POWER9 DD1 was never a product. It is no longer supported by upstream
firmware, and it is not effectively supported in Linux due to lack of
testing.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au>
[mpe: Remove arch_make_huge_pte() entirely]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
cxllib_handle_fault() is called by an external driver when it needs to
have the host resolve page faults for a buffer. The buffer can cover
several pages and VMAs. The function iterates over all the pages used
by the buffer, based on the page size of the VMA.
To ensure some stability while processing the faults, the thread T1
grabs the mm->mmap_sem semaphore with read access (R1). However, when
processing a page fault for a single page, one of the underlying
functions, copro_handle_mm_fault(), also grabs the same semaphore with
read access (R2). So the thread T1 takes the semaphore twice.
If another thread T2 tries to access the semaphore in write mode W1
(say, because it wants to allocate memory and calls 'brk'), then that
thread T2 will have to wait because there's a reader (R1). If the
thread T1 is processing a new page at that time, it won't get an
automatic grant at R2, because there's now a writer thread
waiting (T2). And we have a deadlock.
The timeline is:
1. thread T1 owns the semaphore with read access R1
2. thread T2 requests write access W1 and waits
3. thread T1 requests read access R2 and waits
The fix is for the thread T1 to release the semaphore R1 once it got
the information it needs from the current VMA. The address space/VMAs
could evolve while T1 iterates over the full buffer, but in the
unlikely case where T1 misses a page, the external driver will raise a
new page fault when retrying the memory access.
Fixes: 3ced8d7300 ("cxl: Export library to support IBM XSL")
Cc: stable@vger.kernel.org # 4.13+
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Configure the P9 XSL_DSNCTL register with PHB indications found
in the device tree, or else use legacy hard-coded values.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The POWER9 core supports a new feature: ASB_Notify which requires the
support of the Special Purpose Register: TIDR.
The ASB_Notify command, generated by the AFU, will attempt to
wake-up the host thread identified by the particular LPID:PID:TID.
This patch assign a unique TIDR (thread id) for the current thread which
will be used in the process element entry.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Reviewed-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Vaibhav Jain <vaibhav@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The in-kernel 'library' API can be called by drivers to help
interaction with an IBM XSL on a POWER9 system.
The cxllib_handle_fault() API is used to handle memory fault. All memory
pages of the specified buffer have to be handled but under certain
conditions,the last page may not be touched, and the address the
adapter is trying to access is never sent to the kernel for resolution.
This patch reworks start address of the loop with an address aligned on
the page size. In this context, the last page is not missed.
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Fixes: 3ced8d7300 ("cxl: Export library to support IBM XSL");
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This patch exports a in-kernel 'library' API which can be called by
other drivers to help interacting with an IBM XSL on a POWER9 system.
The XSL (Translation Service Layer) is a stripped down version of the
PSL (Power Service Layer) used in some cards such as the Mellanox CX5.
Like the PSL, it implements the CAIA architecture, but has a number
of differences, mostly in it's implementation dependent registers.
The XSL also uses a special DMA cxl mode, which uses a slightly
different init sequence for the CAPP and PHB.
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Christophe Lombard <clombard@linux.vnet.ibm.com>
Acked-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>