The kernel-doc annotations for sequence counters write side functions
are incomplete: they do not specify when preemption is automatically
disabled and re-enabled.
This has confused a number of call-site developers. Fix it.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/CAHk-=wikhGExmprXgaW+MVXG1zsGpztBbVwOb23vetk41EtTBQ@mail.gmail.com
When the seqcount_LOCKNAME_t group of data types were introduced, two
classes of seqlock.h sequence counter macros were added:
- An external public API which can either take a plain seqcount_t or
any of the seqcount_LOCKNAME_t variants.
- An internal API which takes only a plain seqcount_t.
To distinguish between the two groups, the "*_seqcount_t_*" pattern was
used for the latter. This confused a number of mm/ call-site developers,
and Linus also commented that it was not a standard practice for marking
seqlock.h internal APIs.
Distinguish the latter group of macros by prefixing a "do_".
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/CAHk-=wikhGExmprXgaW+MVXG1zsGpztBbVwOb23vetk41EtTBQ@mail.gmail.com
When building with W=2, there is a flood of warnings about the seqlock
macros shadowing local variables:
19806 linux/seqlock.h:331:11: warning: declaration of 'seq' shadows a previous local [-Wshadow]
48 linux/seqlock.h:348:11: warning: declaration of 'seq' shadows a previous local [-Wshadow]
8 linux/seqlock.h:379:11: warning: declaration of 'seq' shadows a previous local [-Wshadow]
Prefix the local variables to make the warning useful elsewhere again.
Fixes: 52ac39e5db ("seqlock: seqcount_t: Implement all read APIs as statement expressions")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201026165044.3722931-1-arnd@kernel.org
ctags creates a warning:
|ctags: Warning: include/linux/seqlock.h:738: null expansion of name pattern "\2"
The DEFINE_SEQLOCK() macro is passed to ctags and being told to expect
an argument.
Add a dummy argument to keep ctags quiet.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/20200924154851.skmswuyj322yuz4g@linutronix.de
seqcount_LOCKNAME_init() needs to be a macro due to the lockdep
annotation in seqcount_init(). Since a macro cannot define another
macro, we need to effectively revert commit: e4e9ab3f9f ("seqlock:
Fold seqcount_LOCKNAME_init() definition").
Fixes: e4e9ab3f9f ("seqlock: Fold seqcount_LOCKNAME_init() definition")
Reported-by: Qian Cai <cai@redhat.com>
Debugged-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Qian Cai <cai@redhat.com>
Link: https://lkml.kernel.org/r/20200915143028.GB2674@hirez.programming.kicks-ass.net
On PREEMPT_RT, seqlock_t is transformed to a sleeping lock that do not
disable preemption. A seqlock_t reader can thus preempt its write side
section and spin for the enter scheduler tick. If that reader belongs to
a real-time scheduling class, it can spin forever and the kernel will
livelock.
To break this livelock possibility on PREEMPT_RT, implement seqlock_t in
terms of "seqcount_spinlock_t" instead of plain "seqcount_t".
Beside its pure annotational value, this will leverage the existing
seqcount_LOCKNAME_T PREEMPT_RT anti-livelock mechanisms, without adding
any extra code.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200904153231.11994-6-a.darwish@linutronix.de
Preemption must be disabled before entering a sequence counter write
side critical section. Otherwise the read side section can preempt the
write side section and spin for the entire scheduler tick. If that
reader belongs to a real-time scheduling class, it can spin forever and
the kernel will livelock.
Disabling preemption cannot be done for PREEMPT_RT though: it can lead
to higher latencies, and the write side sections will not be able to
acquire locks which become sleeping locks (e.g. spinlock_t).
To remain preemptible, while avoiding a possible livelock caused by the
reader preempting the writer, use a different technique: let the reader
detect if a seqcount_LOCKNAME_t writer is in progress. If that's the
case, acquire then release the associated LOCKNAME writer serialization
lock. This will allow any possibly-preempted writer to make progress
until the end of its writer serialization lock critical section.
Implement this lock-unlock technique for all seqcount_LOCKNAME_t with
an associated (PREEMPT_RT) sleeping lock.
References: 55f3560df9 ("seqlock: Extend seqcount API with associated locks")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200519214547.352050-1-a.darwish@linutronix.de
The sequence counters read APIs are implemented as CPP macros, so they
can take either seqcount_t or any of the seqcount_LOCKNAME_t variants.
Such macros then get *directly* transformed to internal C functions that
only take plain seqcount_t.
Further commits need access to seqcount_LOCKNAME_t inside of the actual
read APIs code. Thus transform all of the seqcount read APIs to pure GCC
statement expressions instead.
This will not break type-safety: all of the transformed APIs resolve to
a _Generic() selection that does not have a "default" case.
This will also not affect the transformed APIs readability: previously
added kernel-doc above all of seqlock.h functions makes the expectations
quite clear for call-site developers.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200904153231.11994-4-a.darwish@linutronix.de
At seqlock.h, the following set of functions:
- __seqcount_ptr()
- __seqcount_preemptible()
- __seqcount_assert()
act as plain seqcount_t "property" accessors. Meanwhile, the following
group:
- __seqcount_ptr()
- __seqcount_lock_preemptible()
- __seqcount_assert_lock_held()
act as the equivalent set, but in the generic form, taking either
seqcount_t or any of the seqcount_LOCKNAME_t variants.
This is quite confusing, especially the first member where it is called
exactly the same in both groups.
Differentiate the first group by using "__seqprop" as prefix, and also
use that same prefix for all of seqcount_LOCKNAME_t property accessors.
While at it, constify the property accessors first parameter when
appropriate.
References: 55f3560df9 ("seqlock: Extend seqcount API with associated locks")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200904153231.11994-3-a.darwish@linutronix.de
At seqlock.h, sequence counters with associated locks are either called
seqcount_LOCKNAME_t, seqcount_LOCKTYPE_t, or seqcount_locktype_t.
Standardize on seqcount_LOCKNAME_t for all instances in comments,
kernel-doc, and SEQCOUNT_LOCKNAME() generative macro paramters.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200904153231.11994-2-a.darwish@linutronix.de
All latch sequence counter call-sites have now been converted from plain
seqcount_t to the new seqcount_latch_t data type.
Enforce type-safety by modifying seqlock.h latch APIs to only accept
seqcount_latch_t.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-9-a.darwish@linutronix.de
Latch sequence counters are a multiversion concurrency control mechanism
where the seqcount_t counter even/odd value is used to switch between
two copies of protected data. This allows the seqcount_t read path to
safely interrupt its write side critical section (e.g. from NMIs).
Initially, latch sequence counters were implemented as a single write
function above plain seqcount_t: raw_write_seqcount_latch(). The read
side was expected to use plain seqcount_t raw_read_seqcount().
A specialized latch read function, raw_read_seqcount_latch(), was later
added. It became the standardized way for latch read paths. Due to the
dependent load, it has one read memory barrier less than the plain
seqcount_t raw_read_seqcount() API.
Only raw_write_seqcount_latch() and raw_read_seqcount_latch() should be
used with latch sequence counters. Having *unique* read and write path
APIs means that latch sequence counters are actually a data type of
their own -- just inappropriately overloading plain seqcount_t.
Introduce seqcount_latch_t. This adds type-safety and ensures that only
the correct latch-safe APIs are to be used.
Not to break bisection, let the latch APIs also accept plain seqcount_t
or seqcount_raw_spinlock_t. After converting all call sites to
seqcount_latch_t, only that new data type will be allowed.
References: 9b0fd802e8 ("seqcount: Add raw_write_seqcount_latch()")
References: 7fc26327b7 ("seqlock: Introduce raw_read_seqcount_latch()")
References: aadd6e5caa ("time/sched_clock: Use raw_read_seqcount_latch()")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200827114044.11173-4-a.darwish@linutronix.de
Fix kernel-doc warnings in <linux/seqlock.h>.
../include/linux/seqlock.h:152: warning: Incorrect use of kernel-doc format: * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
../include/linux/seqlock.h:164: warning: Incorrect use of kernel-doc format: * SEQCOUNT_LOCKTYPE() - Instantiate seqcount_LOCKNAME_t and helpers
../include/linux/seqlock.h:229: warning: Function parameter or member 'seq_name' not described in 'SEQCOUNT_LOCKTYPE_ZERO'
../include/linux/seqlock.h:229: warning: Function parameter or member 'assoc_lock' not described in 'SEQCOUNT_LOCKTYPE_ZERO'
../include/linux/seqlock.h:229: warning: Excess function parameter 'name' description in 'SEQCOUNT_LOCKTYPE_ZERO'
../include/linux/seqlock.h:229: warning: Excess function parameter 'lock' description in 'SEQCOUNT_LOCKTYPE_ZERO'
../include/linux/seqlock.h:695: warning: duplicate section name 'NOTE'
Demote kernel-doc notation for the macros "seqcount_LOCKNAME_init()" and
"SEQCOUNT_LOCKTYPE()"; scripts/kernel-doc does not handle them correctly.
Rename function parameters in SEQCNT_LOCKNAME_ZERO() documentation
to match the macro's argument names. Change the macro name in the
documentation to SEQCOUNT_LOCKTYPE_ZERO() to match the macro's name.
For raw_write_seqcount_latch(), rename the second NOTE: to NOTE2:
to prevent a kernel-doc warning. However, the generated output is not
quite as nice as it could be for this.
Fix a typo: s/LOCKTYPR/LOCKTYPE/
Fixes: 0efc94c5d1 ("seqcount: Compress SEQCNT_LOCKNAME_ZERO()")
Fixes: e4e9ab3f9f ("seqlock: Fold seqcount_LOCKNAME_init() definition")
Fixes: a8772dccb2 ("seqlock: Fold seqcount_LOCKNAME_t definition")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200817000200.20993-1-rdunlap@infradead.org
__SEQ_LOCKDEP() is an expression gate for the
seqcount_LOCKNAME_t::lock member. Rename it to be about the member,
not the gate condition.
Later (PREEMPT_RT) patches will make the member available for !LOCKDEP
configs.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Parent commit, "seqlock: Extend seqcount API with associated locks",
introduced a big number of multi-line macros that are newline-escaped
at 72 columns.
For overall cohesion, align the earlier-existing macros similarly.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-11-a.darwish@linutronix.de
A sequence counter write side critical section must be protected by some
form of locking to serialize writers. If the serialization primitive is
not disabling preemption implicitly, preemption has to be explicitly
disabled before entering the write side critical section.
There is no built-in debugging mechanism to verify that the lock used
for writer serialization is held and preemption is disabled. Some usage
sites like dma-buf have explicit lockdep checks for the writer-side
lock, but this covers only a small portion of the sequence counter usage
in the kernel.
Add new sequence counter types which allows to associate a lock to the
sequence counter at initialization time. The seqcount API functions are
extended to provide appropriate lockdep assertions depending on the
seqcount/lock type.
For sequence counters with associated locks that do not implicitly
disable preemption, preemption protection is enforced in the sequence
counter write side functions. This removes the need to explicitly add
preempt_disable/enable() around the write side critical sections: the
write_begin/end() functions for these new sequence counter types
automatically do this.
Introduce the following seqcount types with associated locks:
seqcount_spinlock_t
seqcount_raw_spinlock_t
seqcount_rwlock_t
seqcount_mutex_t
seqcount_ww_mutex_t
Extend the seqcount read and write functions to branch out to the
specific seqcount_LOCKTYPE_t implementation at compile-time. This avoids
kernel API explosion per each new seqcount_LOCKTYPE_t added. Add such
compile-time type detection logic into a new, internal, seqlock header.
Document the proper seqcount_LOCKTYPE_t usage, and rationale, at
Documentation/locking/seqlock.rst.
If lockdep is disabled, this lock association is compiled out and has
neither storage size nor runtime overhead.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-10-a.darwish@linutronix.de
Preemption must be disabled before entering a sequence count write side
critical section. Failing to do so, the seqcount read side can preempt
the write side section and spin for the entire scheduler tick. If that
reader belongs to a real-time scheduling class, it can spin forever and
the kernel will livelock.
Assert through lockdep that preemption is disabled for seqcount writers.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-9-a.darwish@linutronix.de
raw_seqcount_begin() has the same code as raw_read_seqcount(), with the
exception of masking the sequence counter's LSB before returning it to
the caller.
Note, raw_seqcount_begin() masks the counter's LSB before returning it
to the caller so that read_seqcount_retry() can fail if the counter is
odd -- without the overhead of an extra branching instruction.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-7-a.darwish@linutronix.de
seqlock.h is now included by kernel's RST documentation, but a small
number of the the exported seqlock.h functions are kernel-doc annotated.
Add kernel-doc for all seqlock.h exported APIs.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-6-a.darwish@linutronix.de
The seqlock.h seqcount_t and seqlock_t API definitions are presented in
the chronological order of their development rather than the order that
makes most sense to readers. This makes it hard to follow and understand
the header file code.
Group and reorder all of the exported seqlock.h functions according to
their function.
First, group together the seqcount_t standard read path functions:
- __read_seqcount_begin()
- raw_read_seqcount_begin()
- read_seqcount_begin()
since each function is implemented exactly in terms of the one above
it. Then, group the special-case seqcount_t readers on their own as:
- raw_read_seqcount()
- raw_seqcount_begin()
since the only difference between the two functions is that the second
one masks the sequence counter LSB while the first one does not. Note
that raw_seqcount_begin() can actually be implemented in terms of
raw_read_seqcount(), which will be done in a follow-up commit.
Then, group the seqcount_t write path functions, instead of injecting
unrelated seqcount_t latch functions between them, and order them as:
- raw_write_seqcount_begin()
- raw_write_seqcount_end()
- write_seqcount_begin_nested()
- write_seqcount_begin()
- write_seqcount_end()
- raw_write_seqcount_barrier()
- write_seqcount_invalidate()
which is the expected natural order. This also isolates the seqcount_t
latch functions into their own area, at the end of the sequence counters
section, and before jumping to the next one: sequential locks
(seqlock_t).
Do a similar grouping and reordering for seqlock_t "locking" readers vs.
the "conditionally locking or lockless" ones.
No implementation code was changed in any of the reordering above.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-5-a.darwish@linutronix.de
The seqcount_t latch reader example at the raw_write_seqcount_latch()
kernel-doc comment ends the latch read section with a manual smp memory
barrier and sequence counter comparison.
This is technically correct, but it is suboptimal: read_seqcount_retry()
already contains the same logic of an smp memory barrier and sequence
counter comparison.
End the latch read critical section example with read_seqcount_retry().
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-4-a.darwish@linutronix.de
Align the code samples and note sections inside kernel-doc comments with
tabs. This way they can be properly parsed and rendered by Sphinx. It
also makes the code samples easier to read from text editors.
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-3-a.darwish@linutronix.de
Proper documentation for the design and usage of sequence counters and
sequential locks does not exist. Complete the seqlock.h documentation as
follows:
- Divide all documentation on a seqcount_t vs. seqlock_t basis. The
description for both mechanisms was intermingled, which is incorrect
since the usage constrains for each type are vastly different.
- Add an introductory paragraph describing the internal design of, and
rationale for, sequence counters.
- Document seqcount_t writer non-preemptibility requirement, which was
not previously documented anywhere, and provide a clear rationale.
- Provide template code for seqcount_t and seqlock_t initialization
and reader/writer critical sections.
- Recommend using seqlock_t by default. It implicitly handles the
serialization and non-preemptibility requirements of writers.
At seqlock.h:
- Remove references to brlocks as they've long been removed from the
kernel.
- Remove references to gcc-3.x since the kernel's minimum supported
gcc version is 4.9.
References: 0f6ed63b17 ("no need to keep brlock macros anymore...")
References: 6ec4476ac8 ("Raise gcc version requirement to 4.9")
Signed-off-by: Ahmed S. Darwish <a.darwish@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200720155530.1173732-2-a.darwish@linutronix.de
No we longer have to include kcsan.h, since the required KCSAN interface
for both compiler.h and seqlock.h are now provided by kcsan-checks.h.
Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tidy up a few bits:
- Fix typos and grammar, improve wording.
- Remove spurious newlines that are col80 warning artifacts where the
resulting line-break is worse than the disease it's curing.
- Use core kernel coding style to improve readability and reduce
spurious code pattern variations.
- Use better vertical alignment for structure definitions and initialization
sequences.
- Misc other small details.
No change in functionality intended.
Cc: linux-kernel@vger.kernel.org
Cc: Marco Elver <elver@google.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch proposes to require marked atomic accesses surrounding
raw_write_seqcount_barrier. We reason that otherwise there is no way to
guarantee propagation nor atomicity of writes before/after the barrier
[1]. For example, consider the compiler tears stores either before or
after the barrier; in this case, readers may observe a partial value,
and because readers are unaware that writes are going on (writes are not
in a seq-writer critical section), will complete the seq-reader critical
section while having observed some partial state.
[1] https://lwn.net/Articles/793253/
This came up when designing and implementing KCSAN, because KCSAN would
flag these accesses as data-races. After careful analysis, our reasoning
as above led us to conclude that the best thing to do is to propose an
amendment to the raw_seqcount_barrier usage.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Since seqlocks in the Linux kernel do not require the use of marked
atomic accesses in critical sections, we teach KCSAN to assume such
accesses are atomic. KCSAN currently also pretends that writes to
`sequence` are atomic, although currently plain writes are used (their
corresponding reads are READ_ONCE).
Further, to avoid false positives in the absence of clear ending of a
seqlock reader critical section (only when using the raw interface),
KCSAN assumes a fixed number of accesses after start of a seqlock
critical section are atomic.
=== Commentary on design around absence of clear begin/end markings ===
Seqlock usage via seqlock_t follows a predictable usage pattern, where
clear critical section begin/end is enforced. With subtle special cases
for readers needing to be flat atomic regions, e.g. because usage such
as in:
- fs/namespace.c:__legitimize_mnt - unbalanced read_seqretry
- fs/dcache.c:d_walk - unbalanced need_seqretry
But, anything directly accessing seqcount_t seems to be unpredictable.
Filtering for usage of read_seqcount_retry not following 'do { .. }
while (read_seqcount_retry(..));':
$ git grep 'read_seqcount_retry' | grep -Ev 'while \(|seqlock.h|Doc|\* '
=> about 1/3 of the total read_seqcount_retry usage.
Just looking at fs/namei.c, we conclude that it is non-trivial to
prescribe and migrate to an interface that would force clear begin/end
seqlock markings for critical sections.
As such, we concluded that the best design currently, is to simply
ensure that KCSAN works well with the existing code.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
READ_ONCE() now implies smp_read_barrier_depends(), so this patch
removes the now-redundant smp_read_barrier_depends() from
raw_read_seqcount_latch().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 50755bc1c3 ("seqlock: fix raw_read_seqcount_latch()") broke
raw_read_seqcount_latch().
If you look at the comment that was modified; the thing that changes is
the seq count, not the latch pointer.
* void latch_modify(struct latch_struct *latch, ...)
* {
* smp_wmb(); <- Ensure that the last data[1] update is visible
* latch->seq++;
* smp_wmb(); <- Ensure that the seqcount update is visible
*
* modify(latch->data[0], ...);
*
* smp_wmb(); <- Ensure that the data[0] update is visible
* latch->seq++;
* smp_wmb(); <- Ensure that the seqcount update is visible
*
* modify(latch->data[1], ...);
* }
*
* The query will have a form like:
*
* struct entry *latch_query(struct latch_struct *latch, ...)
* {
* struct entry *entry;
* unsigned seq, idx;
*
* do {
* seq = lockless_dereference(latch->seq);
So here we have:
seq = READ_ONCE(latch->seq);
smp_read_barrier_depends();
Which is exactly what we want; the new code:
seq = ({ p = READ_ONCE(latch);
smp_read_barrier_depends(); p })->seq;
is just wrong; because it looses the volatile read on seq, which can now
be torn or worse 'optimized'. And the read_depend barrier is also placed
wrong, we want it after the load of seq, to match the above data[]
up-to-date wmb()s.
Such that when we dereference latch->data[] below, we're guaranteed to
observe the right data.
*
* idx = seq & 0x01;
* entry = data_query(latch->data[idx], ...);
*
* smp_rmb();
* } while (seq != latch->seq);
*
* return entry;
* }
So yes, not passing a pointer is not pretty, but the code was correct,
and isn't anymore now.
Change to explicit READ_ONCE()+smp_read_barrier_depends() to avoid
confusion and allow strict lockless_dereference() checking.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 50755bc1c3 ("seqlock: fix raw_read_seqcount_latch()")
Link: http://lkml.kernel.org/r/20160527111117.GL3192@twins.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
lockless_dereference() is supposed to take pointer not integer.
Link: http://lkml.kernel.org/r/20160521201448.GA7429@p183.telecom.by
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Main excitement here is Peter Zijlstra's lockless rbtree optimization to
speed module address lookup. He found some abusers of the module lock
doing that too.
A little bit of parameter work here too; including Dan Streetman's breaking
up the big param mutex so writing a parameter can load another module (yeah,
really). Unfortunately that broke the usual suspects, !CONFIG_MODULES and
!CONFIG_SYSFS, so those fixes were appended too.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkgKHAAoJENkgDmzRrbjxQpwQAJVmBN6jF3SnwbQXv9vRixjH
58V33sb1G1RW+kXxQ3/e8jLX/4VaN479CufruXQp+IJWXsN/CH0lbC3k8m7u50d7
b1Zeqd/Yrh79rkc11b0X1698uGCSMlzz+V54Z0QOTEEX+nSu2ZZvccFS4UaHkn3z
rqDo00lb7rxQz8U25qro2OZrG6D3ub2q20TkWUB8EO4AOHkPn8KWP2r429Axrr0K
wlDWDTTt8/IsvPbuPf3T15RAhq1avkMXWn9nDXDjyWbpLfTn8NFnWmtesgY7Jl4t
GjbXC5WYekX3w2ZDB9KaT/DAMQ1a7RbMXNSz4RX4VbzDl+yYeSLmIh2G9fZb1PbB
PsIxrOgy4BquOWsJPm+zeFPSC3q9Cfu219L4AmxSjiZxC3dlosg5rIB892Mjoyv4
qxmg6oiqtc4Jxv+Gl9lRFVOqyHZrTC5IJ+xgfv1EyP6kKMUKLlDZtxZAuQxpUyxR
HZLq220RYnYSvkWauikq4M8fqFM8bdt6hLJnv7bVqllseROk9stCvjSiE3A9szH5
OgtOfYV5GhOeb8pCZqJKlGDw+RoJ21jtNCgOr6DgkNKV9CX/kL/Puwv8gnA0B0eh
dxCeB7f/gcLl7Cg3Z3gVVcGlgak6JWrLf5ITAJhBZ8Lv+AtL2DKmwEWS/iIMRmek
tLdh/a9GiCitqS0bT7GE
=tWPQ
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Main excitement here is Peter Zijlstra's lockless rbtree optimization
to speed module address lookup. He found some abusers of the module
lock doing that too.
A little bit of parameter work here too; including Dan Streetman's
breaking up the big param mutex so writing a parameter can load
another module (yeah, really). Unfortunately that broke the usual
suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
appended too"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
modules: only use mod->param_lock if CONFIG_MODULES
param: fix module param locks when !CONFIG_SYSFS.
rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
module: add per-module param_lock
module: make perm const
params: suppress unused variable error, warn once just in case code changes.
modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
kernel/module.c: avoid ifdefs for sig_enforce declaration
kernel/workqueue.c: remove ifdefs over wq_power_efficient
kernel/params.c: export param_ops_bool_enable_only
kernel/params.c: generalize bool_enable_only
kernel/module.c: use generic module param operaters for sig_enforce
kernel/params: constify struct kernel_param_ops uses
sysfs: tightened sysfs permission checks
module: Rework module_addr_{min,max}
module: Use __module_address() for module_address_lookup()
module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
module: Optimize __module_address() using a latched RB-tree
rbtree: Implement generic latch_tree
seqlock: Introduce raw_read_seqcount_latch()
...
Introduce raw_write_seqcount_barrier(), a new construct that can be
used to provide write barrier semantics in seqcount read loops instead
of the usual consistency guarantee.
raw_write_seqcount_barier() is equivalent to:
raw_write_seqcount_begin();
raw_write_seqcount_end();
But avoids issueing two back-to-back smp_wmb() instructions.
This construct works because the read side will 'stall' when observing
odd values. This means that -- referring to the example in the comment
below -- even though there is no (matching) read barrier between the
loads of X and Y, we cannot observe !x && !y, because:
- if we observe Y == false we must observe the first sequence
increment, which makes us loop, until
- we observe !(seq & 1) -- the second sequence increment -- at which
time we must also observe T == true.
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: umgwanakikbuti@gmail.com
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: oleg@redhat.com
Cc: wanpeng.li@linux.intel.com
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20150617122924.GP3644@twins.programming.kicks-ass.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
I'll shortly be introducing another seqcount primitive that's useful
to provide ordering semantics and would like to use the
write_seqcount_barrier() name for that.
Seeing how there's only one user of the current primitive, lets rename
it to invalidate, as that appears what its doing.
While there, employ lockdep_assert_held() instead of
assert_spin_locked() to not generate debug code for regular kernels.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: ktkhai@parallels.com
Cc: rostedt@goodmis.org
Cc: juri.lelli@gmail.com
Cc: pang.xunlei@linaro.org
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: wanpeng.li@linux.intel.com
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: umgwanakikbuti@gmail.com
Link: http://lkml.kernel.org/r/20150611124743.279926217@infradead.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Because with latches there is a strict data dependency on the seq load
we can avoid the rmb in favour of a read_barrier_depends.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Improve the documentation of the latch technique as used in the
current timekeeping code, such that it can be readily employed
elsewhere.
Borrow from the comments in timekeeping and replace those with a
reference to this more generic comment.
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <David.Woodhouse@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
With the new standardized functions, we can replace all
ACCESS_ONCE() calls across relevant locking - this includes
lockref and seqlock while at it.
ACCESS_ONCE() does not work reliably on non-scalar types.
For example gcc 4.6 and 4.7 might remove the volatile tag
for such accesses during the SRA (scalar replacement of
aggregates) step:
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58145
Update the new calls regardless of if it is a scalar type,
this is cleaner than having three alternatives.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1424662301.6539.18.camel@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are cases where read_seqbegin_or_lock() needs to block irqs,
because the seqlock in question nests inside a lock that is also
be taken from irq context.
Add read_seqbegin_or_lock_irqsave() and done_seqretry_irqrestore(), which
are almost identical to read_seqbegin_or_lock() and done_seqretry().
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: prarit@redhat.com
Cc: oleg@redhat.com
Cc: sgruszka@redhat.com
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Stephen Boyd <sboyd@codeaurora.org>
Cc: Trond Myklebust <trond.myklebust@primarydata.com>
Link: http://lkml.kernel.org/r/1410527535-9814-2-git-send-email-riel@redhat.com
[ Improved the readability of the code a bit. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull timer and time updates from Thomas Gleixner:
"A rather large update of timers, timekeeping & co
- Core timekeeping code is year-2038 safe now for 32bit machines.
Now we just need to fix all in kernel users and the gazillion of
user space interfaces which rely on timespec/timeval :)
- Better cache layout for the timekeeping internal data structures.
- Proper nanosecond based interfaces for in kernel users.
- Tree wide cleanup of code which wants nanoseconds but does hoops
and loops to convert back and forth from timespecs. Some of it
definitely belongs into the ugly code museum.
- Consolidation of the timekeeping interface zoo.
- A fast NMI safe accessor to clock monotonic for tracing. This is a
long standing request to support correlated user/kernel space
traces. With proper NTP frequency correction it's also suitable
for correlation of traces accross separate machines.
- Checkpoint/restart support for timerfd.
- A few NOHZ[_FULL] improvements in the [hr]timer code.
- Code move from kernel to kernel/time of all time* related code.
- New clocksource/event drivers from the ARM universe. I'm really
impressed that despite an architected timer in the newer chips SoC
manufacturers insist on inventing new and differently broken SoC
specific timers.
[ Ed. "Impressed"? I don't think that word means what you think it means ]
- Another round of code move from arch to drivers. Looks like most
of the legacy mess in ARM regarding timers is sorted out except for
a few obnoxious strongholds.
- The usual updates and fixlets all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (114 commits)
timekeeping: Fixup typo in update_vsyscall_old definition
clocksource: document some basic timekeeping concepts
timekeeping: Use cached ntp_tick_length when accumulating error
timekeeping: Rework frequency adjustments to work better w/ nohz
timekeeping: Minor fixup for timespec64->timespec assignment
ftrace: Provide trace clocks monotonic
timekeeping: Provide fast and NMI safe access to CLOCK_MONOTONIC
seqcount: Add raw_write_seqcount_latch()
seqcount: Provide raw_read_seqcount()
timekeeping: Use tk_read_base as argument for timekeeping_get_ns()
timekeeping: Create struct tk_read_base and use it in struct timekeeper
timekeeping: Restructure the timekeeper some more
clocksource: Get rid of cycle_last
clocksource: Move cycle_last validation to core code
clocksource: Make delta calculation a function
wireless: ath9k: Get rid of timespec conversions
drm: vmwgfx: Use nsec based interfaces
drm: i915: Use nsec based interfaces
timekeeping: Provide ktime_get_raw()
hangcheck-timer: Use ktime_get_ns()
...
For NMI safe access to clock monotonic we use the seqcount LSB as
index of a timekeeper array. The update sequence looks like this:
smp_wmb(); <- prior stores to a[1]
seq++;
smp_wmb(); <- seq increment before update of a[0]
update(a[0]);
smp_wmb(); <- update of a[0]
seq++;
smp_wmb(); <- seq increment before update of a[1]
update(a[1]);
To avoid open coded barriers, provide a helper function.
[ tglx: Split out of a combo patch against the first implementation of
the NMI safe accessor ]
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
raw_read_seqcount opens a read critical section of the given seqcount
without any lockdep checking and without checking or masking the
LSB. Calling code is responsible for handling that.
Preparatory patch to provide a NMI safe clock monotonic accessor
function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>