As we're about to call vcpu_load() from architecture-specific
implementations of the KVM vcpu ioctls, but yet we access data
structures protected by the vcpu->mutex in the generic code, factor
this logic out from vcpu_load().
x86 is the only architecture which calls vcpu_load() outside of the main
vcpu ioctl function, and these calls will no longer take the vcpu mutex
following this patch. However, with the exception of
kvm_arch_vcpu_postcreate (see below), the callers are either in the
creation or destruction path of the VCPU, which means there cannot be
any concurrent access to the data structure, because the file descriptor
is not yet accessible, or is already gone.
kvm_arch_vcpu_postcreate makes the newly created vcpu potentially
accessible by other in-kernel threads through the kvm->vcpus array, and
we therefore take the vcpu mutex in this case directly.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a jump target so that a bit of exception handling can be better reused
at the end of this function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Implementation of the unpinned APIC page didn't update the VMCS address
cache when invalidation was done through range mmu notifiers.
This became a problem when the page notifier was removed.
Re-introduce the arch-specific helper and call it from ...range_start.
Reported-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Fixes: 38b9917350 ("kvm: vmx: Implement set_apic_access_page_addr")
Fixes: 369ea8242c ("mm/rmap: update to new mmu_notifier semantic v2")
Cc: <stable@vger.kernel.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@hotmail.com>
Tested-by: Fabian Grünbichler <f.gruenbichler@proxmox.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes:
- A number of issues in the vgic discovered using SMATCH
- A bit one-off calculation in out stage base address mask (32-bit and
64-bit)
- Fixes to single-step debugging instructions that trap for other
reasons such as MMMIO aborts
- Printing unavailable hyp mode as error
- Potential spinlock deadlock in the vgic
- Avoid calling vgic vcpu free more than once
- Broken bit calculation for big endian systems
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaJU3VAAoJEEtpOizt6ddyvmAH/jw+UAzN8lrcbfsYkyyulVDW
yTe+7PYMYEODQlY31R/IAlVQB23aR2KkGyMlKjb9IM6mcB13A7pUVTrFfFGMGzln
V75X20EV8CKcUBgdy8NRr9gsFwtDRHei0RIuQi8bkF0cV39QSiBgf36DW0oMCPFW
aqUP5UiFMlMr4UqpWmS+8W4E0OBqcqaJAJXIsvHoB0Wqv4j9AUTvLqoDEpQSVgOr
LzsaUc+K+zB2VOtEXEVSLZn6N4CRMmMUh3xfspC2Qv/zSLhHgl9QlOBjIpX6UYDp
a+md5qa1hMajKswGGZB7DF/yLUb76PWFcepWOn5F3DXSv9YLaxzY5DvrNSkl46w=
=tTiS
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-fixes-for-v4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Fixes for v4.15.
Fixes:
- A number of issues in the vgic discovered using SMATCH
- A bit one-off calculation in out stage base address mask (32-bit and
64-bit)
- Fixes to single-step debugging instructions that trap for other
reasons such as MMMIO aborts
- Printing unavailable hyp mode as error
- Potential spinlock deadlock in the vgic
- Avoid calling vgic vcpu free more than once
- Broken bit calculation for big endian systems
We are incorrectly rearranging 32-bit words inside a 64-bit typed value
for big endian systems, which would result in never marking a virtual
interrupt as inactive on big endian systems (assuming 32 or fewer LRs on
the hardware). Fix this by not doing any word order manipulation for
the typed values.
Cc: <stable@vger.kernel.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
kvm_vgic_vcpu_destroy already gets called from kvm_vgic_destroy for
each vcpu, so we don't have to call it from kvm_arch_vcpu_free.
Additionally the other architectures set kvm->online_vcpus to zero
after freeing them. We might as well do that for ARM too.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
vgic_set_owner acquires the irq lock without disabling interrupts,
resulting in a lockdep splat (an interrupt could fire and result
in the same lock being taken if the same virtual irq is to be
injected).
In practice, it is almost impossible to trigger this bug, but
better safe than sorry. Convert the lock acquisition to a
spin_lock_irqsave() and keep lockdep happy.
Reported-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
* PPC bugfix: HPT guests on a POWER9 radix host
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJaICi1AAoJEL/70l94x66DjvEIAIML/e9YX1YrJZi0rsB9cbm0
Le3o5b3wKxPrlZdnpOZQ2mVWubUQdiHMPGX6BkpgyiJWUchnbj5ql1gUf5S0i3jk
TOk6nae6DU94xBuboeqZJlmx2VfPY/fqzLWsX3HFHpnzRl4XvXL5o7cWguIxVcVO
yU6bPgbAXyXSBennLWZxC3aQ2Ojikr3uxZQpUZTAPOW5hFINpCKCpqJBMxsb67wq
rwI0cJhRl92mHpbe8qeNJhavqY5eviy9iPUaZrOW9P4yw1uqjTAjgsUc1ydiaZSV
rOHeKBOgVfY/KBaNJKyKySfuL1MJ+DLcQqm9RlGpKNpFIeB0vvSf0gtmmqIAXIk=
=kh2y
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- x86 bugfixes: APIC, nested virtualization, IOAPIC
- PPC bugfix: HPT guests on a POWER9 radix host
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (26 commits)
KVM: Let KVM_SET_SIGNAL_MASK work as advertised
KVM: VMX: Fix vmx->nested freeing when no SMI handler
KVM: VMX: Fix rflags cache during vCPU reset
KVM: X86: Fix softlockup when get the current kvmclock
KVM: lapic: Fixup LDR on load in x2apic
KVM: lapic: Split out x2apic ldr calculation
KVM: PPC: Book3S HV: Fix migration and HPT resizing of HPT guests on radix hosts
KVM: vmx: use X86_CR4_UMIP and X86_FEATURE_UMIP
KVM: x86: Fix CPUID function for word 6 (80000001_ECX)
KVM: nVMX: Fix vmx_check_nested_events() return value in case an event was reinjected to L2
KVM: x86: ioapic: Preserve read-only values in the redirection table
KVM: x86: ioapic: Clear Remote IRR when entry is switched to edge-triggered
KVM: x86: ioapic: Remove redundant check for Remote IRR in ioapic_set_irq
KVM: x86: ioapic: Don't fire level irq when Remote IRR set
KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race
KVM: x86: inject exceptions produced by x86_decode_insn
KVM: x86: Allow suppressing prints on RDMSR/WRMSR of unhandled MSRs
KVM: x86: fix em_fxstor() sleeping while in atomic
KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure
KVM: nVMX: Validate the IA32_BNDCFGS on nested VM-entry
...
Since it is perfectly legal to run the kernel at EL1, it is not
actually an error if HYP mode is not available when attempting to
initialize KVM, given that KVM support cannot be built as a module.
So demote the kvm_err() to kvm_info(), which prevents the error from
appearing on an otherwise 'quiet' console.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The timer optimization patches inadvertendly changed the logic to always
load the timer state as if we have a vgic, even if we don't have a vgic.
Fix this by doing the usual irqchip_in_kernel() check and call the
appropriate load function.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The system state of KVM when using userspace emulation is not complete
until we return into KVM_RUN. To handle mmio related updates we wait
until they have been committed and then schedule our KVM_EXIT_DEBUG.
The kvm_arm_handle_step_debug() helper tells us if we need to return
and sets up the exit_reason for us.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Before performing an unmap, let's check that what we have was
really mapped the first place.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We miss a test against NULL after allocation.
Fixes: 6d03a68f80 ("KVM: arm64: vgic-its: Turn device_id validation into generic ID validation")
Cc: stable@vger.kernel.org # 4.8
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The current pending table parsing code assumes that we keep the
previous read of the pending bits, but keep that variable in
the current block, making sure it is discarded on each loop.
We end-up using whatever is on the stack. Who knows, it might
just be the right thing...
Fixes: 33d3bc9556 ("KVM: arm64: vgic-its: Read initial LPI pending table")
Cc: stable@vger.kernel.org # 4.8
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The current pending table parsing code assumes that we keep the
previous read of the pending bits, but keep that variable in
the current block, making sure it is discarded on each loop.
We end-up using whatever is on the stack. Who knows, it might
just be the right thing...
Fixes: 280771252c ("KVM: arm64: vgic-v3: KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES")
Cc: stable@vger.kernel.org # 4.12
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Using the size of the structure we're allocating is a good idea
and avoids any surprise... In this case, we're happilly confusing
kvm_kernel_irq_routing_entry and kvm_irq_routing_entry...
Fixes: 95b110ab9a ("KVM: arm/arm64: Enable irqchip routing")
Cc: stable@vger.kernel.org # 4.8
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Commit f39d16cbab ("KVM: arm/arm64: Guard kvm_vgic_map_is_active against
!vgic_initialized") introduced a check whether the VGIC has been
initialized before accessing the spinlock and the VGIC data structure.
However the vgic_get_irq() call in the variable declaration sneaked
through the net, so lets make sure that this also gets called only after
we actually allocated the arrays this function accesses.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
After the timer optimization rework we accidentally end up calling
physical timer enable/disable functions on VHE systems, which is neither
needed nor correct, since the CNTHCTL_EL2 register format is
different when HCR_EL2.E2H is set.
The CNTHCTL_EL2 is initialized when CPUs become online in
kvm_timer_init_vhe() and we don't have to call these functions on VHE
systems, which also allows us to inline the non-VHE functionality.
Reported-by: Jintack Lim <jintack@cs.columbia.edu>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
__poll_t is also used as wait key in some waitqueues.
Verify that wait_..._poll() gets __poll_t as key and
provide a helper for wakeup functions to get back to
that __poll_t value.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that
"any unblocked signal received [...] will cause KVM_RUN to return with
-EINTR" and that "the signal will only be delivered if not blocked by
the original signal mask".
This, however, is only true, when the calling task has a signal handler
registered for a signal. If not, signal evaluation is short-circuited for
SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN
returning or the whole process is terminated.
Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar
to that in do_sigtimedwait() to avoid short-circuiting of signals.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* GICv4 Support for KVM/ARM
All ARM patches were in next-20171113. I have postponed most x86 fixes
to 4.15-rc2 and UMIP to 4.16, but there are fixes that would be good to
have already in 4.15-rc1:
* re-introduce support for CPUs without virtual NMI (cc stable)
and allow testing of KVM without virtual NMI on available CPUs
* fix long-standing performance issues with assigned devices on AMD
(cc stable)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaGECGAAoJEED/6hsPKofoT08H/AuaMi8qprw2BNpVBbQxWRWM
O4WPk7yz1zB4SkdRNrPzCMBy+qoK7FcV/3BpsFPuQS4NHQ+GvQ87N/7tUbouVyl6
CuPGJMCnNzMQ8GvLOJgB1/sz+uW5W/ph3y8kv1UP3/hNCZU4fqukoUeLroOH/wr6
N3bSY8bok7ycdpgybHmbUHY0Yk4IUk3m0RXWY9U5Jl3sjoNEwCw3pWdrq9Swfs/6
W8QJRdE4Z6KHPqW5sRnPj24IpoUpCxu+IT+gPuGlDUCN/h3sfhYvMS6GgDrCjiiZ
2z1TwaIAo+wGjlBQzGmyTUjUPjbGew+f3ixBlf2BtmNutX+tX2qsVfl1NKXYTto=
=GGge
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"Trimmed second batch of KVM changes for Linux 4.15:
- GICv4 Support for KVM/ARM
- re-introduce support for CPUs without virtual NMI (cc stable) and
allow testing of KVM without virtual NMI on available CPUs
- fix long-standing performance issues with assigned devices on AMD
(cc stable)"
* tag 'kvm-4.15-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (30 commits)
kvm: vmx: Allow disabling virtual NMI support
kvm: vmx: Reinstate support for CPUs without virtual NMI
KVM: SVM: obey guest PAT
KVM: arm/arm64: Don't queue VLPIs on INV/INVALL
KVM: arm/arm64: Fix GICv4 ITS initialization issues
KVM: arm/arm64: GICv4: Theory of operations
KVM: arm/arm64: GICv4: Enable VLPI support
KVM: arm/arm64: GICv4: Prevent userspace from changing doorbell affinity
KVM: arm/arm64: GICv4: Prevent a VM using GICv4 from being saved
KVM: arm/arm64: GICv4: Enable virtual cpuif if VLPIs can be delivered
KVM: arm/arm64: GICv4: Hook vPE scheduling into vgic flush/sync
KVM: arm/arm64: GICv4: Use the doorbell interrupt as an unblocking source
KVM: arm/arm64: GICv4: Add doorbell interrupt handling
KVM: arm/arm64: GICv4: Use pending_last as a scheduling hint
KVM: arm/arm64: GICv4: Handle INVALL applied to a vPE
KVM: arm/arm64: GICv4: Propagate property updates to VLPIs
KVM: arm/arm64: GICv4: Handle MOVALL applied to a vPE
KVM: arm/arm64: GICv4: Handle CLEAR applied to a VLPI
KVM: arm/arm64: GICv4: Propagate affinity changes to the physical ITS
KVM: arm/arm64: GICv4: Unmap VLPI when freeing an LPI
...
Pull compat and uaccess updates from Al Viro:
- {get,put}_compat_sigset() series
- assorted compat ioctl stuff
- more set_fs() elimination
- a few more timespec64 conversions
- several removals of pointless access_ok() in places where it was
followed only by non-__ variants of primitives
* 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits)
coredump: call do_unlinkat directly instead of sys_unlink
fs: expose do_unlinkat for built-in callers
ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs()
ipmi: get rid of pointless access_ok()
pi433: sanitize ioctl
cxlflash: get rid of pointless access_ok()
mtdchar: get rid of pointless access_ok()
r128: switch compat ioctls to drm_ioctl_kernel()
selection: get rid of field-by-field copyin
VT_RESIZEX: get rid of field-by-field copyin
i2c compat ioctls: move to ->compat_ioctl()
sched_rr_get_interval(): move compat to native, get rid of set_fs()
mips: switch to {get,put}_compat_sigset()
sparc: switch to {get,put}_compat_sigset()
s390: switch to {get,put}_compat_sigset()
ppc: switch to {get,put}_compat_sigset()
parisc: switch to {get,put}_compat_sigset()
get_compat_sigset()
get rid of {get,put}_compat_itimerspec()
io_getevents: Use timespec64 to represent timeouts
...
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaBYxhAAoJEEtpOizt6ddyOc4H/1qADSdnZFVVE5v15Y+E8HLv
EOXAo/yYJg26fY/TBIXo7gxSZFCd0Ah703aucPGTRFyOb8t0VqIvI07rS1u4sKPp
mxfidYIZwLMibgno8NBdWB2mFeXrNlWTmwNt/IoO0iMn7IGqQZ/FZdf3GmWEVEsG
CU/DrQRXArJqS77NuZtkhhZOKBxB0lQNv52DkVgy/QlcBagAI14hbezkLQAco4oT
NUC4GyXn9yHzpTfhuQXv5hLd4xCqg9e51OgYNSL9oC/JXSByd7edQuqpd4fmnG4Y
qoDPJ11wmkuUKEDaGbC7nZWIaiVc/TfJy2Hwj3bUVwQFbopCeYhQqCDUSKftncA=
=o4u7
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-gicv4-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
GICv4 Support for KVM/ARM for v4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
- merge of the sthyi tree from the base s390 team, which moves the sthyi
out of KVM into a shared function also for non-KVM
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABAgAGBQJaBHkvAAoJEBF7vIC1phx84nwP/AvR7yRRqdeWvpZ+T9hiwscR
p7AY5jnbVun7QtqR3yK+Z0IuZzU3gWheDNB4ZPegLLgzxN+ge4C45cZbpKJZUYXf
Fef8kdXs7Agi6oRU+xXKgYipot4g3VBdRGrfktUMiYD/LC7WpDlJybF0UW45FCKk
ECBumYXQ+6Jo5pplF3VH8XUwZb1IK3+//WaMLOToYyYuijCpcE0KfoKqCMrc39CU
GMQVq87IXnhKFeIAt4upiaXXHK/0mGBHdkOG6ILwdNMDfCDiBgynU4HALz+wf/IE
cvukxsTbHWDcgHMznBgDmnmb4DiWqahtatqGpXEpzzabgjIfkHKagYlaRb+VwwNm
vIDhm18Wq66nnmrNkpwbn1SB2OoOh7ug+YLrc3XTnGnSWWfZGNmrgOj7K9xTE9yZ
VmQReOT70KB/DYqZDVAlgNFqWA6MyQxcdxKDaLAqGWt2TN/uXrbdBd8Aa4AF1mtb
V8aFchFPauuj60cqG91NnKVVdVQ1qB+ZG7AzKo9BPa7iCH8IW5UlPL4FXz3lKdDu
/KWfL/nUFu8hPSmZijdHRKwdekXHfadHXsvGLVSsLxe/DYWaWTAgnwWceUAXUnvK
ZUDVKUT9S30dIZwbxSLoou03Bu8WZVefxd6/wOi3g2BYRrqZN+w0lhkWIQwKdMo4
VUP8fkMR9p6cAnitHh3i
=9mW5
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux
KVM: s390: fixes and improvements for 4.15
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
- merge of the sthyi tree from the base s390 team, which moves the sthyi
out of KVM into a shared function also for non-KVM
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
Since VLPIs are injected directly by the hardware there's no need to
mark these as pending in software and queue them on the AP list.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We should only try to initialize GICv4 data structures on a GICv4
capable system. Move the vgic_supports_direct_msis() check inito
vgic_v4_init() so that any KVM VGIC initialization path does not fail
on non-GICv4 systems.
Also be slightly more strict in the checking of the return value in
vgic_its_create, and only error out on negative return values from the
vgic_v4_init() function. This is important because the kvm device code
only treats negative values as errors and only cleans up in this case.
Errornously treating a positive return value as an error from the
vgic_v4_init() function can lead to NULL pointer dereferences, as has
recently been observed.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Yet another braindump so I can free some cells...
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
All it takes is the has_v4 flag to be set in gic_kvm_info
as well as "kvm-arm.vgic_v4_enable=1" being passed on the
command line for GICv4 to be enabled in KVM.
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We so far allocate the doorbell interrupts without taking any
special measure regarding the affinity of these interrupts. We
simply move them around as required when the vcpu gets scheduled
on a different CPU.
But that's counting without userspace (and the evil irqbalance) that
can try and move the VPE interrupt around, causing the ITS code
to emit VMOVP commands and remap the doorbell to another redistributor.
Worse, this can happen while the vcpu is running, causing all kind
of trouble if the VPE is already resident, and we end-up in UNPRED
territory.
So let's take a definitive action and prevent userspace from messing
with us. This is just a matter of adding IRQ_NO_BALANCING to the
set of flags we already have, letting the kernel in sole control
of the affinity.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The GICv4 architecture doesn't make it easy for save/restore to
work, as it doesn't give any guarantee that the pending state
is written into the pending table.
So let's not take any chance, and let's return an error if
we encounter any LPI that has the HW bit set. In order for
userspace to distinguish this error from other failure modes,
use -EACCES as an error code.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In order for VLPIs to be delivered to the guest, we must make sure that
the virtual cpuif is always enabled, irrespective of the presence of
virtual interrupt in the LRs.
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The redistributor needs to be told which vPE is about to be run,
and tells us whether there is any pending VLPI on exit.
Let's add the scheduling calls to the vgic flush/sync functions,
allowing the VLPIs to be delivered to the guest.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The doorbell interrupt is only useful if the vcpu is blocked on WFI.
In all other cases, recieving a doorbell interrupt is just a waste
of cycles.
So let's only enable the doorbell if a vcpu is getting blocked,
and disable it when it is unblocked. This is very similar to
what we're doing for the background timer.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a vPE is not running, a VLPI being made pending results in a
doorbell interrupt being delivered. Let's handle this interrupt
and update the pending_last flag that indicates that VLPIs are
pending. The corresponding vcpu is also kicked into action.
Special care is taken to prevent the doorbell from being enabled
at request time (this is controlled separately), and to make
the disabling on the interrupt non-lazy.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When a vPE exits, the pending_last flag is set when there are pending
VLPIs stored in the pending table. Similarily, this flag will be set
when a doorbell interrupt fires, as it indicates the same condition.
Let's update kvm_vgic_vcpu_pending_irq() to account for that
flag as well, making a vcpu runnable when set.
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
There is no need to perform an INV for each interrupt when updating
multiple interrupts. Instead, we can rely on the final VINVALL that
gets sent to the ITS to do the work for all of them.
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Upon updating a property, we propagate it all the way to the physical
ITS, and ask for an INV command to be executed there.
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The current implementation of MOVALL doesn't allow us to call
into the core ITS code as we hold a number of spinlocks.
Let's try a method used in other parts of the code, were we copy
the intids of the candicate interrupts, and then do whatever
we need to do with them outside of the critical section.
This allows us to move the interrupts one by one, at the expense
of a bit of CPU time. Who cares? MOVALL is such a stupid command
anyway...
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Handling CLEAR is pretty easy. Just ask the ITS driver to clear
the corresponding pending bit (which will turn into a CLEAR
command on the physical side).
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When the guest issues an affinity change, we need to tell the physical
ITS that we're now targetting a new vcpu. This is done by extracting
the current mapping, updating the target, and reapplying the mapping.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When freeing an LPI (on a DISCARD command, for example), we need
to unmap the VLPI down to the physical ITS level.
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If the guest issues an INT command targetting a VLPI, let's
call into the irq_set_irqchip_state() helper to make it pending
on the physical side.
This works just as well if userspace decides to inject an interrupt
using the normal userspace API...
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Let's use the irq bypass mechanism also used for x86 posted interrupts
to intercept the virtual PCIe endpoint configuration and establish our
LPI->VLPI mapping.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In order to control the GICv4 view of virtual CPUs, we rely
on an irqdomain allocated for that purpose. Let's add a couple
of helpers to that effect.
At the same time, the vgic data structures gain new fields to
track all this... erm... wonderful stuff.
The way we hook into the vgic init is slightly convoluted. We
need the vgic to be initialized (in order to guarantee that
the number of vcpus is now fixed), and we must have a vITS
(otherwise this is all very pointless). So we end-up calling
the init from both vgic_init and vgic_its_create.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Add a new has_gicv4 field in the global VGIC state that indicates
whether the HW is GICv4 capable, as a per-VM predicate indicating
if there is a possibility for a VM to support direct injection
(the above being true and the VM having an ITS).
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
In order to help integrating the vITS code with GICv4, let's add
a new helper that deals with updating the affinity of an LPI,
which will later be augmented with super duper extra GICv4
goodness.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The whole MSI injection process is fairly monolithic. An MSI write
gets turned into an injected LPI in one swift go. But this is actually
a more fine-grained process:
- First, a virtual ITS gets selected using the doorbell address
- Then the DevID/EventID pair gets translated into an LPI
- Finally the LPI is injected
Since the GICv4 code needs the first two steps in order to match
an IRQ routing entry to an LPI, let's expose them as helpers,
and refactor the existing code to use them
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We will not see -ENOMEM (gfn_to_hva() will return KVM_ERR_PTR_BAD_PAGE
for all errors). So we can also get rid of special handling in the
callers of pin_guest_page() and always assume that it is a g2 error.
As also kvm_s390_inject_program_int() should never fail, we can
simplify pin_scb(), too.
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20170901151143.22714-1-david@redhat.com>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Changes include:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaAIAsAAoJEEtpOizt6ddyc04H/0WYVoLGvKtJFD+a7Sc8rwXv
a+cPaTlqQ+Y96m0FApSLDmHcIlpLOdGz2DxKW8pdpV7zM0snRdEJcrq1b2Df/sYX
MU3iQTe2Gb7QEBBH8Ub25bM5Y+TNrWtWJpOIORFnFO8MmbTfBzs/7BaGw6tI+XB6
BjCKqjh9j9zbXWi6/vvQm4clQZDu93l5NahwOa7wTKAIyCES1YGMsLX7aikqaurQ
4Vw57C11hwUBwEg61iHxj3uQN/dIF+hx2OVuxkOdwNrJw3B736lwBXDnFAhlmdbI
IHhnoGBE2jkaUwuBiIwM/WFrgNN6d3Uz6QFbYqpQEDhDypOYjL6TlR0OER6v3Ks=
=TaCO
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into next
KVM/ARM Changes for v4.15
Changes include:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
The way we call kvm_vgic_destroy is a bit bizarre. We call it
*after* having freed the vcpus, which sort of defeats the point
of cleaning up things before that point.
Let's move kvm_vgic_destroy towards the beginning of kvm_arch_destroy_vm,
which seems more sensible.
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We want to reuse the core of the map/unmap functions for IRQ
forwarding. Let's move the computation of the hwirq in
kvm_vgic_map_phys_irq and pass the linux IRQ as parameter.
the host_irq is added to struct vgic_irq.
We introduce kvm_vgic_map/unmap_irq which take a struct vgic_irq
handle as a parameter.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
This patch selects IRQ_BYPASS_MANAGER and HAVE_KVM_IRQ_BYPASS
configs for ARM/ARM64.
kvm_arch_has_irq_bypass() now is implemented and returns true.
As a consequence the irq bypass consumer will be registered for
ARM/ARM64 with the forwarding callbacks:
- stop/start: halt/resume guest execution
- add/del_producer: set/unset forwarding at vgic/irqchip level
We don't have any actual support yet, so nothing gets actually
forwarded.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
[maz: dropped the DEOI stuff for the time being in order to
reduce the dependency chain, amended commit message]
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Both arm and arm64 implementations are capable of injecting
faults, and yet have completely divergent implementations,
leading to different bugs and reduced maintainability.
Let's elect the arm64 version as the canonical one
and move it into aarch32.c, which is common to both
architectures.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
On reset we clear the valid bits of GITS_CBASER and GITS_BASER<n>.
We also clear command queue registers and free the cache (device,
collection, and lpi lists).
As we need to take the same locks as save/restore functions, we
create a vgic_its_ctrl() wrapper that handles KVM_DEV_ARM_VGIC_GRP_CTRL
group functions.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When the GITS_BASER<n>.Valid gets cleared, the data structures in
guest RAM are not valid anymore. The device, collection
and LPI lists stored in the in-kernel ITS represent the same
information in some form of cache. So let's void the cache.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We create two new functions that free the device and
collection lists. They are currently called by vgic_its_destroy()
and other callers will be added in subsequent patches.
We also remove the check on its->device_list.next.
Lists are initialized in vgic_create_its() and the device
is added to the device list only if this latter succeeds.
vgic_its_destroy is the device destroy ops. This latter is called
by kvm_destroy_devices() which loops on all created devices. So
at this point the list is initialized.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Let's remove kvm_its_unmap_device and use kvm_its_free_device
as both functions are identical.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
After being lazy with saving/restoring the timer state, we defer that
work to vcpu_load and vcpu_put, which ensure that the timer state is
loaded on the hardware timers whenever the VCPU runs.
Unfortunately, we are failing to do that the first time vcpu_load()
runs, because the timer has not yet been enabled at that time. As long
as the initialized timer state matches what happens to be in the
hardware (a disabled timer, because we never leave the timer screaming),
this does not show up as a problem, but is nevertheless incorrect.
The solution is simple; disable preemption while setting the timer to be
enabled, and call the timer load function when first enabling the timer.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
kvm_timer_should_fire() can be called in two different situations from
the kvm_vcpu_block().
The first case is before calling kvm_timer_schedule(), used for wait
polling, and in this case the VCPU thread is running and the timer state
is loaded onto the hardware so all we have to do is check if the virtual
interrupt lines are asserted, becasue the timer interrupt handler
functions will raise those lines as appropriate.
The second case is inside the wait loop of kvm_vcpu_block(), where we
have already called kvm_timer_schedule() and therefore the hardware will
be disabled and the software view of the timer state is up to date
(timer->loaded is false), and so we can simply check if the timer should
fire by looking at the software state.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Now when both the vtimer and the ptimer when using both the in-kernel
vgic emulation and a userspace IRQ chip are driven by the timer signals
and at the vcpu load/put boundaries, instead of recomputing the timer
state at every entry/exit to/from the guest, we can get entirely rid of
the flush hwstate function.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
There is no need to schedule and cancel a hrtimer when entering and
exiting the guest, because we know when the physical timer is going to
fire when the guest programs it, and we can simply program the hrtimer
at that point.
Now when the register modifications from the guest go through the
kvm_arm_timer_set/get_reg functions, which always call
kvm_timer_update_state(), we can simply consider the timer state in this
function and schedule and cancel the timers as needed.
This avoids looking at the physical timer emulation state when entering
and exiting the VCPU, allowing for faster servicing of the VM when
needed.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We are about to call phys_timer_emulate() from kvm_timer_update_state()
and modify phys_timer_emulate() at the same time. Moving the function
and modifying it in a single patch makes the diff hard to read, so do
this separately first.
No functional change.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Add suport for the physical timer registers in kvm_arm_timer_set_reg and
kvm_arm_timer_get_reg so that these functions can be reused to interact
with the rest of the system.
Note that this paves part of the way for the physical timer state
save/restore, but we still need to add those registers to
KVM_GET_REG_LIST before we support migrating the physical timer state.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We don't need to save and restore the hardware timer state and examine
if it generates interrupts on on every entry/exit to the guest. The
timer hardware is perfectly capable of telling us when it has expired
by signaling interrupts.
When taking a vtimer interrupt in the host, we don't want to mess with
the timer configuration, we just want to forward the physical interrupt
to the guest as a virtual interrupt. We can use the split priority drop
and deactivate feature of the GIC to do this, which leaves an EOI'ed
interrupt active on the physical distributor, making sure we don't keep
taking timer interrupts which would prevent the guest from running. We
can then forward the physical interrupt to the VM using the HW bit in
the LR of the GIC, like we do already, which lets the guest directly
deactivate both the physical and virtual timer simultaneously, allowing
the timer hardware to exit the VM and generate a new physical interrupt
when the timer output is again asserted later on.
We do need to capture this state when migrating VCPUs between physical
CPUs, however, which we use the vcpu put/load functions for, which are
called through preempt notifiers whenever the thread is scheduled away
from the CPU or called directly if we return from the ioctl to
userspace.
One caveat is that we have to save and restore the timer state in both
kvm_timer_vcpu_[put/load] and kvm_timer_[schedule/unschedule], because
we can have the following flows:
1. kvm_vcpu_block
2. kvm_timer_schedule
3. schedule
4. kvm_timer_vcpu_put (preempt notifier)
5. schedule (vcpu thread gets scheduled back)
6. kvm_timer_vcpu_load (preempt notifier)
7. kvm_timer_unschedule
And a version where we don't actually call schedule:
1. kvm_vcpu_block
2. kvm_timer_schedule
7. kvm_timer_unschedule
Since kvm_timer_[schedule/unschedule] may not be followed by put/load,
but put/load also may be called independently, we call the timer
save/restore functions from both paths. Since they rely on the loaded
flag to never save/restore when unnecessary, this doesn't cause any
harm, and we ensure that all invokations of either set of functions work
as intended.
An added benefit beyond not having to read and write the timer sysregs
on every entry and exit is that we no longer have to actively write the
active state to the physical distributor, because we configured the
irq for the vtimer to only get a priority drop when handling the
interrupt in the GIC driver (we called irq_set_vcpu_affinity()), and
the interrupt stays active after firing on the host.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
As we are about to take physical interrupts for the virtual timer on the
host but want to leave those active while running the VM (and let the VM
deactivate them), we need to set the vtimer PPI affinity accordingly.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to be lazy with saving and restoring the timer
registers, we prepare by moving all possible timer configuration logic
out of the hyp code. All virtual timer registers can be programmed from
EL1 and since the arch timer is always a level triggered interrupt we
can safely do this with interrupts disabled in the host kernel on the
way to the guest without taking vtimer interrupts in the host kernel
(yet).
The downside is that the cntvoff register can only be programmed from
hyp mode, so we jump into hyp mode and back to program it. This is also
safe, because the host kernel doesn't use the virtual timer in the KVM
code. It may add a little performance performance penalty, but only
until following commits where we move this operation to vcpu load/put.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We were using the same hrtimer for emulating the physical timer and for
making sure a blocking VCPU thread would be eventually woken up. That
worked fine in the previous arch timer design, but as we are about to
actually use the soft timer expire function for the physical timer
emulation, change the logic to use a dedicated hrtimer.
This has the added benefit of not having to cancel any work in the sync
path, which in turn allows us to run the flush and sync with IRQs
disabled.
Note that the hrtimer used to program the host kernel's timer to
generate an exit from the guest when the emulated physical timer fires
never has to inject any work, and to share the soft_timer_cancel()
function with the bg_timer, we change the function to only cancel any
pending work if the pointer to the work struct is not null.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
As we are about to play tricks with the timer to be more lazy in saving
and restoring state, we need to move the timer sync and flush functions
under a disabled irq section and since we have to flush the vgic state
after the timer and PMU state, we do the whole flush/sync sequence with
disabled irqs.
The only downside is a slightly longer delay before being able to
process hardware interrupts and run softirqs.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
As we are about to introduce a separate hrtimer for the physical timer,
call this timer bg_timer, because we refer to this timer as the
background timer in the code and comments elsewhere.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
We are about to add an additional soft timer to the arch timer state for
a VCPU and would like to be able to reuse the functions to program and
cancel a timer, so we make them slightly more generic and rename to make
it more clear that these functions work on soft timers and not the
hardware resource that this code is managing.
The armed flag on the timer state is only used to assert a condition,
and we don't rely on this assertion in any meaningful way, so we can
simply get rid of this flack and slightly reduce complexity.
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We are about to optimize our timer handling logic which involves
injecting irqs to the vgic directly from the irq handler.
Unfortunately, the injection path can take any AP list lock and irq lock
and we must therefore make sure to use spin_lock_irqsave where ever
interrupts are enabled and we are taking any of those locks, to avoid
deadlocking between process context and the ISR.
This changes a lot of the VGIC code, but the good news are that the
changes are mostly mechanical.
Acked-by: Marc Zyngier <marc,zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
If the vgic is not initialized, don't try to grab its spinlocks or
traverse its data structures.
This is important because we soon have to start considering the active
state of a virtual interrupts when doing vcpu_load, which may happen
early on before the vgic is initialized.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
x86 KVM guest fix.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZ/fZuAAoJEL/70l94x66DHVkH/i99gyP/BoFaNfooesXpy89o
VcjuHzp4XYvUmhP1rCGYqYQEVZYrgsqKAsxL5cyN1nF5SWxebpM8cD96yM7lQx2Y
Ap5rxYWldn41ZmRRLQzCRKgwPG+V+yMlVTDM8FG/PKJyRTG7fMUEN6IBlRZF2yZr
DNmy2s//JafEUL3TDq2IXCvfZ1d5VEsCfI2xiYsIzQxwKZ1bHFNqbTqWJZr3Xns1
xL9e0VjMtNaGtyyCs0ZDjco3kAVQp58Q5+BhnL4/P+uqThjFDrpjQ3RmF0mtC95n
TKQuUP7QpLUoq74RwHa8tP4IpWj2EZLjefOw/s1Uv2XtieJrRmNIHT0OOGBj9O8=
=uYvL
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"Fixes for interrupt controller emulation in ARM/ARM64 and x86, plus a
one-liner x86 KVM guest fix"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Update APICv on APIC reset
KVM: VMX: Do not fully reset PI descriptor on vCPU reset
kvm: Return -ENODEV from update_persistent_clock
KVM: arm/arm64: vgic-its: Check GITS_BASER Valid bit before saving tables
KVM: arm/arm64: vgic-its: Check CBASER/BASER validity before enabling the ITS
KVM: arm/arm64: vgic-its: Fix vgic_its_restore_collection_table returned value
KVM: arm/arm64: vgic-its: Fix return value for device table restore
arm/arm64: kvm: Disable branch profiling in HYP code
arm/arm64: kvm: Move initialization completion message
arm/arm64: KVM: set right LR register value for 32 bit guest when inject abort
KVM: arm64: its: Fix missing dynamic allocation check in scan_its_table
Until KVM has full SVE support, guests must not be allowed to
execute SVE instructions.
This patch enables the necessary traps, and also ensures that the
traps are disabled again on exit from the guest so that the host
can still use SVE if it wants to.
On guest exit, high bits of the SVE Zn registers may have been
clobbered as a side-effect the execution of FPSIMD instructions in
the guest. The existing KVM host FPSIMD restore code is not
sufficient to restore these bits, so this patch explicitly marks
the CPU as not containing cached vector state for any task, thus
forcing a reload on the next return to userspace. This is an
interim measure, in advance of adding full SVE awareness to KVM.
This marking of cached vector state in the CPU as invalid is done
using __this_cpu_write(fpsimd_last_state, NULL) in fpsimd.c. Due
to the repeated use of this rather obscure operation, it makes
sense to factor it out as a separate helper with a clearer name.
This patch factors it out as fpsimd_flush_cpu_state(), and ports
all callers to use it.
As a side effect of this refactoring, a this_cpu_write() in
fpsimd_cpu_pm_notifier() is changed to __this_cpu_write(). This
should be fine, since cpu_pm_enter() is supposed to be called only
with interrupts disabled.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
At the moment we don't properly check the GITS_BASER<n>.Valid
bit before saving the collection and device tables.
On vgic_its_save_collection_table() we use the GITS_BASER gpa
field whereas the Valid bit should be used.
On vgic_its_save_device_tables() there is no check. This can
cause various bugs, among which a subsequent fault when accessing
the table in guest memory.
Let's systematically check the Valid bit before doing anything.
We also uniformize the code between save and restore.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The spec says it is UNPREDICTABLE to enable the ITS
if any of the following conditions are true:
- GITS_CBASER.Valid == 0.
- GITS_BASER<n>.Valid == 0, for any GITS_BASER<n> register
where the Type field indicates Device.
- GITS_BASER<n>.Valid == 0, for any GITS_BASER<n> register
where the Type field indicates Interrupt Collection and
GITS_TYPER.HCC == 0.
In that case, let's keep the ITS disabled.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reported-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
vgic_its_restore_cte returns +1 if the collection table entry
is valid and properly decoded. As a consequence, if the
collection table is fully filled with valid data that are
decoded without error, vgic_its_restore_collection_table()
returns +1. This is wrong.
Let's return 0 in that case.
Fixes: ea1ad53e1e (KVM: arm64: vgic-its: Collection table save/restore)
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If ITT only contains invalid entries, vgic_its_restore_itt
returns 1 and this is considered as an an error in
vgic_its_restore_dte.
Also in case the device table only contains invalid entries,
the table restore fails and this is not correct.
This patch fixes those 2 issues:
- vgic_its_restore_itt now returns <= 0 values. If all
ITEs are invalid, this is considered as successful.
- vgic_its_restore_device_tables also returns <= 0 values.
We also simplify the returned value computation in
handle_l1_dte.
Signed-off-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.
For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.
However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:
----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()
// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch
virtual patch
@ depends on patch @
expression E1, E2;
@@
- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)
@ depends on patch @
expression E;
@@
- ACCESS_ONCE(E)
+ READ_ONCE(E)
----
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
KVM is being a bit too optimistic, Hyp mode is said to be initialized
when Hyp segments have only been mapped.
Notify KVM's successful initialization only once it is really fully
initialized.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We currently allocate an entry dynamically, but we never check if the
allocation actually succeeded. We actually don't need a dynamic
allocation, because we know the maximum size of an ITS table entry, so
we can simply use an allocation on the stack.
Cc: <stable@vger.kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
The kvm slabs can consume a significant amount of system memory
and indeed in our production environment we have observed that
a lot of machines are spending significant amount of memory that
can not be left as system memory overhead. Also the allocations
from these slabs can be triggered directly by user space applications
which has access to kvm and thus a buggy application can leak
such memory. So, these caches should be accounted to kmemcg.
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 36ae3c0a36.
The commit broke compilation on !CONFIG_HAVE_KVM_IRQ_ROUTING. Also,
there may be cases with CONFIG_HAVE_KVM_IRQ_ROUTING, where larger
gsi values make sense.
As the commit was meant as an early indicator to user space that
something is wrong, reverting just restores the previous behavior
where overly large values are ignored when encountered (without
any direct feedback).
Reported-by: Abdul Haleem <abdhalee@linux.vnet.ibm.com>
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This is a generic call and can be suceptible to races
in reading the wq task_list while another task is adding
itself to the list. Add a full barrier by using the
swq_has_sleeper() helper.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
... as we've got the new helper now. This caller already
does the right thing, hence no changes in semantics.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We cannot add routes for gsi values >= KVM_MAX_IRQ_ROUTES -- see
kvm_set_irq_routing(). Hence, there is no sense in accepting them
via KVM_IRQFD. Prevent them from entering the system in the first
place.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
commit 3898da947b ("KVM: avoid using rcu_dereference_protected") can
trigger the following lockdep/rcu splat if the VM_CREATE ioctl fails,
for example if kvm_arch_init_vm fails:
WARNING: suspicious RCU usage
4.13.0+ #105 Not tainted
-----------------------------
./include/linux/kvm_host.h:481 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
no locks held by qemu-system-s39/79.
stack backtrace:
CPU: 0 PID: 79 Comm: qemu-system-s39 Not tainted 4.13.0+ #105
Hardware name: IBM 2964 NC9 704 (KVM/Linux)
Call Trace:
([<00000000001140b2>] show_stack+0xea/0xf0)
[<00000000008a68a4>] dump_stack+0x94/0xd8
[<0000000000134c12>] kvm_dev_ioctl+0x372/0x7a0
[<000000000038f940>] do_vfs_ioctl+0xa8/0x6c8
[<0000000000390004>] SyS_ioctl+0xa4/0xb8
[<00000000008c7a8c>] system_call+0xc4/0x27c
no locks held by qemu-system-s39/79.
We have to reset the just created users_count back to 0 to
tell the check to not trigger.
Reported-by: Stefan Haberland <sth@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Fixes: 3898da947b ("KVM: avoid using rcu_dereference_protected")
Cc: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Common:
- improve heuristic for boosting preempted spinlocks by ignoring VCPUs
in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge powerpc/topic/ppc-kvm branch that contains
find_linux_pte_or_hugepte and POWER9 thread management cleanup
- merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations
- fixes
s390:
- merge of topic branch tlb-flushing from the s390 tree to get the
no-dat base features
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZspE1AAoJEED/6hsPKofoDcMIALT11n+LKV50QGwQdg2W1GOt
aChbgnj/Kegit3hQlDhVNb8kmdZEOZzSL81Lh0VPEr7zXU8QiWn2snbizDPv8sde
MpHhcZYZZ0YrpoiZKjl8yiwcu88OWGn2qtJ7OpuTS5hvEGAfxMncp0AMZho6fnz/
ySTwJ9GK2MTgBw39OAzCeDOeoYn4NKYMwjJGqBXRhNX8PG/1wmfqv0vPrd6wfg31
KJ58BumavwJjr8YbQ1xELm9rpQrAmaayIsG0R1dEUqCbt5a1+t2gt4h2uY7tWcIv
ACt2bIze7eF3xA+OpRs+eT+yemiH3t9btIVmhCfzUpnQ+V5Z55VMSwASLtTuJRQ=
=R8Ry
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.14
Common:
- improve heuristic for boosting preempted spinlocks by ignoring
VCPUs in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge kvm-ppc-fixes with a fix that missed 4.13 because of
vacations
- fixes
s390:
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested"
* tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
KVM: arm/arm64: Support uaccess of GICC_APRn
KVM: arm/arm64: Extract GICv3 max APRn index calculation
KVM: arm/arm64: vITS: Drop its_ite->lpi field
KVM: arm/arm64: vgic: constify seq_operations and file_operations
KVM: arm/arm64: Fix guest external abort matching
KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
KVM: s390: vsie: cleanup mcck reinjection
KVM: s390: use WARN_ON_ONCE only for checking
KVM: s390: guestdbg: fix range check
KVM: PPC: Book3S HV: Report storage key support to userspace
KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9
KVM: PPC: Book3S HV: Fix invalid use of register expression
KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation
KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER
KVM: PPC: e500mc: Fix a NULL dereference
KVM: PPC: e500: Fix some NULL dereferences on error
KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list
KVM: s390: we are always in czam mode
KVM: s390: expose no-DAT to guest and migration support
KVM: s390: sthyi: remove invalid guest write access
...
When migrating guests around we need to know the active priorities to
ensure functional virtual interrupt prioritization by the GIC.
This commit clarifies the API and how active priorities of interrupts in
different groups are represented, and implements the accessor functions
for the uaccess register range.
We live with a slight layering violation in accessing GICv3 data
structures from vgic-mmio-v2.c, because anything else just adds too much
complexity for us to deal with (it's not like there's a benefit
elsewhere in the code of an intermediate representation as is the case
with the VMCR). We accept this, because while doing v3 processing from
a file named something-v2.c can look strange at first, this really is
specific to dealing with the user space interface for something that
looks like a GICv2.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
As we are about to access the APRs from the GICv2 uaccess interface,
make this logic generally available.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
For unknown reasons, the its_ite data structure carries an "lpi" field
which contains the intid of the LPI. This is an obvious duplication
of the vgic_irq->intid field, so let's fix the only user and remove
the now useless field.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
vgic_debug_seq_ops and file_operations are not supposed to change
at runtime and none of the structures is modified.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
The ARM-ARM has two bits in the ESR/HSR relevant to external aborts.
A range of {I,D}FSC values (of which bit 5 is always set) and bit 9 'EA'
which provides:
> an IMPLEMENTATION DEFINED classification of External Aborts.
This bit is in addition to the {I,D}FSC range, and has an implementation
defined meaning. KVM should always ignore this bit when handling external
aborts from a guest.
Remove the ESR_ELx_EA definition and rewrite its helper
kvm_vcpu_dabt_isextabt() to check the {I,D}FSC range. This merges
kvm_vcpu_dabt_isextabt() and the recently added is_abort_sea() helper.
CC: Tyler Baicar <tbaicar@codeaurora.org>
Reported-by: gengdongjiu <gengdj.1984@gmail.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Calls to mmu_notifier_invalidate_page() were replaced by calls to
mmu_notifier_invalidate_range() and are now bracketed by calls to
mmu_notifier_invalidate_range_start()/end()
Remove now useless invalidate_page callback.
Changed since v1 (Linus Torvalds)
- remove now useless kvm_arch_mmu_notifier_invalidate_page()
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Tested-by: Mike Galbraith <efault@gmx.de>
Tested-by: Adam Borowski <kilobyte@angband.pl>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When PAGE_OFFSET is not a compile-time constant, we run into
warnings from the use of kvm_is_error_hva() that the compiler
cannot optimize out:
arch/arm/kvm/../../../virt/kvm/kvm_main.c: In function '__kvm_gfn_to_hva_cache_init':
arch/arm/kvm/../../../virt/kvm/kvm_main.c:1978:14: error: 'nr_pages_avail' may be used uninitialized in this function [-Werror=maybe-uninitialized]
arch/arm/kvm/../../../virt/kvm/kvm_main.c: In function 'gfn_to_page_many_atomic':
arch/arm/kvm/../../../virt/kvm/kvm_main.c:1660:5: error: 'entry' may be used uninitialized in this function [-Werror=maybe-uninitialized]
This adds fake initializations to the two instances I ran into.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
This implements the kvm_arch_vcpu_in_kernel() for ARM, and adjusts
the calls to kvm_vcpu_on_spin().
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).
But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.
This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Yet another race with VM destruction plugged
- A set of small vgic fixes
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAlmDOZ4VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDnwQP/ji7d7bbWybmeuWKXm8TYt6CNPBr
JC57OQHytU1+ccagjeUPaAgUAqWSQWOwfbqPuS1afshJu1ZZsN851QNmcr5W6bXQ
EwjICGWcAdKSMLnhRDdf+uXQbFSkkcaxsXnJWjmD0EE8ylaXCCkdV278xhTx0hVO
yiov/xWNzLMa3O3W/l4SIKQ4UNyeQ7f+Od1Vkf7iUpaaFcz6s3RNsPAOwc7Thq7L
eLk4SgXMLDNHz5HwdLoOp3RwQsNe9A7uh05z9VOav0YAyLG5vf29JhMroCO/4P/x
1HgWvpGwzxAUqUcHbW4FSOsbydEltlWMdfSoAF7BtPCLudmmsxfMJJlK3FKLvV+P
MsO2FdXiz6/ZLI9/ds7YJDOfc1cGSVK07Efx+SLXD5FAnkFYq4SElmI4sK8BWc5U
Dugw3j8u9M6jTiVKBioFo7yRT5iHG9O0A+6DtsMQ0iREfLolC7EEzpfGB/vWpKk5
BbdwDUiu6JxXEBJJqyP948iGfuIrikAx2mcf3dmEHVKhEnKi+MN/H5c9BKGAJ3sf
Fm1xF99IG+m3L3zXiukQ11OqsCx32kqLiXaejVttscFg/C33OYmGOhsk066hHCzx
LtoxrHUl7rwF+ssnKHq4Az2mYzZtquEq13O5tgleQcVwH/2+6EgWDf3mDSy1em0h
5IXgqk+PsaQ5n0jL
=TMR9
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm
KVM/ARM Fixes for v4.13-rc4
- Yet another race with VM destruction plugged
- A set of small vgic fixes
There is a small chance that the compiler could generate separate loads
for the dist->propbaser which could be modified from another CPU. As we
want to make sure we atomically update the entire value, and don't race
with other updates, guarantee that the cmpxchg operation compares
against the original value.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
During teardown, accesses to memslots and buses are using
rcu_dereference_protected with an always-true condition because
these accesses are done outside the usual mutexes. This
is because the last reference is gone and there cannot be any
concurrent modifications, but rcu_dereference_protected is
ugly and unobvious.
Instead, check the refcount in kvm_get_bus and __kvm_memslots.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Simplify and improve the code so that the PID is always available in
the uevent even when debugfs is not available.
This adds a userspace_pid field to struct kvm, as per Radim's
suggestion, so that the PID can be retrieved on destruction too.
Acked-by: Janosch Frank <frankja@linux.vnet.ibm.com>
Fixes: 286de8f6ac ("KVM: trigger uevents when creating or destroying a VM")
Signed-off-by: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The mmu_notifier_release() callback of KVM triggers cleaning up
the stage2 page table on kvm-arm. However there could be other
notifier callbacks in parallel with the mmu_notifier_release(),
which could cause the call backs ending up in an empty stage2
page table. Make sure we check it for all the notifier callbacks.
Cc: stable@vger.kernel.org
Fixes: commit 293f29363 ("kvm-arm: Unmap shadow pagetables properly")
Reported-by: Alex Graf <agraf@suse.de>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
kvm_pmu_overflow_set() is called from perf's interrupt handler,
making the call of kvm_vgic_inject_irq() from it introduced with
"KVM: arm/arm64: PMU: remove request-less vcpu kick" a really bad
idea, as it's quite easy to try and retake a lock that the
interrupted context is already holding. The fix is to use a vcpu
kick, leaving the interrupt injection to kvm_pmu_sync_hwstate(),
like it was doing before the refactoring. We don't just revert,
though, because before the kick was request-less, leaving the vcpu
exposed to the request-less vcpu kick race, and also because the
kick was used unnecessarily from register access handlers.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Commit 0e4e82f154 ("KVM: arm64: vgic-its: Enable ITS emulation as
a virtual MSI controller") tried to advertise KVM_CAP_MSI_DEVID, but
the code logic was not updating the dist->msis_require_devid field
correctly. If hypervisor tool creates the ITS device after VGIC
initialization then we don't advertise KVM_CAP_MSI_DEVID capability.
Update the field msis_require_devid to true inside vgic_its_create()
to fix the issue.
Fixes: 0e4e82f154 ("vgic-its: Enable ITS emulation as a virtual MSI controller")
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Common:
- add uevents for VM creation/destruction
- annotate and properly access RCU-protected objects
s390:
- rename IOCTL added in the first v4.13 merge
x86:
- emulate VMLOAD VMSAVE feature in SVM
- support paravirtual asynchronous page fault while nested
- add Hyper-V userspace interfaces for better migration
- improve master clock corner cases
- extend internal error reporting after EPT misconfig
- correct single-stepping of emulated instructions in SVM
- handle MCE during VM entry
- fix nVMX VM entry checks and nVMX VMCS shadowing
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZaOm6AAoJEED/6hsPKofoqO8H/3breVIyVv9mwg7A5+o+6LTq
GzV/YXHSC8NtfxZn8ViS/TCziYiBSFv7XiPSodkXbOgYSz8Yya5x9D+dbEH+xgG7
l+LsZEqdSFbHCkvKrMiwSsoXtsT5WygA56+KZiBmu8cvlwqSyXWHFn3ZJ1wKzGq/
zivlkfCoh2m6bGdNmrG9pHUSgxvDh94pXesaVBKy4hgeovY1qjzby3Lo+HuIUzai
exuEU1EKRlUIfLK1B2Anp5IIv5Q1lFnMSvD6YSiWYywZb95dN/adsX1bv+MKeOdt
TIAgotsWjaAuT9JolAJjfVPHG0+uMBMsWg4Zh9Ra/gPPaSh3KEC2h1++zEYKjvw=
=1zII
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.13-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Radim Krčmář:
"Second batch of KVM updates for v4.13
Common:
- add uevents for VM creation/destruction
- annotate and properly access RCU-protected objects
s390:
- rename IOCTL added in the first v4.13 merge
x86:
- emulate VMLOAD VMSAVE feature in SVM
- support paravirtual asynchronous page fault while nested
- add Hyper-V userspace interfaces for better migration
- improve master clock corner cases
- extend internal error reporting after EPT misconfig
- correct single-stepping of emulated instructions in SVM
- handle MCE during VM entry
- fix nVMX VM entry checks and nVMX VMCS shadowing"
* tag 'kvm-4.13-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (28 commits)
kvm: x86: hyperv: make VP_INDEX managed by userspace
KVM: async_pf: Let guest support delivery of async_pf from guest mode
KVM: async_pf: Force a nested vmexit if the injected #PF is async_pf
KVM: async_pf: Add L1 guest async_pf #PF vmexit handler
KVM: x86: Simplify kvm_x86_ops->queue_exception parameter list
kvm: x86: hyperv: add KVM_CAP_HYPERV_SYNIC2
KVM: x86: make backwards_tsc_observed a per-VM variable
KVM: trigger uevents when creating or destroying a VM
KVM: SVM: Enable Virtual VMLOAD VMSAVE feature
KVM: SVM: Add Virtual VMLOAD VMSAVE feature definition
KVM: SVM: Rename lbr_ctl field in the vmcb control area
KVM: SVM: Prepare for new bit definition in lbr_ctl
KVM: SVM: handle singlestep exception when skipping emulated instructions
KVM: x86: take slots_lock in kvm_free_pit
KVM: s390: Fix KVM_S390_GET_CMMA_BITS ioctl definition
kvm: vmx: Properly handle machine check during VM-entry
KVM: x86: update master clock before computing kvmclock_offset
kvm: nVMX: Shadow "high" parts of shadowed 64-bit VMCS fields
kvm: nVMX: Fix nested_vmx_check_msr_bitmap_controls
kvm: nVMX: Validate the I/O bitmaps on nested VM-entry
...
- Include Intel XXV710 in INTx workaround (Alex Williamson)
- Make use of ERR_CAST() for error return (Dan Carpenter)
- Fix vfio_group release deadlock from iommu notifier (Alex Williamson)
- Unset KVM-VFIO attributes only on group match (Alex Williamson)
- Fix release path group/file matching with KVM-VFIO (Alex Williamson)
- Remove unnecessary lock uses triggering lockdep splat (Alex Williamson)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.14 (GNU/Linux)
iQIcBAABAgAGBQJZZ71TAAoJECObm247sIsi1mUP/1/5kubhHRE/Y11SnX4Bpie0
X6YVbV3WLGuV9jaFMI7EgYJLZ6pBvCRX0CLUzEdrbS4LAlTLQu2GSY5tqhcLJumE
0mV1Wj1jOO9BAur13/sJ+IohbZeK10dtbTkWv+YhrVSpRaLP+ituaKsajEV12WRH
6dxho2bqfvNcTC8yjE+vqe9mU3jXYPGuCx8oYGaDXEsCjzrdbOFnAG0/s/2cWpb+
D1ADHd3020VAHZRnHRBLFfMczza1jqllhSAUfdMw1gRGCQDq3k1XenzVNLLTbtYy
VmEWHa+R/OCfbKVxaDqPsgOTK7x7DKn+Pzb3lWCdQ8v5X+2ubHpVIYjxTDSSTbt3
YJ7a+hNk8AHkFgwS7x8BdOT8mmNGb1NZldjS4dv2VWkfcTnMQnubnYSCzGztto9h
P2THKBil6djPb9S3pCvtKUiHSIZedYZlKofUldrOdGDAZmzLLlf8lTzijGjDYKFM
pQeZC+xeEhZXURipgkH+a+paYgDtKEfwSlABODghjCcJf7S/GbyVPLOKLXzoVb2y
Ml8eGlo4O/cNniQK5faH447ilM7hzS1aG83uGnHTfe8VgKjI7Z5ZSxKOtoEq5bDz
bb91E6GVLKHqT0LVS1YZfrnqK0hX/QAd/sK1REM5nN8JNmPLyLpjv8FaJEhpk1vC
z4At5+pfKM8DYrW3EGmc
=3A4K
-----END PGP SIGNATURE-----
Merge tag 'vfio-v4.13-rc1' of git://github.com/awilliam/linux-vfio
Pull VFIO updates from Alex Williamson:
- Include Intel XXV710 in INTx workaround (Alex Williamson)
- Make use of ERR_CAST() for error return (Dan Carpenter)
- Fix vfio_group release deadlock from iommu notifier (Alex Williamson)
- Unset KVM-VFIO attributes only on group match (Alex Williamson)
- Fix release path group/file matching with KVM-VFIO (Alex Williamson)
- Remove unnecessary lock uses triggering lockdep splat (Alex Williamson)
* tag 'vfio-v4.13-rc1' of git://github.com/awilliam/linux-vfio:
vfio: Remove unnecessary uses of vfio_container.group_lock
vfio: New external user group/file match
kvm-vfio: Decouple only when we match a group
vfio: Fix group release deadlock
vfio: Use ERR_CAST() instead of open coding it
vfio/pci: Add Intel XXV710 to hidden INTx devices
This patch adds a few lines to the KVM common code to fire a
KOBJ_CHANGE uevent whenever a KVM VM is created or destroyed. The event
carries five environment variables:
CREATED indicates how many times a new VM has been created. It is
useful for example to trigger specific actions when the first
VM is started
COUNT indicates how many VMs are currently active. This can be used for
logging or monitoring purposes
PID has the pid of the KVM process that has been started or stopped.
This can be used to perform process-specific tuning.
STATS_PATH contains the path in debugfs to the directory with all the
runtime statistics for this VM. This is useful for performance
monitoring and profiling.
EVENT described the type of event, its value can be either "create" or
"destroy"
Specific udev rules can be then set up in userspace to deal with the
creation or destruction of VMs as needed.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
The uniprocessor version of smp_call_function_many does not evaluate
all of its argument, and the compiler emits a warning about "wait"
being unused. This breaks the build on architectures for which
"-Werror" is enabled by default.
Work around it by moving the invocation of smp_call_function_many to
its own inline function.
Reported-by: Paul Mackerras <paulus@ozlabs.org>
Cc: stable@vger.kernel.org
Fixes: 7a97cec26b
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
we access the memslots array via srcu. Mark it as such and
use the right access functions also for the freeing of
memory slots.
Found by sparse:
./include/linux/kvm_host.h:565:16: error: incompatible types in
comparison expression (different address spaces)
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
mark kvm->busses as rcu protected and use the correct access
function everywhere.
found by sparse
virt/kvm/kvm_main.c:3490:15: error: incompatible types in comparison expression (different address spaces)
virt/kvm/kvm_main.c:3509:15: error: incompatible types in comparison expression (different address spaces)
virt/kvm/kvm_main.c:3561:15: error: incompatible types in comparison expression (different address spaces)
virt/kvm/kvm_main.c:3644:15: error: incompatible types in comparison expression (different address spaces)
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
irq routing is rcu protected. Use the proper access functions.
Found by sparse
virt/kvm/irqchip.c:233:13: warning: incorrect type in assignment (different address spaces)
virt/kvm/irqchip.c:233:13: expected struct kvm_irq_routing_table *old
virt/kvm/irqchip.c:233:13: got struct kvm_irq_routing_table [noderef] <asn:4>*irq_routing
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
We do use rcu to protect the pid pointer. Mark it as such and
adopt all code to use the proper access methods.
This was detected by sparse.
"virt/kvm/kvm_main.c:2248:15: error: incompatible types in comparison
expression (different address spaces)"
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements
There is a small conflict in arch/s390 due to an arch-wide field rename.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZW4XTAAoJEL/70l94x66DkhMH/izpk54KI17PtyQ9VYI2sYeZ
BWK6Kl886g3ij4pFi3pECqjDJzWaa3ai+vFfzzpJJ8OkCJT5Rv4LxC5ERltVVmR8
A3T1I/MRktSC0VJLv34daPC2z4Lco/6SPipUpPnL4bE2HATKed4vzoOjQ3tOeGTy
dwi7TFjKwoVDiM7kPPDRnTHqCe5G5n13sZ49dBe9WeJ7ttJauWqoxhlYosCGNPEj
g8ZX8+cvcAhVnz5uFL8roqZ8ygNEQq2mgkU18W8ZZKuiuwR0gdsG0gSBFNTdwIMK
NoreRKMrw0+oLXTIB8SZsoieU6Qi7w3xMAMabe8AJsvYtoersugbOmdxGCr1lsA=
=OD7H
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC:
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
Update my email address
kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
kvm: x86: mmu: allow A/D bits to be disabled in an mmu
x86: kvm: mmu: make spte mmio mask more explicit
x86: kvm: mmu: dead code thanks to access tracking
KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code
KVM: PPC: Book3S HV: Close race with testing for signals on guest entry
KVM: PPC: Book3S HV: Simplify dynamic micro-threading code
KVM: x86: remove ignored type attribute
KVM: LAPIC: Fix lapic timer injection delay
KVM: lapic: reorganize restart_apic_timer
KVM: lapic: reorganize start_hv_timer
kvm: nVMX: Check memory operand to INVVPID
KVM: s390: Inject machine check into the nested guest
KVM: s390: Inject machine check into the guest
tools/kvm_stat: add new interactive command 'b'
tools/kvm_stat: add new command line switch '-i'
tools/kvm_stat: fix error on interactive command 'g'
KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit
...
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAllWCM0VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDjJ0QAI16x6+trKhH31lTSYekYfqm4hZ2
Fp7IbALW9KNCaY35tZov2Zuh99qGRduxTh7ewqhKpON8kkU+UKj0F7zH22+vfN4m
yas/+uNr8R9VLyvea4ysPsgx8Q8v1Ix9setohHYNZIL9/klVqtaHpYvArHVF/mzq
p2j/NxRS2dlp9r2TtoMRMhA05u6r0wolhUuh+z9v2ipib0gfOBIG24jsqCTEcD9n
5A/cVd+ztYshkrV95h3y9peahwt3zOA4QBGzrQ2K25jp0s54nqhmC7JTNSa8dtar
YGW2MuAMoIFTwCFAlpwCzrwpOJFzF3Q6A8bOxei2fjclzjPMgT1xQxuhOoe4ntFa
lTPxSHalm5W6dFTW90YSo2DBcPe+N7sQkhjR0cCeY3GYsOFhXMLTlOl5Pt1YK1or
+3FAI74tFRKvVmb9mhZeGTvuzhDgRvtf3Qq5rjwlGzKc2BBOEgtMyj/Wgwo4N6Dz
IjOnoRaUGELoBCWoTorMxLpsPBdPVSUxNyJTdAhqZ/ZtT1xqjhFNLZcrVWmOTzDM
1cav+jZkla4sLmJSNDD54aCSvvtPHis0nZn9PRlh12xgOyYiAVx4K++MNuWP0P37
hbh1gbPT+FcoVxPurUsX/pjNlTucPZcBwFytZDQlpwtPBpEFzJiImLYe/PldRb0f
9WQOH1Y1+q14MF+N
=6hNK
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.13
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
Conflicts:
arch/s390/include/asm/kvm_host.h
At the point where the kvm-vfio pseudo device wants to release its
vfio group reference, we can't always acquire a new reference to make
that happen. The group can be in a state where we wouldn't allow a
new reference to be added. This new helper function allows a caller
to match a file to a group to facilitate this. Given a file and
group, report if they match. Thus the caller needs to already have a
group reference to match to the file. This allows the deletion of a
group without acquiring a new reference.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Cc: stable@vger.kernel.org
Unset-KVM and decrement-assignment only when we find the group in our
list. Otherwise we can get out of sync if the user triggers this for
groups that aren't currently on our list.
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Tested-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
The call to kvm_put_kvm was removed from error handling in commit
506cfba9e7 ("KVM: don't use anon_inode_getfd() before possible
failures"), but it is _not_ a memory leak. Reuse Al's explanation
to avoid that someone else makes the same mistake.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replaces "S_IRUGO | S_IWUSR" with 0644. The reason is that symbolic
permissions considered harmful:
https://lwn.net/Articles/696229/
Signed-off-by: Roman Storozhenko <romeusmeister@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently external aborts are unsupported by the guest abort
handling. Add handling for SEAs so that the host kernel reports
SEAs which occur in the guest kernel.
When an SEA occurs in the guest kernel, the guest exits and is
routed to kvm_handle_guest_abort(). Prior to this patch, a print
message of an unsupported FSC would be printed and nothing else
would happen. With this patch, the code gets routed to the APEI
handling of SEAs in the host kernel to report the SEA information.
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Once we enable ARCH_SUPPORTS_MEMORY_FAILURE on arm64, notifications for
broken memory can call memory_failure() in mm/memory-failure.c to offline
pages of memory, possibly signalling user space processes and notifying all
the in-kernel users.
memory_failure() has two modes, early and late. Early is used by
machine-managers like Qemu to receive a notification when a memory error is
notified to the host. These can then be relayed to the guest before the
affected page is accessed. To enable this, the process must set
PR_MCE_KILL_EARLY in PR_MCE_KILL_SET using the prctl() syscall.
Once the early notification has been handled, nothing stops the
machine-manager or guest from accessing the affected page. If the
machine-manager does this the page will fail to be mapped and SIGBUS will
be sent. This patch adds the equivalent path for when the guest accesses
the page, sending SIGBUS to the machine-manager.
These two signals can be distinguished by the machine-manager using their
si_code: BUS_MCEERR_AO for 'action optional' early notifications, and
BUS_MCEERR_AR for 'action required' synchronous/late notifications.
Do as x86 does, and deliver the SIGBUS when we discover pfn ==
KVM_PFN_ERR_HWPOISON. Use the hugepage size as si_addr_lsb if this vma was
allocated as a hugepage. Transparent hugepages will be split by
memory_failure() before we see them here.
Cc: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Rename:
wait_queue_t => wait_queue_entry_t
'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue",
but in reality it's a queue *entry*. The 'real' queue is the wait queue head,
which had to carry the name.
Start sorting this out by renaming it to 'wait_queue_entry_t'.
This also allows the real structure name 'struct __wait_queue' to
lose its double underscore and become 'struct wait_queue_entry',
which is the more canonical nomenclature for such data types.
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When reading the cntpct_el0 in guest with VHE (Virtual Host Extension)
enabled in host, the "Unsupported guest sys_reg access" error reported.
The reason is cnthctl_el2.EL1PCTEN is not enabled, which is expected
to be done in kvm_timer_init_vhe(). The problem is kvm_timer_init_vhe
is called by cpu_init_hyp_mode, and which is called when VHE is disabled.
This patch remove the incorrect call to kvm_timer_init_vhe() from
cpu_init_hyp_mode(), and calls kvm_timer_init_vhe() to enable
cnthctl_el2.EL1PCTEN in cpu_hyp_reinit().
Fixes: 488f94d721 ("KVM: arm64: Access CNTHCTL_EL2 bit fields correctly on VHE systems")
Cc: stable@vger.kernel.org
Signed-off-by: Hu Huajun <huhuajun@huawei.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Per ARM DDI 0487B.a, the registers are named ICC_IGRPEN*_EL1 rather than
ICC_GRPEN*_EL1. Correct our mnemonics and comments to match, before we
add more GICv3 register definitions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A write-to-read-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A read-from-write-only GICv3 access should UNDEF at EL1. But since
we're in complete paranoia-land with broken CPUs, let's assume the
worse and gracefully handle the case.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to facilitate debug, let's log which class of GICv3 system
registers are trapped.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Now that we're able to safely handle common sysreg access, let's
give the user the opportunity to enable it by passing a specific
command-line option (vgic_v3.common_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading/writing the guest's view of the ICC_PMR_EL1
register, which is located in the ICH_VMCR_EL2.VPMR field.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading/writing the guest's view of the ICV_CTLR_EL1
register. only EOIMode and CBPR are of interest here, as all the other
bits directly come from ICH_VTR_EL2 and are Read-Only.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading the guest's view of the ICV_RPR_EL1
register, returning the highest active priority.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for writing the guest's view of the ICC_DIR_EL1
register, performing the deactivation of an interrupt if EOImode
is set ot 1.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Some Cavium Thunder CPUs suffer a problem where a KVM guest may
inadvertently cause the host kernel to quit receiving interrupts.
Use the Group-0/1 trapping in order to deal with it.
[maz]: Adapted patch to the Group-0/1 trapping, reworked commit log
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Now that we're able to safely handle Group-0 sysreg access, let's
give the user the opportunity to enable it by passing a specific
command-line option (vgic_v3.group0_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to be able to trap Group-0 GICv3 system registers, we need to
set ICH_HCR_EL2.TALL0 begore entering the guest. This is conditionnaly
done after having restored the guest's state, and cleared on exit.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A number of Group-0 registers can be handled by the same accessors
as that of Group-1, so let's add the required system register encodings
and catch them in the dispatching function.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading/writing the guest's view of the ICC_IGRPEN0_EL1
register, which is located in the ICH_VMCR_EL2.VENG0 field.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading/writing the guest's view of the ICC_BPR0_EL1
register, which is located in the ICH_VMCR_EL2.BPR0 field.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Now that we're able to safely handle Group-1 sysreg access, let's
give the user the opportunity to enable it by passing a specific
command-line option (vgic_v3.group1_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to be able to trap Group-1 GICv3 system registers, we need to
set ICH_HCR_EL2.TALL1 before entering the guest. This is conditionally
done after having restored the guest's state, and cleared on exit.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading the guest's view of the ICV_HPPIR1_EL1
register. This is a simple parsing of the available LRs, extracting the
highest available interrupt.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading/writing the guest's view of the ICV_AP1Rn_EL1
registers. We just map them to the corresponding ICH_AP1Rn_EL2 registers.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for writing the guest's view of the ICC_EOIR1_EL1
register. This involves dropping the priority of the interrupt,
and deactivating it if required (EOImode == 0).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading the guest's view of the ICC_IAR1_EL1
register. This involves finding the highest priority Group-1
interrupt, checking against both PMR and the active group
priority, activating the interrupt and setting the group
priority as active.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading/writing the guest's view of the ICC_IGRPEN1_EL1
register, which is located in the ICH_VMCR_EL2.VENG1 field.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Add a handler for reading/writing the guest's view of the ICC_BPR1_EL1
register, which is located in the ICH_VMCR_EL2.BPR1 field.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In order to start handling guest access to GICv3 system registers,
let's add a hook that will get called when we trap a system register
access. This is gated by a new static key (vgic_v3_cpuif_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
As we're about to trap CP15 accesses and handle them at EL2, we
need to evaluate whether or not the condition flags are valid,
as an implementation is allowed to trap despite the condition
not being met.
Tagging the function as __hyp_text allows this. We still rely on
the cc_map array to be mapped at EL2 by virtue of being "const",
and the linker to only emit relative references.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
As we're about to access the Active Priority registers a lot more,
let's define accessors that take the register number as a parameter.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
The PMU IRQ number is set through the VCPU device's KVM_SET_DEVICE_ATTR
ioctl handler for the KVM_ARM_VCPU_PMU_V3_IRQ attribute, but there is no
enforced or stated requirement that this must happen after initializing
the VGIC. As a result, calling vgic_valid_spi() which relies on the
nr_spis being set during the VGIC init can incorrectly fail.
Introduce irq_is_spi, which determines if an IRQ number is within the
SPI range without verifying it against the actual VGIC properties.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
When injecting an IRQ to the VGIC, you now have to present an owner
token for that IRQ line to show that you are the owner of that line.
IRQ lines driven from userspace or via an irqfd do not have an owner and
will simply pass a NULL pointer.
Also get rid of the unused kvm_vgic_inject_mapped_irq prototype.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
We check if other in-kernel devices have already been connected to the
GIC for a particular interrupt line when possible.
For the PMU, we can do this whenever setting the PMU interrupt number
from userspace.
For the timers, we have to wait until we try to enable the timer,
because we have a concept of default IRQ numbers that userspace
shouldn't have to work around in the initialization phase.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Having multiple devices being able to signal the same interrupt line is
very confusing and almost certainly guarantees a configuration error.
Therefore, introduce a very simple allocator which allows a device to
claim an interrupt line from the vgic for a given VM.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
First we define an ABI using the vcpu devices that lets userspace set
the interrupt numbers for the various timers on both the 32-bit and
64-bit KVM/ARM implementations.
Second, we add the definitions for the groups and attributes introduced
by the above ABI. (We add the PMU define on the 32-bit side as well for
symmetry and it may get used some day.)
Third, we set up the arch-specific vcpu device operation handlers to
call into the timer code for anything related to the
KVM_ARM_VCPU_TIMER_CTRL group.
Fourth, we implement support for getting and setting the timer interrupt
numbers using the above defined ABI in the arch timer code.
Fifth, we introduce error checking upon enabling the arch timer (which
is called when first running a VCPU) to check that all VCPUs are
configured to use the same PPI for the timer (as mandated by the
architecture) and that the virtual and physical timers are not
configured to use the same IRQ number.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We currently initialize the arch timer IRQ numbers from the reset code,
presumably because we once intended to model multiple CPU or SoC types
from within the kernel and have hard-coded reset values in the reset
code.
As we are moving towards userspace being in charge of more fine-grained
CPU emulation and stitching together the pieces needed to emulate a
particular type of CPU, we should no longer have a tight coupling
between resetting a VCPU and setting IRQ numbers.
Therefore, move the logic to define and use the default IRQ numbers to
the timer code and set the IRQ number immediately when creating the
VCPU.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We are about to need this define in the arch timer code as well so move
it to a common location.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Since we got support for devices in userspace which allows reporting the
PMU overflow output status to userspace, we should actually allow
creating the PMU on systems without an in-kernel irqchip, which in turn
requires us to slightly clarify error codes for the ABI and move things
around for the initialization phase.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We used to extract PRIbits from the ICH_VT_EL2 which was the upper field
in the register word, so a mask wasn't necessary, but as we switched to
looking at PREbits, which is bits 26 through 28 with the PRIbits field
being potentially non-zero, we really need to mask off the field value,
otherwise fun things may happen.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
The timer work is only scheduled for a VCPU when that VCPU is
blocked. This means we only need to wake it up, not kick (IPI)
it. While calling kvm_vcpu_kick() would just do the wake up,
and not kick, anyway, let's change this to avoid request-less
vcpu kicks, as they're generally not a good idea (see
"Request-less VCPU Kicks" in
Documentation/virtual/kvm/vcpu-requests.rst)
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Refactor PMU overflow handling in order to remove the request-less
vcpu kick. Now, since kvm_vgic_inject_irq() uses vcpu requests,
there should be no chance that a kick sent at just the wrong time
(between the VCPU's call to kvm_pmu_flush_hwstate() and before it
enters guest mode) results in a failure for the guest to see updated
GIC state until its next exit some time later for some other reason.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Don't use request-less VCPU kicks when injecting IRQs, as a VCPU
kick meant to trigger the interrupt injection could be sent while
the VCPU is outside guest mode, which means no IPI is sent, and
after it has called kvm_vgic_flush_hwstate(), meaning it won't see
the updated GIC state until its next exit some time later for some
other reason. The receiving VCPU only needs to check this request
in VCPU RUN to handle it. By checking it, if it's pending, a
memory barrier will be issued that ensures all state is visible.
See "Ensuring Requests Are Seen" of
Documentation/virtual/kvm/vcpu-requests.rst
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
A request called EXIT is too generic. All requests are meant to cause
exits, but different requests have different flags. Let's not make
it difficult to decide if the EXIT request is correct for some case
by just always providing unique requests for each case. This patch
changes EXIT to SLEEP, because that's what the request is asking the
VCPU to do.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We can make a small optimization by not checking the state of
the power_off field on each run. This is done by treating
power_off like pause, only checking it when we get the EXIT
VCPU request. When a VCPU powers off another VCPU the EXIT
request is already made, so we just need to make sure the
request is also made on self power off. kvm_vcpu_kick() isn't
necessary for these cases, as the VCPU would just be kicking
itself, but we add it anyway as a self kick doesn't cost much,
and it makes the code more future-proof.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
System shutdown is currently using request-less VCPU kicks. This
leaves open a tiny race window, as it doesn't ensure the state
change to power_off is seen by a VCPU just about to enter guest
mode. VCPU requests, OTOH, are guaranteed to be seen (see "Ensuring
Requests Are Seen" of Documentation/virtual/kvm/vcpu-requests.rst)
This patch applies the EXIT request used by pause to power_off,
fixing the race.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
The current use of KVM_REQ_VCPU_EXIT for pause is fine. Even the
requester clearing the request is OK, as this is the special case
where the sole requesting thread and receiving VCPU are executing
synchronously (see "Clearing Requests" in
Documentation/virtual/kvm/vcpu-requests.rst) However, that's about
to change, so let's ensure only the receiving VCPU clears the
request. Additionally, by guaranteeing KVM_REQ_VCPU_EXIT is always
set when pause is, we can avoid checking pause directly in VCPU RUN.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
arm/arm64 already has one VCPU request used when setting pause,
but it doesn't properly check requests in VCPU RUN. Check it
and also make sure we set vcpu->mode at the appropriate time
(before the check) and with the appropriate barriers. See
Documentation/virtual/kvm/vcpu-requests.rst. Also make sure we
don't leave any vcpu requests we don't intend to handle later
set in the request bitmap. If we don't clear them, then
kvm_request_pending() may return true when it shouldn't.
Using VCPU requests properly fixes a small race where pause
could get set just as a VCPU was entering guest mode.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We recently rewrote the sactive and cactive handlers to take the kvm
lock for guest accesses to these registers. However, when accessed from
userspace this lock is already held. Unfortunately we forgot to change
the private accessors for GICv3, because these are redistributor
registers and not distributor registers.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
We have been a little loose with our intermediate VMCR representation
where we had a 'ctlr' field, but we failed to differentiate between the
GICv2 GICC_CTLR and ICC_CTLR_EL1 layouts, and therefore ended up mapping
the wrong bits into the individual fields of the ICH_VMCR_EL2 when
emulating a GICv2 on a GICv3 system.
Fix this by using explicit fields for the VMCR bits instead.
Cc: Eric Auger <eric.auger@redhat.com>
Reported-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
We don't need to stop a specific VCPU when changing the active state,
because private IRQs can only be modified by a running VCPU for the
VCPU itself and it is therefore already stopped.
However, it is also possible for two VCPUs to be modifying the active
state of SPIs at the same time, which can cause the thread being stuck
in the loop that checks other VCPU threads for a potentially very long
time, or to modify the active state of a running VCPU. Fix this by
serializing all accesses to setting and clearing the active state of
interrupts using the KVM mutex.
Reported-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Factor out the core register modifier functionality from the entry
points from the register description table, and only call the
prepare/finish functions from the guest path, not the uaccess path.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We are about to differentiate between writes from a VCPU and from
userspace to the GIC's GICD_ISACTIVER and GICD_ICACTIVER registers due
to different synchronization requirements.
Expand the macro to define a register description for the GIC to take
uaccess functions as well.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
We were not holding the kvm->slots_lock as required when calling
kvm_io_bus_unregister_dev() as required.
This only affects the error path, but still, let's do our due
diligence.
Reported by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
If userspace creates the VCPUs after initializing the VGIC, then we end
up in a situation where we trigger a bug in kvm_vcpu_get_idx(), because
it is called prior to adding the VCPU into the vcpus array on the VM.
There is no tight coupling between the VCPU index and the area of the
redistributor region used for the VCPU, so we can simply ensure that all
creations of redistributors are serialized per VM, and increment an
offset when we successfully add a redistributor.
The vgic_register_redist_iodev() function can be called from two paths:
vgic_redister_all_redist_iodev() which is called via the kvm_vgic_addr()
device attribute handler. This patch already holds the kvm->lock mutex.
The other path is via kvm_vgic_vcpu_init, which is called through a
longer chain from kvm_vm_ioctl_create_vcpu(), which releases the
kvm->lock mutex just before calling kvm_arch_vcpu_create(), so we can
simply take this mutex again later for our purposes.
Fixes: ab6f468c10 ("KVM: arm/arm64: Register iodevs when setting redist base and creating VCPUs")
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Tested-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
We yield the kvm->mmu_lock occassionaly while performing an operation
(e.g, unmap or permission changes) on a large area of stage2 mappings.
However this could possibly cause another thread to clear and free up
the stage2 page tables while we were waiting for regaining the lock and
thus the original thread could end up in accessing memory that was
freed. This patch fixes the problem by making sure that the stage2
pagetable is still valid after we regain the lock. The fact that
mmu_notifer->release() could be called twice (via __mmu_notifier_release
and mmu_notifier_unregsister) enhances the possibility of hitting
this race where there are two threads trying to unmap the entire guest
shadow pages.
While at it, cleanup the redudant checks around cond_resched_lock in
stage2_wp_range(), as cond_resched_lock already does the same checks.
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: andreyknvl@google.com
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Make sure we don't use a cached value of the KVM stage2 PGD while
resetting the PGD.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: stable@vger.kernel.org
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
In kvm_free_stage2_pgd() we check the stage2 PGD before holding
the lock and proceed to take the lock if it is valid. And we unmap
the page tables, followed by releasing the lock. We reset the PGD
only after dropping this lock, which could cause a race condition
where another thread waiting on or even holding the lock, could
potentially see that the PGD is still valid and proceed to perform
a stage2 operation and later encounter a NULL PGD.
[223090.242280] Unable to handle kernel NULL pointer dereference at
virtual address 00000040
[223090.262330] PC is at unmap_stage2_range+0x8c/0x428
[223090.262332] LR is at kvm_unmap_hva_handler+0x2c/0x3c
[223090.262531] Call trace:
[223090.262533] [<ffff0000080adb78>] unmap_stage2_range+0x8c/0x428
[223090.262535] [<ffff0000080adf40>] kvm_unmap_hva_handler+0x2c/0x3c
[223090.262537] [<ffff0000080ace2c>] handle_hva_to_gpa+0xb0/0x104
[223090.262539] [<ffff0000080af988>] kvm_unmap_hva+0x5c/0xbc
[223090.262543] [<ffff0000080a2478>]
kvm_mmu_notifier_invalidate_page+0x50/0x8c
[223090.262547] [<ffff0000082274f8>]
__mmu_notifier_invalidate_page+0x5c/0x84
[223090.262551] [<ffff00000820b700>] try_to_unmap_one+0x1d0/0x4a0
[223090.262553] [<ffff00000820c5c8>] rmap_walk+0x1cc/0x2e0
[223090.262555] [<ffff00000820c90c>] try_to_unmap+0x74/0xa4
[223090.262557] [<ffff000008230ce4>] migrate_pages+0x31c/0x5ac
[223090.262561] [<ffff0000081f869c>] compact_zone+0x3fc/0x7ac
[223090.262563] [<ffff0000081f8ae0>] compact_zone_order+0x94/0xb0
[223090.262564] [<ffff0000081f91c0>] try_to_compact_pages+0x108/0x290
[223090.262569] [<ffff0000081d5108>] __alloc_pages_direct_compact+0x70/0x1ac
[223090.262571] [<ffff0000081d64a0>] __alloc_pages_nodemask+0x434/0x9f4
[223090.262572] [<ffff0000082256f0>] alloc_pages_vma+0x230/0x254
[223090.262574] [<ffff000008235e5c>] do_huge_pmd_anonymous_page+0x114/0x538
[223090.262576] [<ffff000008201bec>] handle_mm_fault+0xd40/0x17a4
[223090.262577] [<ffff0000081fb324>] __get_user_pages+0x12c/0x36c
[223090.262578] [<ffff0000081fb804>] get_user_pages_unlocked+0xa4/0x1b8
[223090.262579] [<ffff0000080a3ce8>] __gfn_to_pfn_memslot+0x280/0x31c
[223090.262580] [<ffff0000080a3dd0>] gfn_to_pfn_prot+0x4c/0x5c
[223090.262582] [<ffff0000080af3f8>] kvm_handle_guest_abort+0x240/0x774
[223090.262584] [<ffff0000080b2bac>] handle_exit+0x11c/0x1ac
[223090.262586] [<ffff0000080ab99c>] kvm_arch_vcpu_ioctl_run+0x31c/0x648
[223090.262587] [<ffff0000080a1d78>] kvm_vcpu_ioctl+0x378/0x768
[223090.262590] [<ffff00000825df5c>] do_vfs_ioctl+0x324/0x5a4
[223090.262591] [<ffff00000825e26c>] SyS_ioctl+0x90/0xa4
[223090.262595] [<ffff000008085d84>] el0_svc_naked+0x38/0x3c
This patch moves the stage2 PGD manipulation under the lock.
Reported-by: Alexander Graf <agraf@suse.de>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
The GICv3 documentation is extremely confusing, as it talks about
the number of priorities represented by the ICH_APxRn_EL2 registers,
while it should really talk about the number of preemption levels.
This leads to a bug where we may access undefined ICH_APxRn_EL2
registers, since PREbits is allowed to be smaller than PRIbits.
Thankfully, nobody seem to have taken this path so far...
The fix is to use ICH_VTR_EL2.PREbits instead.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When an interrupt is injected with the HW bit set (indicating that
deactivation should be propagated to the physical distributor),
special care must be taken so that we never mark the corresponding
LR with the Active+Pending state (as the pending state is kept in
the physycal distributor).
Cc: stable@vger.kernel.org
Fixes: 59529f69f5 ("KVM: arm/arm64: vgic-new: Add GICv3 world switch backend")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When an interrupt is injected with the HW bit set (indicating that
deactivation should be propagated to the physical distributor),
special care must be taken so that we never mark the corresponding
LR with the Active+Pending state (as the pending state is kept in
the physycal distributor).
Cc: stable@vger.kernel.org
Fixes: 140b086dd1 ("KVM: arm/arm64: vgic-new: Add GICv2 world switch backend")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJZEZihAAoJEEtpOizt6ddyGDYH/jmGjDMnryORn2P2o10dUQKJ
RnHTQYnpOYqnprlkFtZFpmK+mjl/a8R1Btb7GK2EwmovTR95pMYPRqtrCTOL0aQA
4OToh7+vFGatwxsGCS6utazdhmx0UT/LhO/GEF4G1zOb7eVa4ZtS1NKLP2WjPD1E
RU3Qn8wa0pESv3tJScv8qo2+PWVX4krbFllhY2Hk0AkVQcI66ExkdVq4ikm1eUXn
rxzIayLG2bv3KEPNCzozdwoY9tDL+b40q6vN/RHGJmM05SZbbSx2/Bkw2RbslSpD
2hvhHWX7xeuEBcd5mZO7sP4WS3hM/BI8eX7q+uMeNJ9B+nM82yjGfOTtglVi2cc=
=JfvQ
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12-round2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
Second round of KVM/ARM Changes for v4.12.
Changes include:
- A fix related to the 32-bit idmap stub
- A fix to the bitmask used to deode the operands of an AArch32 CP
instruction
- We have moved the files shared between arch/arm/kvm and
arch/arm64/kvm to virt/kvm/arm
- We add support for saving/restoring the virtual ITS state to
userspace
When failing to restore the ITT for a DTE, we should remove the failed
device entry from the list and free the object.
We slightly refactor vgic_its_destroy to be able to reuse the now
separate vgic_its_free_dte() function.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
The only reason we called kvm_vgic_map_resources() when restoring the
ITS tables was because we wanted to have the KVM iodevs registered in
the KVM IO bus framework at the time when the ITS was restored such that
a restored and active device can inject MSIs prior to otherwise calling
kvm_vgic_map_resources() from the first run of a VCPU.
Since we now register the KVM iodevs for the redestributors and ITS as
soon as possible (when setting the base addresses), we no longer need
this call and kvm_vgic_map_resources() is again called only when first
running a VCPU.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
We have to register the ITS iodevice before running the VM, because in
migration scenarios, we may be restoring a live device that wishes to
inject MSIs before the VCPUs have started.
All we need to register the ITS io device is the base address of the
ITS, so we can simply register that when the base address of the ITS is
set.
[ Code to fix concurrency issues when setting the ITS base address and
to fix the undef base address check written by Marc Zyngier ]
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
The its->initialized doesn't bring much to the table, and creates
unnecessary ordering between setting the address and initializing it
(which amounts to exactly nothing).
Let's kill it altogether, making KVM_DEV_ARM_VGIC_CTRL_INIT the no-op
it deserves to be.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Instead of waiting with registering KVM iodevs until the first VCPU is
run, we can actually create the iodevs when the redist base address is
set. The only downside is that we must now also check if we need to do
this for VCPUs which are created after creating the VGIC, because there
is no enforced ordering between creating the VGIC (and setting its base
addresses) and creating the VCPUs.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
As we are about to handle setting the address for the redistributor base
region separately from some of the other base addresses, let's rework
this function to leave a little more room for being flexible in what
each type of base address does.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
As we are about to fiddle with the IO device registration mechanism,
let's be a little more careful when setting base addresses as early as
possible. When setting a base address, we can check that there's
address space enough for its scope and when the last of the two
base addresses (dist and redist) get set, we can also check if the
regions overlap at that time.
This allows us to provide error messages to the user at time when trying
to set the base address, as opposed to later when trying to run the VM.
To do this, we make vgic_v3_check_base available in the core vgic-v3
code as well as in the other parts of the GICv3 code, namely the MMIO
config code.
We also return true for undefined base addresses so that the function
can be used before all base addresses are set; all callers already check
for uninitialized addresses before calling this function.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Split out the function to register all the redistributor iodevs into a
function that handles a single redistributor at a time in preparation
for being able to call this per VCPU as these get created.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
The main thing here is a new implementation of the in-kernel
XICS interrupt controller emulation for POWER9 machines, from Ben
Herrenschmidt.
POWER9 has a new interrupt controller called XIVE (eXternal Interrupt
Virtualization Engine) which is able to deliver interrupts directly
to guest virtual CPUs in hardware without hypervisor intervention.
With this new code, the guest still sees the old XICS interface but
performance is better because the XICS emulation in the host uses the
XIVE directly rather than going through a XICS emulation in firmware.
Conflicts:
arch/powerpc/kernel/cpu_setup_power.S [cherry-picked fix]
arch/powerpc/kvm/book3s_xive.c [include asm/debugfs.h]
In vm_stat_get_per_vm_fops and vcpu_stat_get_per_vm_fops, since we
use nonseekable_open() to open, we should use no_llseek() to seek,
not generic_file_llseek().
Signed-off-by: Geliang Tang <geliangtang@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This function really doesn't init anything, it enables the CPU
interface, so name it as such, which gives us the name to use for actual
init work later on.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Merge more updates from Andrew Morton:
- the rest of MM
- various misc things
- procfs updates
- lib/ updates
- checkpatch updates
- kdump/kexec updates
- add kvmalloc helpers, use them
- time helper updates for Y2038 issues. We're almost ready to remove
current_fs_time() but that awaits a btrfs merge.
- add tracepoints to DAX
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (114 commits)
drivers/staging/ccree/ssi_hash.c: fix build with gcc-4.4.4
selftests/vm: add a test for virtual address range mapping
dax: add tracepoint to dax_insert_mapping()
dax: add tracepoint to dax_writeback_one()
dax: add tracepoints to dax_writeback_mapping_range()
dax: add tracepoints to dax_load_hole()
dax: add tracepoints to dax_pfn_mkwrite()
dax: add tracepoints to dax_iomap_pte_fault()
mtd: nand: nandsim: convert to memalloc_noreclaim_*()
treewide: convert PF_MEMALLOC manipulations to new helpers
mm: introduce memalloc_noreclaim_{save,restore}
mm: prevent potential recursive reclaim due to clearing PF_MEMALLOC
mm/huge_memory.c: deposit a pgtable for DAX PMD faults when required
mm/huge_memory.c: use zap_deposited_table() more
time: delete CURRENT_TIME_SEC and CURRENT_TIME
gfs2: replace CURRENT_TIME with current_time
apparmorfs: replace CURRENT_TIME with current_time()
lustre: replace CURRENT_TIME macro
fs: ubifs: replace CURRENT_TIME_SEC with current_time
fs: ufs: use ktime_get_real_ts64() for birthtime
...
Patch series "kvmalloc", v5.
There are many open coded kmalloc with vmalloc fallback instances in the
tree. Most of them are not careful enough or simply do not care about
the underlying semantic of the kmalloc/page allocator which means that
a) some vmalloc fallbacks are basically unreachable because the kmalloc
part will keep retrying until it succeeds b) the page allocator can
invoke a really disruptive steps like the OOM killer to move forward
which doesn't sound appropriate when we consider that the vmalloc
fallback is available.
As it can be seen implementing kvmalloc requires quite an intimate
knowledge if the page allocator and the memory reclaim internals which
strongly suggests that a helper should be implemented in the memory
subsystem proper.
Most callers, I could find, have been converted to use the helper
instead. This is patch 6. There are some more relying on __GFP_REPEAT
in the networking stack which I have converted as well and Eric Dumazet
was not opposed [2] to convert them as well.
[1] http://lkml.kernel.org/r/20170130094940.13546-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/1485273626.16328.301.camel@edumazet-glaptop3.roam.corp.google.com
This patch (of 9):
Using kmalloc with the vmalloc fallback for larger allocations is a
common pattern in the kernel code. Yet we do not have any common helper
for that and so users have invented their own helpers. Some of them are
really creative when doing so. Let's just add kv[mz]alloc and make sure
it is implemented properly. This implementation makes sure to not make
a large memory pressure for > PAGE_SZE requests (__GFP_NORETRY) and also
to not warn about allocation failures. This also rules out the OOM
killer as the vmalloc is a more approapriate fallback than a disruptive
user visible action.
This patch also changes some existing users and removes helpers which
are specific for them. In some cases this is not possible (e.g.
ext4_kvmalloc, libcfs_kvzalloc) because those seems to be broken and
require GFP_NO{FS,IO} context which is not vmalloc compatible in general
(note that the page table allocation is GFP_KERNEL). Those need to be
fixed separately.
While we are at it, document that __vmalloc{_node} about unsupported gfp
mask because there seems to be a lot of confusion out there.
kvmalloc_node will warn about GFP_KERNEL incompatible (which are not
superset) flags to catch new abusers. Existing ones would have to die
slowly.
[sfr@canb.auug.org.au: f2fs fixup]
Link: http://lkml.kernel.org/r/20170320163735.332e64b7@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170306103032.2540-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Andreas Dilger <adilger@dilger.ca> [ext4 part]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
This patch adds a new attribute to GICV3 KVM device
KVM_DEV_ARM_VGIC_GRP_CTRL group. This allows userspace to
flush all GICR pending tables into guest RAM.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
In its_sync_lpi_pending_table() we currently ignore the
target_vcpu of the LPIs. We sync the pending bit found in
the vcpu pending table even if the LPI is not targeting it.
Also in vgic_its_cmd_handle_invall() we are supposed to
read the config table data for the LPIs associated to the
collection ID. At the moment we refresh all LPI config
information.
This patch passes a vpcu to vgic_copy_lpi_list() so that
this latter returns a snapshot of the LPIs targeting this
CPU and only those.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Implement routines to save and restore device ITT and their
interrupt table entries (ITE).
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
This patch saves the device table entries into guest RAM.
Both flat table and 2 stage tables are supported. DeviceId
indexing is used.
For each device listed in the device table, we also save
the translation table using the vgic_its_save/restore_itt
routines. Those functions will be implemented in a subsequent
patch.
On restore, devices are re-allocated and their itt are
re-built.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
As vgic_its_check_id() computes the device/collection entry's
GPA, let's return it so that new callers can retrieve it easily.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
The save path copies the collection entries into guest RAM
at the GPA specified in the BASER register. This obviously
requires the BASER to be set. The last written element is a
dummy collection table entry.
We do not index by collection ID as the collection entry
can fit into 8 bytes while containing the collection ID.
On restore path we re-allocate the collection objects.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Add a generic scan_its_table() helper whose role consists in
scanning a contiguous table located in guest RAM and applying
a callback on each entry. Entries can be handled as linked lists
since the callback may return an id offset to the next entry and
also indicate whether the entry is the last one.
Helper functions also are added to compute the device/event ID
offset to the next DTE/ITE.
compute_next_devid_offset, compute_next_eventid_offset and
scan_table will become static in subsequent patches
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Add two new helpers to allocate an its ite and an its device.
This will avoid duplication on restore path.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Introduce new attributes in KVM_DEV_ARM_VGIC_GRP_CTRL group:
- KVM_DEV_ARM_ITS_SAVE_TABLES: saves the ITS tables into guest RAM
- KVM_DEV_ARM_ITS_RESTORE_TABLES: restores them into VGIC internal
structures.
We hold the vcpus lock during the save and restore to make
sure no vcpu is running.
At this stage the functionality is not yet implemented. Only
the skeleton is put in place.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
[Given we will move the iodev register until setting the base addr]
Reviewed-by: Christoffer Dall <cdall@linaro.org>
When creating the lpi we now ask the redistributor what is the state
of the LPI (priority, enabled, pending).
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
this new helper synchronizes the irq pending_latch
with the LPI pending bit status found in rdist pending table.
As the status is consumed, we reset the bit in pending table.
As we need the PENDBASER_ADDRESS() in vgic-v3, let's move its
definition in the irqchip header. We restore the full length
of the field, ie [51:16]. Same for PROPBASER_ADDRESS with full
field length of [51:12].
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
On MAPD we currently check the device id can be stored in the device table.
Let's first check it can be encoded within the range defined by TYPER
DEVBITS.
Also check the collection ID belongs to the 16 bit range as GITS_TYPER
CIL field equals to 0.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Up to now the MAPD ITT_addr had been ignored. We will need it
for save/restore. Let's record it in the its_device struct.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Up to now the MAPD's ITT size field has been ignored. It encodes
the number of eventid bit minus 1. It should be used to check
the eventid when a MAPTI command is issued on a device. Let's
store the number of eventid bits in the its_device and do the
check on MAPTI. Also make sure the ITT size field does
not exceed the GITS_TYPER IDBITS field.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
The GITS_IIDR revision field is used to encode the migration ABI
revision. So we need to restore it to check the table layout is
readable by the destination.
By writing the IIDR, userspace thus forces the ABI revision to be
used and this must be less than or equal to the max revision KVM
supports.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
We plan to support different migration ABIs, ie. characterizing
the ITS table layout format in guest RAM. For example, a new ABI
will be needed if vLPIs get supported for nested use case.
So let's introduce an array of supported ABIs (at the moment a single
ABI is supported though). The following characteristics are foreseen
to vary with the ABI: size of table entries, save/restore operation,
the way abi settings are applied.
By default the MAX_ABI_REV is applied on its creation. In subsequent
patches we will introduce a way for the userspace to change the ABI
in use.
The entry sizes now are set according to the ABI version and not
hardcoded anymore.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
GITS_CREADR needs to be restored so let's implement the associated
uaccess_write_its callback. The write only is allowed if the its
is disabled.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
This patch implements vgic_its_has_attr_regs and vgic_its_attr_regs_access
upon the MMIO framework. VGIC ITS KVM device KVM_DEV_ARM_VGIC_GRP_ITS_REGS
group becomes functional.
At least GITS_CREADR and GITS_IIDR require to differentiate a guest write
action from a user access. As such let's introduce a new uaccess_its_write
vgic_register_region callback.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
We need to use those helpers in vgic-its.c so let's
expose them in the private vgic header.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
The ITS KVM device exposes a new KVM_DEV_ARM_VGIC_GRP_ITS_REGS
group which allows the userspace to save/restore ITS registers.
At this stage the get/set/has operations are not yet implemented.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
We plan to use vgic_find_mmio_region in vgic-its.c so let's
turn it into a public function.
Also let's take the opportunity to rename the region parameter
into regions to emphasize this latter is an array of regions.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
The actual abbreviation for the interrupt translation table entry
is ITE. Let's rename all itte instances by ite.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDKMoAAoJEGvWsS0AyF7xR+YP/0EMEz5MDfCv0PVYj7/AIa0G
Zphl7OhysIkeDAz7urXw9Jdl0NfORNIqmD1vZNVSc321IyNp56Od+kWd82lBrOWB
ad3nNT67pEmu0pAW7CO48ju3rTesEnEl3ra45E1tULeLihmv93jc4ZlfXgumlKq3
/GE84XJ5ZFmluuhq1zgNefeUtyl1tbxTxHJ74+INF7dTd/5sJcphpqS4Dzpb+msT
20WYliccQCBF9zBFUYHc2KjcXXKRQGxLulGS3MuoN2DLkD+U9YyR/OmA7SoXh2J2
WXC5b0x856xTQJFCJ39pb7rw5xHjt3l5zfU3VLSvqEVL/+asBqCcgGNtNUgOW1Es
dEHC6bc66Ley6mn7bbpFE3MK8D+K5q8HwMF6G5KDtIVB6DB/iQ6kzi5aXKoupxtb
1EuU4OW6cDhmOFQYjgIDofLgqbmVvJofdF6+NfxasfZmWrMgHzv0rYvaCDnAV/Tr
t7bhH7hf9/KcP/wpk86O2AMKKpgoNTqe1Qy8cWVFFLnut567Pb6zs/L3ZXfleoLv
t613yM8Zj2fE05ja8ylMDjaasidNpXGttb08/4kAn06Daaoueqla0jmduAhy4aaV
dQ3OFP9lJ5MFaFnMMTPfU3vtvNLMHuo9MZsYCrv5zCaNNs3lpAPUiPNh588ZscKa
sWx4PEiaCi+wcOsLsJvh
=SDkm
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS
arm64: Print DT machine model in setup_machine_fdt()
arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills
arm64: module: split core and init PLT sections
arm64: pmuv3: handle pmuv3+
arm64: Add CNTFRQ_EL0 trap handler
arm64: Silence spurious kbuild warning on menuconfig
arm64: pmuv3: use arm_pmu ACPI framework
arm64: pmuv3: handle !PMUv3 when probing
drivers/perf: arm_pmu: add ACPI framework
arm64: add function to get a cpu's MADT GICC table
drivers/perf: arm_pmu: split out platform device probe logic
drivers/perf: arm_pmu: move irq request/free into probe
drivers/perf: arm_pmu: split cpu-local irq request/free
drivers/perf: arm_pmu: rename irq request/free functions
drivers/perf: arm_pmu: handle no platform_device
drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs()
drivers/perf: arm_pmu: factor out pmu registration
drivers/perf: arm_pmu: fold init into alloc
drivers/perf: arm_pmu: define armpmu_init_fn
...
The #ifndef was removed in 75aaafb79f,
but it was also protecting smp_send_reschedule() in kvm_vcpu_kick().
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For some time now we have been having a lot of shared functionality
between the arm and arm64 KVM support in arch/arm, which not only
required a horrible inter-arch reference from the Makefile in
arch/arm64/kvm, but also created confusion for newcomers to the code
base, as was recently seen on the mailing list.
Further, it causes confusion for things like cscope, which needs special
attention to index specific shared files for arm64 from the arm tree.
Move the shared files into virt/kvm/arm and move the trace points along
with it. When moving the tracepoints we have to modify the way the vgic
creates definitions of the trace points, so we take the chance to
include the VGIC tracepoints in its very own special vgic trace.h file.
Signed-off-by: Christoffer Dall <cdall@linaro.org>
This reverts commit bbd6411513.
I've been sitting on this revert for too long and it unfortunately
missed 4.11. It's also the reason why I haven't merged ring-based
dirty tracking for 4.12.
Using kvm_vcpu_memslots in kvm_gfn_to_hva_cache_init and
kvm_vcpu_write_guest_offset_cached means that the MSR value can
now be used to access SMRAM, simply by making it point to an SMRAM
physical address. This is problematic because it lets the guest
OS overwrite memory that it shouldn't be able to touch.
Cc: stable@vger.kernel.org
Fixes: bbd6411513
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We needed the lock to avoid racing with creation of the irqchip on x86. As
kvm_set_irq_routing() calls srcu_synchronize_expedited(), this lock
might be held for a longer time.
Let's introduce an arch specific callback to check if we can actually
add irq routes. For x86, all we have to do is check if we have an
irqchip in the kernel. We don't need kvm->lock at that point as the
irqchip is marked as inititalized only when actually fully created.
Reported-by: Steve Rutherford <srutherford@google.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Fixes: 1df6ddede1 ("KVM: x86: race between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP")
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This merges in the powerpc topic/xive branch to bring in the code for
the in-kernel XICS interrupt controller emulation to use the new XIVE
(eXternal Interrupt Virtualization Engine) hardware in the POWER9 chip
directly, rather than via a XICS emulation in firmware.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Changes include:
- Using the common sysreg definitions between KVM and arm64
- Improved hyp-stub implementation with support for kexec and kdump on the 32-bit side
- Proper PMU exception handling
- Performance improvements of our GIC handling
- Support for irqchip in userspace with in-kernel arch-timers and PMU support
- A fix for a race condition in our PSCI code
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJY/IasAAoJEEtpOizt6ddyd7gH/2N3BIMxi/Uqigx0e0byA43s
f+8gNq8A71VBTERGW2l9QP1/AZAXpQYNWdWmN2jn+91x2yoVL7AT00gEsliSLEZv
tqZaTGFXKi1vNihYrxEWm1mfVNzhRrnbW6vjLrO4J5Advq7T3OWhNuVt2BLTxz3Y
h0iqOWNVrUD9h3QSBFH8tz7yXhguDTSppAcXbE0tACdRu4vN50wqEWokHJG5TsMG
Tl3KYWrcc3YCKlAJGuJi7t5rMrXk+g1q6HnxlIN6OSk0POC2Vmw9/Gigtltj1Qwh
ZEAwsnka/U8ak8WaWeZa3EsGTSFSoAk/+pKv2FB8mFN+uOmWDqVlEiol4dW49AY=
=mEOk
-----END PGP SIGNATURE-----
Merge tag 'kvm-arm-for-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM Changes for v4.12.
Changes include:
- Using the common sysreg definitions between KVM and arm64
- Improved hyp-stub implementation with support for kexec and kdump on the 32-bit side
- Proper PMU exception handling
- Performance improvements of our GIC handling
- Support for irqchip in userspace with in-kernel arch-timers and PMU support
- A fix for a race condition in our PSCI code
Conflicts:
Documentation/virtual/kvm/api.txt
include/uapi/linux/kvm.h
kvm_make_all_requests() provides a synchronization that waits until all
kicked VCPUs have acknowledged the kick. This is important for
KVM_REQ_MMU_RELOAD as it prevents freeing while lockless paging is
underway.
This patch adds the synchronization property into all requests that are
currently being used with kvm_make_all_requests() in order to preserve
the current behavior and only introduce a new framework. Removing it
from requests where it is not necessary is left for future patches.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
No need to kick a VCPU that we have just woken up.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_vcpu_kick() must issue a general memory barrier prior to reading
vcpu->mode in order to ensure correctness of the mutual-exclusion
memory barrier pattern used with vcpu->requests. While the cmpxchg
called from kvm_vcpu_kick():
kvm_vcpu_kick
kvm_arch_vcpu_should_kick
kvm_vcpu_exiting_guest_mode
cmpxchg
implies general memory barriers before and after the operation, that
implication is only valid when cmpxchg succeeds. We need an explicit
barrier for when it fails, otherwise a VCPU thread on its entry path
that reads zero for vcpu->requests does not exclude the possibility
the requesting thread sees !IN_GUEST_MODE when it reads vcpu->mode.
kvm_make_all_cpus_request already had a barrier, so we remove it, as
now it would be redundant.
Signed-off-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We want to have kvm_make_all_cpus_request() to be an optmized version of
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_make_request(vcpu, request);
kvm_vcpu_kick(vcpu);
}
and kvm_vcpu_kick() wakes up the target vcpu. We know which requests do
not need the wake up and use it to optimize the loop.
Thanks to that, this patch doesn't change the behavior of current users
(the all don't need the wake up) and only prepares for future where the
wake up is going to be needed.
I think that most requests do not need the wake up, so we would flip the
bit then.
Later on, kvm_make_request() will take care of kicking too, using this
bit to make the decision whether to kick or not.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The #ifndef was protecting a missing halt_wakeup stat, but that is no
longer necessary.
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.
This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This allows the host kernel to handle H_PUT_TCE, H_PUT_TCE_INDIRECT
and H_STUFF_TCE requests targeted an IOMMU TCE table used for VFIO
without passing them to user space which saves time on switching
to user space and back.
This adds H_PUT_TCE/H_PUT_TCE_INDIRECT/H_STUFF_TCE handlers to KVM.
KVM tries to handle a TCE request in the real mode, if failed
it passes the request to the virtual mode to complete the operation.
If it a virtual mode handler fails, the request is passed to
the user space; this is not expected to happen though.
To avoid dealing with page use counters (which is tricky in real mode),
this only accelerates SPAPR TCE IOMMU v2 clients which are required
to pre-register the userspace memory. The very first TCE request will
be handled in the VFIO SPAPR TCE driver anyway as the userspace view
of the TCE table (iommu_table::it_userspace) is not allocated till
the very first mapping happens and we cannot call vmalloc in real mode.
If we fail to update a hardware IOMMU table unexpected reason, we just
clear it and move on as there is nothing really we can do about it -
for example, if we hot plug a VFIO device to a guest, existing TCE tables
will be mirrored automatically to the hardware and there is no interface
to report to the guest about possible failures.
This adds new attribute - KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE - to
the VFIO KVM device. It takes a VFIO group fd and SPAPR TCE table fd
and associates a physical IOMMU table with the SPAPR TCE table (which
is a guest view of the hardware IOMMU table). The iommu_table object
is cached and referenced so we do not have to look up for it in real mode.
This does not implement the UNSET counterpart as there is no use for it -
once the acceleration is enabled, the existing userspace won't
disable it unless a VFIO container is destroyed; this adds necessary
cleanup to the KVM_DEV_VFIO_GROUP_DEL handler.
This advertises the new KVM_CAP_SPAPR_TCE_VFIO capability to the user
space.
This adds real mode version of WARN_ON_ONCE() as the generic version
causes problems with rcu_sched. Since we testing what vmalloc_to_phys()
returns in the code, this also adds a check for already existing
vmalloc_to_phys() call in kvmppc_rm_h_put_tce_indirect().
This finally makes use of vfio_external_user_iommu_id() which was
introduced quite some time ago and was considered for removal.
Tests show that this patch increases transmission speed from 220MB/s
to 750..1020MB/s on 10Gb network (Chelsea CXGB3 10Gb ethernet card).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When iterating over the used LRs, be careful not to try to access
an unused LR, or even an unimplemented one if you're unlucky...
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
When emulating a GICv2-on-GICv3, special care must be taken to only
save/restore VMCR_EL2 when ICC_SRE_EL1.SRE is cleared. Otherwise,
all Group-0 interrupts end-up being delivered as FIQ, which is
probably not what the guest expects, as demonstrated here with
an unhappy EFI:
FIQ Exception at 0x000000013BD21CC4
This means that we cannot perform the load/put trick when dealing
with VMCR_EL2 (because the host has SRE set), and we have to deal
with it in the world-switch.
Fortunately, this is not the most common case (modern guests should
be able to deal with GICv3 directly), and the performance is not worse
than what it was before the VMCR optimization.
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Let's drop the goto and return the error value directly.
Suggested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Let's rename it into a proper arch specific callback.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Avoid races between KVM_SET_GSI_ROUTING and KVM_CREATE_IRQCHIP by taking
the kvm->lock when setting up routes.
If KVM_CREATE_IRQCHIP fails, KVM_SET_GSI_ROUTING could have already set
up routes pointing at pic/ioapic, being silently removed already.
Also, as a side effect, this patch makes sure that KVM_SET_GSI_ROUTING
and KVM_CAP_SPLIT_IRQCHIP cannot run in parallel.
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
When not using an in-kernel VGIC, but instead emulating an interrupt
controller in userspace, we should report the PMU overflow status to
that userspace interrupt controller using the KVM_CAP_ARM_USER_IRQ
feature.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
If you're running with a userspace gic or other interrupt controller
(that is no vgic in the kernel), then you have so far not been able to
use the architected timers, because the output of the architected
timers, which are driven inside the kernel, was a kernel-only construct
between the arch timer code and the vgic.
This patch implements the new KVM_CAP_ARM_USER_IRQ feature, where we use a
side channel on the kvm_run structure, run->s.regs.device_irq_level, to
always notify userspace of the timer output levels when using a userspace
irqchip.
This works by ensuring that before we enter the guest, if the timer
output level has changed compared to what we last told userspace, we
don't enter the guest, but instead return to userspace to notify it of
the new level. If we are exiting, because of an MMIO for example, and
the level changed at the same time, the value is also updated and
userspace can sample the line as it needs. This is nicely achieved
simply always updating the timer_irq_level field after the main run
loop.
Note that the kvm_timer_update_irq trace event is changed to show the
host IRQ number for the timer instead of the guest IRQ number, because
the kernel no longer know which IRQ userspace wires up the timer signal
to.
Also note that this patch implements all required functionality but does
not yet advertise the capability.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we check if we have an in-kernel irqchip and if the vgic was
properly implemented several places in the arch timer code. But, we
already predicate our enablement of the arm timers on having a valid
and initialized gic, so we can simply check if the timers are enabled or
not.
This also gets rid of the ugly "error that's not an error but used to
signal that the timer shouldn't poke the gic" construct we have.
Reviewed-by: Alexander Graf <agraf@suse.de>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
There is no need to call any functions to fold LRs when we don't use any
LRs and we don't need to mess with overflow flags, take spinlocks, or
prune the AP list if the AP list is empty.
Note: list_empty is a single atomic read (uses READ_ONCE) and can
therefore check if a list is empty or not without the need to take the
spinlock protecting the list.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>