Commit Graph

211 Commits

Author SHA1 Message Date
Arnd Bergmann a18ef64fe1 tracing: make ftrace_likely_update() declaration visible
This function is only used when CONFIG_TRACE_BRANCH_PROFILING is set and
DISABLE_BRANCH_PROFILING is not set, and the declaration is hidden
behind this combination of tests.

But that causes a warning when building with CONFIG_TRACING_BRANCHES,
since that sets DISABLE_BRANCH_PROFILING for the tracing code, and the
declaration is thus hidden:

  kernel/trace/trace_branch.c:205:6: error: no previous prototype for 'ftrace_likely_update' [-Werror=missing-prototypes]

Move the declaration out of the #ifdef to avoid the warning.

Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-05-17 09:36:46 -07:00
Kees Cook 4b21d25bf5 overflow: Introduce overflows_type() and castable_to_type()
Implement a robust overflows_type() macro to test if a variable or
constant value would overflow another variable or type. This can be
used as a constant expression for static_assert() (which requires a
constant expression[1][2]) when used on constant values. This must be
constructed manually, since __builtin_add_overflow() does not produce
a constant expression[3].

Additionally adds castable_to_type(), similar to __same_type(), but for
checking if a constant value would overflow if cast to a given type.

Add unit tests for overflows_type(), __same_type(), and castable_to_type()
to the existing KUnit "overflow" test:

[16:03:33] ================== overflow (21 subtests) ==================
...
[16:03:33] [PASSED] overflows_type_test
[16:03:33] [PASSED] same_type_test
[16:03:33] [PASSED] castable_to_type_test
[16:03:33] ==================== [PASSED] overflow =====================
[16:03:33] ============================================================
[16:03:33] Testing complete. Ran 21 tests: passed: 21
[16:03:33] Elapsed time: 24.022s total, 0.002s configuring, 22.598s building, 0.767s running

[1] https://en.cppreference.com/w/c/language/_Static_assert
[2] C11 standard (ISO/IEC 9899:2011): 6.7.10 Static assertions
[3] https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
    6.56 Built-in Functions to Perform Arithmetic with Overflow Checking
    Built-in Function: bool __builtin_add_overflow (type1 a, type2 b,

Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Tom Rix <trix@redhat.com>
Cc: Daniel Latypov <dlatypov@google.com>
Cc: Vitor Massaru Iha <vitor@massaru.org>
Cc: "Gustavo A. R. Silva" <gustavoars@kernel.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Mauro Carvalho Chehab <mchehab@kernel.org>
Cc: linux-hardening@vger.kernel.org
Cc: llvm@lists.linux.dev
Co-developed-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Signed-off-by: Gwan-gyeong Mun <gwan-gyeong.mun@intel.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221024201125.1416422-1-gwan-gyeong.mun@intel.com
2022-11-02 12:39:27 -07:00
Sami Tolvanen 607289a7cd treewide: Drop function_nocfi
With -fsanitize=kcfi, we no longer need function_nocfi() as
the compiler won't change function references to point to a
jump table. Remove all implementations and uses of the macro.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-14-samitolvanen@google.com
2022-09-26 10:13:14 -07:00
Sami Tolvanen 92efda8eb1 cfi: Drop __CFI_ADDRESSABLE
The __CFI_ADDRESSABLE macro is used for init_module and cleanup_module
to ensure we have the address of the CFI jump table, and with
CONFIG_X86_KERNEL_IBT to ensure LTO won't optimize away the symbols.
As __CFI_ADDRESSABLE is no longer necessary with -fsanitize=kcfi, add
a more flexible version of the __ADDRESSABLE macro and always ensure
these symbols won't be dropped.

Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-5-samitolvanen@google.com
2022-09-26 10:13:13 -07:00
Bart Van Assche dcf8e5633e tracing: Define the is_signed_type() macro once
There are two definitions of the is_signed_type() macro: one in
<linux/overflow.h> and a second definition in <linux/trace_events.h>.

As suggested by Linus, move the definition of the is_signed_type() macro
into the <linux/compiler.h> header file.  Change the definition of the
is_signed_type() macro to make sure that it does not trigger any sparse
warnings with future versions of sparse for bitwise types.

Link: https://lore.kernel.org/all/CAHk-=whjH6p+qzwUdx5SOVVHjS3WvzJQr6mDUwhEyTf6pJWzaQ@mail.gmail.com/
Link: https://lore.kernel.org/all/CAHk-=wjQGnVfb4jehFR0XyZikdQvCZouE96xR_nnf5kqaM5qqQ@mail.gmail.com/
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-08-29 13:29:40 -07:00
Josh Poimboeuf 03f16cd020 objtool: Add CONFIG_OBJTOOL
Now that stack validation is an optional feature of objtool, add
CONFIG_OBJTOOL and replace most usages of CONFIG_STACK_VALIDATION with
it.

CONFIG_STACK_VALIDATION can now be considered to be frame-pointer
specific.  CONFIG_UNWINDER_ORC is already inherently valid for live
patching, so no need to "validate" it.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lkml.kernel.org/r/939bf3d85604b2a126412bf11af6e3bd3b872bcb.1650300597.git.jpoimboe@redhat.com
2022-04-22 12:32:03 +02:00
Peter Zijlstra dca5da2abe x86,objtool: Move the ASM_REACHABLE annotation to objtool.h
Because we need a variant for .S files too.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/Yi9gOW9f1GGwwUD6@hirez.programming.kicks-ass.net
2022-03-15 10:32:45 +01:00
Nick Desaulniers bfb1a7c91f x86/bug: Merge annotate_reachable() into _BUG_FLAGS() asm
In __WARN_FLAGS(), we had two asm statements (abbreviated):

  asm volatile("ud2");
  asm volatile(".pushsection .discard.reachable");

These pair of statements are used to trigger an exception, but then help
objtool understand that for warnings, control flow will be restored
immediately afterwards.

The problem is that volatile is not a compiler barrier. GCC explicitly
documents this:

> Note that the compiler can move even volatile asm instructions
> relative to other code, including across jump instructions.

Also, no clobbers are specified to prevent instructions from subsequent
statements from being scheduled by compiler before the second asm
statement. This can lead to instructions from subsequent statements
being emitted by the compiler before the second asm statement.

Providing a scheduling model such as via -march= options enables the
compiler to better schedule instructions with known latencies to hide
latencies from data hazards compared to inline asm statements in which
latencies are not estimated.

If an instruction gets scheduled by the compiler between the two asm
statements, then objtool will think that it is not reachable, producing
a warning.

To prevent instructions from being scheduled in between the two asm
statements, merge them.

Also remove an unnecessary unreachable() asm annotation from BUG() in
favor of __builtin_unreachable(). objtool is able to track that the ud2
from BUG() terminates control flow within the function.

Link: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Volatile
Link: https://github.com/ClangBuiltLinux/linux/issues/1483
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20220202205557.2260694-1-ndesaulniers@google.com
2022-02-02 14:41:04 -08:00
Josh Poimboeuf dcce50e6cc compiler.h: Fix annotation macro misplacement with Clang
When building with Clang and CONFIG_TRACE_BRANCH_PROFILING, there are a
lot of unreachable warnings, like:

  arch/x86/kernel/traps.o: warning: objtool: handle_xfd_event()+0x134: unreachable instruction

Without an input to the inline asm, 'volatile' is ignored for some
reason and Clang feels free to move the reachable() annotation away from
its intended location.

Fix that by re-adding the counter value to the inputs.

Fixes: f1069a8756 ("compiler.h: Avoid using inline asm operand modifiers")
Fixes: c199f64ff9 ("instrumentation.h: Avoid using inline asm operand modifiers")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/0417e96909b97a406323409210de7bf13df0b170.1636410380.git.jpoimboe@redhat.com
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: x86@kernel.org
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Miroslav Benes <mbenes@suse.cz>
2021-12-21 15:09:46 -08:00
Guenter Roeck f6b5f1a569 compiler.h: Introduce absolute_pointer macro
absolute_pointer() disassociates a pointer from its originating symbol
type and context. Use it to prevent compiler warnings/errors such as

  drivers/net/ethernet/i825xx/82596.c: In function 'i82596_probe':
  arch/m68k/include/asm/string.h:72:25: error:
	'__builtin_memcpy' reading 6 bytes from a region of size 0 [-Werror=stringop-overread]

Such warnings may be reported by gcc 11.x for string and memory
operations on fixed addresses.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-15 12:04:28 -07:00
Linus Torvalds 44b6ed4cfa Clang feature updates for v5.14-rc1
- Add CC_HAS_NO_PROFILE_FN_ATTR in preparation for PGO support in
   the face of the noinstr attribute, paving the way for PGO and fixing
   GCOV. (Nick Desaulniers)
 
 - x86_64 LTO coverage is expanded to 32-bit x86. (Nathan Chancellor)
 
 - Small fixes to CFI. (Mark Rutland, Nathan Chancellor)
 -----BEGIN PGP SIGNATURE-----
 
 iQJKBAABCgA0FiEEpcP2jyKd1g9yPm4TiXL039xtwCYFAmDbiFYWHGtlZXNjb29r
 QGNocm9taXVtLm9yZwAKCRCJcvTf3G3AJtd7D/9O7KE4M1O38TumCK9e6djPETb6
 CHF5dpxnV5w1ZWgBysy8+nZ0ORWAm05rgF65K4ROBUhdrygEElIIkI88a/F9pDyE
 99E0WTgQi4x4pFFJHF1Sj2G6YoCqrvFpZ45fMd8xk3y/sykhKO4k2A2ux1cHH1zh
 yYkzASDdukpr/xfcu1JCSFyjRU3Yk9aRzpg0PtrcMSDDuCYqg+oL91rxtkdXc6wS
 FbVSkUiFQq+RZk9h6DaiVDen/rPvo4rqgQYbdVM8s94gMaHA4MiMiQE6cKkClfdp
 zacqqh9Cjaeyievz6jkVSqFtmO7e231E6kAWg/ebqVjs6WIcS3NVEfGGjCEaCuMq
 qKy/m30YzpJ0jLbbQ9L/Cm3xu5ZqfSaQBQmBjNcBMkeMQN8o/P6qt6UASZfBXXCs
 ++MUpNQEJqxCyZdwu/6qlzfKUiGo5AJo7RRes5/shqTXQLLBni4j7vtkSYZsfPYr
 b1nHk6TnyY7PjcMekG/IWU89pMchEDswGxSGlrqoop1kT3zumzJeZdPAB8sdNjI8
 aBb120qLIC8n9ybZZsNliNtK4IHerBOxDDJB40EEbtBCPowZDEUt/z/DQrKjbOv4
 viOulu1D8f/MDXVBx2aTXGpMo/jQf7bKRITtpzt1eFWSTZzqCqWLfGRq2myjz0t5
 f2x1rpJLC2oV4KNCYw==
 =IhVh
 -----END PGP SIGNATURE-----

Merge tag 'clang-features-v5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull clang feature updates from Kees Cook:

 - Add CC_HAS_NO_PROFILE_FN_ATTR in preparation for PGO support in the
   face of the noinstr attribute, paving the way for PGO and fixing
   GCOV. (Nick Desaulniers)

 - x86_64 LTO coverage is expanded to 32-bit x86. (Nathan Chancellor)

 - Small fixes to CFI. (Mark Rutland, Nathan Chancellor)

* tag 'clang-features-v5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  qemu_fw_cfg: Make fw_cfg_rev_attr a proper kobj_attribute
  Kconfig: Introduce ARCH_WANTS_NO_INSTR and CC_HAS_NO_PROFILE_FN_ATTR
  compiler_attributes.h: cleanups for GCC 4.9+
  compiler_attributes.h: define __no_profile, add to noinstr
  x86, lto: Enable Clang LTO for 32-bit as well
  CFI: Move function_nocfi() into compiler.h
  MAINTAINERS: Add Clang CFI section
2021-06-30 14:33:25 -07:00
Mark Rutland 590e8a082a CFI: Move function_nocfi() into compiler.h
Currently the common definition of function_nocfi() is provided by
<linux/mm.h>, and architectures are expected to provide a definition in
<asm/memory.h>. Due to header dependencies, this can make it hard to use
function_nocfi() in low-level headers.

As function_nocfi() has no dependency on any mm code, nor on any memory
definitions, it doesn't need to live in <linux/mm.h> or <asm/memory.h>.
Generally, it would make more sense for it to live in
<linux/compiler.h>, where an architecture can override it in
<asm/compiler.h>.

Move the definitions accordingly.

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20210602153701.35957-1-mark.rutland@arm.com
2021-06-14 09:12:09 -07:00
Vasily Gorbik f1069a8756 compiler.h: Avoid using inline asm operand modifiers
The expansion of annotate_reachable/annotate_unreachable on s390 will
result in a compiler error if the __COUNTER__ value is high enough.
For example with "i" (154) the "%c0" operand of annotate_reachable
will be expanded to -102:

        -102:
        .pushsection .discard.reachable
        .long -102b - .
        .popsection

This is a quirk of the gcc backend for s390, it interprets the %c0
as a signed byte value. Avoid using operand modifiers in this case
by simply converting __COUNTER__ to string, with the same result,
but in an arch assembler independent way.

Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/patch-1.thread-1a26be.git-930d1b44844a.your-ad-here.call-01621428935-ext-2104@work.hours
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Miroslav Benes <mbenes@suse.cz>
Cc: Borislav Petkov <bp@suse.de>
Cc: linux-kernel@vger.kernel.org
2021-05-19 15:30:58 -05:00
Steven Rostedt (VMware) 2f0df49c89 jump_label: Do not profile branch annotations
While running my branch profiler that checks for incorrect "likely" and
"unlikely"s around the kernel, there's a large number of them that are
incorrect due to being "static_branches".

As static_branches are rather special, as they are likely or unlikely for
other reasons than normal annotations are used for, there's no reason to
have them be profiled.

Expose the "unlikely_notrace" and "likely_notrace" so that the
static_branch can use them, and have them be ignored by the branch
profilers.

Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201211163754.585174b9@gandalf.local.home
2021-01-22 11:08:56 +01:00
Arvind Sankar 3347acc6fc compiler.h: fix barrier_data() on clang
Commit 815f0ddb34 ("include/linux/compiler*.h: make compiler-*.h
mutually exclusive") neglected to copy barrier_data() from
compiler-gcc.h into compiler-clang.h.

The definition in compiler-gcc.h was really to work around clang's more
aggressive optimization, so this broke barrier_data() on clang, and
consequently memzero_explicit() as well.

For example, this results in at least the memzero_explicit() call in
lib/crypto/sha256.c:sha256_transform() being optimized away by clang.

Fix this by moving the definition of barrier_data() into compiler.h.

Also move the gcc/clang definition of barrier() into compiler.h,
__memory_barrier() is icc-specific (and barrier() is already defined
using it in compiler-intel.h) and doesn't belong in compiler.h.

[rdunlap@infradead.org: fix ALPHA builds when SMP is not enabled]

Link: https://lkml.kernel.org/r/20201101231835.4589-1-rdunlap@infradead.org
Fixes: 815f0ddb34 ("include/linux/compiler*.h: make compiler-*.h mutually exclusive")
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20201014212631.207844-1-nivedita@alum.mit.edu
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-14 11:26:03 -08:00
Joe Perches 33def8498f treewide: Convert macro and uses of __section(foo) to __section("foo")
Use a more generic form for __section that requires quotes to avoid
complications with clang and gcc differences.

Remove the quote operator # from compiler_attributes.h __section macro.

Convert all unquoted __section(foo) uses to quoted __section("foo").
Also convert __attribute__((section("foo"))) uses to __section("foo")
even if the __attribute__ has multiple list entry forms.

Conversion done using the script at:

    https://lore.kernel.org/lkml/75393e5ddc272dc7403de74d645e6c6e0f4e70eb.camel@perches.com/2-convert_section.pl

Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@gooogle.com>
Reviewed-by: Miguel Ojeda <ojeda@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-25 14:51:49 -07:00
Nick Desaulniers a25c13b3aa compiler.h: avoid escaped section names
The stringification operator, `#`, in the preprocessor escapes strings.
For example, `# "foo"` becomes `"\"foo\""`.  GCC and Clang differ in how
they treat section names that contain \".

The portable solution is to not use a string literal with the preprocessor
stringification operator.

In this case, since __section unconditionally uses the stringification
operator, we actually want the more verbose
__attribute__((__section__())).

Fixes: commit e04462fb82 ("Compiler Attributes: remove uses of __attribute__ from compiler.h")
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Arvind Sankar <nivedita@alum.mit.edu>
Link: https://bugs.llvm.org/show_bug.cgi?id=42950
Link: https://lkml.kernel.org/r/20200929194318.548707-1-ndesaulniers@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:26 -07:00
Josh Poimboeuf 563a02b0c9 compiler.h: Make __ADDRESSABLE() symbol truly unique
The __ADDRESSABLE() macro uses the __LINE__ macro to create a temporary
symbol which has a unique name.  However, if the macro is used multiple
times from within another macro, the line number will always be the
same, resulting in duplicate symbols.

Make the temporary symbols truly unique by using __UNIQUE_ID instead of
__LINE__.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Link: https://lore.kernel.org/r/20200818135804.564436253@infradead.org
2020-09-01 09:58:04 +02:00
Linus Torvalds 5ece08178d A single commit that separates out the instrumentation_begin()/end() bits from compiler.h.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8n8LQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hvyA//akThywKHuyy9XDnHv4Llo6SgYmbxByX/
 krBPttId3feRwwiw4v+pbE9USQ4JAJUA0inciSJqO9xHFuz43h/QYQwdwShgGghS
 BvYVxYhLXVojIgxItZQ0XtxuRu2dpR1Rg4m1K6GXuAfdOiV+2C9fubIyDfSPa6n6
 82Sk/RgjXCklw6KB3evq5eRXPHHP4oSnvMRDD+SgPumDnsfwgcULvgHbLmr5yTHR
 0Zp1r4bkt0RsSpccyCTS48Kx4SuFZa8m6lsQLzEJw7y7ctukYiC7nP2uo+uZfGHg
 FwcRI2u0tWCQR4stc4upgBlB4cs84NlUXVHyy3zJeWcaBmHP5w4NkiEode+mtJIs
 Y/tovbcpCyHBFAnjeCD19GWZlx8pVtixusghcV2tchD+l/28stktIJZ2hgK59YYI
 TRd0F7SYhU0wQw8V3XdzjbKG6tXHKVNx7Y0Dj/arnHldN+WaD3ENpuPbpobDAtNg
 2EqbsUqDk4acoh8nBh7A0AJdm+C+ddLQqMo0kz9JvN3LXGQX/3Nvs2BuWB4TAlgm
 EIPaSa7c54TAletjwAGD39Si1TU26dSs5Jeaf84u2hsvBRM044mQNS9HzwLijysj
 ilW3N5zm4uAF1QOsWUvMUM65y1qFewibkt4v7yysmEJAaZWpWfkK7U57dTx3qTIj
 AQ1rsZxBg3s=
 =Lzcg
 -----END PGP SIGNATURE-----

Merge tag 'core-headers-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull header cleanup from Ingo Molnar:
 "Separate out the instrumentation_begin()/end() bits from compiler.h"

* tag 'core-headers-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  compiler.h: Move instrumentation_begin()/end() to new <linux/instrumentation.h> header
2020-08-03 14:25:40 -07:00
Ingo Molnar d19e789f06 compiler.h: Move instrumentation_begin()/end() to new <linux/instrumentation.h> header
Linus pointed out that compiler.h - which is a key header that gets included in every
single one of the 28,000+ kernel files during a kernel build - was bloated in:

  655389666643: ("vmlinux.lds.h: Create section for protection against instrumentation")

Linus noted:

 > I have pulled this, but do we really want to add this to a header file
 > that is _so_ core that it gets included for basically every single
 > file built?
 >
 > I don't even see those instrumentation_begin/end() things used
 > anywhere right now.
 >
 > It seems excessive. That 53 lines is maybe not a lot, but it pushed
 > that header file to over 12kB, and while it's mostly comments, it's
 > extra IO and parsing basically for _every_ single file compiled in the
 > kernel.
 >
 > For what appears to be absolutely zero upside right now, and I really
 > don't see why this should be in such a core header file!

Move these primitives into a new header: <linux/instrumentation.h>, and include that
header in the headers that make use of it.

Unfortunately one of these headers is asm-generic/bug.h, which does get included
in a lot of places, similarly to compiler.h. So the de-bloating effect isn't as
good as we'd like it to be - but at least the interfaces are defined separately.

No change to functionality intended.

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20200604071921.GA1361070@gmail.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
2020-07-24 13:56:23 +02:00
Will Deacon eb5c2d4b45 compiler.h: Move compiletime_assert() macros into compiler_types.h
The kernel test robot reports that moving READ_ONCE() out into its own
header breaks a W=1 build for parisc, which is relying on the definition
of compiletime_assert() being available:

  | In file included from ./arch/parisc/include/generated/asm/rwonce.h:1,
  |                  from ./include/asm-generic/barrier.h:16,
  |                  from ./arch/parisc/include/asm/barrier.h:29,
  |                  from ./arch/parisc/include/asm/atomic.h:11,
  |                  from ./include/linux/atomic.h:7,
  |                  from kernel/locking/percpu-rwsem.c:2:
  | ./arch/parisc/include/asm/atomic.h: In function 'atomic_read':
  | ./include/asm-generic/rwonce.h:36:2: error: implicit declaration of function 'compiletime_assert' [-Werror=implicit-function-declaration]
  |    36 |  compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \
  |       |  ^~~~~~~~~~~~~~~~~~
  | ./include/asm-generic/rwonce.h:49:2: note: in expansion of macro 'compiletime_assert_rwonce_type'
  |    49 |  compiletime_assert_rwonce_type(x);    \
  |       |  ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  | ./arch/parisc/include/asm/atomic.h:73:9: note: in expansion of macro 'READ_ONCE'
  |    73 |  return READ_ONCE((v)->counter);
  |       |         ^~~~~~~~~

Move these macros into compiler_types.h, so that they are available to
READ_ONCE() and friends.

Link: http://lists.infradead.org/pipermail/linux-arm-kernel/2020-July/587094.html
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-07-21 10:50:37 +01:00
Will Deacon e506ea4512 compiler.h: Split {READ,WRITE}_ONCE definitions out into rwonce.h
In preparation for allowing architectures to define their own
implementation of the READ_ONCE() macro, move the generic
{READ,WRITE}_ONCE() definitions out of the unwieldy 'linux/compiler.h'
file and into a new 'rwonce.h' header under 'asm-generic'.

Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
2020-07-21 10:50:35 +01:00
Peter Zijlstra b58e733fd7 rcu: Fixup noinstr warnings
A KCSAN build revealed we have explicit annoations through atomic_*()
usage, switch to arch_atomic_*() for the respective functions.

vmlinux.o: warning: objtool: rcu_nmi_exit()+0x4d: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_dynticks_eqs_enter()+0x25: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_nmi_enter()+0x4f: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: rcu_dynticks_eqs_exit()+0x2a: call to __kcsan_check_access() leaves .noinstr.text section
vmlinux.o: warning: objtool: __rcu_is_watching()+0x25: call to __kcsan_check_access() leaves .noinstr.text section

Additionally, without the NOP in instrumentation_begin(), objtool would
not detect the lack of the 'else instrumentation_begin();' branch in
rcu_nmi_enter().

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-06-25 08:24:32 -07:00
Marco Elver eb73876c74 compiler.h: Move function attributes to compiler_types.h
Cleanup and move the KASAN and KCSAN related function attributes to
compiler_types.h, where the rest of the same kind live.

No functional change intended.

Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200521142047.169334-11-elver@google.com
2020-06-11 20:04:04 +02:00
Marco Elver 95c094fccb compiler.h: Avoid nested statement expression in data_race()
It appears that compilers have trouble with nested statement
expressions. Therefore, remove one level of statement expression nesting
from the data_race() macro. This will help avoiding potential problems
in the future as its usage increases.

Reported-by: Borislav Petkov <bp@suse.de>
Reported-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Tested-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lkml.kernel.org/r/20200520221712.GA21166@zn.tnic
Link: https://lkml.kernel.org/r/20200521142047.169334-10-elver@google.com
2020-06-11 20:04:03 +02:00
Marco Elver 44b97dccb2 compiler.h: Remove data_race() and unnecessary checks from {READ,WRITE}_ONCE()
The volatile accesses no longer need to be wrapped in data_race()
because compilers that emit instrumentation distinguishing volatile
accesses are required for KCSAN.

Consequently, the explicit kcsan_check_atomic*() are no longer required
either since the compiler emits instrumentation distinguishing the
volatile accesses.

Finally, simplify __READ_ONCE_SCALAR() and remove __WRITE_ONCE_SCALAR().

 [ bp: Convert commit message to passive voice. ]

Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200521142047.169334-9-elver@google.com
2020-06-11 20:04:03 +02:00
Marco Elver e3b779d9eb kcsan: Remove 'noinline' from __no_kcsan_or_inline
Some compilers incorrectly inline small __no_kcsan functions, which then
results in instrumenting the accesses. For this reason, the 'noinline'
attribute was added to __no_kcsan_or_inline. All known versions of GCC
are affected by this. Supported versions of Clang are unaffected, and
never inline a no_sanitize function.

However, the attribute 'noinline' in __no_kcsan_or_inline causes
unexpected code generation in functions that are __no_kcsan and call a
__no_kcsan_or_inline function.

In certain situations it is expected that the __no_kcsan_or_inline
function is actually inlined by the __no_kcsan function, and *no* calls
are emitted. By removing the 'noinline' attribute, give the compiler
the ability to inline and generate the expected code in __no_kcsan
functions.

Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/CANpmjNNOpJk0tprXKB_deiNAv_UmmORf1-2uajLhnLWQQ1hvoA@mail.gmail.com
Link: https://lkml.kernel.org/r/20200521142047.169334-6-elver@google.com
2020-06-11 20:04:02 +02:00
Thomas Gleixner 37d1a04b13 Rebase locking/kcsan to locking/urgent
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.

Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2020-06-11 20:02:46 +02:00
Linus Torvalds 4152d146ee Merge branch 'rwonce/rework' of git://git.kernel.org/pub/scm/linux/kernel/git/will/linux
Pull READ/WRITE_ONCE rework from Will Deacon:
 "This the READ_ONCE rework I've been working on for a while, which
  bumps the minimum GCC version and improves code-gen on arm64 when
  stack protector is enabled"

[ Side note: I'm _really_ tempted to raise the minimum gcc version to
  4.9, so that we can just say that we require _Generic() support.

  That would allow us to more cleanly handle a lot of the cases where we
  depend on very complex macros with 'sizeof' or __builtin_choose_expr()
  with __builtin_types_compatible_p() etc.

  This branch has a workaround for sparse not handling _Generic(),
  either, but that was already fixed in the sparse development branch,
  so it's really just gcc-4.9 that we'd require.   - Linus ]

* 'rwonce/rework' of git://git.kernel.org/pub/scm/linux/kernel/git/will/linux:
  compiler_types.h: Use unoptimized __unqual_scalar_typeof for sparse
  compiler_types.h: Optimize __unqual_scalar_typeof compilation time
  compiler.h: Enforce that READ_ONCE_NOCHECK() access size is sizeof(long)
  compiler-types.h: Include naked type in __pick_integer_type() match
  READ_ONCE: Fix comment describing 2x32-bit atomicity
  gcov: Remove old GCC 3.4 support
  arm64: barrier: Use '__unqual_scalar_typeof' for acquire/release macros
  locking/barriers: Use '__unqual_scalar_typeof' for load-acquire macros
  READ_ONCE: Drop pointer qualifiers when reading from scalar types
  READ_ONCE: Enforce atomicity for {READ,WRITE}_ONCE() memory accesses
  READ_ONCE: Simplify implementations of {READ,WRITE}_ONCE()
  arm64: csum: Disable KASAN for do_csum()
  fault_inject: Don't rely on "return value" from WRITE_ONCE()
  net: tls: Avoid assigning 'const' pointer to non-const pointer
  netfilter: Avoid assigning 'const' pointer to non-const pointer
  compiler/gcc: Raise minimum GCC version for kernel builds to 4.8
2020-06-10 14:46:54 -07:00
Will Deacon b16d8ecf4f compiler.h: Enforce that READ_ONCE_NOCHECK() access size is sizeof(long)
READ_ONCE_NOCHECK() unconditionally performs a sizeof(long)-sized access,
so enforce that the size of the pointed-to object that we are loading
from is the same size as 'long'.

Reported-by: Marco Elver <elver@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-06-05 11:19:46 +01:00
Will Deacon 5872f1a2e5 READ_ONCE: Fix comment describing 2x32-bit atomicity
READ_ONCE() permits 64-bit accesses on 32-bit architectures, since this
crops up in a few places and is generally harmless because either the
upper bits are always zero (e.g. for a virtual address or 32-bit time_t)
or the architecture provides 64-bit atomicity anyway.

Update the corresponding comment above compiletime_assert_rwonce_type(),
which incorrectly states that 32-bit x86 provides 64-bit atomicity, and
instead reference 32-bit Armv7 with LPAE.

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-06-05 11:02:44 +01:00
Linus Torvalds 0bd957eb11 Various kprobes updates, mostly centered around cleaning up the no-instrumentation
logic, instead of the current per debug facility blacklist, use the more generic
 .noinstr.text approach, combined with a 'noinstr' marker for functions.
 
 Also add instrumentation_begin()/end() to better manage the exact place in entry
 code where instrumentation may be used.
 
 Also add a kprobes blacklist for modules.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl7U/KERHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1h6xg//bnWhJzrxlOr89d7c5pEUeZehTscZ4OxU
 HyiWnfgd6bHJGHiB8TRHZInJFys/Y0UG+xzQvCP2YCIHW42tguD3u0wQ1rOrA6im
 VkDxUwHn72avqnBq+knMwtqiKQjxJrPe+YpikWOgb4B+9jQwLARzTArhs+aoWBRn
 a9jRP1jcuS26F/9wxctFoHVvKZ7Vv+HCgtNzequHsd1e0J8ElvDRk+QkfkaZopl5
 cQ44TIfzR8xjJuGqW45hXwOw5PPjhZHwytSoFquSMb57txoWL2devn7S38VaCWv7
 /fqmQAnQqlW5eG5ipJ0zWY1n0uLZLRrIecfA1INY8fdJeFFr6cxaN6FM1GhVZ93I
 GjZZFYwxDv9IftpeSyCaIzF1zISV+as3r9sMKMt89us77XazRiobjWCi1aE9a1rX
 QRv1nTjmypWg65IMV+nfIT26riP6YXSZ3uXQJPwm+kzEjJJl0LSi2AfjWQadcHeZ
 Z8svSIepP4oJBJ9tJlZ3K7kHBV3E0G4SV3fnHaUYGrp9gheqhe33U0VWfILcvq7T
 zIhtZXzqRGaMKuw0IFy2xITCQyEZAXwTedtSSeyXt0CN/hwhaxbrd38HhKOBw8WH
 k+OAmXZ+lgSO5ZvkoxgV6QgHtjsif3ICcHNelJtcbRA80/3oj/QwJ5dAVR61EDZa
 3Jn8mMxvCn0=
 =25Vr
 -----END PGP SIGNATURE-----

Merge tag 'core-kprobes-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull kprobes updates from Ingo Molnar:
 "Various kprobes updates, mostly centered around cleaning up the
  no-instrumentation logic.

  Instead of the current per debug facility blacklist, use the more
  generic .noinstr.text approach, combined with a 'noinstr' marker for
  functions.

  Also add instrumentation_begin()/end() to better manage the exact
  place in entry code where instrumentation may be used.

  And add a kprobes blacklist for modules"

* tag 'core-kprobes-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  kprobes: Prevent probes in .noinstr.text section
  vmlinux.lds.h: Create section for protection against instrumentation
  samples/kprobes: Add __kprobes and NOKPROBE_SYMBOL() for handlers.
  kprobes: Support NOKPROBE_SYMBOL() in modules
  kprobes: Support __kprobes blacklist in modules
  kprobes: Lock kprobe_mutex while showing kprobe_blacklist
2020-06-01 12:45:04 -07:00
Thomas Gleixner 6553896666 vmlinux.lds.h: Create section for protection against instrumentation
Some code pathes, especially the low level entry code, must be protected
against instrumentation for various reasons:

 - Low level entry code can be a fragile beast, especially on x86.

 - With NO_HZ_FULL RCU state needs to be established before using it.

Having a dedicated section for such code allows to validate with tooling
that no unsafe functions are invoked.

Add the .noinstr.text section and the noinstr attribute to mark
functions. noinstr implies notrace. Kprobes will gain a section check
later.

Provide also a set of markers: instrumentation_begin()/end()

These are used to mark code inside a noinstr function which calls
into regular instrumentable text section as safe.

The instrumentation markers are only active when CONFIG_DEBUG_ENTRY is
enabled as the end marker emits a NOP to prevent the compiler from merging
the annotation points. This means the objtool verification requires a
kernel compiled with this option.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134100.075416272@linutronix.de
2020-05-19 15:47:20 +02:00
Borislav Petkov a9a3ed1eff x86: Fix early boot crash on gcc-10, third try
... or the odyssey of trying to disable the stack protector for the
function which generates the stack canary value.

The whole story started with Sergei reporting a boot crash with a kernel
built with gcc-10:

  Kernel panic — not syncing: stack-protector: Kernel stack is corrupted in: start_secondary
  CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.6.0-rc5—00235—gfffb08b37df9 #139
  Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./H77M—D3H, BIOS F12 11/14/2013
  Call Trace:
    dump_stack
    panic
    ? start_secondary
    __stack_chk_fail
    start_secondary
    secondary_startup_64
  -—-[ end Kernel panic — not syncing: stack—protector: Kernel stack is corrupted in: start_secondary

This happens because gcc-10 tail-call optimizes the last function call
in start_secondary() - cpu_startup_entry() - and thus emits a stack
canary check which fails because the canary value changes after the
boot_init_stack_canary() call.

To fix that, the initial attempt was to mark the one function which
generates the stack canary with:

  __attribute__((optimize("-fno-stack-protector"))) ... start_secondary(void *unused)

however, using the optimize attribute doesn't work cumulatively
as the attribute does not add to but rather replaces previously
supplied optimization options - roughly all -fxxx options.

The key one among them being -fno-omit-frame-pointer and thus leading to
not present frame pointer - frame pointer which the kernel needs.

The next attempt to prevent compilers from tail-call optimizing
the last function call cpu_startup_entry(), shy of carving out
start_secondary() into a separate compilation unit and building it with
-fno-stack-protector, was to add an empty asm("").

This current solution was short and sweet, and reportedly, is supported
by both compilers but we didn't get very far this time: future (LTO?)
optimization passes could potentially eliminate this, which leads us
to the third attempt: having an actual memory barrier there which the
compiler cannot ignore or move around etc.

That should hold for a long time, but hey we said that about the other
two solutions too so...

Reported-by: Sergei Trofimovich <slyfox@gentoo.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Kalle Valo <kvalo@codeaurora.org>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200314164451.346497-1-slyfox@gentoo.org
2020-05-15 11:48:01 +02:00
Thomas Gleixner 97a9474aeb Merge branch 'kcsan-for-tip' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into locking/kcsan
Pull KCSAN updates from Paul McKenney.
2020-05-08 14:58:28 +02:00
Will Deacon dee081bf8f READ_ONCE: Drop pointer qualifiers when reading from scalar types
Passing a volatile-qualified pointer to READ_ONCE() is an absolute
trainwreck for code generation: the use of 'typeof()' to define a
temporary variable inside the macro means that the final evaluation in
macro scope ends up forcing a read back from the stack. When stack
protector is enabled (the default for arm64, at least), this causes
the compiler to vomit up all sorts of junk.

Unfortunately, dropping pointer qualifiers inside the macro poses quite
a challenge, especially since the pointed-to type is permitted to be an
aggregate, and this is relied upon by mm/ code accessing things like
'pmd_t'. Based on numerous hacks and discussions on the mailing list,
this is the best I've managed to come up with.

Introduce '__unqual_scalar_typeof()' which takes an expression and, if
the expression is an optionally qualified 8, 16, 32 or 64-bit scalar
type, evaluates to the unqualified type. Other input types, including
aggregates, remain unchanged. Hopefully READ_ONCE() on volatile aggregate
pointers isn't something we do on a fast-path.

Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Will Deacon <will@kernel.org>
2020-04-16 12:28:34 +01:00
Will Deacon 9e343b467c READ_ONCE: Enforce atomicity for {READ,WRITE}_ONCE() memory accesses
{READ,WRITE}_ONCE() cannot guarantee atomicity for arbitrary data sizes.
This can be surprising to callers that might incorrectly be expecting
atomicity for accesses to aggregate structures, although there are other
callers where tearing is actually permissable (e.g. if they are using
something akin to sequence locking to protect the access).

Linus sayeth:

  | We could also look at being stricter for the normal READ/WRITE_ONCE(),
  | and require that they are
  |
  | (a) regular integer types
  |
  | (b) fit in an atomic word
  |
  | We actually did (b) for a while, until we noticed that we do it on
  | loff_t's etc and relaxed the rules. But maybe we could have a
  | "non-atomic" version of READ/WRITE_ONCE() that is used for the
  | questionable cases?

The slight snag is that we also have to support 64-bit accesses on 32-bit
architectures, as these appear to be widespread and tend to work out ok
if either the architecture supports atomic 64-bit accesses (x86, armv7)
or if the variable being accesses represents a virtual address and
therefore only requires 32-bit atomicity in practice.

Take a step in that direction by introducing a variant of
'compiletime_assert_atomic_type()' and use it to check the pointer
argument to {READ,WRITE}_ONCE(). Expose __{READ,WRITE}_ONCE() variants
which are allowed to tear and convert the one broken caller over to the
new macros.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will@kernel.org>
2020-04-16 12:28:07 +01:00
Will Deacon a5460b5e5f READ_ONCE: Simplify implementations of {READ,WRITE}_ONCE()
The implementations of {READ,WRITE}_ONCE() suffer from a significant
amount of indirection and complexity due to a historic GCC bug:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145

which was originally worked around by 230fa253df ("kernel: Provide
READ_ONCE and ASSIGN_ONCE").

Since GCC 4.8 is fairly vintage at this point and we emit a warning if
we detect it during the build, return {READ,WRITE}_ONCE() to their former
glory with an implementation that is easier to understand and, crucially,
more amenable to optimisation. A side effect of this simplification is
that WRITE_ONCE() no longer returns a value, but nobody seems to be
relying on that and the new behaviour is aligned with smp_store_release().

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Will Deacon <will@kernel.org>
2020-04-16 12:20:33 +01:00
Marco Elver d071e91361 kcsan: Change data_race() to no longer require marking racing accesses
Thus far, accesses marked with data_race() would still require the
racing access to be marked in some way (be it with READ_ONCE(),
WRITE_ONCE(), or data_race() itself), as otherwise KCSAN would still
report a data race.  This requirement, however, seems to be unintuitive,
and some valid use-cases demand *not* marking other accesses, as it
might hide more serious bugs (e.g. diagnostic reads).

Therefore, this commit changes data_race() to no longer require marking
racing accesses (although it's still recommended if possible).

The alternative would have been introducing another variant of
data_race(), however, since usage of data_race() already needs to be
carefully reasoned about, distinguishing between these cases likely adds
more complexity in the wrong place.

Link: https://lkml.kernel.org/r/20200331131002.GA30975@willie-the-truck
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Will Deacon <will@kernel.org>
Cc: Qian Cai <cai@lca.pw>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-04-13 17:18:15 -07:00
Ingo Molnar 3b02a051d2 Linux 5.7-rc1
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl6TbaUeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGhgkH/iWpiKvosA20HJjC
 rBqYeJPxQsgZTuBieWJ+MeVxbpcF7RlM4c+glyvg3QJhHwIEG58dl6LBrQbAyBAR
 aFHNojr1iAYOruVCGnU3pA008YZiwUIDv/ZQ4DF8fmIU2vI2mJ6qHBv3XDl4G2uR
 Nwz8Eu9AgIwZM5coomVOSmoWyFy7Vxmb7W+3t5VmKsvOWx4ib9kyQtOIkvQDEl7j
 XCbWfI0xDQr6LFOm4jnCi5R/LhJ2LIqqIvHHrunbpszM8IwK797jCXz4im+dmd5Y
 +km46N7a8pDqri36xXz1gdBAU3eG7Pt1NyvfjwRVTdX4GquQ2MT0GoojxbLxUP3y
 3pEsQuE=
 =whbL
 -----END PGP SIGNATURE-----

Merge tag 'v5.7-rc1' into locking/kcsan, to resolve conflicts and refresh

Resolve these conflicts:

	arch/x86/Kconfig
	arch/x86/kernel/Makefile

Do a minor "evil merge" to move the KCSAN entry up a bit by a few lines
in the Kconfig to reduce the probability of future conflicts.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-04-13 09:44:39 +02:00
Vegard Nossum af9c5d2e3b compiler.h: fix error in BUILD_BUG_ON() reporting
compiletime_assert() uses __LINE__ to create a unique function name.  This
means that if you have more than one BUILD_BUG_ON() in the same source
line (which can happen if they appear e.g.  in a macro), then the error
message from the compiler might output the wrong condition.

For this source file:

	#include <linux/build_bug.h>

	#define macro() \
		BUILD_BUG_ON(1); \
		BUILD_BUG_ON(0);

	void foo()
	{
		macro();
	}

gcc would output:

./include/linux/compiler.h:350:38: error: call to `__compiletime_assert_9' declared with attribute error: BUILD_BUG_ON failed: 0
  _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__)

However, it was not the BUILD_BUG_ON(0) that failed, so it should say 1
instead of 0. With this patch, we use __COUNTER__ instead of __LINE__, so
each BUILD_BUG_ON() gets a different function name and the correct
condition is printed:

./include/linux/compiler.h:350:38: error: call to `__compiletime_assert_0' declared with attribute error: BUILD_BUG_ON failed: 1
  _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)

Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Reviewed-by: Daniel Santos <daniel.santos@pobox.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Ian Abbott <abbotti@mev.co.uk>
Cc: Joe Perches <joe@perches.com>
Link: http://lkml.kernel.org/r/20200331112637.25047-1-vegard.nossum@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:42 -07:00
Marco Elver b968a08f24 compiler.h, seqlock.h: Remove unnecessary kcsan.h includes
No we longer have to include kcsan.h, since the required KCSAN interface
for both compiler.h and seqlock.h are now provided by kcsan-checks.h.

Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-03-21 09:43:57 +01:00
Paul E. McKenney 7ad900d35b kcsan: Add docbook header for data_race()
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
2020-03-21 09:42:04 +01:00
Marco Elver e33f9a1697 kcsan: Add __no_kcsan function attribute
Since the use of -fsanitize=thread is an implementation detail of KCSAN,
the name __no_sanitize_thread could be misleading if used widely.
Instead, we introduce the __no_kcsan attribute which is shorter and more
accurate in the context of KCSAN.

This matches the attribute name __no_kcsan_or_inline. The use of
__kcsan_or_inline itself is still required for __always_inline functions
to retain compatibility with older compilers.

Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2020-01-07 07:47:23 -08:00
Ingo Molnar 5cbaefe974 kcsan: Improve various small stylistic details
Tidy up a few bits:

  - Fix typos and grammar, improve wording.

  - Remove spurious newlines that are col80 warning artifacts where the
    resulting line-break is worse than the disease it's curing.

  - Use core kernel coding style to improve readability and reduce
    spurious code pattern variations.

  - Use better vertical alignment for structure definitions and initialization
    sequences.

  - Misc other small details.

No change in functionality intended.

Cc: linux-kernel@vger.kernel.org
Cc: Marco Elver <elver@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-11-20 10:47:23 +01:00
Marco Elver c48981eeb0 include/linux/compiler.h: Introduce data_race(expr) macro
This introduces the data_race(expr) macro, which can be used to annotate
expressions for purposes of (1) documenting, and (2) giving tooling such
as KCSAN information about which data races are deemed "safe".

More context:
http://lkml.kernel.org/r/CAHk-=wg5CkOEF8DTez1Qu0XTEFw_oHhxN98bDnFqbY7HL5AB2g@mail.gmail.com

Signed-off-by: Marco Elver <elver@google.com>
Cc: Alan Stern <stern@rowland.harvard.edu>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-11-16 07:23:13 -08:00
Marco Elver dfd402a4c4 kcsan: Add Kernel Concurrency Sanitizer infrastructure
Kernel Concurrency Sanitizer (KCSAN) is a dynamic data-race detector for
kernel space. KCSAN is a sampling watchpoint-based data-race detector.
See the included Documentation/dev-tools/kcsan.rst for more details.

This patch adds basic infrastructure, but does not yet enable KCSAN for
any architecture.

Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-11-16 07:23:13 -08:00
Nick Desaulniers bfafddd8de include/linux/compiler.h: fix Oops for Clang-compiled kernels
GCC unescapes escaped string section names while Clang does not. Because
__section uses the `#` stringification operator for the section name, it
doesn't need to be escaped.

This fixes an Oops observed in distro's that use systemd and not
net.core.bpf_jit_enable=1, when their kernels are compiled with Clang.

Link: https://github.com/ClangBuiltLinux/linux/issues/619
Link: https://bugs.llvm.org/show_bug.cgi?id=42950
Link: https://marc.info/?l=linux-netdev&m=156412960619946&w=2
Link: https://lore.kernel.org/lkml/20190904181740.GA19688@gmail.com/
Acked-by: Will Deacon <will@kernel.org>
Reported-by: Sedat Dilek <sedat.dilek@gmail.com>
Suggested-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
[Cherry-picked from the __section cleanup series for 5.3]
[Adjusted commit message]
Signed-off-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
2019-09-08 14:53:58 +02:00
Josh Poimboeuf 87b512def7 objtool: Add support for C jump tables
Objtool doesn't know how to read C jump tables, so it has to whitelist
functions which use them, causing missing ORC unwinder data for such
functions, e.g. ___bpf_prog_run().

C jump tables are very similar to GCC switch jump tables, which objtool
already knows how to read.  So adding support for C jump tables is easy.
It just needs to be able to find the tables and distinguish them from
other data.

To allow the jump tables to be found, create an __annotate_jump_table
macro which can be used to annotate them.

The annotation is done by placing the jump table in an
.rodata..c_jump_table section.  The '.rodata' prefix ensures that the data
will be placed in the rodata section by the vmlinux linker script.  The
double periods are part of an existing convention which distinguishes
kernel sections from GCC sections.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lkml.kernel.org/r/0ba2ca30442b16b97165992381ce643dc27b3d1a.1561685471.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-07-09 13:55:46 +02:00
Linus Torvalds a15fd609ad tracing: Simplify "if" macro code
Peter Zijlstra noticed that with CONFIG_PROFILE_ALL_BRANCHES, the "if"
macro converts the conditional to an array index.  This can cause GCC
to create horrible code.  When there are nested ifs, the generated code
uses register values to encode branching decisions.

Josh Poimboeuf found that replacing the define "if" macro from using
the condition as an array index and incrementing the branch statics
with an if statement itself, reduced the asm complexity and shrinks the
generated code quite a bit.

But this can be simplified even further by replacing the internal if
statement with a ternary operator.

Link: https://lkml.kernel.org/r/20190307174802.46fmpysxyo35hh43@treble
Link: http://lkml.kernel.org/r/CAHk-=wiALN3jRuzARpwThN62iKd476Xj-uom+YnLZ4=eqcz7xQ@mail.gmail.com

Reported-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-05-09 15:25:13 -04:00