doc comment first line
  kobject: Remove docstring reference to kset
  firmware_loader: Fix a typo ("syfs" -> "sysfs")
  kobject: fix dereference before null check on kobj
  Revert "driver core: platform: Fix the usage of platform device name(pdev->name)"
  init/config: Do not select BUILD_BIN2C for IKCONFIG
  Provide in-kernel headers to make extending kernel easier
  kobject: Improve doc clarity kobject_init_and_add()
  kobject: Improve docs for kobject_add/del
  driver core: platform: Fix the usage of platform device name(pdev->name)
  livepatch: Replace klp_ktype_patch's default_attrs with groups
  cpufreq: schedutil: Replace default_attrs field with groups
  padata: Replace padata_attr_type default_attrs field with groups
  irqdesc: Replace irq_kobj_type's default_attrs field with groups
  net-sysfs: Replace ktype default_attrs field with groups
  block: Replace all ktype default_attrs with groups
  samples/kobject: Replace foo_ktype's default_attrs field with groups
  kobject: Add support for default attribute groups to kobj_type
  driver core: Postpone DMA tear-down until after devres release for probe failure
  ...
2019-05-07 13:01:40 -07:00
Petr Mladek f68d67cf2f livepatch: Remove duplicated code for early initialization
kobject_init() call added one more operation that has to be
done when doing the early initialization of both static and
dynamic livepatch structures.

It would have been easier when the early initialization code
was not duplicated. Let's deduplicate it for future generations
of livepatching hackers.

The patch does not change the existing behavior.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-05-03 21:11:23 +02:00
Petr Mladek 4d141ab341 livepatch: Remove custom kobject state handling
kobject_init() always succeeds and sets the reference count to 1.
It allows to always free the structures via kobject_put() and
the related release callback.

Note that the custom kobject state handling was used only
because we did not know that kobject_put() can and actually
should get called even when kobject_init_and_add() fails.

The patch should not change the existing behavior.

Suggested-by: "Tobin C. Harding" <tobin@kernel.org>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-05-03 21:11:22 +02:00
Petr Mladek 31adf2308f livepatch: Convert error about unsupported reliable stacktrace into a warning
The commit d0807da78e ("livepatch: Remove immediate feature") caused
that any livepatch was refused when reliable stacktraces were not supported
on the given architecture.

The limitation is too strong. User space processes are safely migrated
even when entering or leaving the kernel. Kthreads transition would
need to get forced. But it is safe when:

   + The livepatch does not change the semantic of the code.
   + Callbacks do not depend on a safely finished transition.

Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-04-29 14:46:07 +02:00
Kimberly Brown 70283454c9 livepatch: Replace klp_ktype_patch's default_attrs with groups
The kobj_type default_attrs field is being replaced by the
default_groups field. Replace klp_ktype_patch's default_attrs field
with default_groups and use the ATTRIBUTE_GROUPS macro to create
klp_patch_groups.

This patch was tested by loading the livepatch-sample module and
verifying that the sysfs files for the attributes in the default groups
were created.

Signed-off-by: Kimberly Brown <kimbrownkd@gmail.com>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-25 22:06:11 +02:00
Jiri Kosina f9d1381456 Merge branch 'for-5.1/atomic-replace' into for-linus
The atomic replace allows to create cumulative patches. They are useful when
you maintain many livepatches and want to remove one that is lower on the
stack. In addition it is very useful when more patches touch the same function
and there are dependencies between them.

It's also a feature some of the distros are using already to distribute
their patches.
2019-03-05 15:56:59 +01:00
Petr Mladek a087cdd407 livepatch: Module coming and going callbacks can proceed with all listed patches
Livepatches can no longer get enabled and disabled repeatedly.
The list klp_patches contains only enabled patches and eventually
the patch in transition.

The module coming and going callbacks do no longer need to check
for these state. They have to proceed with all listed patches.

Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-02-06 11:03:14 +01:00
Petr Mladek ecba29f434 livepatch: Introduce klp_for_each_patch macro
There are already macros to iterate over struct klp_func and klp_object.

Add also klp_for_each_patch(). But make it internal because also
klp_patches list is internal.

Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-02-06 10:49:30 +01:00
Alice Ferrazzi 375bfca345 livepatch: core: Return EOPNOTSUPP instead of ENOSYS
As a result of an unsupported operation is better to use EOPNOTSUPP
as error code.
ENOSYS is only used for 'invalid syscall nr' and nothing else.

Signed-off-by: Alice Ferrazzi <alice.ferrazzi@miraclelinux.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-02-06 10:43:57 +01:00
Miroslav Benes 0b3d52790e livepatch: Remove signal sysfs attribute
The fake signal is send automatically now. We can rely on it completely
and remove the sysfs attribute.

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-16 22:09:33 +01:00
Petr Mladek d67a537209 livepatch: Remove ordering (stacking) of the livepatches
The atomic replace and cumulative patches were introduced as a more secure
way to handle dependent patches. They simplify the logic:

  + Any new cumulative patch is supposed to take over shadow variables
    and changes made by callbacks from previous livepatches.

  + All replaced patches are discarded and the modules can be unloaded.
    As a result, there is only one scenario when a cumulative livepatch
    gets disabled.

The different handling of "normal" and cumulative patches might cause
confusion. It would make sense to keep only one mode. On the other hand,
it would be rude to enforce using the cumulative livepatches even for
trivial and independent (hot) fixes.

However, the stack of patches is not really necessary any longer.
The patch ordering was never clearly visible via the sysfs interface.
Also the "normal" patches need a lot of caution anyway.

Note that the list of enabled patches is still necessary but the ordering
is not longer enforced.

Otherwise, the code is ready to disable livepatches in an random order.
Namely, klp_check_stack_func() always looks for the function from
the livepatch that is being disabled. klp_func structures are just
removed from the related func_stack. Finally, the ftrace handlers
is removed only when the func_stack becomes empty.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Petr Mladek d697bad588 livepatch: Remove Nop structures when unused
Replaced patches are removed from the stack when the transition is
finished. It means that Nop structures will never be needed again
and can be removed. Why should we care?

  + Nop structures give the impression that the function is patched
    even though the ftrace handler has no effect.

  + Ftrace handlers do not come for free. They cause slowdown that might
    be visible in some workloads. The ftrace-related slowdown might
    actually be the reason why the function is no longer patched in
    the new cumulative patch. One would expect that cumulative patch
    would help solve these problems as well.

  + Cumulative patches are supposed to replace any earlier version of
    the patch. The amount of NOPs depends on which version was replaced.
    This multiplies the amount of scenarios that might happen.

    One might say that NOPs are innocent. But there are even optimized
    NOP instructions for different processors, for example, see
    arch/x86/kernel/alternative.c. And klp_ftrace_handler() is much
    more complicated.

  + It sounds natural to clean up a mess that is no longer needed.
    It could only be worse if we do not do it.

This patch allows to unpatch and free the dynamic structures independently
when the transition finishes.

The free part is a bit tricky because kobject free callbacks are called
asynchronously. We could not wait for them easily. Fortunately, we do
not have to. Any further access can be avoided by removing them from
the dynamic lists.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Jason Baron e1452b607c livepatch: Add atomic replace
Sometimes we would like to revert a particular fix. Currently, this
is not easy because we want to keep all other fixes active and we
could revert only the last applied patch.

One solution would be to apply new patch that implemented all
the reverted functions like in the original code. It would work
as expected but there will be unnecessary redirections. In addition,
it would also require knowing which functions need to be reverted at
build time.

Another problem is when there are many patches that touch the same
functions. There might be dependencies between patches that are
not enforced on the kernel side. Also it might be pretty hard to
actually prepare the patch and ensure compatibility with the other
patches.

Atomic replace && cumulative patches:

A better solution would be to create cumulative patch and say that
it replaces all older ones.

This patch adds a new "replace" flag to struct klp_patch. When it is
enabled, a set of 'nop' klp_func will be dynamically created for all
functions that are already being patched but that will no longer be
modified by the new patch. They are used as a new target during
the patch transition.

The idea is to handle Nops' structures like the static ones. When
the dynamic structures are allocated, we initialize all values that
are normally statically defined.

The only exception is "new_func" in struct klp_func. It has to point
to the original function and the address is known only when the object
(module) is loaded. Note that we really need to set it. The address is
used, for example, in klp_check_stack_func().

Nevertheless we still need to distinguish the dynamically allocated
structures in some operations. For this, we add "nop" flag into
struct klp_func and "dynamic" flag into struct klp_object. They
need special handling in the following situations:

  + The structures are added into the lists of objects and functions
    immediately. In fact, the lists were created for this purpose.

  + The address of the original function is known only when the patched
    object (module) is loaded. Therefore it is copied later in
    klp_init_object_loaded().

  + The ftrace handler must not set PC to func->new_func. It would cause
    infinite loop because the address points back to the beginning of
    the original function.

  + The various free() functions must free the structure itself.

Note that other ways to detect the dynamic structures are not considered
safe. For example, even the statically defined struct klp_object might
include empty funcs array. It might be there just to run some callbacks.

Also note that the safe iterator must be used in the free() functions.
Otherwise already freed structures might get accessed.

Special callbacks handling:

The callbacks from the replaced patches are _not_ called by intention.
It would be pretty hard to define a reasonable semantic and implement it.

It might even be counter-productive. The new patch is cumulative. It is
supposed to include most of the changes from older patches. In most cases,
it will not want to call pre_unpatch() post_unpatch() callbacks from
the replaced patches. It would disable/break things for no good reasons.
Also it should be easier to handle various scenarios in a single script
in the new patch than think about interactions caused by running many
scripts from older patches. Not to say that the old scripts even would
not expect to be called in this situation.

Removing replaced patches:

One nice effect of the cumulative patches is that the code from the
older patches is no longer used. Therefore the replaced patches can
be removed. It has several advantages:

  + Nops' structs will no longer be necessary and might be removed.
    This would save memory, restore performance (no ftrace handler),
    allow clear view on what is really patched.

  + Disabling the patch will cause using the original code everywhere.
    Therefore the livepatch callbacks could handle only one scenario.
    Note that the complication is already complex enough when the patch
    gets enabled. It is currently solved by calling callbacks only from
    the new cumulative patch.

  + The state is clean in both the sysfs interface and lsmod. The modules
    with the replaced livepatches might even get removed from the system.

Some people actually expected this behavior from the beginning. After all
a cumulative patch is supposed to "completely" replace an existing one.
It is like when a new version of an application replaces an older one.

This patch does the first step. It removes the replaced patches from
the list of patches. It is safe. The consistency model ensures that
they are no longer used. By other words, each process works only with
the structures from klp_transition_patch.

The removal is done by a special function. It combines actions done by
__disable_patch() and klp_complete_transition(). But it is a fast
track without all the transaction-related stuff.

Signed-off-by: Jason Baron <jbaron@akamai.com>
[pmladek@suse.com: Split, reuse existing code, simplified]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Jason Baron 20e5502595 livepatch: Use lists to manage patches, objects and functions
Currently klp_patch contains a pointer to a statically allocated array of
struct klp_object and struct klp_objects contains a pointer to a statically
allocated array of klp_func. In order to allow for the dynamic allocation
of objects and functions, link klp_patch, klp_object, and klp_func together
via linked lists. This allows us to more easily allocate new objects and
functions, while having the iterator be a simple linked list walk.

The static structures are added to the lists early. It allows to add
the dynamically allocated objects before klp_init_object() and
klp_init_func() calls. Therefore it reduces the further changes
to the code.

This patch does not change the existing behavior.

Signed-off-by: Jason Baron <jbaron@akamai.com>
[pmladek@suse.com: Initialize lists before init calls]
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Jiri Kosina <jikos@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Petr Mladek 958ef1e39d livepatch: Simplify API by removing registration step
The possibility to re-enable a registered patch was useful for immediate
patches where the livepatch module had to stay until the system reboot.
The improved consistency model allows to achieve the same result by
unloading and loading the livepatch module again.

Also we are going to add a feature called atomic replace. It will allow
to create a patch that would replace all already registered patches.
The aim is to handle dependent patches more securely. It will obsolete
the stack of patches that helped to handle the dependencies so far.
Then it might be unclear when a cumulative patch re-enabling is safe.

It would be complicated to support the many modes. Instead we could
actually make the API and code easier to understand.

Therefore, remove the two step public API. All the checks and init calls
are moved from klp_register_patch() to klp_enabled_patch(). Also the patch
is automatically freed, including the sysfs interface when the transition
to the disabled state is completed.

As a result, there is never a disabled patch on the top of the stack.
Therefore we do not need to check the stack in __klp_enable_patch().
And we could simplify the check in __klp_disable_patch().

Also the API and logic is much easier. It is enough to call
klp_enable_patch() in module_init() call. The patch can be disabled
by writing '0' into /sys/kernel/livepatch/<patch>/enabled. Then the module
can be removed once the transition finishes and sysfs interface is freed.

The only problem is how to free the structures and kobjects safely.
The operation is triggered from the sysfs interface. We could not put
the related kobject from there because it would cause lock inversion
between klp_mutex and kernfs locks, see kn->count lockdep map.

Therefore, offload the free task to a workqueue. It is perfectly fine:

  + The patch can no longer be used in the livepatch operations.

  + The module could not be removed until the free operation finishes
    and module_put() is called.

  + The operation is asynchronous already when the first
    klp_try_complete_transition() fails and another call
    is queued with a delay.

Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Petr Mladek 68007289bf livepatch: Don't block the removal of patches loaded after a forced transition
module_put() is currently never called in klp_complete_transition() when
klp_force is set. As a result, we might keep the reference count even when
klp_enable_patch() fails and klp_cancel_transition() is called.

This might give the impression that a module might get blocked in some
strange init state. Fortunately, it is not the case. The reference count
is ignored when mod->init fails and erroneous modules are always removed.

Anyway, this might be confusing. Instead, this patch moves
the global klp_forced flag into struct klp_patch. As a result,
we block only modules that might still be in use after a forced
transition. Newly loaded livepatches might be eventually completely
removed later.

It is not a big deal. But the code is at least consistent with
the reality.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:24 +01:00
Petr Mladek 0430f78bf3 livepatch: Consolidate klp_free functions
The code for freeing livepatch structures is a bit scattered and tricky:

  + direct calls to klp_free_*_limited() and kobject_put() are
    used to release partially initialized objects

  + klp_free_patch() removes the patch from the public list
    and releases all objects except for patch->kobj

  + object_put(&patch->kobj) and the related wait_for_completion()
    are called directly outside klp_mutex; this code is duplicated;

Now, we are going to remove the registration stage to simplify the API
and the code. This would require handling more situations in
klp_enable_patch() error paths.

More importantly, we are going to add a feature called atomic replace.
It will need to dynamically create func and object structures. We will
want to reuse the existing init() and free() functions. This would
create even more error path scenarios.

This patch implements more straightforward free functions:

  + checks kobj_added flag instead of @limit[*]

  + initializes patch->list early so that the check for empty list
    always works

  + The action(s) that has to be done outside klp_mutex are done
    in separate klp_free_patch_finish() function. It waits only
    when patch->kobj was really released via the _start() part.

The patch does not change the existing behavior.

[*] We need our own flag to track that the kobject was successfully
    added to the hierarchy.  Note that kobj.state_initialized only
    indicates that kobject has been initialized, not whether is has
    been added (and needs to be removed on cleanup).

Signed-off-by: Petr Mladek <pmladek@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Jason Baron <jbaron@akamai.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:23 +01:00
Petr Mladek 26c3e98e2f livepatch: Shuffle klp_enable_patch()/klp_disable_patch() code
We are going to simplify the API and code by removing the registration
step. This would require calling init/free functions from enable/disable
ones.

This patch just moves the code to prevent more forward declarations.

This patch does not change the code except for two forward declarations.

Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:23 +01:00
Petr Mladek 19514910d0 livepatch: Change unsigned long old_addr -> void *old_func in struct klp_func
The address of the to be patched function and new function is stored
in struct klp_func as:

	void *new_func;
	unsigned long old_addr;

The different naming scheme and type are derived from the way
the addresses are set. @old_addr is assigned at runtime using
kallsyms-based search. @new_func is statically initialized,
for example:

  static struct klp_func funcs[] = {
	{
		.old_name = "cmdline_proc_show",
		.new_func = livepatch_cmdline_proc_show,
	}, { }
  };

This patch changes unsigned long old_addr -> void *old_func. It removes
some confusion when these address are later used in the code. It is
motivated by a followup patch that adds special NOP struct klp_func
where we want to assign func->new_func = func->old_addr respectively
func->new_func = func->old_func.

This patch does not modify the existing behavior.

Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Acked-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Acked-by: Alice Ferrazzi <alice.ferrazzi@gmail.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2019-01-11 20:51:23 +01:00
Kamalesh Babulal 6e9df95b76 livepatch: Validate module/old func name length
livepatch module author can pass module name/old function name with more
than the defined character limit. With obj->name length greater than
MODULE_NAME_LEN, the livepatch module gets loaded but waits forever on
the module specified by obj->name to be loaded. It also populates a /sys
directory with an untruncated object name.

In the case of funcs->old_name length greater then KSYM_NAME_LEN, it
would not match against any of the symbol table entries. Instead loop
through the symbol table comparing them against a nonexisting function,
which can be avoided.

The same issues apply, to misspelled/incorrect names. At least gatekeep
the modules with over the limit string length, by checking for their
length during livepatch module registration.

Cc: stable@vger.kernel.org
Signed-off-by: Kamalesh Babulal <kamalesh@linux.vnet.ibm.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2018-07-23 12:12:00 +02:00