This is the Intel version of a confidential computing solution called
Trust Domain Extensions (TDX). This series adds support to run the
kernel as part of a TDX guest. It provides similar guest protections to
AMD's SEV-SNP like guest memory and register state encryption, memory
integrity protection and a lot more.
Design-wise, it differs from AMD's solution considerably: it uses
a software module which runs in a special CPU mode called (Secure
Arbitration Mode) SEAM. As the name suggests, this module serves as sort
of an arbiter which the confidential guest calls for services it needs
during its lifetime.
Just like AMD's SNP set, this series reworks and streamlines certain
parts of x86 arch code so that this feature can be properly accomodated.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLbisACgkQEsHwGGHe
VUqZLg/7B55iygCwzz0W/KLcXL2cISatUpzGbFs1XTbE9DMz06BPkOsEjF2k8ckv
kfZjgqhSx3GvUI80gK0Tn2M2DfIj3nKuNSXd1pfextP7AxEf68FFJsQz1Ju7bHpT
pZaG+g8IK4+mnEHEKTCO9ANg/Zw8yqJLdtsCaCNE9SUGUfQ6m/ujTEfsambXDHNm
khyCAgpIGSOt51/4apoR9ebyrNCaeVbDawpIPjTy+iyFRc/WyaLFV9CQ8klw4gbw
r/90x2JYxvAf0/z/ifT9Wa+TnYiQ0d4VjFbfr0iJ4GcPn5L3EIoIKPE8vPGMpoSX
fLSzoNmAOT3ja57ytUUQ3o0edoRUIPEdixOebf9qWvE/aj7W37YRzrlJ8Ej/x9Jy
HcI4WZF6Dr1bh6FnI/xX2eVZRzLOL4j9gNyPCwIbvgr1NjDqQnxU7nhxVMmQhJrs
IdiEcP5WYerLKfka/uF//QfWUg5mDBgFa1/3xK57Z3j0iKWmgjaPpR0SWlOKjj8G
tr0gGN9ejikZTqXKGsHn8fv/R3bjXvbVD8z0IEcx+MIrRmZPnX2QBlg7UA1AXV5n
HoVwPFdH1QAtjZq1MRcL4hTOjz3FkS68rg7ZH0f2GWJAzWmEGytBIhECRnN/PFFq
VwRB4dCCt0bzqRxkiH5lzdgR+xqRe61juQQsMzg+Flv/trpXDqM=
=ac9K
-----END PGP SIGNATURE-----
Merge tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull Intel TDX support from Borislav Petkov:
"Intel Trust Domain Extensions (TDX) support.
This is the Intel version of a confidential computing solution called
Trust Domain Extensions (TDX). This series adds support to run the
kernel as part of a TDX guest. It provides similar guest protections
to AMD's SEV-SNP like guest memory and register state encryption,
memory integrity protection and a lot more.
Design-wise, it differs from AMD's solution considerably: it uses a
software module which runs in a special CPU mode called (Secure
Arbitration Mode) SEAM. As the name suggests, this module serves as
sort of an arbiter which the confidential guest calls for services it
needs during its lifetime.
Just like AMD's SNP set, this series reworks and streamlines certain
parts of x86 arch code so that this feature can be properly
accomodated"
* tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
x86/tdx: Fix RETs in TDX asm
x86/tdx: Annotate a noreturn function
x86/mm: Fix spacing within memory encryption features message
x86/kaslr: Fix build warning in KASLR code in boot stub
Documentation/x86: Document TDX kernel architecture
ACPICA: Avoid cache flush inside virtual machines
x86/tdx/ioapic: Add shared bit for IOAPIC base address
x86/mm: Make DMA memory shared for TD guest
x86/mm/cpa: Add support for TDX shared memory
x86/tdx: Make pages shared in ioremap()
x86/topology: Disable CPU online/offline control for TDX guests
x86/boot: Avoid #VE during boot for TDX platforms
x86/boot: Set CR0.NE early and keep it set during the boot
x86/acpi/x86/boot: Add multiprocessor wake-up support
x86/boot: Add a trampoline for booting APs via firmware handoff
x86/tdx: Wire up KVM hypercalls
x86/tdx: Port I/O: Add early boot support
x86/tdx: Port I/O: Add runtime hypercalls
x86/boot: Port I/O: Add decompression-time support for TDX
x86/boot: Port I/O: Allow to hook up alternative helpers
...
Intel TDX doesn't allow VMM to directly access guest private memory.
Any memory that is required for communication with the VMM must be
shared explicitly. The same rule applies for any DMA to and from the
TDX guest. All DMA pages have to be marked as shared pages. A generic way
to achieve this without any changes to device drivers is to use the
SWIOTLB framework.
The previous patch ("Add support for TDX shared memory") gave TDX guests
the _ability_ to make some pages shared, but did not make any pages
shared. This actually marks SWIOTLB buffers *as* shared.
Start returning true for cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT) in
TDX guests. This has several implications:
- Allows the existing mem_encrypt_init() to be used for TDX which
sets SWIOTLB buffers shared (aka. "decrypted").
- Ensures that all DMA is routed via the SWIOTLB mechanism (see
pci_swiotlb_detect())
Stop selecting DYNAMIC_PHYSICAL_MASK directly. It will get set
indirectly by selecting X86_MEM_ENCRYPT.
mem_encrypt_init() is currently under an AMD-specific #ifdef. Move it to
a generic area of the header.
Co-developed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220405232939.73860-28-kirill.shutemov@linux.intel.com
Intel TDX protects guest memory from VMM access. Any memory that is
required for communication with the VMM must be explicitly shared.
It is a two-step process: the guest sets the shared bit in the page
table entry and notifies VMM about the change. The notification happens
using MapGPA hypercall.
Conversion back to private memory requires clearing the shared bit,
notifying VMM with MapGPA hypercall following with accepting the memory
with AcceptPage hypercall.
Provide a TDX version of x86_platform.guest.* callbacks. It makes
__set_memory_enc_pgtable() work right in TDX guest.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-27-kirill.shutemov@linux.intel.com
Unlike regular VMs, TDX guests use the firmware hand-off wakeup method
to wake up the APs during the boot process. This wakeup model uses a
mailbox to communicate with firmware to bring up the APs. As per the
design, this mailbox can only be used once for the given AP, which means
after the APs are booted, the same mailbox cannot be used to
offline/online the given AP. More details about this requirement can be
found in Intel TDX Virtual Firmware Design Guide, sec titled "AP
initialization in OS" and in sec titled "Hotplug Device".
Since the architecture does not support any method of offlining the
CPUs, disable CPU hotplug support in the kernel.
Since this hotplug disable feature can be re-used by other VM guests,
add a new CC attribute CC_ATTR_HOTPLUG_DISABLED and use it to disable
the hotplug support.
Attempt to offline CPU will fail with -EOPNOTSUPP.
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-25-kirill.shutemov@linux.intel.com
TDX hypervisors cannot emulate instructions directly. This includes
port I/O which is normally emulated in the hypervisor. All port I/O
instructions inside TDX trigger the #VE exception in the guest and
would be normally emulated there.
Use a hypercall to emulate port I/O. Extend the
tdx_handle_virt_exception() and add support to handle the #VE due to
port I/O instructions.
String I/O operations are not supported in TDX. Unroll them by declaring
CC_ATTR_GUEST_UNROLL_STRING_IO confidential computing attribute.
== Userspace Implications ==
The ioperm() facility allows userspace access to I/O instructions like
inb/outb. Among other things, this allows writing userspace device
drivers.
This series has no special handling for ioperm(). Users will be able to
successfully request I/O permissions but will induce a #VE on their
first I/O instruction which leads SIGSEGV. If this is undesirable users
can enable kernel lockdown feature with 'lockdown=integrity' kernel
command line option. It makes ioperm() fail.
More robust handling of this situation (denying ioperm() in all TDX
guests) will be addressed in follow-on work.
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-18-kirill.shutemov@linux.intel.com
Confidential Computing (CC) features (like string I/O unroll support,
memory encryption/decryption support, etc) are conditionally enabled
in the kernel using cc_platform_has() API. Since TDX guests also need
to use these CC features, extend cc_platform_has() API and add TDX
guest-specific CC attributes support.
CC API also provides an interface to deal with encryption mask. Extend
it to cover TDX.
Details about which bit in the page table entry to be used to indicate
shared/private state is determined by using the TDINFO TDCALL.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20220405232939.73860-5-kirill.shutemov@linux.intel.com
The CC_ATTR_GUEST_SEV_SNP can be used by the guest to query whether the
SNP (Secure Nested Paging) feature is active.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220307213356.2797205-10-brijesh.singh@amd.com
AMD SME/SEV uses a bit in the page table entries to indicate that the
page is encrypted and not accessible to the VMM.
TDX uses a similar approach, but the polarity of the mask is opposite to
AMD: if the bit is set the page is accessible to VMM.
Provide vendor-neutral API to deal with the mask: cc_mkenc() and
cc_mkdec() modify given address to make it encrypted/decrypted. It can
be applied to phys_addr_t, pgprotval_t or page table entry value.
pgprot_encrypted() and pgprot_decrypted() reimplemented using new
helpers.
The implementation will be extended to cover TDX.
pgprot_decrypted() is used by drivers (i915, virtio_gpu, vfio).
cc_mkdec() called by pgprot_decrypted(). Export cc_mkdec().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-5-kirill.shutemov@linux.intel.com
The kernel derives the confidential computing platform
type it is running as from sme_me_mask on AMD or by using
hv_is_isolation_supported() on HyperV isolation VMs. This detection
process will be more complicated as more platforms get added.
Declare a confidential computing vendor variable explicitly and set it
via cc_set_vendor() on the respective platform.
[ bp: Massage commit message, fixup HyperV check. ]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-4-kirill.shutemov@linux.intel.com
Move cc_platform.c to arch/x86/coco/. The directory is going to be the
home space for code related to confidential computing.
Intel TDX code will land here. AMD SEV code will also eventually be
moved there.
No functional changes.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20220222185740.26228-3-kirill.shutemov@linux.intel.com