Commit Graph

5 Commits

Author SHA1 Message Date
Linus Torvalds 3a755ebcc2 Intel Trust Domain Extensions
This is the Intel version of a confidential computing solution called
 Trust Domain Extensions (TDX). This series adds support to run the
 kernel as part of a TDX guest. It provides similar guest protections to
 AMD's SEV-SNP like guest memory and register state encryption, memory
 integrity protection and a lot more.
 
 Design-wise, it differs from AMD's solution considerably: it uses
 a software module which runs in a special CPU mode called (Secure
 Arbitration Mode) SEAM. As the name suggests, this module serves as sort
 of an arbiter which the confidential guest calls for services it needs
 during its lifetime.
 
 Just like AMD's SNP set, this series reworks and streamlines certain
 parts of x86 arch code so that this feature can be properly accomodated.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLbisACgkQEsHwGGHe
 VUqZLg/7B55iygCwzz0W/KLcXL2cISatUpzGbFs1XTbE9DMz06BPkOsEjF2k8ckv
 kfZjgqhSx3GvUI80gK0Tn2M2DfIj3nKuNSXd1pfextP7AxEf68FFJsQz1Ju7bHpT
 pZaG+g8IK4+mnEHEKTCO9ANg/Zw8yqJLdtsCaCNE9SUGUfQ6m/ujTEfsambXDHNm
 khyCAgpIGSOt51/4apoR9ebyrNCaeVbDawpIPjTy+iyFRc/WyaLFV9CQ8klw4gbw
 r/90x2JYxvAf0/z/ifT9Wa+TnYiQ0d4VjFbfr0iJ4GcPn5L3EIoIKPE8vPGMpoSX
 fLSzoNmAOT3ja57ytUUQ3o0edoRUIPEdixOebf9qWvE/aj7W37YRzrlJ8Ej/x9Jy
 HcI4WZF6Dr1bh6FnI/xX2eVZRzLOL4j9gNyPCwIbvgr1NjDqQnxU7nhxVMmQhJrs
 IdiEcP5WYerLKfka/uF//QfWUg5mDBgFa1/3xK57Z3j0iKWmgjaPpR0SWlOKjj8G
 tr0gGN9ejikZTqXKGsHn8fv/R3bjXvbVD8z0IEcx+MIrRmZPnX2QBlg7UA1AXV5n
 HoVwPFdH1QAtjZq1MRcL4hTOjz3FkS68rg7ZH0f2GWJAzWmEGytBIhECRnN/PFFq
 VwRB4dCCt0bzqRxkiH5lzdgR+xqRe61juQQsMzg+Flv/trpXDqM=
 =ac9K
 -----END PGP SIGNATURE-----

Merge tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull Intel TDX support from Borislav Petkov:
 "Intel Trust Domain Extensions (TDX) support.

  This is the Intel version of a confidential computing solution called
  Trust Domain Extensions (TDX). This series adds support to run the
  kernel as part of a TDX guest. It provides similar guest protections
  to AMD's SEV-SNP like guest memory and register state encryption,
  memory integrity protection and a lot more.

  Design-wise, it differs from AMD's solution considerably: it uses a
  software module which runs in a special CPU mode called (Secure
  Arbitration Mode) SEAM. As the name suggests, this module serves as
  sort of an arbiter which the confidential guest calls for services it
  needs during its lifetime.

  Just like AMD's SNP set, this series reworks and streamlines certain
  parts of x86 arch code so that this feature can be properly
  accomodated"

* tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
  x86/tdx: Fix RETs in TDX asm
  x86/tdx: Annotate a noreturn function
  x86/mm: Fix spacing within memory encryption features message
  x86/kaslr: Fix build warning in KASLR code in boot stub
  Documentation/x86: Document TDX kernel architecture
  ACPICA: Avoid cache flush inside virtual machines
  x86/tdx/ioapic: Add shared bit for IOAPIC base address
  x86/mm: Make DMA memory shared for TD guest
  x86/mm/cpa: Add support for TDX shared memory
  x86/tdx: Make pages shared in ioremap()
  x86/topology: Disable CPU online/offline control for TDX guests
  x86/boot: Avoid #VE during boot for TDX platforms
  x86/boot: Set CR0.NE early and keep it set during the boot
  x86/acpi/x86/boot: Add multiprocessor wake-up support
  x86/boot: Add a trampoline for booting APs via firmware handoff
  x86/tdx: Wire up KVM hypercalls
  x86/tdx: Port I/O: Add early boot support
  x86/tdx: Port I/O: Add runtime hypercalls
  x86/boot: Port I/O: Add decompression-time support for TDX
  x86/boot: Port I/O: Allow to hook up alternative helpers
  ...
2022-05-23 17:51:12 -07:00
Kirill A. Shutemov 4c5b9aac6c x86/boot: Port I/O: Add decompression-time support for TDX
Port I/O instructions trigger #VE in the TDX environment. In response to
the exception, kernel emulates these instructions using hypercalls.

But during early boot, on the decompression stage, it is cumbersome to
deal with #VE. It is cleaner to go to hypercalls directly, bypassing #VE
handling.

Hook up TDX-specific port I/O helpers if booting in TDX environment.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-17-kirill.shutemov@linux.intel.com
2022-04-07 08:27:52 -07:00
Kirill A. Shutemov 1e8f93e183 x86: Consolidate port I/O helpers
There are two implementations of port I/O helpers: one in the kernel and
one in the boot stub.

Move the helpers required for both to <asm/shared/io.h> and use the one
implementation everywhere.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-15-kirill.shutemov@linux.intel.com
2022-04-07 08:27:52 -07:00
Kuppuswamy Sathyanarayanan 4b05f81504 x86/tdx: Detect TDX at early kernel decompression time
The early decompression code does port I/O for its console output. But,
handling the decompression-time port I/O demands a different approach
from normal runtime because the IDT required to support #VE based port
I/O emulation is not yet set up. Paravirtualizing I/O calls during
the decompression step is acceptable because the decompression code
doesn't have a lot of call sites to IO instruction.

To support port I/O in decompression code, TDX must be detected before
the decompression code might do port I/O. Detect whether the kernel runs
in a TDX guest.

Add an early_is_tdx_guest() interface to query the cached TDX guest
status in the decompression code.

TDX is detected with CPUID. Make cpuid_count() accessible outside
boot/cpuflags.c.

TDX detection in the main kernel is very similar. Move common bits
into <asm/shared/tdx.h>.

The actual port I/O paravirtualization will come later in the series.

Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-13-kirill.shutemov@linux.intel.com
2022-04-07 08:27:51 -07:00
Michael Roth 176db62257 x86/boot: Introduce helpers for MSR reads/writes
The current set of helpers used throughout the run-time kernel have
dependencies on code/facilities outside of the boot kernel, so there
are a number of call-sites throughout the boot kernel where inline
assembly is used instead. More will be added with subsequent patches
that add support for SEV-SNP, so take the opportunity to provide a basic
set of helpers that can be used by the boot kernel to reduce reliance on
inline assembly.

Use boot_* prefix so that it's clear these are helpers specific to the
boot kernel to avoid any confusion with the various other MSR read/write
helpers.

  [ bp: Disambiguate parameter names and trim comment. ]

Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-6-brijesh.singh@amd.com
2022-04-06 12:59:17 +02:00