sched_clock_cpu() may not be consistent between CPUs. If a task
migrates to another CPU, then se.exec_start is set to that CPU's
rq_clock_task() by update_stats_curr_start(). Specifically, the new
value might be before the old value due to clock skew.
So then if in numa_get_avg_runtime() the expression:
'now - p->last_task_numa_placement'
ends up as -1, then the divider '*period + 1' in task_numa_placement()
is 0 and things go bang. Similar to update_curr(), check if time goes
backwards to avoid this.
[ peterz: Wrote new changelog. ]
[ mingo: Tweaked the code comment. ]
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cj.chengjian@huawei.com
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20190425080016.GX11158@hirez.programming.kicks-ass.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The flags field in 'struct shash_desc' never actually does anything.
The only ostensibly supported flag is CRYPTO_TFM_REQ_MAY_SLEEP.
However, no shash algorithm ever sleeps, making this flag a no-op.
With this being the case, inevitably some users who can't sleep wrongly
pass MAY_SLEEP. These would all need to be fixed if any shash algorithm
actually started sleeping. For example, the shash_ahash_*() functions,
which wrap a shash algorithm with the ahash API, pass through MAY_SLEEP
from the ahash API to the shash API. However, the shash functions are
called under kmap_atomic(), so actually they're assumed to never sleep.
Even if it turns out that some users do need preemption points while
hashing large buffers, we could easily provide a helper function
crypto_shash_update_large() which divides the data into smaller chunks
and calls crypto_shash_update() and cond_resched() for each chunk. It's
not necessary to have a flag in 'struct shash_desc', nor is it necessary
to make individual shash algorithms aware of this at all.
Therefore, remove shash_desc::flags, and document that the
crypto_shash_*() functions can be called from any context.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
We already dereferenced "dev" when we called get_dma_ops() so this NULL
check is too late. We're not supposed to pass NULL "dev" pointers to
dma_alloc_attrs().
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
This sentence is kind of a train wreck anyway, but at least dropping the
extra pronoun helps somewhat.
Signed-off-by: Tycho Andersen <tycho@tycho.ws>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: James Morris <jamorris@linux.microsoft.com>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2019-04-22
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) allow stack/queue helpers from more bpf program types, from Alban.
2) allow parallel verification of root bpf programs, from Alexei.
3) introduce bpf sysctl hook for trusted root cases, from Andrey.
4) recognize var/datasec in btf deduplication, from Andrii.
5) cpumap performance optimizations, from Jesper.
6) verifier prep for alu32 optimization, from Jiong.
7) libbpf xsk cleanup, from Magnus.
8) other various fixes and cleanups.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Drop bpf_verifier_lock for root to avoid being DoS-ed by unprivileged.
The BPF verifier is now fully parallel.
All unpriv users are still serialized by bpf_verifier_lock to avoid
exhausting kernel memory by running N parallel verifications.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Move three global variables protected by bpf_verifier_lock into
'struct bpf_verifier_env' to allow parallel verification.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In audit_rule_change(), audit_data_to_entry() is firstly invoked to
translate the payload data to the kernel's rule representation. In
audit_data_to_entry(), depending on the audit field type, an audit tree may
be created in audit_make_tree(), which eventually invokes kmalloc() to
allocate the tree. Since this tree is a temporary tree, it will be then
freed in the following execution, e.g., audit_add_rule() if the message
type is AUDIT_ADD_RULE or audit_del_rule() if the message type is
AUDIT_DEL_RULE. However, if the message type is neither AUDIT_ADD_RULE nor
AUDIT_DEL_RULE, i.e., the default case of the switch statement, this
temporary tree is not freed.
To fix this issue, only allocate the tree when the type is AUDIT_ADD_RULE
or AUDIT_DEL_RULE.
Signed-off-by: Wenwen Wang <wang6495@umn.edu>
Reviewed-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
The function_graph boot up self test emulates the tr->init() function in
order to add a wrapper around the function graph tracer entry code to test
for lock ups and such. But it does not emulate the tr->reset(), and just
calls the function_graph tracer tr->reset() function which will use its own
fgraph_ops to unregister function tracing with. As the fgraph_ops is
becoming more meaningful with the register_ftrace_graph() and
unregister_ftrace_graph() functions, the two need to be the same. The
emulated tr->init() uses its own fgraph_ops descriptor, which means the
unregister_ftrace_graph() must use the same ftrace_ops, which the selftest
currently does not do. By emulating the tr->reset() as the selftest does
with the tr->init() it will be able to pass the same fgraph_ops descriptor
to the unregister_ftrace_graph() as it did with the register_ftrace_graph().
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Pull perf fixes from Ingo Molnar:
"Misc fixes:
- various tooling fixes
- kretprobe fixes
- kprobes annotation fixes
- kprobes error checking fix
- fix the default events for AMD Family 17h CPUs
- PEBS fix
- AUX record fix
- address filtering fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/kprobes: Avoid kretprobe recursion bug
kprobes: Mark ftrace mcount handler functions nokprobe
x86/kprobes: Verify stack frame on kretprobe
perf/x86/amd: Add event map for AMD Family 17h
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_btf()
perf tools: Fix map reference counting
perf evlist: Fix side band thread draining
perf tools: Check maps for bpf programs
perf bpf: Return NULL when RB tree lookup fails in perf_env__find_bpf_prog_info()
tools include uapi: Sync sound/asound.h copy
perf top: Always sample time to satisfy needs of use of ordered queuing
perf evsel: Use hweight64() instead of hweight_long(attr.sample_regs_user)
tools lib traceevent: Fix missing equality check for strcmp
perf stat: Disable DIR_FORMAT feature for 'perf stat record'
perf scripts python: export-to-sqlite.py: Fix use of parent_id in calls_view
perf header: Fix lock/unlock imbalances when processing BPF/BTF info
perf/x86: Fix incorrect PEBS_REGS
perf/ring_buffer: Fix AUX record suppression
perf/core: Fix the address filtering fix
kprobes: Fix error check when reusing optimized probes
Pull scheduler fixes from Ingo Molnar:
"A deadline scheduler warning/race fix, and a cfs_period_us quota
calculation workaround where the real fix looks too involved to merge
immediately"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/deadline: Correctly handle active 0-lag timers
sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup
Pull locking fixes from Ingo Molnar:
"A lockdep warning fix and a script execution fix when atomics are
generated"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/atomics: Don't assume that scripts are executable
locking/lockdep: Make lockdep_unregister_key() honor 'debug_locks' again
Add cgroup:cgroup_freeze and cgroup:cgroup_unfreeze events,
which are using the existing cgroup tracing infrastructure.
Add the cgroup_event event class, which is similar to the cgroup
class, but contains an additional integer field to store a new
value (the level field is dropped).
Also add two tracing events: cgroup_notify_populated and
cgroup_notify_frozen, which are raised in a generic way using
the TRACE_CGROUP_PATH() macro.
This allows to trace cgroup state transitions and is generally
helpful for debugging the cgroup freezer code.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
To use the TRACE_CGROUP_PATH() macro with css_set_lock
locked, let's make the macro irq-safe.
It's necessary in order to trace cgroup freezer state
transitions (frozen/not frozen), which are happening
with css_set_lock locked.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cgroup v1 implements the freezer controller, which provides an ability
to stop the workload in a cgroup and temporarily free up some
resources (cpu, io, network bandwidth and, potentially, memory)
for some other tasks. Cgroup v2 lacks this functionality.
This patch implements freezer for cgroup v2.
Cgroup v2 freezer tries to put tasks into a state similar to jobctl
stop. This means that tasks can be killed, ptraced (using
PTRACE_SEIZE*), and interrupted. It is possible to attach to
a frozen task, get some information (e.g. read registers) and detach.
It's also possible to migrate a frozen tasks to another cgroup.
This differs cgroup v2 freezer from cgroup v1 freezer, which mostly
tried to imitate the system-wide freezer. However uninterruptible
sleep is fine when all tasks are going to be frozen (hibernation case),
it's not the acceptable state for some subset of the system.
Cgroup v2 freezer is not supporting freezing kthreads.
If a non-root cgroup contains kthread, the cgroup still can be frozen,
but the kthread will remain running, the cgroup will be shown
as non-frozen, and the notification will not be delivered.
* PTRACE_ATTACH is not working because non-fatal signal delivery
is blocked in frozen state.
There are some interface differences between cgroup v1 and cgroup v2
freezer too, which are required to conform the cgroup v2 interface
design principles:
1) There is no separate controller, which has to be turned on:
the functionality is always available and is represented by
cgroup.freeze and cgroup.events cgroup control files.
2) The desired state is defined by the cgroup.freeze control file.
Any hierarchical configuration is allowed.
3) The interface is asynchronous. The actual state is available
using cgroup.events control file ("frozen" field). There are no
dedicated transitional states.
4) It's allowed to make any changes with the cgroup hierarchy
(create new cgroups, remove old cgroups, move tasks between cgroups)
no matter if some cgroups are frozen.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
No-objection-from-me-by: Oleg Nesterov <oleg@redhat.com>
Cc: kernel-team@fb.com
The number of descendant cgroups and the number of dying
descendant cgroups are currently synchronized using the cgroup_mutex.
The number of descendant cgroups will be required by the cgroup v2
freezer, which will use it to determine if a cgroup is frozen
(depending on total number of descendants and number of frozen
descendants). It's not always acceptable to grab the cgroup_mutex,
especially from quite hot paths (e.g. exit()).
To avoid this, let's additionally synchronize these counters using
the css_set_lock.
So, it's safe to read these counters with either cgroup_mutex or
css_set_lock locked, and for changing both locks should be acquired.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
The helper is identical to the existing cgroup_task_count()
except it doesn't take the css_set_lock by itself, assuming
that the caller does.
Also, move cgroup_task_count() implementation into
kernel/cgroup/cgroup.c, as there is nothing specific to cgroup v1.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
Freezer.c will contain an implementation of cgroup v2 freezer,
so let's rename the v1 freezer to avoid naming conflicts.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
Commit:
fc560a26ac ("cpuset: replace cpuset->stack_list with cpuset_for_each_descendant_pre()")
removed the local list (q) that was used to perform a top-down scan
of all cpusets; however, comments mentioning it were not updated.
Update comments to reflect current implementation.
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: cgroups@vger.kernel.org
Cc: lizefan@huawei.com
Link: http://lkml.kernel.org/r/20181219133445.31982-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Separate print_modules() and hard lockup error message.
Before the patch:
NMI watchdog: Watchdog detected hard LOCKUP on cpu 1Modules linked in: nls_cp437
Link: http://lkml.kernel.org/r/20190412062557.2700-1-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Large values could overflow u64 and pass following sanity checks.
# echo 18446744073750000 > cpu.cfs_period_us
# cat cpu.cfs_period_us
40448
# echo 18446744073750000 > cpu.cfs_quota_us
# cat cpu.cfs_quota_us
40448
After this patch they will fail with -EINVAL.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125502079.293431.3947497929372138600.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Bit shift in scale_load() could overflow shares. This patch saturates
it to MAX_SHARES like following sched_group_set_shares().
Example:
# echo 9223372036854776832 > cpu.shares
# cat cpu.shares
Before patch: 1024
After pattch: 262144
Signed-off-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/155125501891.293431.3345233332801109696.stgit@buzz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The rseq system call, when invoked with flags of "0" or
"RSEQ_FLAG_UNREGISTER" values, expects the rseq_len parameter to
be equal to sizeof(struct rseq), which is fixed-size and fixed-layout,
specified in uapi linux/rseq.h.
Expecting a fixed size for rseq_len is a design choice that ensures
multiple libraries and application defining __rseq_abi in the same
process agree on its exact size.
Considering that this size is and will always be the same value, there
is no point in saving this value within task_struct rseq_len. Remove
this field from task_struct.
No change in functionality intended.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20190305194755.2602-3-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The "event counter" was removed from rseq before it was merged upstream.
However, a few comments in the source code still refer to it. Adapt the
comments to match reality.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ben Maurer <bmaurer@fb.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Lameter <cl@linux.com>
Cc: Dave Watson <davejwatson@fb.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-api@vger.kernel.org
Link: http://lkml.kernel.org/r/20190305194755.2602-2-mathieu.desnoyers@efficios.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To make ICMPv6 closer to ICMPv4, add ratemask parameter. Since the ICMP
message types use larger numeric values, a simple bitmask doesn't fit.
I use large bitmap. The input and output are the in form of list of
ranges. Set the default to rate limit all error messages but Packet Too
Big. For Packet Too Big, use ratemask instead of hard-coded.
There are functions where icmpv6_xrlim_allow() and icmpv6_global_allow()
aren't called. This patch only adds them to icmpv6_echo_reply().
Rate limiting error messages is mandated by RFC 4443 but RFC 4890 says
that it is also acceptable to rate limit informational messages. Thus,
I removed the current hard-coded behavior of icmpv6_mask_allow() that
doesn't rate limit informational messages.
v2: Add dummy function proc_do_large_bitmap() if CONFIG_PROC_SYSCTL
isn't defined, expand the description in ip-sysctl.txt and remove
unnecessary conditional before kfree().
v3: Inline the bitmap instead of dynamically allocated. Still is a
pointer to it is needed because of the way proc_do_large_bitmap work.
Signed-off-by: Stephen Suryaputra <ssuryaextr@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fix these sparse warnings:
kernel/sched/core.c:6577:11: warning: symbol 'min_cfs_quota_period' was not declared. Should it be static?
kernel/sched/core.c:6657:5: warning: symbol 'tg_set_cfs_quota' was not declared. Should it be static?
kernel/sched/core.c:6670:6: warning: symbol 'tg_get_cfs_quota' was not declared. Should it be static?
kernel/sched/core.c:6683:5: warning: symbol 'tg_set_cfs_period' was not declared. Should it be static?
kernel/sched/core.c:6693:6: warning: symbol 'tg_get_cfs_period' was not declared. Should it be static?
kernel/sched/fair.c:2596:6: warning: symbol 'task_tick_numa' was not declared. Should it be static?
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190418144713.34332-1-yuehaibing@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As stated in the original commit for pidfd_send_signal() we don't allow
to signal processes through O_PATH file descriptors since it is
semantically equivalent to a write on the pidfd.
We already correctly error out right now and return EBADF if an O_PATH
fd is passed. This is because we use file->f_op to detect whether a
pidfd is passed and O_PATH fds have their file->f_op set to empty_fops
in do_dentry_open() and thus fail the test.
Thus, there is no regression. It's just semantically correct to use
fdget() and return an error right from there instead of taking a
reference and returning an error later.
Signed-off-by: Christian Brauner <christian@brauner.io>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jann Horn <jann@thejh.net>
Cc: David Howells <dhowells@redhat.com>
Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull RCU and LKMM commits from Paul E. McKenney:
- An LKMM commit adding support for synchronize_srcu_expedited()
- A couple of straggling RCU flavor consolidation updates
- Documentation updates.
- Miscellaneous fixes
- SRCU updates
- RCU CPU stall-warning updates
- Torture-test updates
Signed-off-by: Ingo Molnar <mingo@kernel.org>
tick_freeze() introduced by suspend-to-idle in commit 124cf9117c ("PM /
sleep: Make it possible to quiesce timers during suspend-to-idle") uses
timekeeping_suspend() instead of syscore_suspend() during
suspend-to-idle. As a consequence generic sched_clock will keep going
because sched_clock_suspend() and sched_clock_resume() are not invoked
during suspend-to-idle which can result in a generic sched_clock wrap.
On a ARM system with suspend-to-idle enabled, sched_clock is registered
as "56 bits at 13MHz, resolution 76ns, wraps every 4398046511101ns", which
means the real wrapping duration is 8796093022202ns.
[ 134.551779] suspend-to-idle suspend (timekeeping_suspend())
[ 1204.912239] suspend-to-idle resume (timekeeping_resume())
......
[ 1206.912239] suspend-to-idle suspend (timekeeping_suspend())
[ 5880.502807] suspend-to-idle resume (timekeeping_resume())
......
[ 6000.403724] suspend-to-idle suspend (timekeeping_suspend())
[ 8035.753167] suspend-to-idle resume (timekeeping_resume())
......
[ 8795.786684] (2)[321:charger_thread]......
[ 8795.788387] (2)[321:charger_thread]......
[ 0.057226] (0)[0:swapper/0]......
[ 0.061447] (2)[0:swapper/2]......
sched_clock was not stopped during suspend-to-idle, and sched_clock_poll
hrtimer was not expired because timekeeping_suspend() was invoked during
suspend-to-idle. It makes sched_clock wrap at kernel time 8796s.
To prevent this, invoke sched_clock_suspend() and sched_clock_resume() in
tick_freeze() together with timekeeping_suspend() and timekeeping_resume().
Fixes: 124cf9117c (PM / sleep: Make it possible to quiesce timers during suspend-to-idle)
Signed-off-by: Chang-An Chen <chang-an.chen@mediatek.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Corey Minyard <cminyard@mvista.com>
Cc: <linux-mediatek@lists.infradead.org>
Cc: <linux-arm-kernel@lists.infradead.org>
Cc: Stanley Chu <stanley.chu@mediatek.com>
Cc: <kuohong.wang@mediatek.com>
Cc: <freddy.hsin@mediatek.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1553828349-8914-1-git-send-email-chang-an.chen@mediatek.com
The QEMU PowerPC/PSeries machine model was not expecting a self-IPI,
and it may be a bit surprising thing to do, so have irq_work_queue_on
do local queueing when target is the current CPU.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: =?UTF-8?q?C=C3=A9dric=20Le=20Goater?= <clg@kaod.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190409093403.20994-1-npiggin@gmail.com
[ Simplified the preprocessor comments.
Fixed unbalanced curly brackets pointed out by Thomas. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Instead of open-coding the bitmasks, generate them using the
lockdep_states.h header.
This prepares for additional states, which would make the manual masks
tedious and error prone.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In order to optimize check_irq_usage() and factorize all the IRQ usage
validations we'll need to be able to check multiple lock usage bits at
once. Prepare the low level usage mask check functions for that purpose.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190402160244.32434-4-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Clarify the code with mapping some more constant numbers that haven't
been named after their corresponding LOCK_USAGE_* symbol.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190402160244.32434-3-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
valid_state() and print_usage_bug*() functions are not used beyond
irq locking correctness checks under CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING.
Sadly the "unused function" warning wouldn't fire because valid_state()
is inline so the unused case has remained unseen until now.
So move them inside the appropriate CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING
section.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190402160244.32434-2-frederic@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A lot of the performance gain comes from this patch.
While analysing performance overhead it was found that the largest CPU
stalls were caused when touching the struct page area. It is first read with
a READ_ONCE from build_skb_around via page_is_pfmemalloc(), and when freed
written by page_frag_free() call.
Measurements show that the prefetchw (W) variant operation is needed to
achieve the performance gain. We believe this optimization it two fold,
first the W-variant saves one step in the cache-coherency protocol, and
second it helps us to avoid the non-temporal prefetch HW optimizations and
bring this into all cache-levels. It might be worth investigating if
prefetch into L2 will have the same benefit.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As cpumap now batch consume xdp_frame's from the ptr_ring, it knows how many
SKBs it need to allocate. Thus, lets bulk allocate these SKBs via
kmem_cache_alloc_bulk() API, and use the previously introduced function
build_skb_around().
Notice that the flag __GFP_ZERO asks the slab/slub allocator to clear the
memory for us. This does clear a larger area than needed, but my micro
benchmarks on Intel CPUs show that this is slightly faster due to being a
cacheline aligned area is cleared for the SKBs. (For SLUB allocator, there
is a future optimization potential, because SKBs will with high probability
originate from same page. If we can find/identify continuous memory areas
then the Intel CPU memset rep stos will have a real performance gain.)
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move ptr_ring dequeue outside loop, that allocate SKBs and calls network
stack, as these operations that can take some time. The ptr_ring is a
communication channel between CPUs, where we want to reduce/limit any
cacheline bouncing.
Do a concentrated bulk dequeue via ptr_ring_consume_batched, to shorten the
period and times the remote cacheline in ptr_ring is read
Batch size 8 is both to (1) limit BH-disable period, and (2) consume one
cacheline on 64-bit archs. After reducing the BH-disable section further
then we can consider changing this, while still thinking about L1 cacheline
size being active.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Keeping track of the number of mitigations for all the CPU speculation
bugs has become overwhelming for many users. It's getting more and more
complicated to decide which mitigations are needed for a given
architecture. Complicating matters is the fact that each arch tends to
have its own custom way to mitigate the same vulnerability.
Most users fall into a few basic categories:
a) they want all mitigations off;
b) they want all reasonable mitigations on, with SMT enabled even if
it's vulnerable; or
c) they want all reasonable mitigations on, with SMT disabled if
vulnerable.
Define a set of curated, arch-independent options, each of which is an
aggregation of existing options:
- mitigations=off: Disable all mitigations.
- mitigations=auto: [default] Enable all the default mitigations, but
leave SMT enabled, even if it's vulnerable.
- mitigations=auto,nosmt: Enable all the default mitigations, disabling
SMT if needed by a mitigation.
Currently, these options are placeholders which don't actually do
anything. They will be fleshed out in upcoming patches.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86)
Reviewed-by: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-arch@vger.kernel.org
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Tyler Hicks <tyhicks@canonical.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Phil Auld <pauld@redhat.com>
Link: https://lkml.kernel.org/r/b07a8ef9b7c5055c3a4637c87d07c296d5016fe0.1555085500.git.jpoimboe@redhat.com
verifier.c uses BPF_CAST_CALL for casting bpf call except at one
place in jit_subprogs(). Let's use the macro for consistency.
Signed-off-by: Prashant Bhole <bhole_prashant_q7@lab.ntt.co.jp>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
struct boo entry[];
};
size = sizeof(struct foo) + count * sizeof(struct boo);
instance = devm_kzalloc(dev, size, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper.
instance = devm_kzalloc(dev, struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190410170914.GA16161@embeddedor
Almost all {,de}activate_task() invocations pair with p->on_rq
updates, the exception being the usage in rt/deadline which hold both
rq locks and therefore don't strictly need to set
TASK_ON_RQ_MIGRATING, but it is harmless if we do anyway.
Put the updates in {,de}activate_task() and cut down on repetition.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
After the removal of try_to_wake_up_local(), there is only one user of
ttwu_activate() left, and since it is a trivial function, remove it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The worker accounting for CPU bound workers is plugged into the core
scheduler code and the wakeup code. This is not a hard requirement and
can be avoided by keeping track of the state in the workqueue code
itself.
Keep track of the sleeping state in the worker itself and call the
notifier before entering the core scheduler. There might be false
positives when the task is woken between that call and actually
scheduling, but that's not really different from scheduling and being
woken immediately after switching away. When nr_running is updated when
the task is retunrning from schedule() then it is later compared when it
is done from ttwu().
[ bigeasy: preempt_disable() around wq_worker_sleeping() by Daniel Bristot de Oliveira ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/ad2b29b5715f970bffc1a7026cabd6ff0b24076a.1532952814.git.bristot@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
syzbot reported the following warning:
[ ] WARNING: CPU: 4 PID: 17089 at kernel/sched/deadline.c:255 task_non_contending+0xae0/0x1950
line 255 of deadline.c is:
WARN_ON(hrtimer_active(&dl_se->inactive_timer));
in task_non_contending().
Unfortunately, in some cases (for example, a deadline task
continuosly blocking and waking immediately) it can happen that
a task blocks (and task_non_contending() is called) while the
0-lag timer is still active.
In this case, the safest thing to do is to immediately decrease
the running bandwidth of the task, without trying to re-arm the 0-lag timer.
Signed-off-by: luca abeni <luca.abeni@santannapisa.it>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: chengjian (D) <cj.chengjian@huawei.com>
Link: https://lkml.kernel.org/r/20190325131530.34706-1-luca.abeni@santannapisa.it
Signed-off-by: Ingo Molnar <mingo@kernel.org>
With extremely short cfs_period_us setting on a parent task group with a large
number of children the for loop in sched_cfs_period_timer() can run until the
watchdog fires. There is no guarantee that the call to hrtimer_forward_now()
will ever return 0. The large number of children can make
do_sched_cfs_period_timer() take longer than the period.
NMI watchdog: Watchdog detected hard LOCKUP on cpu 24
RIP: 0010:tg_nop+0x0/0x10
<IRQ>
walk_tg_tree_from+0x29/0xb0
unthrottle_cfs_rq+0xe0/0x1a0
distribute_cfs_runtime+0xd3/0xf0
sched_cfs_period_timer+0xcb/0x160
? sched_cfs_slack_timer+0xd0/0xd0
__hrtimer_run_queues+0xfb/0x270
hrtimer_interrupt+0x122/0x270
smp_apic_timer_interrupt+0x6a/0x140
apic_timer_interrupt+0xf/0x20
</IRQ>
To prevent this we add protection to the loop that detects when the loop has run
too many times and scales the period and quota up, proportionally, so that the timer
can complete before then next period expires. This preserves the relative runtime
quota while preventing the hard lockup.
A warning is issued reporting this state and the new values.
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The prototype of that function was already hoisted up in:
commit 3b1baa6496 ("sched/fair: Add 'group_misfit_task' load-balance type")
but that seems to have been missed. Get rid of the extra prototype.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Acked-by: Quentin Perret <quentin.perret@arm.com>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Fixes: 2802bf3cd9 ("sched/fair: Add over-utilization/tipping point indicator")
Link: http://lkml.kernel.org/r/20190416140621.19884-1-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch add perf_pmu_resched() a global function that can be called
to force rescheduling of events for a given PMU. The function locks
both cpuctx and task_ctx internally. This will be used by a subsequent
patch.
Signed-off-by: Stephane Eranian <eranian@google.com>
[ Simplified the calling convention. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: kan.liang@intel.com
Cc: nelson.dsouza@intel.com
Cc: tonyj@suse.com
Link: https://lkml.kernel.org/r/20190408173252.37932-2-eranian@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
1627314fb5 ("perf: Suppress AUX/OVERWRITE records")
has an unintended side-effect of also suppressing all AUX records with no flags
and non-zero size, so all the regular records in the full trace mode.
This breaks some use cases for people.
Fix this by restoring "regular" AUX records.
Reported-by: Ben Gainey <Ben.Gainey@arm.com>
Tested-by: Ben Gainey <Ben.Gainey@arm.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: 1627314fb5 ("perf: Suppress AUX/OVERWRITE records")
Link: https://lkml.kernel.org/r/20190329091338.29999-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following recent commit:
c60f83b813 ("perf, pt, coresight: Fix address filters for vmas with non-zero offset")
changes the address filtering logic to communicate filter ranges to the PMU driver
via a single address range object, instead of having the driver do the final bit of
math.
That change forgets to take into account kernel filters, which are not calculated
the same way as DSO based filters.
Fix that by passing the kernel filters the same way as file-based filters.
This doesn't require any additional changes in the drivers.
Reported-by: Adrian Hunter <adrian.hunter@intel.com>
Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: c60f83b813 ("perf, pt, coresight: Fix address filters for vmas with non-zero offset")
Link: https://lkml.kernel.org/r/20190329091212.29870-1-alexander.shishkin@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
commit f1a2e44a3a ("bpf: add queue and stack maps") introduced new BPF
helper functions:
- BPF_FUNC_map_push_elem
- BPF_FUNC_map_pop_elem
- BPF_FUNC_map_peek_elem
but they were made available only for network BPF programs. This patch
makes them available for tracepoint, cgroup and lirc programs.
Signed-off-by: Alban Crequy <alban@kinvolk.io>
Cc: Mauricio Vasquez B <mauricio.vasquez@polito.it>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The following commit introduced a bug in one of our error paths:
819319fc93 ("kprobes: Return error if we fail to reuse kprobe instead of BUG_ON()")
it missed to handle the return value of kprobe_optready() as
error-value. In reality, the kprobe_optready() returns a bool
result, so "true" case must be passed instead of 0.
This causes some errors on kprobe boot-time selftests on ARM:
[ ] Beginning kprobe tests...
[ ] Probe ARM code
[ ] kprobe
[ ] kretprobe
[ ] ARM instruction simulation
[ ] Check decoding tables
[ ] Run test cases
[ ] FAIL: test_case_handler not run
[ ] FAIL: Test andge r10, r11, r14, asr r7
[ ] FAIL: Scenario 11
...
[ ] FAIL: Scenario 7
[ ] Total instruction simulation tests=1631, pass=1433 fail=198
[ ] kprobe tests failed
This can happen if an optimized probe is unregistered and next
kprobe is registered on same address until the previous probe
is not reclaimed.
If this happens, a hidden aggregated probe may be kept in memory,
and no new kprobe can probe same address. Also, in that case
register_kprobe() will return "1" instead of minus error value,
which can mislead caller logic.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S . Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naveen N . Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org # v5.0+
Fixes: 819319fc93 ("kprobes: Return error if we fail to reuse kprobe instead of BUG_ON()")
Link: http://lkml.kernel.org/r/155530808559.32517.539898325433642204.stgit@devnote2
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If lockdep_register_key() and lockdep_unregister_key() are called with
debug_locks == false then the following warning is reported:
WARNING: CPU: 2 PID: 15145 at kernel/locking/lockdep.c:4920 lockdep_unregister_key+0x1ad/0x240
That warning is reported because lockdep_unregister_key() ignores the
value of 'debug_locks' and because the behavior of lockdep_register_key()
depends on whether or not 'debug_locks' is set. Fix this inconsistency
by making lockdep_unregister_key() take 'debug_locks' again into
account.
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: shenghui <shhuiw@foxmail.com>
Fixes: 90c1cba2b3 ("locking/lockdep: Zap lock classes even with lock debugging disabled")
Link: http://lkml.kernel.org/r/20190415170538.23491-1-bvanassche@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Emit an audit record every time selected NTP parameters are modified
from userspace (via adjtimex(2) or clock_adjtime(2)). These parameters
may be used to indirectly change system clock, and thus their
modifications should be audited.
Such events will now generate records of type AUDIT_TIME_ADJNTPVAL
containing the following fields:
- op -- which value was adjusted:
- offset -- corresponding to the time_offset variable
- freq -- corresponding to the time_freq variable
- status -- corresponding to the time_status variable
- adjust -- corresponding to the time_adjust variable
- tick -- corresponding to the tick_usec variable
- tai -- corresponding to the timekeeping's TAI offset
- old -- the old value
- new -- the new value
Example records:
type=TIME_ADJNTPVAL msg=audit(1530616044.507:7): op=status old=64 new=8256
type=TIME_ADJNTPVAL msg=audit(1530616044.511:11): op=freq old=0 new=49180377088000
The records of this type will be associated with the corresponding
syscall records.
An overview of parameter changes that can be done via do_adjtimex()
(based on information from Miroslav Lichvar) and whether they are
audited:
__timekeeping_set_tai_offset() -- sets the offset from the
International Atomic Time
(AUDITED)
NTP variables:
time_offset -- can adjust the clock by up to 0.5 seconds per call
and also speed it up or slow down by up to about
0.05% (43 seconds per day) (AUDITED)
time_freq -- can speed up or slow down by up to about 0.05%
(AUDITED)
time_status -- can insert/delete leap seconds and it also enables/
disables synchronization of the hardware real-time
clock (AUDITED)
time_maxerror, time_esterror -- change error estimates used to
inform userspace applications
(NOT AUDITED)
time_constant -- controls the speed of the clock adjustments that
are made when time_offset is set (NOT AUDITED)
time_adjust -- can temporarily speed up or slow down the clock by up
to 0.05% (AUDITED)
tick_usec -- a more extreme version of time_freq; can speed up or
slow down the clock by up to 10% (AUDITED)
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Reviewed-by: Richard Guy Briggs <rgb@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Emit an audit record whenever the system clock is changed (i.e. shifted
by a non-zero offset) by a syscall from userspace. The syscalls than can
(at the time of writing) trigger such record are:
- settimeofday(2), stime(2), clock_settime(2) -- via
do_settimeofday64()
- adjtimex(2), clock_adjtime(2) -- via do_adjtimex()
The new records have type AUDIT_TIME_INJOFFSET and contain the following
fields:
- sec -- the 'seconds' part of the offset
- nsec -- the 'nanoseconds' part of the offset
Example record (time was shifted backwards by ~15.875 seconds):
type=TIME_INJOFFSET msg=audit(1530616049.652:13): sec=-16 nsec=124887145
The records of this type will be associated with the corresponding
syscall records.
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Reviewed-by: Richard Guy Briggs <rgb@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
[PM: fixed a line width problem in __audit_tk_injoffset()]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Pablo Neira Ayuso says:
====================
Netfilter/IPVS updates for net-next
The following patchset contains Netfilter updates for net-next:
1) Remove the broute pseudo hook, implement this from the bridge
prerouting hook instead. Now broute becomes real table in ebtables,
from Florian Westphal. This also includes a size reduction patch for the
bridge control buffer area via squashing boolean into bitfields and
a selftest.
2) Add OS passive fingerprint version matching, from Fernando Fernandez.
3) Support for gue encapsulation for IPVS, from Jacky Hu.
4) Add support for NAT to the inet family, from Florian Westphal.
This includes support for masquerade, redirect and nat extensions.
5) Skip interface lookup in flowtable, use device in the dst object.
6) Add jiffies64_to_msecs() and use it, from Li RongQing.
7) Remove unused parameter in nf_tables_set_desc_parse(), from Colin Ian King.
8) Statify several functions, patches from YueHaibing and Florian Westphal.
9) Add an optimized version of nf_inet_addr_cmp(), from Li RongQing.
10) Merge route extension to core, also from Florian.
11) Use IS_ENABLED(CONFIG_NF_NAT) instead of NF_NAT_NEEDED, from Florian.
12) Merge ip/ip6 masquerade extensions, from Florian. This includes
netdevice notifier unification.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Merge page ref overflow branch.
Jann Horn reported that he can overflow the page ref count with
sufficient memory (and a filesystem that is intentionally extremely
slow).
Admittedly it's not exactly easy. To have more than four billion
references to a page requires a minimum of 32GB of kernel memory just
for the pointers to the pages, much less any metadata to keep track of
those pointers. Jann needed a total of 140GB of memory and a specially
crafted filesystem that leaves all reads pending (in order to not ever
free the page references and just keep adding more).
Still, we have a fairly straightforward way to limit the two obvious
user-controllable sources of page references: direct-IO like page
references gotten through get_user_pages(), and the splice pipe page
duplication. So let's just do that.
* branch page-refs:
fs: prevent page refcount overflow in pipe_buf_get
mm: prevent get_user_pages() from overflowing page refcount
mm: add 'try_get_page()' helper function
mm: make page ref count overflow check tighter and more explicit
No architecture terminates the stack trace with ULONG_MAX anymore. As the
code checks the number of entries stored anyway there is no point in
keeping all that ULONG_MAX magic around.
The histogram code zeroes the storage before saving the stack, so if the
trace is shorter than the maximum number of entries it can terminate the
print loop if a zero entry is detected.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Link: https://lkml.kernel.org/r/20190410103645.048761764@linutronix.de
No architecture terminates the stack trace with ULONG_MAX anymore. The
consumer terminates on the first zero entry or at the number of entries, so
no functional change.
Remove the cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Link: https://lkml.kernel.org/r/20190410103644.853527514@linutronix.de
No architecture terminates the stack trace with ULONG_MAX anymore. Remove
the cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: https://lkml.kernel.org/r/20190410103644.485737321@linutronix.de
Change pipe_buf_get() to return a bool indicating whether it succeeded
in raising the refcount of the page (if the thing in the pipe is a page).
This removes another mechanism for overflowing the page refcount. All
callers converted to handle a failure.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull timer fix from Ingo Molnar:
"Fix the alarm_timer_remaining() return value"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
alarmtimer: Return correct remaining time
Pull scheduler fix from Ingo Molnar:
"Fix a NULL pointer dereference crash in certain environments"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Do not re-read ->h_load_next during hierarchical load calculation
Pull perf fixes from Ingo Molnar:
"Six kernel side fixes: three related to NMI handling on AMD systems, a
race fix, a kexec initialization fix and a PEBS sampling fix"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/core: Fix perf_event_disable_inatomic() race
x86/perf/amd: Remove need to check "running" bit in NMI handler
x86/perf/amd: Resolve NMI latency issues for active PMCs
x86/perf/amd: Resolve race condition when disabling PMC
perf/x86/intel: Initialize TFA MSR
perf/x86/intel: Fix handling of wakeup_events for multi-entry PEBS
Pull locking fix from Ingo Molnar:
"Fixes a crash when accessing /proc/lockdep"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/lockdep: Zap lock classes even with lock debugging disabled
There are a few "regs[regno]" here are there across "check_reg_arg", this
patch factor it out into a simple "reg" pointer. The intention is to
simplify code indentation and make the later patches in this set look
cleaner.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
After code refactor in previous patches, the propagation logic inside the
for loop in "propagate_liveness" becomes clear that they are good enough to
be factored out into a common function "propagate_liveness_reg".
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Access to reg states were not factored out, the consequence is long code
for dereferencing them which made the indentation not good for reading.
This patch factor out these code so the core code in the loop could be
easier to follow.
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Propagation for register and stack slot are finished in separate for loop,
while they are perfect to be put into a single loop.
This could also let them share some common variables in later patches.
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When swiotlb is full, the kernel would print io_tlb_used. However, the
result might be inaccurate at that time because we have left the critical
section protected by spinlock.
Therefore, we backup the io_tlb_used into local variable before leaving
critical section.
Fixes: 83ca259489 ("swiotlb: dump used and total slots when swiotlb buffer is full")
Suggested-by: Håkon Bugge <haakon.bugge@oracle.com>
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Fix a new warning reported by kbuild for make ARCH=i386:
In file included from kernel/bpf/cgroup.c:11:0:
kernel/bpf/cgroup.c: In function '__cgroup_bpf_run_filter_sysctl':
include/linux/kernel.h:827:29: warning: comparison of distinct pointer types lacks a cast
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
^
include/linux/kernel.h:841:4: note: in expansion of macro '__typecheck'
(__typecheck(x, y) && __no_side_effects(x, y))
^~~~~~~~~~~
include/linux/kernel.h:851:24: note: in expansion of macro '__safe_cmp'
__builtin_choose_expr(__safe_cmp(x, y), \
^~~~~~~~~~
include/linux/kernel.h:860:19: note: in expansion of macro '__careful_cmp'
#define min(x, y) __careful_cmp(x, y, <)
^~~~~~~~~~~~~
>> kernel/bpf/cgroup.c:837:17: note: in expansion of macro 'min'
ctx.new_len = min(PAGE_SIZE, *pcount);
^~~
Fixes: 4e63acdff8 ("bpf: Introduce bpf_sysctl_{get,set}_new_value helpers")
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add bpf_strtol and bpf_strtoul to convert a string to long and unsigned
long correspondingly. It's similar to user space strtol(3) and
strtoul(3) with a few changes to the API:
* instead of NUL-terminated C string the helpers expect buffer and
buffer length;
* resulting long or unsigned long is returned in a separate
result-argument;
* return value is used to indicate success or failure, on success number
of consumed bytes is returned that can be used to identify position to
read next if the buffer is expected to contain multiple integers;
* instead of *base* argument, *flags* is used that provides base in 5
LSB, other bits are reserved for future use;
* number of supported bases is limited.
Documentation for the new helpers is provided in bpf.h UAPI.
The helpers are made available to BPF_PROG_TYPE_CGROUP_SYSCTL programs to
be able to convert string input to e.g. "ulongvec" output.
E.g. "net/ipv4/tcp_mem" consists of three ulong integers. They can be
parsed by calling to bpf_strtoul three times.
Implementation notes:
Implementation includes "../../lib/kstrtox.h" to reuse integer parsing
functions. It's done exactly same way as fs/proc/base.c already does.
Unfortunately existing kstrtoX function can't be used directly since
they fail if any invalid character is present right after integer in the
string. Existing simple_strtoX functions can't be used either since
they're obsolete and don't handle overflow properly.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently the way to pass result from BPF helper to BPF program is to
provide memory area defined by pointer and size: func(void *, size_t).
It works great for generic use-case, but for simple types, such as int,
it's overkill and consumes two arguments when it could use just one.
Introduce new argument types ARG_PTR_TO_INT and ARG_PTR_TO_LONG to be
able to pass result from helper to program via pointer to int and long
correspondingly: func(int *) or func(long *).
New argument types are similar to ARG_PTR_TO_MEM with the following
differences:
* they don't require corresponding ARG_CONST_SIZE argument, predefined
access sizes are used instead (32bit for int, 64bit for long);
* it's possible to use more than one such an argument in a helper;
* provided pointers have to be aligned.
It's easy to introduce similar ARG_PTR_TO_CHAR and ARG_PTR_TO_SHORT
argument types. It's not done due to lack of use-case though.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add file_pos field to bpf_sysctl context to read and write sysctl file
position at which sysctl is being accessed (read or written).
The field can be used to e.g. override whole sysctl value on write to
sysctl even when sys_write is called by user space with file_pos > 0. Or
BPF program may reject such accesses.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add helpers to work with new value being written to sysctl by user
space.
bpf_sysctl_get_new_value() copies value being written to sysctl into
provided buffer.
bpf_sysctl_set_new_value() overrides new value being written by user
space with a one from provided buffer. Buffer should contain string
representation of the value, similar to what can be seen in /proc/sys/.
Both helpers can be used only on sysctl write.
File position matters and can be managed by an interface that will be
introduced separately. E.g. if user space calls sys_write to a file in
/proc/sys/ at file position = X, where X > 0, then the value set by
bpf_sysctl_set_new_value() will be written starting from X. If program
wants to override whole value with specified buffer, file position has
to be set to zero.
Documentation for the new helpers is provided in bpf.h UAPI.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add bpf_sysctl_get_current_value() helper to copy current sysctl value
into provided by BPF_PROG_TYPE_CGROUP_SYSCTL program buffer.
It provides same string as user space can see by reading corresponding
file in /proc/sys/, including new line, etc.
Documentation for the new helper is provided in bpf.h UAPI.
Since current value is kept in ctl_table->data in a parsed form,
ctl_table->proc_handler() with write=0 is called to read that data and
convert it to a string. Such a string can later be parsed by a program
using helpers that will be introduced separately.
Unfortunately it's not trivial to provide API to access parsed data due to
variety of data representations (string, intvec, uintvec, ulongvec,
custom structures, even NULL, etc). Instead it's assumed that user know
how to handle specific sysctl they're interested in and appropriate
helpers can be used.
Since ctl_table->proc_handler() expects __user buffer, conversion to
__user happens for kernel allocated one where the value is stored.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add bpf_sysctl_get_name() helper to copy sysctl name (/proc/sys/ entry)
into provided by BPF_PROG_TYPE_CGROUP_SYSCTL program buffer.
By default full name (w/o /proc/sys/) is copied, e.g. "net/ipv4/tcp_mem".
If BPF_F_SYSCTL_BASE_NAME flag is set, only base name will be copied,
e.g. "tcp_mem".
Documentation for the new helper is provided in bpf.h UAPI.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Containerized applications may run as root and it may create problems
for whole host. Specifically such applications may change a sysctl and
affect applications in other containers.
Furthermore in existing infrastructure it may not be possible to just
completely disable writing to sysctl, instead such a process should be
gradual with ability to log what sysctl are being changed by a
container, investigate, limit the set of writable sysctl to currently
used ones (so that new ones can not be changed) and eventually reduce
this set to zero.
The patch introduces new program type BPF_PROG_TYPE_CGROUP_SYSCTL and
attach type BPF_CGROUP_SYSCTL to solve these problems on cgroup basis.
New program type has access to following minimal context:
struct bpf_sysctl {
__u32 write;
};
Where @write indicates whether sysctl is being read (= 0) or written (=
1).
Helpers to access sysctl name and value will be introduced separately.
BPF_CGROUP_SYSCTL attach point is added to sysctl code right before
passing control to ctl_table->proc_handler so that BPF program can
either allow or deny access to sysctl.
Suggested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently kernel/bpf/cgroup.c contains only one program type and one
proto function cgroup_dev_func_proto(). It'd be useful to have base
proto function that can be reused for new cgroup-bpf program types
coming soon.
Introduce cgroup_base_func_proto().
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Thomas-Mich Richter reported he triggered a WARN()ing from event_function_local()
on his s390. The problem boils down to:
CPU-A CPU-B
perf_event_overflow()
perf_event_disable_inatomic()
@pending_disable = 1
irq_work_queue();
sched-out
event_sched_out()
@pending_disable = 0
sched-in
perf_event_overflow()
perf_event_disable_inatomic()
@pending_disable = 1;
irq_work_queue(); // FAILS
irq_work_run()
perf_pending_event()
if (@pending_disable)
perf_event_disable_local(); // WHOOPS
The problem exists in generic, but s390 is particularly sensitive
because it doesn't implement arch_irq_work_raise(), nor does it call
irq_work_run() from it's PMU interrupt handler (nor would that be
sufficient in this case, because s390 also generates
perf_event_overflow() from pmu::stop). Add to that the fact that s390
is a virtual architecture and (virtual) CPU-A can stall long enough
for the above race to happen, even if it would self-IPI.
Adding a irq_work_sync() to event_sched_in() would work for all hardare
PMUs that properly use irq_work_run() but fails for software PMUs.
Instead encode the CPU number in @pending_disable, such that we can
tell which CPU requested the disable. This then allows us to detect
the above scenario and even redirect the IPI to make up for the failed
queue.
Reported-by: Thomas-Mich Richter <tmricht@linux.ibm.com>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Hendrik Brueckner <brueckner@linux.ibm.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2019-04-12
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Improve BPF verifier scalability for large programs through two
optimizations: i) remove verifier states that are not useful in pruning,
ii) stop walking parentage chain once first LIVE_READ is seen. Combined
gives approx 20x speedup. Increase limits for accepting large programs
under root, and add various stress tests, from Alexei.
2) Implement global data support in BPF. This enables static global variables
for .data, .rodata and .bss sections to be properly handled which allows
for more natural program development. This also opens up the possibility
to optimize program workflow by compiling ELFs only once and later only
rewriting section data before reload, from Daniel and with test cases and
libbpf refactoring from Joe.
3) Add config option to generate BTF type info for vmlinux as part of the
kernel build process. DWARF debug info is converted via pahole to BTF.
Latter relies on libbpf and makes use of BTF deduplication algorithm which
results in 100x savings compared to DWARF data. Resulting .BTF section is
typically about 2MB in size, from Andrii.
4) Add BPF verifier support for stack access with variable offset from
helpers and add various test cases along with it, from Andrey.
5) Extend bpf_skb_adjust_room() growth BPF helper to mark inner MAC header
so that L2 encapsulation can be used for tc tunnels, from Alan.
6) Add support for input __sk_buff context in BPF_PROG_TEST_RUN so that
users can define a subset of allowed __sk_buff fields that get fed into
the test program, from Stanislav.
7) Add bpf fs multi-dimensional array tests for BTF test suite and fix up
various UBSAN warnings in bpftool, from Yonghong.
8) Generate a pkg-config file for libbpf, from Luca.
9) Dump program's BTF id in bpftool, from Prashant.
10) libbpf fix to use smaller BPF log buffer size for AF_XDP's XDP
program, from Magnus.
11) kallsyms related fixes for the case when symbols are not present in
BPF selftests and samples, from Daniel
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
With skip set to 1, I get a traceback like this:
[ 106.867637] DMA-API: Mapped at:
[ 106.870784] afu_dma_map_region+0x2cd/0x4f0 [dfl_afu]
[ 106.875839] afu_ioctl+0x258/0x380 [dfl_afu]
[ 106.880108] do_vfs_ioctl+0xa9/0x720
[ 106.883688] ksys_ioctl+0x60/0x90
[ 106.887007] __x64_sys_ioctl+0x16/0x20
With the previous value of 2, afu_dma_map_region was being omitted. I
suspect that the code paths have simply changed since the value of 2 was
chosen a decade ago, but it's also possible that it varies based on which
mapping function was used, compiler inlining choices, etc. In any case,
it's best to err on the side of skipping less.
Signed-off-by: Scott Wood <swood@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
The function_graph tracer has a stub function and its ops flag has the
FTRACE_OPS_FL_STUB set. As the function graph does not use the
ftrace_ops->func pointer but instead is called by a separate part of the
ftrace trampoline. The function_graph tracer still requires to pass in a
ftrace_ops that may also hold the hash of the functions to call. But there's
no reason to test that hash in the function tracing portion. Instead of
testing to see if we should call the stub function, just test if the ops has
FTRACE_OPS_FL_STUB set, and just skip it.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Add new set of arguments to bpf_attr for BPF_PROG_TEST_RUN:
* ctx_in/ctx_size_in - input context
* ctx_out/ctx_size_out - output context
The intended use case is to pass some meta data to the test runs that
operate on skb (this has being brought up on recent LPC).
For programs that use bpf_prog_test_run_skb, support __sk_buff input and
output. Initially, from input __sk_buff, copy _only_ cb and priority into
skb, all other non-zero fields are prohibited (with EINVAL).
If the user has set ctx_out/ctx_size_out, copy the potentially modified
__sk_buff back to the userspace.
We require all fields of input __sk_buff except the ones we explicitly
support to be set to zero. The expectation is that in the future we might
add support for more fields and we want to fail explicitly if the user
runs the program on the kernel where we don't yet support them.
The API is intentionally vague (i.e. we don't explicitly add __sk_buff
to bpf_attr, but ctx_in) to potentially let other test_run types use
this interface in the future (this can be xdp_md for xdp types for
example).
v4:
* don't copy more than allowed in bpf_ctx_init [Martin]
v3:
* handle case where ctx_in is NULL, but ctx_out is not [Martin]
* convert size==0 checks to ptr==NULL checks and add some extra ptr
checks [Martin]
v2:
* Addressed comments from Martin Lau
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
So far the kernel only prints the requested size if swiotlb buffer if full.
It is not possible to know whether it is simply an out of buffer, or it is
because swiotlb cannot allocate buffer with the requested size due to
fragmentation.
As 'io_tlb_used' is available since commit 71602fe6d4 ("swiotlb: add
debugfs to track swiotlb buffer usage"), both 'io_tlb_used' and
'io_tlb_nslabs' are printed when swiotlb buffer is full.
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The ASSIGN_OPS_HASH() macro was moved to fgraph.c where it was used, but for
some reason it wasn't removed from ftrace.c, as it is no longer referenced
there.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
To calculate a remaining time, it's required to subtract the current time
from the expiration time. In alarm_timer_remaining() the arguments of
ktime_sub are swapped.
Fixes: d653d8457c ("alarmtimer: Implement remaining callback")
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190408041542.26338-1-avagin@gmail.com
The following commit:
a0b0fd53e1 ("locking/lockdep: Free lock classes that are no longer in use")
changed the behavior of lockdep_free_key_range() from
unconditionally zapping lock classes into only zapping lock classes if
debug_lock == true. Not zapping lock classes if debug_lock == false leaves
dangling pointers in several lockdep datastructures, e.g. lock_class::name
in the all_lock_classes list.
The shell command "cat /proc/lockdep" causes the kernel to iterate the
all_lock_classes list. Hence the "unable to handle kernel paging request" cash
that Shenghui encountered by running cat /proc/lockdep.
Since the new behavior can cause cat /proc/lockdep to crash, restore the
pre-v5.1 behavior.
This patch avoids that cat /proc/lockdep triggers the following crash
with debug_lock == false:
BUG: unable to handle kernel paging request at fffffbfff40ca448
RIP: 0010:__asan_load1+0x28/0x50
Call Trace:
string+0xac/0x180
vsnprintf+0x23e/0x820
seq_vprintf+0x82/0xc0
seq_printf+0x92/0xb0
print_name+0x34/0xb0
l_show+0x184/0x200
seq_read+0x59e/0x6c0
proc_reg_read+0x11f/0x170
__vfs_read+0x4d/0x90
vfs_read+0xc5/0x1f0
ksys_read+0xab/0x130
__x64_sys_read+0x43/0x50
do_syscall_64+0x71/0x210
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Reported-by: shenghui <shhuiw@foxmail.com>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Fixes: a0b0fd53e1 ("locking/lockdep: Free lock classes that are no longer in use") # v5.1-rc1.
Link: https://lkml.kernel.org/r/20190403233552.124673-1-bvanassche@acm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add lock event counting calls so that we can track the number of lock
events happening in the rwsem code.
With CONFIG_LOCK_EVENT_COUNTS on and booting a 4-socket 112-thread x86-64
system, the rwsem counts after system bootup were as follows:
rwsem_opt_fail=261
rwsem_opt_wlock=50636
rwsem_rlock=445
rwsem_rlock_fail=0
rwsem_rlock_fast=22
rwsem_rtrylock=810144
rwsem_sleep_reader=441
rwsem_sleep_writer=310
rwsem_wake_reader=355
rwsem_wake_writer=2335
rwsem_wlock=261
rwsem_wlock_fail=0
rwsem_wtrylock=20583
It can be seen that most of the lock acquisitions in the slowpath were
write-locks in the optimistic spinning code path with no sleeping at
all. For this system, over 97% of the locks are acquired via optimistic
spinning. It illustrates the importance of optimistic spinning in
improving the performance of rwsem.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-11-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
On bare metal, the pvqspinlock event counts will always be 0. So there
is no point in showing their corresponding debugfs files. So they are
skipped in this case.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-10-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The QUEUED_LOCK_STAT option to report queued spinlocks event counts
was previously allowed only on x86 architecture. To make the locking
event counting code more useful, it is now renamed to a more generic
LOCK_EVENT_COUNTS config option. This new option will be available to
all the architectures that use qspinlock at the moment.
Other locking code can now start to use the generic locking event
counting code by including lock_events.h and put the new locking event
names into the lock_events_list.h header file.
My experience with lock event counting is that it gives valuable insight
on how the locking code works and what can be done to make it better. I
would like to extend this benefit to other locking code like mutex and
rwsem in the near future.
The PV qspinlock specific code will stay in qspinlock_stat.h. The
locking event counters will now reside in the <debugfs>/lock_event_counts
directory.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-9-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The percpu event counts used by qspinlock code can be useful for
other locking code as well. So a new set of lockevent_* counting APIs
is introduced with the lock event names extracted out into the new
lock_events_list.h header file for easier addition in the future.
The existing qstat_inc() calls are replaced by either lockevent_inc() or
lockevent_cond_inc() calls.
The qstat_hop() call is renamed to lockevent_pv_hop(). The "reset_counters"
debugfs file is also renamed to ".reset_counts".
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-8-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, the DEBUG_RWSEMS_WARN_ON() macro just dumps a stack trace
when the rwsem isn't in the right state. It does not show the actual
states of the rwsem. This may not be that helpful in the debugging
process.
Enhance the DEBUG_RWSEMS_WARN_ON() macro to also show the current
content of the rwsem count and owner fields to give more information
about what is wrong with the rwsem. The debug_locks_off() function is
called as is done inside DEBUG_LOCKS_WARN_ON().
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-7-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When rwsem_down_read_failed*() return, the read lock is acquired
indirectly by others. So debug checks are added in __down_read() and
__down_read_killable() to make sure the rwsem is really reader-owned.
The other debug check calls in kernel/locking/rwsem.c except the
one in up_read_non_owner() are also moved over to rwsem-xadd.h.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-6-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The atomic_long_cmpxchg_acquire() in rwsem_try_read_lock_unqueued() is
replaced by atomic_long_try_cmpxchg_acquire() to simpify the code and
generate slightly better assembly code.
There is no functional change.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-5-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We don't need to expose rwsem internal functions which are not supposed
to be called directly from other kernel code.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-4-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move all the owner setting code closer to the rwsem-xadd fast paths
directly within rwsem.h file as well as in the slowpaths where owner
setting is done after acquring the lock. This will enable us to add
DEBUG_RWSEMS check in a later patch to make sure that read lock is
really acquired when rwsem_down_read_failed() returns, for instance.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-3-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The rwsem_down_read_failed*() functions were relocated from above the
optimistic spinning section to below that section. This enables the
reader functions to use optimisitic spinning in future patches. There
is no code change.
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Link: http://lkml.kernel.org/r/20190404174320.22416-2-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While staring at build_sched_domains(), I realized that get_group()
does several duplicate (thus useless) writes.
If you take the Arm Juno r0 (LITTLEs = [0, 3, 4, 5], bigs = [1, 2]), the
sched_group build flow would look like this:
('MC[cpu]->sg' means 'per_cpu_ptr(&tl->data->sg, cpu)' with 'tl == MC')
build_sched_groups(MC[CPU0]->sd, CPU0)
get_group(0) -> MC[CPU0]->sg
get_group(3) -> MC[CPU3]->sg
get_group(4) -> MC[CPU4]->sg
get_group(5) -> MC[CPU5]->sg
build_sched_groups(DIE[CPU0]->sd, CPU0)
get_group(0) -> DIE[CPU0]->sg
get_group(1) -> DIE[CPU1]->sg <=================+
|
build_sched_groups(MC[CPU1]->sd, CPU1) |
get_group(1) -> MC[CPU1]->sg |
get_group(2) -> MC[CPU2]->sg |
|
build_sched_groups(DIE[CPU1]->sd, CPU1) ^
get_group(1) -> DIE[CPU1]->sg } We've set up these two up here!
get_group(3) -> DIE[CPU0]->sg }
From this point on, we will only use sched_groups that have been
previously visited & initialized. The only new operation will
be which group pointer we affect to sd->groups.
On the Juno r0 we get 32 get_group() calls, every single one of them
writing to a sched_group->cpumask. However, all of the data structures
we need are set up after 8 visits (see above).
Return early from get_group() if we've already visited (and thus
initialized) the sched_group we're looking at. Overlapping domains
are not affected as they do not use build_sched_groups().
Tested on a Juno and a 2 * (Xeon E5-2690) system.
( FWIW I initially checked the refs for both sg && sg->sgc, but figured if
they weren't both 0 or > 1 then something must have gone wrong, so I
threw in a WARN_ON(). )
No change in functionality intended.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The comment was introduced (pre 2.6.12) by:
8a7a2318dc07 ("[PATCH] sched: consolidate sched domains")
and referred to sched_group->cpu_power. This was folded into
sched_group->sched_group_power in
commit 9c3f75cbd1 ("sched: Break out cpu_power from the sched_group structure")
The comment was then updated in:
ced549fa5f ("sched: Remove remaining dubious usage of "power"")
but should have replaced "sg->cpu_capacity" with
"sg->sched_group_capacity". Do that now.
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Dietmar.Eggemann@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: morten.rasmussen@arm.com
Cc: qais.yousef@arm.com
Link: http://lkml.kernel.org/r/20190409173546.4747-3-valentin.schneider@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Given we'll be reusing BPF array maps for global data/bss/rodata
sections, we need a way to associate BTF DataSec type as its map
value type. In usual cases we have this ugly BPF_ANNOTATE_KV_PAIR()
macro hack e.g. via 38d5d3b3d5 ("bpf: Introduce BPF_ANNOTATE_KV_PAIR")
to get initial map to type association going. While more use cases
for it are discouraged, this also won't work for global data since
the use of array map is a BPF loader detail and therefore unknown
at compilation time. For array maps with just a single entry we make
an exception in terms of BTF in that key type is declared optional
if value type is of DataSec type. The latter LLVM is guaranteed to
emit and it also aligns with how we regard global data maps as just
a plain buffer area reusing existing map facilities for allowing
things like introspection with existing tools.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This work adds kernel-side verification, logging and seq_show dumping
of BTF Var and DataSec kinds which are emitted with latest LLVM. The
following constraints apply:
BTF Var must have:
- Its kind_flag is 0
- Its vlen is 0
- Must point to a valid type
- Type must not resolve to a forward type
- Size of underlying type must be > 0
- Must have a valid name
- Can only be a source type, not sink or intermediate one
- Name may include dots (e.g. in case of static variables
inside functions)
- Cannot be a member of a struct/union
- Linkage so far can either only be static or global/allocated
BTF DataSec must have:
- Its kind_flag is 0
- Its vlen cannot be 0
- Its size cannot be 0
- Must have a valid name
- Can only be a source type, not sink or intermediate one
- Name may include dots (e.g. to represent .bss, .data, .rodata etc)
- Cannot be a member of a struct/union
- Inner btf_var_secinfo array with {type,offset,size} triple
must be sorted by offset in ascending order
- Type must always point to BTF Var
- BTF resolved size of Var must be <= size provided by triple
- DataSec size must be >= sum of triple sizes (thus holes
are allowed)
btf_var_resolve(), btf_ptr_resolve() and btf_modifier_resolve()
are on a high level quite similar but each come with slight,
subtle differences. They could potentially be a bit refactored
in future which hasn't been done here to ease review.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Trivial addition to allow '.' aside from '_' as "special" characters
in the object name. Used to allow for substrings in maps from loader
side such as ".bss", ".data", ".rodata", but could also be useful for
other purposes.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds a new BPF_MAP_FREEZE command which allows to
"freeze" the map globally as read-only / immutable from syscall
side.
Map permission handling has been refactored into map_get_sys_perms()
and drops FMODE_CAN_WRITE in case of locked map. Main use case is
to allow for setting up .rodata sections from the BPF ELF which
are loaded into the kernel, meaning BPF loader first allocates
map, sets up map value by copying .rodata section into it and once
complete, it calls BPF_MAP_FREEZE on the map fd to prevent further
modifications.
Right now BPF_MAP_FREEZE only takes map fd as argument while remaining
bpf_attr members are required to be zero. I didn't add write-only
locking here as counterpart since I don't have a concrete use-case
for it on my side, and I think it makes probably more sense to wait
once there is actually one. In that case bpf_attr can be extended
as usual with a flag field and/or others where flag 0 means that
we lock the map read-only hence this doesn't prevent to add further
extensions to BPF_MAP_FREEZE upon need.
A map creation flag like BPF_F_WRONCE was not considered for couple
of reasons: i) in case of a generic implementation, a map can consist
of more than just one element, thus there could be multiple map
updates needed to set the map into a state where it can then be
made immutable, ii) WRONCE indicates exact one-time write before
it is then set immutable. A generic implementation would set a bit
atomically on map update entry (if unset), indicating that every
subsequent update from then onwards will need to bail out there.
However, map updates can fail, so upon failure that flag would need
to be unset again and the update attempt would need to be repeated
for it to be eventually made immutable. While this can be made
race-free, this approach feels less clean and in combination with
reason i), it's not generic enough. A dedicated BPF_MAP_FREEZE
command directly sets the flag and caller has the guarantee that
map is immutable from syscall side upon successful return for any
future syscall invocations that would alter the map state, which
is also more intuitive from an API point of view. A command name
such as BPF_MAP_LOCK has been avoided as it's too close with BPF
map spin locks (which already has BPF_F_LOCK flag). BPF_MAP_FREEZE
is so far only enabled for privileged users.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This work adds two new map creation flags BPF_F_RDONLY_PROG
and BPF_F_WRONLY_PROG in order to allow for read-only or
write-only BPF maps from a BPF program side.
Today we have BPF_F_RDONLY and BPF_F_WRONLY, but this only
applies to system call side, meaning the BPF program has full
read/write access to the map as usual while bpf(2) calls with
map fd can either only read or write into the map depending
on the flags. BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG allows
for the exact opposite such that verifier is going to reject
program loads if write into a read-only map or a read into a
write-only map is detected. For read-only map case also some
helpers are forbidden for programs that would alter the map
state such as map deletion, update, etc. As opposed to the two
BPF_F_RDONLY / BPF_F_WRONLY flags, BPF_F_RDONLY_PROG as well
as BPF_F_WRONLY_PROG really do correspond to the map lifetime.
We've enabled this generic map extension to various non-special
maps holding normal user data: array, hash, lru, lpm, local
storage, queue and stack. Further generic map types could be
followed up in future depending on use-case. Main use case
here is to forbid writes into .rodata map values from verifier
side.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Both BPF_F_WRONLY / BPF_F_RDONLY flags are tied to the map file
descriptor, but not to the map object itself! Meaning, at map
creation time BPF_F_RDONLY can be set to make the map read-only
from syscall side, but this holds only for the returned fd, so
any other fd either retrieved via bpf file system or via map id
for the very same underlying map object can have read-write access
instead.
Given that, keeping the two flags around in the map_flags attribute
and exposing them to user space upon map dump is misleading and
may lead to false conclusions. Since these two flags are not
tied to the map object lets also not store them as map property.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This generic extension to BPF maps allows for directly loading
an address residing inside a BPF map value as a single BPF
ldimm64 instruction!
The idea is similar to what BPF_PSEUDO_MAP_FD does today, which
is a special src_reg flag for ldimm64 instruction that indicates
that inside the first part of the double insns's imm field is a
file descriptor which the verifier then replaces as a full 64bit
address of the map into both imm parts. For the newly added
BPF_PSEUDO_MAP_VALUE src_reg flag, the idea is the following:
the first part of the double insns's imm field is again a file
descriptor corresponding to the map, and the second part of the
imm field is an offset into the value. The verifier will then
replace both imm parts with an address that points into the BPF
map value at the given value offset for maps that support this
operation. Currently supported is array map with single entry.
It is possible to support more than just single map element by
reusing both 16bit off fields of the insns as a map index, so
full array map lookup could be expressed that way. It hasn't
been implemented here due to lack of concrete use case, but
could easily be done so in future in a compatible way, since
both off fields right now have to be 0 and would correctly
denote a map index 0.
The BPF_PSEUDO_MAP_VALUE is a distinct flag as otherwise with
BPF_PSEUDO_MAP_FD we could not differ offset 0 between load of
map pointer versus load of map's value at offset 0, and changing
BPF_PSEUDO_MAP_FD's encoding into off by one to differ between
regular map pointer and map value pointer would add unnecessary
complexity and increases barrier for debugability thus less
suitable. Using the second part of the imm field as an offset
into the value does /not/ come with limitations since maximum
possible value size is in u32 universe anyway.
This optimization allows for efficiently retrieving an address
to a map value memory area without having to issue a helper call
which needs to prepare registers according to calling convention,
etc, without needing the extra NULL test, and without having to
add the offset in an additional instruction to the value base
pointer. The verifier then treats the destination register as
PTR_TO_MAP_VALUE with constant reg->off from the user passed
offset from the second imm field, and guarantees that this is
within bounds of the map value. Any subsequent operations are
normally treated as typical map value handling without anything
extra needed from verification side.
The two map operations for direct value access have been added to
array map for now. In future other types could be supported as
well depending on the use case. The main use case for this commit
is to allow for BPF loader support for global variables that
reside in .data/.rodata/.bss sections such that we can directly
load the address of them with minimal additional infrastructure
required. Loader support has been added in subsequent commits for
libbpf library.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
To be able to predict the sleep duration for a CPU entering idle, it
is essential to know the expiration time of the next timer. Both the
teo and the menu cpuidle governors already use this information for
CPU idle state selection.
Moving forward, a similar prediction needs to be made for a group of
idle CPUs rather than for a single one and the following changes
implement a new genpd governor for that purpose.
In order to support that feature, add a new function called
tick_nohz_get_next_hrtimer() that will return the next hrtimer
expiration time of a given CPU to be invoked after deciding
whether or not to stop the scheduler tick on that CPU.
Make the cpuidle core call tick_nohz_get_next_hrtimer() right
before invoking the ->enter() callback provided by the cpuidle
driver for the given state and store its return value in the
per-CPU struct cpuidle_device, so as to make it available to code
outside of cpuidle.
Note that at the point when cpuidle calls tick_nohz_get_next_hrtimer(),
the governor's ->select() callback has already returned and indicated
whether or not the tick should be stopped, so in fact the value
returned by tick_nohz_get_next_hrtimer() always is the next hrtimer
expiration time for the given CPU, possibly including the tick (if
it hasn't been stopped).
Co-developed-by: Lina Iyer <lina.iyer@linaro.org>
Co-developed-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
[ rjw: Subject & changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The original conditions that led to the use of list_empty() to optimize
list_for_each_entry_rcu() in auditfilter.c and auditsc.c code have been
removed without removing the list_empty() call, but this code example
has been copied several times. Remove the unnecessary list_empty()
calls.
Please see upstream github issue
https://github.com/linux-audit/audit-kernel/issues/112
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
there is a similar helper in net/netfilter/nf_tables_api.c,
this maybe become a common request someday, so move it to
time.c
Signed-off-by: Zhang Yu <zhangyu31@baidu.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Acked-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
There is no need for sched_rcu. The undocumented reason why sched_rcu
is used is to avoid a few explicit rcu_read_lock()/unlock() pairs by
the fact that sched_rcu reader side critical sections are also protected
by preempt or irq disabled regions.
Replace rcu_read_lock_sched with rcu_read_lock and acquire the RCU lock
where it is not yet explicit acquired. Replace local_irq_disable() with
rcu_read_lock(). Update asserts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
[bigeasy: mangle changelog a little]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Tejun Heo <tj@kernel.org>
Now that we removed support for the NULL device argument in the DMA API,
there is no need to cater for that in the x86 code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Most dma_map_ops implementations already had some issues with a NULL
device, or did simply crash if one was fed to them. Now that we have
cleaned up all the obvious offenders we can stop to pretend we
support this mode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
When DMA_REMAP is enabled, code in remap.c needs generic allocator.
It currently worked since few architectures uses it (arm64, csky) and
they both select GENERIC_ALLOCATOR. Select it when using DMA_REMAP
to have correct dependencies.
Signed-off-by: Clement Leger <clement.leger@kalray.eu>
Signed-off-by: Christoph Hellwig <hch@lst.de>
When CONFIG_RCU_TRACE is not set, all these tracepoints are defined as
do-nothing macro.
We'd better make those inline functions that take proper arguments.
As RCU_TRACE() is defined as do-nothing marco as well when
CONFIG_RCU_TRACE is not set, so we can clean it up.
Link: http://lkml.kernel.org/r/1553602391-11926-4-git-send-email-laoar.shao@gmail.com
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
As each instance has their own error_log file, it makes more sense that the
instances show the errors of their own instead of all error_logs having the
same data. Make it that the errors show up in the instance error_log file
that the error happens in. If no instance trace_array is available, then
NULL can be passed in which will create the error in the top level instance
(the one at the top of the tracefs directory).
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Have the trace_array that associates the trace instance of the histogram
passed around to functions so that error handling can display the error
message in the proper instance.
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Pass in the trace_array that represents the instance the filter being
changed is in to create_event_filter(). This will allow for error messages
that happen when writing to the filter can be displayed in the proper
instance "error_log" file.
Note, for calls to create_filter() (that was also modified to support
create_event_filter()), that changes filters that do not exist in a instance
(for perf for example), NULL may be passed in, which means that there will
not be any message to log for that filter.
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Reviewed-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Tested-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
gpio tracing was made configurable in 4.4-rc1 (commit ddd70280bf
("tracing: gpio: Add Kconfig option for enabling/disabling trace
events")). Since then it is the only event type that can be compiled
conditionally. Given that there is only little overhead I don't
understand the reasoning and I was annoyed more than once that gpio
events were not available without recompiling.
So drop the Kconfig symbol and make gpio events available
unconditionally.
Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Removing explicit calls to mmiowb() from driver code means that we must
now call into the generic mmiowb_spin_{lock,unlock}() functions from the
core spinlock code. In order to elide barriers following critical
sections without any I/O writes, we also hook into the asm-generic I/O
routines.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for removing all explicit mmiowb() calls from driver
code, implement a tracking system in asm-generic based loosely on the
PowerPC implementation. This allows architectures with a non-empty
mmiowb() definition to have the barrier automatically inserted in
spin_unlock() following a critical section containing an I/O write.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There is not reason for the minimum iowait boost value in the
schedutil cpufreq governor to depend on the available range of CPU
frequencies. In fact, that dependency is generally confusing,
because it causes the iowait boost to behave somewhat differently
on CPUs with the same maximum frequency and different minimum
frequencies, for example.
For this reason, replace the min field in struct sugov_cpu
with a constant and choose its values to be 1/8 of
SCHED_CAPACITY_SCALE (for consistency with the intel_pstate
driver's internal governor).
[Note that policy->cpuinfo.max_freq will not be a constant any more
after a subsequent change, so this change is depended on by it.]
Link: https://lore.kernel.org/lkml/20190305083202.GU32494@hirez.programming.kicks-ass.net/T/#ee20bdc98b7d89f6110c0d00e5c3ee8c2ced93c3d
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Merge misc fixes from Andrew Morton:
"14 fixes"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
kernel/sysctl.c: fix out-of-bounds access when setting file-max
mm/util.c: fix strndup_user() comment
sh: fix multiple function definition build errors
MAINTAINERS: add maintainer and replacing reviewer ARM/NUVOTON NPCM
MAINTAINERS: fix bad pattern in ARM/NUVOTON NPCM
mm: writeback: use exact memcg dirty counts
psi: clarify the units used in pressure files
mm/huge_memory.c: fix modifying of page protection by insert_pfn_pmd()
hugetlbfs: fix memory leak for resv_map
mm: fix vm_fault_t cast in VM_FAULT_GET_HINDEX()
lib/lzo: fix bugs for very short or empty input
include/linux/bitrev.h: fix constant bitrev
kmemleak: powerpc: skip scanning holes in the .bss section
lib/string.c: implement a basic bcmp
Commit 32a5ad9c22 ("sysctl: handle overflow for file-max") hooked up
min/max values for the file-max sysctl parameter via the .extra1 and
.extra2 fields in the corresponding struct ctl_table entry.
Unfortunately, the minimum value points at the global 'zero' variable,
which is an int. This results in a KASAN splat when accessed as a long
by proc_doulongvec_minmax on 64-bit architectures:
| BUG: KASAN: global-out-of-bounds in __do_proc_doulongvec_minmax+0x5d8/0x6a0
| Read of size 8 at addr ffff2000133d1c20 by task systemd/1
|
| CPU: 0 PID: 1 Comm: systemd Not tainted 5.1.0-rc3-00012-g40b114779944 #2
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0x0/0x228
| show_stack+0x14/0x20
| dump_stack+0xe8/0x124
| print_address_description+0x60/0x258
| kasan_report+0x140/0x1a0
| __asan_report_load8_noabort+0x18/0x20
| __do_proc_doulongvec_minmax+0x5d8/0x6a0
| proc_doulongvec_minmax+0x4c/0x78
| proc_sys_call_handler.isra.19+0x144/0x1d8
| proc_sys_write+0x34/0x58
| __vfs_write+0x54/0xe8
| vfs_write+0x124/0x3c0
| ksys_write+0xbc/0x168
| __arm64_sys_write+0x68/0x98
| el0_svc_common+0x100/0x258
| el0_svc_handler+0x48/0xc0
| el0_svc+0x8/0xc
|
| The buggy address belongs to the variable:
| zero+0x0/0x40
|
| Memory state around the buggy address:
| ffff2000133d1b00: 00 00 00 00 00 00 00 00 fa fa fa fa 04 fa fa fa
| ffff2000133d1b80: fa fa fa fa 04 fa fa fa fa fa fa fa 04 fa fa fa
| >ffff2000133d1c00: fa fa fa fa 04 fa fa fa fa fa fa fa 00 00 00 00
| ^
| ffff2000133d1c80: fa fa fa fa 00 fa fa fa fa fa fa fa 00 00 00 00
| ffff2000133d1d00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Fix the splat by introducing a unsigned long 'zero_ul' and using that
instead.
Link: http://lkml.kernel.org/r/20190403153409.17307-1-will.deacon@arm.com
Fixes: 32a5ad9c22 ("sysctl: handle overflow for file-max")
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Christian Brauner <christian@brauner.io>
Cc: Kees Cook <keescook@chromium.org>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
implementation in x86 was horrible and gcc certainly gets it wrong. He
said that since the tracepoints only pass in 0 and 6 for i and n repectively,
it should be optimized for that case. Inspecting the kernel, I discovered
that all users pass in 0 for i and only one file passing in something other
than 6 for the number of arguments. That code happens to be my own code used
for the special syscall tracing. That can easily be converted to just
using 0 and 6 as well, and only copying what is needed. Which is probably
the faster path anyway for that case.
Along the way, a couple of real fixes came from this as the
syscall_get_arguments() function was incorrect for csky and riscv.
x86 has been optimized to for the new interface that removes the variable
number of arguments, but the other architectures could still use some
loving and take more advantage of the simpler interface.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCXKdi7RQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qjtiAQDaZbFaSgEbs99jjuAPDSZ0li8dyUOC
3KS5TyuLw+fEaAD/QZnKjplVFAfA5FxrABZ0ioIKDON4nLyESEb+xCv0gA4=
=dTuo
-----END PGP SIGNATURE-----
Merge tag 'trace-5.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull syscall-get-arguments cleanup and fixes from Steven Rostedt:
"Andy Lutomirski approached me to tell me that the
syscall_get_arguments() implementation in x86 was horrible and gcc
certainly gets it wrong.
He said that since the tracepoints only pass in 0 and 6 for i and n
repectively, it should be optimized for that case. Inspecting the
kernel, I discovered that all users pass in 0 for i and only one file
passing in something other than 6 for the number of arguments. That
code happens to be my own code used for the special syscall tracing.
That can easily be converted to just using 0 and 6 as well, and only
copying what is needed. Which is probably the faster path anyway for
that case.
Along the way, a couple of real fixes came from this as the
syscall_get_arguments() function was incorrect for csky and riscv.
x86 has been optimized to for the new interface that removes the
variable number of arguments, but the other architectures could still
use some loving and take more advantage of the simpler interface"
* tag 'trace-5.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
syscalls: Remove start and number from syscall_set_arguments() args
syscalls: Remove start and number from syscall_get_arguments() args
csky: Fix syscall_get_arguments() and syscall_set_arguments()
riscv: Fix syscall_get_arguments() and syscall_set_arguments()
tracing/syscalls: Pass in hardcoded 6 into syscall_get_arguments()
ptrace: Remove maxargs from task_current_syscall()
Minor comment merge conflict in mlx5.
Staging driver has a fixup due to the skb->xmit_more changes
in 'net-next', but was removed in 'net'.
Signed-off-by: David S. Miller <davem@davemloft.net>
The previous approach based on the variance was discarding values from
the timings when they were considered as anomalies as stated by the
normal law statistical model.
However in the interrupt life, there can be multiple anomalies due to the
nature of the device generating the interrupts, and most of the time a
repeating pattern can be observed, that is particulary true for network,
console, MMC or SSD devices.
The variance approach missed the patterns and it was only able to deal with
the interrupt coming in regular intervals, thus reducing considerably the
scope of what is predictable.
In order to find out the repeating patterns, the interrupt intervals are
grouped in a ilog2 basis to create a suite of numbers with small
amplitude. Every group contains an exponential moving average of the values
belonging to the group. The array suffix, a data structure used for string
searching, data compression, etc ..., is built from the suite of numbers
and the suffixes are then searched in this suite.
The tests showed the algorithm is able to find all repeating patterns,
as well as regular interval in less than 1us on x86-i7.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: rjw@rjwysocki.net
Cc: ulf.hansson@linaro.org
Cc: linux-pm@vger.kernel.org
Link: https://lkml.kernel.org/r/20190328151336.5316-2-daniel.lezcano@linaro.org
The variance computation did not provide the expected results and will be
replaced with a different approach to compute the next interrupt based on
the array suffixes derived algorithm.
There is no good way to transform the variance code to the new algorithm,
so for ease of review remove the existing code first.
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: rjw@rjwysocki.net
Cc: ulf.hansson@linaro.org
Cc: linux-pm@vger.kernel.org
Link: https://lkml.kernel.org/r/20190328151336.5316-1-daniel.lezcano@linaro.org
If a child irqchip calls irq_chip_set_wake_parent() but its parent irqchip
has the IRQCHIP_SKIP_SET_WAKE flag set an error is returned.
This is inconsistent behaviour vs. set_irq_wake_real() which returns 0 when
the irqchip has the IRQCHIP_SKIP_SET_WAKE flag set. It doesn't attempt to
walk the chain of parents and set irq wake on any chips that don't have the
flag set either. If the intent is to call the .irq_set_wake() callback of
the parent irqchip, then we expect irqchip implementations to omit the
IRQCHIP_SKIP_SET_WAKE flag and implement an .irq_set_wake() function that
calls irq_chip_set_wake_parent().
The problem has been observed on a Qualcomm sdm845 device where set wake
fails on any GPIO interrupts after applying work in progress wakeup irq
patches to the GPIO driver. The chain of chips looks like this:
QCOM GPIO -> QCOM PDC (SKIP) -> ARM GIC (SKIP)
The GPIO controllers parent is the QCOM PDC irqchip which in turn has ARM
GIC as parent. The QCOM PDC irqchip has the IRQCHIP_SKIP_SET_WAKE flag
set, and so does the grandparent ARM GIC.
The GPIO driver doesn't know if the parent needs to set wake or not, so it
unconditionally calls irq_chip_set_wake_parent() causing this function to
return a failure because the parent irqchip (PDC) doesn't have the
.irq_set_wake() callback set. Returning 0 instead makes everything work and
irqs from the GPIO controller can be configured for wakeup.
Make it consistent by returning 0 (success) from irq_chip_set_wake_parent()
when a parent chip has IRQCHIP_SKIP_SET_WAKE set.
[ tglx: Massaged changelog ]
Fixes: 08b55e2a92 ("genirq: Add irqchip_set_wake_parent")
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-gpio@vger.kernel.org
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190325181026.247796-1-swboyd@chromium.org
check_stack_access() that prints verbose log is used in
adjust_ptr_min_max_vals() that prints its own verbose log and now they
stick together, e.g.:
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16
size=1R2 stack pointer arithmetic goes out of range, prohibited for
!root
Add missing newline so that log is more readable:
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1
R2 stack pointer arithmetic goes out of range, prohibited for !root
Fixes: f1174f77b5 ("bpf/verifier: rework value tracking")
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
As discussed in [1] max value of variable offset has to be checked for
overflow on stack access otherwise verifier would accept code like this:
0: (b7) r2 = 6
1: (b7) r3 = 28
2: (7a) *(u64 *)(r10 -16) = 0
3: (7a) *(u64 *)(r10 -8) = 0
4: (79) r4 = *(u64 *)(r1 +168)
5: (c5) if r4 s< 0x0 goto pc+4
R1=ctx(id=0,off=0,imm=0) R2=inv6 R3=inv28
R4=inv(id=0,umax_value=9223372036854775807,var_off=(0x0;
0x7fffffffffffffff)) R10=fp0,call_-1 fp-8=mmmmmmmm fp-16=mmmmmmmm
6: (17) r4 -= 16
7: (0f) r4 += r10
8: (b7) r5 = 8
9: (85) call bpf_getsockopt#57
10: (b7) r0 = 0
11: (95) exit
, where R4 obviosly has unbounded max value.
Fix it by checking that reg->smax_value is inside (-BPF_MAX_VAR_OFF;
BPF_MAX_VAR_OFF) range.
reg->smax_value is used instead of reg->umax_value because stack
pointers are calculated using negative offset from fp. This is opposite
to e.g. map access where offset must be non-negative and where
umax_value is used.
Also dedicated verbose logs are added for both min and max bound check
failures to have diagnostics consistent with variable offset handling in
check_map_access().
[1] https://marc.info/?l=linux-netdev&m=155433357510597&w=2
Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Proper support of indirect stack access with variable offset in
unprivileged mode (!root) requires corresponding support in Spectre
masking for stack ALU in retrieve_ptr_limit().
There are no use-case for variable offset in unprivileged mode though so
make verifier reject such accesses for simplicity.
Pointer arithmetics is one (and only?) way to cause variable offset and
it's already rejected in unpriv mode so that verifier won't even get to
helper function whose argument contains variable offset, e.g.:
0: (7a) *(u64 *)(r10 -16) = 0
1: (7a) *(u64 *)(r10 -8) = 0
2: (61) r2 = *(u32 *)(r1 +0)
3: (57) r2 &= 4
4: (17) r2 -= 16
5: (0f) r2 += r10
variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1R2
stack pointer arithmetic goes out of range, prohibited for !root
Still it looks like a good idea to reject variable offset indirect stack
access for unprivileged mode in check_stack_boundary() explicitly.
Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
It's hard to guarantee that whole memory is marked as initialized on
helper return if uninitialized stack is accessed with variable offset
since specific bounds are unknown to verifier. This may cause
uninitialized stack leaking.
Reject such an access in check_stack_boundary to prevent possible
leaking.
There are no known use-cases for indirect uninitialized stack access
with variable offset so it shouldn't break anything.
Fixes: 2011fccfb6 ("bpf: Support variable offset stack access from helpers")
Reported-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
When CONFIG_SPARSE_IRQ is disable, the request_mutex in struct irq_desc
is not initialized which causes malfunction.
Fixes: 9114014cf4 ("genirq: Add mutex to irq desc to serialize request/free_irq()")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: <linux-arm-kernel@lists.infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190404074512.145533-1-wangkefeng.wang@huawei.com
Pull networking fixes from David Miller:
1) Several hash table refcount fixes in batman-adv, from Sven
Eckelmann.
2) Use after free in bpf_evict_inode(), from Daniel Borkmann.
3) Fix mdio bus registration in ixgbe, from Ivan Vecera.
4) Unbounded loop in __skb_try_recv_datagram(), from Paolo Abeni.
5) ila rhashtable corruption fix from Herbert Xu.
6) Don't allow upper-devices to be added to vrf devices, from Sabrina
Dubroca.
7) Add qmi_wwan device ID for Olicard 600, from Bjørn Mork.
8) Don't leave skb->next poisoned in __netif_receive_skb_list_ptype,
from Alexander Lobakin.
9) Missing IDR checks in mlx5 driver, from Aditya Pakki.
10) Fix false connection termination in ktls, from Jakub Kicinski.
11) Work around some ASPM issues with r8169 by disabling rx interrupt
coalescing on certain chips. From Heiner Kallweit.
12) Properly use per-cpu qstat values on NOLOCK qdiscs, from Paolo
Abeni.
13) Fully initialize sockaddr_in structures in SCTP, from Xin Long.
14) Various BPF flow dissector fixes from Stanislav Fomichev.
15) Divide by zero in act_sample, from Davide Caratti.
16) Fix bridging multicast regression introduced by rhashtable
conversion, from Nikolay Aleksandrov.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (106 commits)
ibmvnic: Fix completion structure initialization
ipv6: sit: reset ip header pointer in ipip6_rcv
net: bridge: always clear mcast matching struct on reports and leaves
libcxgb: fix incorrect ppmax calculation
vlan: conditional inclusion of FCoE hooks to match netdevice.h and bnx2x
sch_cake: Make sure we can write the IP header before changing DSCP bits
sch_cake: Use tc_skb_protocol() helper for getting packet protocol
tcp: Ensure DCTCP reacts to losses
net/sched: act_sample: fix divide by zero in the traffic path
net: thunderx: fix NULL pointer dereference in nicvf_open/nicvf_stop
net: hns: Fix sparse: some warnings in HNS drivers
net: hns: Fix WARNING when remove HNS driver with SMMU enabled
net: hns: fix ICMP6 neighbor solicitation messages discard problem
net: hns: Fix probabilistic memory overwrite when HNS driver initialized
net: hns: Use NAPI_POLL_WEIGHT for hns driver
net: hns: fix KASAN: use-after-free in hns_nic_net_xmit_hw()
flow_dissector: rst'ify documentation
ipv6: Fix dangling pointer when ipv6 fragment
net-gro: Fix GRO flush when receiving a GSO packet.
flow_dissector: document BPF flow dissector environment
...
What happens there is that we are replacing file->path.mnt of
a file we'd just opened with a clone and we need the write
count contribution to be transferred from original mount to
new one. That's it. We do *NOT* want any kind of freeze
protection for the duration of switchover.
IOW, we should just use __mnt_{want,drop}_write() for that
switchover; no need to bother with mnt_{want,drop}_write()
there.
Tested-by: Amir Goldstein <amir73il@gmail.com>
Reported-by: syzbot+2a73a6ea9507b7112141@syzkaller.appspotmail.com
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The callers of cgroup_migrate_prepare_dst() correctly call
cgroup_migrate_finish() for success and failure cases both. No need to
call it in cgroup_migrate_prepare_dst() in failure case.
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The only users that calls syscall_get_arguments() with a variable and not a
hard coded '6' is ftrace_syscall_enter(). syscall_get_arguments() can be
optimized by removing a variable input, and always grabbing 6 arguments
regardless of what the system call actually uses.
Change ftrace_syscall_enter() to pass the 6 args into a local stack array
and copy the necessary arguments into the trace event as needed.
This is needed to remove two parameters from syscall_get_arguments().
Link: http://lkml.kernel.org/r/20161107213233.627583542@goodmis.org
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
The existing 16Mbyte verifier log limit is not enough for log_level=2
even for small programs. Increase it to 1Gbyte.
Note it's not a kernel memory limit.
It's an amount of memory user space provides to store
the verifier log. The kernel populates it 1k at a time.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Large verifier speed improvements allow to increase
verifier complexity limit.
Now regardless of the program composition and its size it takes
little time for the verifier to hit insn_processed limit.
On typical x86 machine non-debug kernel processes 1M instructions
in 1/10 of a second.
(before these speed improvements specially crafted programs
could be hitting multi-second verification times)
Full kasan kernel with debug takes ~1 second for the same 1M insns.
Hence bump the BPF_COMPLEXITY_LIMIT_INSNS limit to 1M.
Also increase the number of instructions per program
from 4k to internal BPF_COMPLEXITY_LIMIT_INSNS limit.
4k limit was confusing to users, since small programs with hundreds
of insns could be hitting BPF_COMPLEXITY_LIMIT_INSNS limit.
Sometimes adding more insns and bpf_trace_printk debug statements
would make the verifier accept the program while removing
code would make the verifier reject it.
Some user space application started to add #define MAX_FOO to
their programs and do:
MAX_FOO=100;
again:
compile with MAX_FOO;
try to load;
if (fails_to_load) { reduce MAX_FOO; goto again; }
to be able to fit maximum amount of processing into single program.
Other users artificially split their single program into a set of programs
and use all 32 iterations of tail_calls to increase compute limits.
And the most advanced folks used unlimited tc-bpf filter list
to execute many bpf programs.
Essentially the users managed to workaround 4k insn limit.
This patch removes the limit for root programs from uapi.
BPF_COMPLEXITY_LIMIT_INSNS is the kernel internal limit
and success to load the program no longer depends on program size,
but on 'smartness' of the verifier only.
The verifier will continue to get smarter with every kernel release.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Larger programs may trigger 16-bit jump offset overflow check
during instruction patching. Make this error verbose otherwise
users cannot decipher error code without printks in the verifier.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Temporary arrays used during program verification need to be vmalloc-ed
to support large bpf programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
With large verifier speed improvement brought by the previous patch
mark_reg_read() becomes the hottest function during verification.
On a typical program it consumes 40% of cpu.
mark_reg_read() walks parentage chain of registers to mark parents as LIVE_READ.
Once the register is marked there is no need to remark it again in the future.
Hence stop walking the chain once first LIVE_READ is seen.
This optimization drops mark_reg_read() time from 40% of cpu to <1%
and overall 2x improvement of verification speed.
For some programs the longest_mark_read_walk counter improves from ~500 to ~5
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Branch instructions, branch targets and calls in a bpf program are
the places where the verifier remembers states that led to successful
verification of the program.
These states are used to prune brute force program analysis.
For unprivileged programs there is a limit of 64 states per such
'branching' instructions (maximum length is tracked by max_states_per_insn
counter introduced in the previous patch).
Simply reducing this threshold to 32 or lower increases insn_processed
metric to the point that small valid programs get rejected.
For root programs there is no limit and cilium programs can have
max_states_per_insn to be 100 or higher.
Walking 100+ states multiplied by number of 'branching' insns during
verification consumes significant amount of cpu time.
Turned out simple LRU-like mechanism can be used to remove states
that unlikely will be helpful in future search pruning.
This patch introduces hit_cnt and miss_cnt counters:
hit_cnt - this many times this state successfully pruned the search
miss_cnt - this many times this state was not equivalent to other states
(and that other states were added to state list)
The heuristic introduced in this patch is:
if (sl->miss_cnt > sl->hit_cnt * 3 + 3)
/* drop this state from future considerations */
Higher numbers increase max_states_per_insn (allow more states to be
considered for pruning) and slow verification speed, but do not meaningfully
reduce insn_processed metric.
Lower numbers drop too many states and insn_processed increases too much.
Many different formulas were considered.
This one is simple and works well enough in practice.
(the analysis was done on selftests/progs/* and on cilium programs)
The end result is this heuristic improves verification speed by 10 times.
Large synthetic programs that used to take a second more now take
1/10 of a second.
In cases where max_states_per_insn used to be 100 or more, now it's ~10.
There is a slight increase in insn_processed for cilium progs:
before after
bpf_lb-DLB_L3.o 1831 1838
bpf_lb-DLB_L4.o 3029 3218
bpf_lb-DUNKNOWN.o 1064 1064
bpf_lxc-DDROP_ALL.o 26309 26935
bpf_lxc-DUNKNOWN.o 33517 34439
bpf_netdev.o 9713 9721
bpf_overlay.o 6184 6184
bpf_lcx_jit.o 37335 39389
And 2-3 times improvement in the verification speed.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
In order to understand the verifier bottlenecks add various stats
and extend log_level:
log_level 1 and 2 are kept as-is:
bit 0 - level=1 - print every insn and verifier state at branch points
bit 1 - level=2 - print every insn and verifier state at every insn
bit 2 - level=4 - print verifier error and stats at the end of verification
When verifier rejects the program the libbpf is trying to load the program twice.
Once with log_level=0 (no messages, only error code is reported to user space)
and second time with log_level=1 to tell the user why the verifier rejected it.
With introduction of bit 2 - level=4 the libbpf can choose to always use that
level and load programs once, since the verification speed is not affected and
in case of error the verbose message will be available.
Note that the verifier stats are not part of uapi just like all other
verbose messages. They're expected to change in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently, we have two different implementation of rwsem:
1) CONFIG_RWSEM_GENERIC_SPINLOCK (rwsem-spinlock.c)
2) CONFIG_RWSEM_XCHGADD_ALGORITHM (rwsem-xadd.c)
As we are going to use a single generic implementation for rwsem-xadd.c
and no architecture-specific code will be needed, there is no point
in keeping two different implementations of rwsem. In most cases, the
performance of rwsem-spinlock.c will be worse. It also doesn't get all
the performance tuning and optimizations that had been implemented in
rwsem-xadd.c over the years.
For simplication, we are going to remove rwsem-spinlock.c and make all
architectures use a single implementation of rwsem - rwsem-xadd.c.
All references to RWSEM_GENERIC_SPINLOCK and RWSEM_XCHGADD_ALGORITHM
in the code are removed.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-riscv@lists.infradead.org
Cc: linux-um@lists.infradead.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: nios2-dev@lists.rocketboards.org
Cc: openrisc@lists.librecores.org
Cc: uclinux-h8-devel@lists.sourceforge.jp
Link: https://lkml.kernel.org/r/20190322143008.21313-3-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As the generic rwsem-xadd code is using the appropriate acquire and
release versions of the atomic operations, the arch specific rwsem.h
files will not be that much faster than the generic code as long as the
atomic functions are properly implemented. So we can remove those arch
specific rwsem.h and stop building asm/rwsem.h to reduce maintenance
effort.
Currently, only x86, alpha and ia64 have implemented architecture
specific fast paths. I don't have access to alpha and ia64 systems for
testing, but they are legacy systems that are not likely to be updated
to the latest kernel anyway.
By using a rwsem microbenchmark, the total locking rates on a 4-socket
56-core 112-thread x86-64 system before and after the patch were as
follows (mixed means equal # of read and write locks):
Before Patch After Patch
# of Threads wlock rlock mixed wlock rlock mixed
------------ ----- ----- ----- ----- ----- -----
1 29,201 30,143 29,458 28,615 30,172 29,201
2 6,807 13,299 1,171 7,725 15,025 1,804
4 6,504 12,755 1,520 7,127 14,286 1,345
8 6,762 13,412 764 6,826 13,652 726
16 6,693 15,408 662 6,599 15,938 626
32 6,145 15,286 496 5,549 15,487 511
64 5,812 15,495 60 5,858 15,572 60
There were some run-to-run variations for the multi-thread tests. For
x86-64, using the generic C code fast path seems to be a little bit
faster than the assembly version with low lock contention. Looking at
the assembly version of the fast paths, there are assembly to/from C
code wrappers that save and restore all the callee-clobbered registers
(7 registers on x86-64). The assembly generated from the generic C
code doesn't need to do that. That may explain the slight performance
gain here.
The generic asm rwsem.h can also be merged into kernel/locking/rwsem.h
with no code change as no other code other than those under
kernel/locking needs to access the internal rwsem macros and functions.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-c6x-dev@linux-c6x.org
Cc: linux-m68k@lists.linux-m68k.org
Cc: linux-riscv@lists.infradead.org
Cc: linux-um@lists.infradead.org
Cc: linux-xtensa@linux-xtensa.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: nios2-dev@lists.rocketboards.org
Cc: openrisc@lists.librecores.org
Cc: uclinux-h8-devel@lists.sourceforge.jp
Link: https://lkml.kernel.org/r/20190322143008.21313-2-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix these sparse warnigs:
kernel/sched/fair.c:3570:6: warning: symbol 'sync_entity_load_avg' was not declared. Should it be static?
kernel/sched/fair.c:3583:6: warning: symbol 'remove_entity_load_avg' was not declared. Should it be static?
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190320133839.21392-1-yuehaibing@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This fixes the following sparse errors in sched/fair.c:
fair.c:6506:14: error: incompatible types in comparison expression
fair.c:8642:21: error: incompatible types in comparison expression
Using __rcu will also help sparse catch any future bugs.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
[ From an RCU perspective. ]
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Link: https://lkml.kernel.org/r/20190321003426.160260-5-joel@joelfernandes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recently I added an RCU annotation check to rcu_assign_pointer(). All
pointers assigned to RCU protected data are to be annotated with __rcu
inorder to be able to use rcu_assign_pointer() similar to checks in
other RCU APIs.
This resulted in a sparse error:
kernel//sched/cpufreq.c:41:9: sparse: error: incompatible types in comparison expression (different address spaces)
Fix this by annotating cpufreq_update_util_data pointer with __rcu. This
will also help sparse catch any future RCU misuage bugs.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
[ From an RCU perspective. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Morten Rasmussen <morten.rasmussen@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Cc: kernel-hardening@lists.openwall.com
Cc: kernel-team@android.com
Link: https://lkml.kernel.org/r/20190321003426.160260-2-joel@joelfernandes.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Even though the atomic_dec_and_mutex_lock() in
__static_key_slow_dec_cpuslocked() can never see a negative value in
key->enabled the subsequent sanity check is re-reading key->enabled, which may
have been set to -1 in the meantime by static_key_slow_inc_cpuslocked().
CPU A CPU B
__static_key_slow_dec_cpuslocked(): static_key_slow_inc_cpuslocked():
# enabled = 1
atomic_dec_and_mutex_lock()
# enabled = 0
atomic_read() == 0
atomic_set(-1)
# enabled = -1
val = atomic_read()
# Oops - val == -1!
The test case is TCP's clean_acked_data_enable() / clean_acked_data_disable()
as tickled by KTLS (net/ktls).
Suggested-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reported-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Tested-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: ard.biesheuvel@linaro.org
Cc: oss-drivers@netronome.com
Cc: pbonzini@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
New tooling noticed this mishap:
kernel/kcov.o: warning: objtool: write_comp_data()+0x138: call to __stack_chk_fail() with UACCESS enabled
kernel/kcov.o: warning: objtool: __sanitizer_cov_trace_pc()+0xd9: call to __stack_chk_fail() with UACCESS enabled
All the other instrumentation (KASAN,UBSAN) also have stack protector
disabled.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
For CONFIG_TRACE_BRANCH_PROFILING=y the likely/unlikely things get
overloaded and generate callouts to this code, and thus also when
AC=1.
Make it safe.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Only ia64-sn2 uses this as an optimization, and there it is of
questionable correctness due to the mm_users==1 test.
Remove it entirely.
No change in behavior intended.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A NULL pointer dereference bug was reported on a distribution kernel but
the same issue should be present on mainline kernel. It occured on s390
but should not be arch-specific. A partial oops looks like:
Unable to handle kernel pointer dereference in virtual kernel address space
...
Call Trace:
...
try_to_wake_up+0xfc/0x450
vhost_poll_wakeup+0x3a/0x50 [vhost]
__wake_up_common+0xbc/0x178
__wake_up_common_lock+0x9e/0x160
__wake_up_sync_key+0x4e/0x60
sock_def_readable+0x5e/0x98
The bug hits any time between 1 hour to 3 days. The dereference occurs
in update_cfs_rq_h_load when accumulating h_load. The problem is that
cfq_rq->h_load_next is not protected by any locking and can be updated
by parallel calls to task_h_load. Depending on the compiler, code may be
generated that re-reads cfq_rq->h_load_next after the check for NULL and
then oops when reading se->avg.load_avg. The dissassembly showed that it
was possible to reread h_load_next after the check for NULL.
While this does not appear to be an issue for later compilers, it's still
an accident if the correct code is generated. Full locking in this path
would have high overhead so this patch uses READ_ONCE to read h_load_next
only once and check for NULL before dereferencing. It was confirmed that
there were no further oops after 10 days of testing.
As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any
potential problems with store tearing.
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Fixes: 685207963b ("sched: Move h_load calculation to task_h_load()")
Link: https://lkml.kernel.org/r/20190319123610.nsivgf3mjbjjesxb@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Use tracing error_log with probe events for logging error more
precisely. This also makes all parse error returns -EINVAL
(except for -ENOMEM), because user can see better error message
in error_log file now.
Link: http://lkml.kernel.org/r/6a4d90e141d138040ea61f4776b991597077451e.1554072478.git.tom.zanussi@linux.intel.com
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Use tracing_log_err() from the new tracing error_log mechanism to send
filter parse errors to tracing/error_log.
With this change, users will be able to see filter errors by looking
at tracing/error_log.
The same errors will also be available in the filter file, as
expected.
Link: http://lkml.kernel.org/r/1d942c419941539a11d78a6810fc5740a99b2974.1554072478.git.tom.zanussi@linux.intel.com
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Replace hist_err() and hist_err_event() with tracing_log_err() from
the new tracing error_log mechanism.
Also add a couple related helper functions and remove most of the old
hist_err()-related code.
With this change, users no longer read the hist files for hist trigger
error information, but instead look at tracing/error_log for the same
information.
Link: http://lkml.kernel.org/r/c98f77a97c9715d18b623eeb5741057b330d5ac0.1554072478.git.tom.zanussi@linux.intel.com
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
In preparation for making use of the new trace error log, save the
subsystem and event name associated with the last hist command - it
will be passed as the location param in the event_log_err() calls.
Link: http://lkml.kernel.org/r/eb0fd1362be8f39facb86c83eecf441b7a5876f8.1554072478.git.tom.zanussi@linux.intel.com
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Introduce a new ftrace file, tracing/error_log, for ftrace commands to
log errors. This is useful for allowing more complex commands such as
hist trigger and kprobe_event commands to point out specifically where
something may have gone wrong without forcing them to resort to more
ad hoc methods such as tacking error messages onto existing output
files.
To log a tracing error, call the event_log_err() function, passing it
a location string describing where it came from e.g. kprobe_events or
system:event, the command that caused the error, an array of static
error strings describing errors and an index within that array which
describes the specific error, along with the position to place the
error caret.
Reading the log displays the last (currently) 8 errors logged in the
following format:
[timestamp] <loc>: error: <static error text>
Command: <command that caused the error>
^
Memory for the error log isn't allocated unless there has been a trace
event error, and the error log can be cleared and have its memory
freed by writing the empty string in truncation mode to it:
# echo > tracing/error_log.
Link: http://lkml.kernel.org/r/0c2c82571fd38c5f3a88ca823627edff250e9416.1554072478.git.tom.zanussi@linux.intel.com
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Suggested-by: Masami Hiramatsu <mhiramat@kernel.org>
Improvements-suggested-by: Steve Rostedt <rostedt@goodmis.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Signed-off-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Ftrace provides the feature “instances” that provides the capability to
create multiple Ftrace ring buffers. However, currently these buffers
are created/accessed via userspace only. The kernel APIs providing these
features are not exported, hence cannot be used by other kernel
components.
This patch aims to extend this infrastructure to provide the
flexibility to create/log/remove/ enable-disable existing trace events
to these buffers from within the kernel.
Link: http://lkml.kernel.org/r/1553106531-3281-2-git-send-email-divya.indi@oracle.com
Signed-off-by: Divya Indi <divya.indi@oracle.com>
Reviewed-by: Joe Jin <joe.jin@oracle.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Make the /sys/devices/system/cpu/smt/* files available on all arches, so
user space has a consistent way to detect whether SMT is enabled.
The 'control' file now shows 'notimplemented' for architectures which
don't yet have CONFIG_HOTPLUG_SMT.
[ tglx: Make notimplemented a real state ]
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jikos@kernel.org>
Link: https://lkml.kernel.org/r/469c2b98055f2c41e75748e06447d592a64080c9.1553635520.git.jpoimboe@redhat.com
Measure the filesystems sync time during system sleep more precisely.
Among other things, this allows the pr_cont() to be dropped from
ksys_sync_helper() and makes automatic system suspend and hibernation
profiling somewhat more straightforward.
Signed-off-by: Harry Pan <harry.pan@intel.com>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Create a common helper to sync filesystems for system suspend and
hibernation.
Signed-off-by: Harry Pan <harry.pan@intel.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
[ rjw: Changelog ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The current sys_pidfd_send_signal() silently turns signals with explicit
SI_USER context that are sent to non-current tasks into signals with
kernel-generated siginfo.
This is unlike do_rt_sigqueueinfo(), which returns -EPERM in this case.
If a user actually wants to send a signal with kernel-provided siginfo,
they can do that with pidfd_send_signal(pidfd, sig, NULL, 0); so allowing
this case is unnecessary.
Instead of silently replacing the siginfo, just bail out with an error;
this is consistent with other interfaces and avoids special-casing behavior
based on security checks.
Fixes: 3eb39f4793 ("signal: add pidfd_send_signal() syscall")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Christian Brauner <christian@brauner.io>
Pull CPU hotplug fixes from Thomas Gleixner:
"Two SMT/hotplug related fixes:
- Prevent crash when HOTPLUG_CPU is disabled and the CPU bringup
aborts. This is triggered with the 'nosmt' command line option, but
can happen by any abort condition. As the real unplug code is not
compiled in, prevent the fail by keeping the CPU in zombie state.
- Enforce HOTPLUG_CPU for SMP on x86 to avoid the above situation
completely. With 'nosmt' being a popular option it's required to
unplug the half brought up sibling CPUs (due to the MCE wreckage)
completely"
* 'smp-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/smp: Enforce CONFIG_HOTPLUG_CPU when SMP=y
cpu/hotplug: Prevent crash when CPU bringup fails on CONFIG_HOTPLUG_CPU=n
Pull core fixes from Thomas Gleixner:
"A small set of core updates:
- Make the watchdog respect the selected CPU mask again. That was
broken by the rework of the watchdog thread management and caused
inconsistent state and NMI watchdog being unstoppable.
- Ensure that the objtool build can find the libelf location.
- Remove dead kcore stub code"
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
watchdog: Respect watchdog cpumask on CPU hotplug
objtool: Query pkg-config for libelf location
proc/kcore: Remove unused kclist_add_remap()
Daniel Borkmann says:
====================
pull-request: bpf 2019-03-29
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) Bug fix in BTF deduplication that was mishandling an equivalence
comparison, from Andrii.
2) libbpf Makefile fixes to properly link against libelf for the shared
object and to actually export AF_XDP's xsk.h header, from Björn.
3) Fix use after free in bpf inode eviction, from Daniel.
4) Fix a bug in skb creation out of cpumap redirect, from Jesper.
5) Remove an unnecessary and triggerable WARN_ONCE() in max number
of call stack frames checking in verifier, from Paul.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
We want to avoid leaking pointer info from xdp_frame (that is placed in
top of frame) like commit 6dfb970d3d ("xdp: avoid leaking info stored in
frame data on page reuse"), and followup commit 97e19cce05 ("bpf:
reserve xdp_frame size in xdp headroom") that reserve this headroom.
These changes also affected how cpumap constructed SKBs, as xdpf->headroom
size changed, the skb data starting point were in-effect shifted with 32
bytes (sizeof xdp_frame). This was still okay, as the cpumap frame_size
calculation also included xdpf->headroom which were reduced by same amount.
A bug was introduced in commit 77ea5f4cbe ("bpf/cpumap: make sure
frame_size for build_skb is aligned if headroom isn't"), where the
xdpf->headroom became part of the SKB_DATA_ALIGN rounding up. This
round-up to find the frame_size is in principle still correct as it does
not exceed the 2048 bytes frame_size (which is max for ixgbe and i40e),
but the 32 bytes offset of pkt_data_start puts this over the 2048 bytes
limit. This cause skb_shared_info to spill into next frame. It is a little
hard to trigger, as the SKB need to use above 15 skb_shinfo->frags[] as
far as I calculate. This does happen in practise for TCP streams when
skb_try_coalesce() kicks in.
KASAN can be used to detect these wrong memory accesses, I've seen:
BUG: KASAN: use-after-free in skb_try_coalesce+0x3cb/0x760
BUG: KASAN: wild-memory-access in skb_release_data+0xe2/0x250
Driver veth also construct a SKB from xdp_frame in this way, but is not
affected, as it doesn't reserve/deduct the room (used by xdp_frame) from
the SKB headroom. Instead is clears the pointers via xdp_scrub_frame(),
and allows SKB to use this area.
The fix in this patch is to do like veth and instead allow SKB to (re)use
the area occupied by xdp_frame, by clearing via xdp_scrub_frame(). (This
does kill the idea of the SKB being able to access (mem) info from this
area, but I guess it was a bad idea anyhow, and it was already killed by
the veth changes.)
Fixes: 77ea5f4cbe ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't")
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently there is a difference in how verifier checks memory access for
helper arguments for PTR_TO_MAP_VALUE and PTR_TO_STACK with regard to
variable part of offset.
check_map_access, that is used for PTR_TO_MAP_VALUE, can handle variable
offsets just fine, so that BPF program can call a helper like this:
some_helper(map_value_ptr + off, size);
, where offset is unknown at load time, but is checked by program to be
in a safe rage (off >= 0 && off + size < map_value_size).
But it's not the case for check_stack_boundary, that is used for
PTR_TO_STACK, and same code with pointer to stack is rejected by
verifier:
some_helper(stack_value_ptr + off, size);
For example:
0: (7a) *(u64 *)(r10 -16) = 0
1: (7a) *(u64 *)(r10 -8) = 0
2: (61) r2 = *(u32 *)(r1 +0)
3: (57) r2 &= 4
4: (17) r2 -= 16
5: (0f) r2 += r10
6: (18) r1 = 0xffff888111343a80
8: (85) call bpf_map_lookup_elem#1
invalid variable stack read R2 var_off=(0xfffffffffffffff0; 0x4)
Add support for variable offset access to check_stack_boundary so that
if offset is checked by program to be in a safe range it's accepted by
verifier.
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
There are a few system calls (pselect, ppoll, etc) which replace a task
sigmask while they are running in a kernel-space
When a task calls one of these syscalls, the kernel saves a current
sigmask in task->saved_sigmask and sets a syscall sigmask.
On syscall-exit-stop, ptrace traps a task before restoring the
saved_sigmask, so PTRACE_GETSIGMASK returns the syscall sigmask and
PTRACE_SETSIGMASK does nothing, because its sigmask is replaced by
saved_sigmask, when the task returns to user-space.
This patch fixes this problem. PTRACE_GETSIGMASK returns saved_sigmask
if it's set. PTRACE_SETSIGMASK drops the TIF_RESTORE_SIGMASK flag.
Link: http://lkml.kernel.org/r/20181120060616.6043-1-avagin@gmail.com
Fixes: 29000caecb ("ptrace: add ability to get/set signal-blocked mask")
Signed-off-by: Andrei Vagin <avagin@gmail.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Randconfig builds with
CONFIG_TICK_ONESHOT=y
CONFIG_HOTPLUG_CPU=n
trigger
kernel/time/tick-broadcast.c:39:13: warning: ‘tick_broadcast_oneshot_offline’ \
declared ‘static’ but never defined [-Wunused-function]
due to that function's definition missing.
Move the CONFIG_HOTPLUG_CPU ifdeffery around its declaration too.
Fixes: 1b72d43237 ("tick: Remove outgoing CPU from broadcast masks")
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/20190329110508.6621-1-bp@alien8.de
When a module is loaded, its symbols' Elf_Sym information is stored
in a symtab. Further, type information is also captured. Since
Elf_Sym has no type field, historically the st_info field has been
hijacked for storing type: st_info was overwritten.
commit 5439c985c5 ("module: Overwrite
st_size instead of st_info") changes that practice, as its one-liner
indicates. Unfortunately, this change overwrites symbol size,
information that a tool like DTrace expects to find.
Allocate a typetab array to store type information so that no Elf_Sym
field needs to be overwritten.
Fixes: 5439c985c5 ("module: Overwrite st_size instead of st_info")
Signed-off-by: Eugene Loh <eugene.loh@oracle.com>
Reviewed-by: Nick Alcock <nick.alcock@oracle.com>
[jeyu: renamed typeoff -> typeoffs ]
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Several people reported testing failures after setting CLOCK_REALTIME close
to the limits of the kernel internal representation in nanoseconds,
i.e. year 2262.
The failures are exposed in subsequent operations, i.e. when arming timers
or when the advancing CLOCK_MONOTONIC makes the calculation of
CLOCK_REALTIME overflow into negative space.
Now people start to paper over the underlying problem by clamping
calculations to the valid range, but that's just wrong because such
workarounds will prevent detection of real issues as well.
It is reasonable to force an upper bound for the various methods of setting
CLOCK_REALTIME. Year 2262 is the absolute upper bound. Assume a maximum
uptime of 30 years which is plenty enough even for esoteric embedded
systems. That results in an upper bound of year 2232 for setting the time.
Once that limit is reached in reality this limit is only a small part of
the problem space. But until then this stops people from trying to paper
over the problem at the wrong places.
Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Reported-by: Hongbo Yao <yaohongbo@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Cc: Miroslav Lichvar <mlichvar@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903231125480.2157@nanos.tec.linutronix.de
Tianyu reported a crash in a CPU hotplug teardown callback when booting a
kernel which has CONFIG_HOTPLUG_CPU disabled with the 'nosmt' boot
parameter.
It turns out that the SMP=y CONFIG_HOTPLUG_CPU=n case has been broken
forever in case that a bringup callback fails. Unfortunately this issue was
not recognized when the CPU hotplug code was reworked, so the shortcoming
just stayed in place.
When a bringup callback fails, the CPU hotplug code rolls back the
operation and takes the CPU offline.
The 'nosmt' command line argument uses a bringup failure to abort the
bringup of SMT sibling CPUs. This partial bringup is required due to the
MCE misdesign on Intel CPUs.
With CONFIG_HOTPLUG_CPU=y the rollback works perfectly fine, but
CONFIG_HOTPLUG_CPU=n lacks essential mechanisms to exercise the low level
teardown of a CPU including the synchronizations in various facilities like
RCU, NOHZ and others.
As a consequence the teardown callbacks which must be executed on the
outgoing CPU within stop machine with interrupts disabled are executed on
the control CPU in interrupt enabled and preemptible context causing the
kernel to crash and burn. The pre state machine code has a different
failure mode which is more subtle and resulting in a less obvious use after
free crash because the control side frees resources which are still in use
by the undead CPU.
But this is not a x86 only problem. Any architecture which supports the
SMP=y HOTPLUG_CPU=n combination suffers from the same issue. It's just less
likely to be triggered because in 99.99999% of the cases all bringup
callbacks succeed.
The easy solution of making HOTPLUG_CPU mandatory for SMP is not working on
all architectures as the following architectures have either no hotplug
support at all or not all subarchitectures support it:
alpha, arc, hexagon, openrisc, riscv, sparc (32bit), mips (partial).
Crashing the kernel in such a situation is not an acceptable state
either.
Implement a minimal rollback variant by limiting the teardown to the point
where all regular teardown callbacks have been invoked and leave the CPU in
the 'dead' idle state. This has the following consequences:
- the CPU is brought down to the point where the stop_machine takedown
would happen.
- the CPU stays there forever and is idle
- The CPU is cleared in the CPU active mask, but not in the CPU online
mask which is a legit state.
- Interrupts are not forced away from the CPU
- All facilities which only look at online mask would still see it, but
that is the case during normal hotplug/unplug operations as well. It's
just a (way) longer time frame.
This will expose issues, which haven't been exposed before or only seldom,
because now the normally transient state of being non active but online is
a permanent state. In testing this exposed already an issue vs. work queues
where the vmstat code schedules work on the almost dead CPU which ends up
in an unbound workqueue and triggers 'preemtible context' warnings. This is
not a problem of this change, it merily exposes an already existing issue.
Still this is better than crashing fully without a chance to debug it.
This is mainly thought as workaround for those architectures which do not
support HOTPLUG_CPU. All others should enforce HOTPLUG_CPU for SMP.
Fixes: 2e1a3483ce ("cpu/hotplug: Split out the state walk into functions")
Reported-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Konrad Wilk <konrad.wilk@oracle.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Mukesh Ojha <mojha@codeaurora.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Micheal Kelley <michael.h.kelley@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190326163811.503390616@linutronix.de
The rework of the watchdog core to use cpu_stop_work broke the watchdog
cpumask on CPU hotplug.
The watchdog_enable/disable() functions are now called unconditionally from
the hotplug callback, i.e. even on CPUs which are not in the watchdog
cpumask. As a consequence the watchdog can become unstoppable.
Only invoke them when the plugged CPU is in the watchdog cpumask.
Fixes: 9cf57731b6 ("watchdog/softlockup: Replace "watchdog/%u" threads with cpu_stop_work")
Reported-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Maxime Coquelin <maxime.coquelin@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1903262245490.1789@nanos.tec.linutronix.de
Pull networking fixes from David Miller:
"Fixes here and there, a couple new device IDs, as usual:
1) Fix BQL race in dpaa2-eth driver, from Ioana Ciornei.
2) Fix 64-bit division in iwlwifi, from Arnd Bergmann.
3) Fix documentation for some eBPF helpers, from Quentin Monnet.
4) Some UAPI bpf header sync with tools, also from Quentin Monnet.
5) Set descriptor ownership bit at the right time for jumbo frames in
stmmac driver, from Aaro Koskinen.
6) Set IFF_UP properly in tun driver, from Eric Dumazet.
7) Fix load/store doubleword instruction generation in powerpc eBPF
JIT, from Naveen N. Rao.
8) nla_nest_start() return value checks all over, from Kangjie Lu.
9) Fix asoc_id handling in SCTP after the SCTP_*_ASSOC changes this
merge window. From Marcelo Ricardo Leitner and Xin Long.
10) Fix memory corruption with large MTUs in stmmac, from Aaro
Koskinen.
11) Do not use ipv4 header for ipv6 flows in TCP and DCCP, from Eric
Dumazet.
12) Fix topology subscription cancellation in tipc, from Erik Hugne.
13) Memory leak in genetlink error path, from Yue Haibing.
14) Valid control actions properly in packet scheduler, from Davide
Caratti.
15) Even if we get EEXIST, we still need to rehash if a shrink was
delayed. From Herbert Xu.
16) Fix interrupt mask handling in interrupt handler of r8169, from
Heiner Kallweit.
17) Fix leak in ehea driver, from Wen Yang"
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (168 commits)
dpaa2-eth: fix race condition with bql frame accounting
chelsio: use BUG() instead of BUG_ON(1)
net: devlink: skip info_get op call if it is not defined in dumpit
net: phy: bcm54xx: Encode link speed and activity into LEDs
tipc: change to check tipc_own_id to return in tipc_net_stop
net: usb: aqc111: Extend HWID table by QNAP device
net: sched: Kconfig: update reference link for PIE
net: dsa: qca8k: extend slave-bus implementations
net: dsa: qca8k: remove leftover phy accessors
dt-bindings: net: dsa: qca8k: support internal mdio-bus
dt-bindings: net: dsa: qca8k: fix example
net: phy: don't clear BMCR in genphy_soft_reset
bpf, libbpf: clarify bump in libbpf version info
bpf, libbpf: fix version info and add it to shared object
rxrpc: avoid clang -Wuninitialized warning
tipc: tipc clang warning
net: sched: fix cleanup NULL pointer exception in act_mirr
r8169: fix cable re-plugging issue
net: ethernet: ti: fix possible object reference leak
net: ibm: fix possible object reference leak
...
Have the IMA architecture specific policy require signed kernel modules
on systems with secure boot mode enabled; and coordinate the different
signature verification methods, so only one signature is required.
Requiring appended kernel module signatures may be configured, enabled
on the boot command line, or with this patch enabled in secure boot
mode. This patch defines set_module_sig_enforced().
To coordinate between appended kernel module signatures and IMA
signatures, only define an IMA MODULE_CHECK policy rule if
CONFIG_MODULE_SIG is not enabled. A custom IMA policy may still define
and require an IMA signature.
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Jessica Yu <jeyu@kernel.org>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2019-03-26
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) introduce bpf_tcp_check_syncookie() helper for XDP and tc, from Lorenz.
2) allow bpf_skb_ecn_set_ce() in tc, from Peter.
3) numerous bpf tc tunneling improvements, from Willem.
4) and other miscellaneous improvements from Adrian, Alan, Daniel, Ivan, Stanislav.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, lock_torture_cleanup() uses the values of cxt.lwsa and cxt.lrsa
to detect bad parameters that prevented locktorture from initializing,
let alone running. In this case, lock_torture_cleanup() does no cleanup
aside from invoking torture_cleanup_begin() and torture_cleanup_end(),
as required to permit future torture tests to run. However, this
heuristic fails if the run with bad parameters was preceded by a previous
run that actually ran: In this case, both cxt.lwsa and cxt.lrsa will
remain non-zero, which means that the current lock_torture_cleanup()
invocation will be unable to detect the fact that it should skip cleanup,
which can result in charming outcomes such as double frees.
This commit therefore NULLs out both cxt.lwsa and cxt.lrsa at the end
of any run that actually ran.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Josh Triplett <josh@joshtriplett.org>
If the specified rcuperf.perf_type is not in the rcu_perf_init()
function's perf_ops[] array, rcuperf prints some console messages and
then invokes rcu_perf_cleanup() to set state so that a future torture
test can run. However, rcu_perf_cleanup() also attempts to end the
test that didn't actually start, and in doing so relies on the value
of cur_ops, a value that is not particularly relevant in this case.
This can result in confusing output or even follow-on failures due to
attempts to use facilities that have not been properly initialized.
This commit therefore sets the value of cur_ops to NULL in this case and
inserts a check near the beginning of rcu_perf_cleanup(), thus avoiding
relying on an irrelevant cur_ops value.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
If the specified rcutorture.torture_type is not in the rcu_torture_init()
function's torture_ops[] array, rcutorture prints some console messages
and then invokes rcu_torture_cleanup() to set state so that a future
torture test can run. However, rcu_torture_cleanup() also attempts to
end the test that didn't actually start, and in doing so relies on the
value of cur_ops, a value that is not particularly relevant in this case.
This can result in confusing output or even follow-on failures due to
attempts to use facilities that have not been properly initialized.
This commit therefore sets the value of cur_ops to NULL in this case
and inserts a check near the beginning of rcu_torture_cleanup(),
thus avoiding relying on an irrelevant cur_ops value.
Reported-by: kernel test robot <rong.a.chen@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcutorture_oom_notify() function has a misplaced close parenthesis
that results in increasingly long delays in rcu_fwd_progress_check()'s
checking for various RCU forward-progress problems. This commit therefore
puts the parenthesis in the right place.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Back when there was a separate RCU-bh flavor, the ->ext_irq_conflict
field was used to prevent executing local_bh_enable() while interrupts
were disabled. However, there is no longer an RCU-bh flavor, so this
commit removes the no-longer-needed ->ext_irq_conflict field.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The code actually rarely uses more than one type of RCU read-side
protection, as is actually desired given that we need some reasonable
probability of preempting RCU read-side critical sections, which cannot
happen with multiple types of protection. This comment therefore adjusts
the comment.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
If there is only one online CPU, it doesn't make sense to try to offline
it, as any such attempt is guaranteed to fail. This commit therefore
check for this condition and refuses to attempt the nonsensical.
Reported-by: Su Yue <suy.fnst@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Tested-By: Su Yue <suy.fnst@cn.fujitsu.com>
The Documentation/RCU/stallwarn.txt file says that stall warnings
print "D" if dyntick-idle processing is enabled, but the code in
print_cpu_stall_fast_no_hz() prints "." instead. This commit therefore
reverses the sense of the test to make the code match the documentation.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit further consolidates stall-warning functionality by moving
forward-progress checkers into kernel/rcu/tree_stall.h, updating a
comment or two while in the area. More specifically, this commit moves
show_rcu_gp_kthreads(), rcu_check_gp_start_stall(), rcu_fwd_progress_check(),
sysrq_rcu, sysrq_show_rcu(), sysrq_rcudump_op, and rcu_sysrq_init() from
kernel/rcu/tree.c to kernel/rcu/tree_stall.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcu_iw_handler() function's sole purpose in life is to indicate
whether a stalled CPU had interrupts disabled, so it belongs in
kernel/rcu/tree_stall.h. This commit therefore makes that move,
clarifying its header comment while in the area.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit does only code movement, removal of now-unneeded forward
declarations, and addition of comments. It organizes the functions
that implement RCU CPU stall warnings for normal grace periods into
three categories:
1. Control of RCU CPU stall warnings, including computing timeouts.
2. Interaction of stall warnings with grace periods.
3. Actual printing of the RCU CPU stall-warning messages.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit further consolidates the stall-warning code by moving
print_cpu_stall_info() and its helper functions along with
zero_cpu_stall_ticks() to kernel/rcu/tree_stall.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The print_cpu_stall_info_begin() and print_cpu_stall_info_end() print a
single character each onto the console, and are a holdover from a time
when RCU CPU stall warning messages could be abbreviated using a long-gone
Kconfig option. This commit therefore adds these single characters to
already-printed strings in the calling functions, and then eliminates
both print_cpu_stall_info_begin() and print_cpu_stall_info_end().
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Because expedited CPU stall warnings are contained within the
kernel/rcu/tree_exp.h file, rcu_print_task_exp_stall() should live
there too. This commit carries out the required code motion.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcu_print_detail_task_stall(), rcu_print_task_stall_begin(), and
rcu_print_task_stall_end() functions were defined to allow long-gone
Kconfig options to provide an abbreviated RCU CPU stall warning printout.
This commit saves a few lines of code by inlining them into their sole
callers.
While in the area, a useless call of rcu_print_detail_task_stall_rnp()
on the root rcu_node structure was eliminated. If there is only one
rcu_node structure, its tasks get printed twice, but if there are more,
the root rcu_node structure is guaranteed to have an empty list of blocked
tasks, hence the uselessness. (Long ago, root rcu_node structures with
non-empty ->blkd_tasks lists could happen, but no longer.)
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit completes the process of consolidating the code for RCU CPU
stall warnings for normal grace periods by moving the remaining such
code from kernel/rcu/tree.c to kernel/rcu/tree_stall.h.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The RCU CPU stall-warning code for normal grace periods is currently
scattered across two files, due to earlier Tiny RCU support for RCU
CPU stall warnings and for old Kconfig options that have long since
been retired. Given that it is hard for the lead RCU maintainer to
find relevant stall-warning code, it would be good to consolidate it.
This commit continues this process by moving stall-warning code from
kernel/rcu/tree_plugin.c to a new kernel/rcu/tree_stall.h file.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The RCU CPU stall-warning code for normal grace periods is currently
scattered across three files, due to earlier Tiny RCU support for RCU
CPU stall warnings and for old Kconfig options that have long since
been retired. Given that it is hard for the lead RCU maintainer to
find relevant stall-warning code, it would be good to consolidate it.
This commit starts this process by moving stall-warning code from
kernel/rcu/update.c to a new kernel/rcu/tree_stall.h file.
Note that the definitions of rcu_cpu_stall_suppress and
rcu_cpu_stall_timeout must remain in kernel/rcu/update.h to provide
compatibility for kernel boot parameter lists.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The cleanup_srcu_struct_quiesced() function was added because NVME
used WQ_MEM_RECLAIM workqueues and SRCU did not, which meant that
NVME workqueues waiting on SRCU workqueues could result in deadlocks
during low-memory conditions. However, SRCU now also has WQ_MEM_RECLAIM
workqueues, so there is no longer a potential for deadlock. Furthermore,
it turns out to be extremely hard to use cleanup_srcu_struct_quiesced()
correctly due to the fact that SRCU callback invocation accesses the
srcu_struct structure's per-CPU data area just after callbacks are
invoked. Therefore, the usual practice of using srcu_barrier() to wait
for callbacks to be invoked before invoking cleanup_srcu_struct_quiesced()
fails because SRCU's callback-invocation workqueue handler might be
delayed, which can result in cleanup_srcu_struct_quiesced() being invoked
(and thus freeing the per-CPU data) before the SRCU's callback-invocation
workqueue handler is finished using that per-CPU data. Nor is this a
theoretical problem: KASAN emitted use-after-free warnings because of
this problem on actual runs.
In short, NVME can now safely invoke cleanup_srcu_struct(), which
avoids the use-after-free scenario. And cleanup_srcu_struct_quiesced()
is quite difficult to use safely. This commit therefore removes
cleanup_srcu_struct_quiesced(), switching its sole user back to
cleanup_srcu_struct(). This effectively reverts the following pair
of commits:
f7194ac32c ("srcu: Add cleanup_srcu_struct_quiesced()")
4317228ad9 ("nvme: Avoid flush dependency in delete controller flow")
Reported-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Tested-by: Bart Van Assche <bvanassche@acm.org>
If someone fails to drain the corresponding SRCU callbacks (for
example, by failing to invoke srcu_barrier()) before invoking either
cleanup_srcu_struct() or cleanup_srcu_struct_quiesced(), the resulting
diagnostic is an ambiguous use-after-free diagnostic, and even then
only if you are running something like KASAN. This commit therefore
improves SRCU diagnostics by adding checks for in-flight callbacks at
_cleanup_srcu_struct() time.
Note that these diagnostics can still be defeated, for example, by
invoking call_srcu() concurrently with cleanup_srcu_struct(). Which is
a really bad idea, but sometimes all too easy to do. But even then,
these diagnostics have at least some probability of catching the problem.
Reported-by: Sagi Grimberg <sagi@grimberg.me>
Reported-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Tested-by: Bart Van Assche <bvanassche@acm.org>
The task_struct structure's ->rcu_read_unlock_special field is only ever
read or written by the owning task, but it is accessed both at process
and interrupt levels. It may therefore be accessed using plain reads
and writes while interrupts are disabled, but must be accessed using
READ_ONCE() and WRITE_ONCE() or better otherwise. This commit makes a
few adjustments to align with this discipline.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit changes a rcu_exp_handler() comment from rcu_preempt_defer_qs()
to rcu_preempt_deferred_qs() in order to better match reality.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Because rcu_wake_cond() checks for a null task_struct pointer, there is
no need for its callers to do so. This commit eliminates the redundant
check.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Previously, threads blocked on offlining CPUS were migrated to the
root rcu_node structure, thus requiring RCU priority boosting on this
structure. However, since commit d19fb8d1f3 ("rcu: Don't migrate
blocked tasks even if all corresponding CPUs offline"), RCU does not
migrate blocked tasks. Consequently, RCU no longer does RCU priority
boosting on the root rcu_node structure as of commit 1be0085b51 ("rcu:
Don't initiate RCU priority boosting on root rcu_node").
This commit therefore brings comments for the force_qs_rnp() function's
header comment in line with this new no-root-boosting reality.
Signed-off-by: Zhouyi Zhou <zhouzhouyi@gmail.com>
[ paulmck: Also remove obsolete comment on suppressing new grace periods. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
This commit better documents the jiffies_to_sched_qs default-value
strategy used by adjust_jiffies_till_sched_qs()
Reported-by: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The current code only calls adjust_jiffies_till_sched_qs() if
jiffies_till_sched_qs is left at its default value, so when the
jiffies_till_sched_qs kernel-boot parameter actually is specified,
jiffies_to_sched_qs will be left with the value zero, which
will result in useless slowdowns of cond_resched(). This commit
therefore changes rcu_init_geometry() to unconditionally invoke
adjust_jiffies_till_sched_qs(), which ensures that jiffies_to_sched_qs
will be initialized in all cases, thus maintaining good cond_resched()
performance.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The current rcu_gp_kthread_wake() function uses in_interrupt()
and thus does a self-wakeup from all interrupt contexts, including
the pointless case where the GP kthread happens to be running with
bottom halves disabled, along with the impossible case where the GP
kthread is running within an NMI handler (you are not supposed to invoke
rcu_gp_kthread_wake() from within an NMI handler. This commit therefore
replaces the in_interrupt() with in_irq(), so that the self-wakeups
happen only from handlers for hardware interrupts and softirqs.
This also makes the code match the comment.
Signed-off-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
This commit prints a console message when cpulist_parse() reports a
bad list of CPUs, and sets all CPUs' bits in that case. The reason for
setting all CPUs' bits is that this is the safe(r) choice for real-time
workloads, which would normally be the ones using the rcu_nocbs= kernel
boot parameter. Either way, later RCU console log messages list the
actual set of CPUs whose RCU callbacks will be offloaded.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Currently, the rcu_nocbs= kernel boot parameter requires that a specific
list of CPUs be specified, and has no way to say "all of them".
As noted by user RavFX in a comment to Phoronix topic 1002538, this
is an inconvenient side effect of the removal of the RCU_NOCB_CPU_ALL
Kconfig option. This commit therefore enables the rcu_nocbs= kernel boot
parameter to be given the string "all", as in "rcu_nocbs=all" to specify
that all CPUs on the system are to have their RCU callbacks offloaded.
Another approach would be to make cpulist_parse() check for "all", but
there are uses of cpulist_parse() that do other checking, which could
conflict with an "all". This commit therefore focuses on the specific
use of cpulist_parse() in rcu_nocb_setup().
Just a note to other people who would like changes to Linux-kernel RCU:
If you send your requests to me directly, they might get fixed somewhat
faster. RavFX's comment was posted on January 22, 2018 and I first saw
it on March 5, 2019. And the only reason that I found it -at- -all- was
that I was looking for projects using RCU, and my search engine showed
me that Phoronix comment quite by accident. Your choice, though! ;-)
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
As the result of recent addition of "rdp->core_needs_qs = false;" in
the "if" block, now both branches of the if-else have the same
assignment.
Factor it out and reduce line count.
Signed-off-by: Akira Yokosawa <akiyks@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Acked-by: Joel Fernandes (Google) <joel@joelfernandes.org>
The rcutree.kthread_prio kernel-boot parameter is used to set the
priority for boost (rcub), per-CPU (rcuc), and grace-period (rcu_preempt
or rcu_sched) kthreads. It is also used by rcutorture to check whether
it is possible to meaningfully test RCU priority boosting. However,
all of these cases will either ignore or be confused by any post-boot
changes to rcutree.kthread_prio.
Note that the user really can change the priorities of all of these
kthreads using chrt, given sufficient privileges. Therefore, the
read-write nature of sysfs access to rcutree.kthread_prio is thus at
best an attractive nuisance.
This commit therefore changes sysfs access to rcutree.kthread_prio to
be read-only.
Signed-off-by: Liu Song <liu.song11@zte.com.cn>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The purpose of exit_rcu() is to handle cases where buggy code causes a
task to exit within an RCU read-side critical section. It currently
does that in the case where said RCU read-side critical section was
preempted at least once, but fails to handle cases where preemption did
not occur. This case needs to be handled because otherwise the final
context switch away from the exiting task will incorrectly behave as if
task exit were instead a preemption of an RCU read-side critical section,
and will therefore queue the exiting task. The exiting task will have
exited, and thus won't ever execute rcu_read_unlock(), which means that
it will remain queued forever, blocking all subsequent grace periods,
and eventually resulting in OOM.
Although this is arguably better than letting grace periods proceed
and having a later rcu_read_unlock() access the now-freed task
structure that once belonged to the exiting tasks, it would obviously
be better to correctly handle this case. This commit therefore sets
->rcu_read_lock_nesting to 1 in that case, so that the subsequence call
to __rcu_read_unlock() causes the exiting task to exit its dangling RCU
read-side critical section.
Note that deferred quiescent states need not be considered. The reason
is that removing the task from the ->blkd_tasks[] list in the call to
rcu_preempt_deferred_qs() handles the per-task component of any deferred
quiescent state, and all other components of any deferred quiescent state
are associated with the CPU, which isn't going anywhere until some later
CPU-hotplug operation, which will report any remaining deferred quiescent
states from within the rcu_report_dead() function.
Note also that negative values of ->rcu_read_lock_nesting need not be
considered. First, these won't show up in exit_rcu() unless there is
a serious bug in RCU, and second, setting ->rcu_read_lock_nesting sets
the state so that the RCU read-side critical section will be exited
normally.
Again, this code has no effect unless there has been some prior bug
that prevents a task from leaving an RCU read-side critical section
before exiting. Furthermore, there have been no reports of the bug
fixed by this commit appearing in production. This commit is therefore
absolutely -not- recommended for backporting to -stable.
Reported-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in>
Reported-by: BHARATH Y MOURYA <bharathm@iisc.ac.in>
Reported-by: Aravinda Prasad <aravinda@iisc.ac.in>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Tested-by: ABHISHEK DUBEY <dabhishek@iisc.ac.in>
The rcu_qs is disabling IRQs by self so no need to do the same in raise_softirq
but instead we can save some cycles using raise_softirq_irqoff directly.
CC: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
When there are no callbacks pending on an idle system, I noticed that
RCU softirq is continuously firing. During this the cpu_no_qs is set to
false, and core_needs_qs is set to true indefinitely. This causes
rcu_process_callbacks to be repeatedly called, even though the node
corresponding to the CPU has that CPU's mask bit cleared and the system
is idle. I believe the race is when such mask clearing is done during
idle CPU scan of the quiescent state forcing stage in the kthread
instead of the softirq. Since the rnp mask is cleared, but the flags on
the CPU's rdp are not cleared, the CPU thinks it still needs to report
to core RCU.
Cure this by clearing the core_needs_qs flag when the CPU detects that
its node is already updated which will avoid the unwanted softirq raises
to the benefit of real-time systems.
Test: Ran rcutorture for various tree RCU configs.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The rcu_pm_notify() function refuses to switch to/from expedited grace
periods on systems with more than 256 CPUs due to the serialized
initialization of expedited grace periods. However, expedited grace
periods are now initialized in parallel, removing this concern.
This commit therefore removes the checks from rcu_pm_notify(), so that
expedited grace periods are used unconditionally during suspend/resume
and hibernate/wake operations.
As always, real-time workloads wishing to completely avoid expedited
grace periods can use the rcupdate.rcu_normal= kernel parameter.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The BPF verifier checks the maximum number of call stack frames twice,
first in the main CFG traversal (do_check) and then in a subsequent
traversal (check_max_stack_depth). If the second check fails, it logs a
'verifier bug' warning and errors out, as the number of call stack frames
should have been verified already.
However, the second check may fail without indicating a verifier bug: if
the excessive function calls reside in dead code, the main CFG traversal
may not visit them; the subsequent traversal visits all instructions,
including dead code.
This case raises the question of how invalid dead code should be treated.
This patch implements the conservative option and rejects such code.
Signed-off-by: Paul Chaignon <paul.chaignon@orange.com>
Tested-by: Xiao Han <xiao.han@orange.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix compile warning in create_dyn_event(): 'ret' may be used uninitialized
in this function [-Wuninitialized].
Link: http://lkml.kernel.org/r/1553237900-8555-1-git-send-email-frowand.list@gmail.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Tom Zanussi <tom.zanussi@linux.intel.com>
Cc: Ravi Bangoria <ravi.bangoria@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Fixes: 5448d44c38 ("tracing: Add unified dynamic event framework")
Signed-off-by: Frank Rowand <frank.rowand@sony.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
syzkaller was able to generate the following UAF in bpf:
BUG: KASAN: use-after-free in lookup_last fs/namei.c:2269 [inline]
BUG: KASAN: use-after-free in path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318
Read of size 1 at addr ffff8801c4865c47 by task syz-executor2/9423
CPU: 0 PID: 9423 Comm: syz-executor2 Not tainted 4.20.0-rc1-next-20181109+
#110
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x244/0x39d lib/dump_stack.c:113
print_address_description.cold.7+0x9/0x1ff mm/kasan/report.c:256
kasan_report_error mm/kasan/report.c:354 [inline]
kasan_report.cold.8+0x242/0x309 mm/kasan/report.c:412
__asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:430
lookup_last fs/namei.c:2269 [inline]
path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318
filename_lookup+0x26a/0x520 fs/namei.c:2348
user_path_at_empty+0x40/0x50 fs/namei.c:2608
user_path include/linux/namei.h:62 [inline]
do_mount+0x180/0x1ff0 fs/namespace.c:2980
ksys_mount+0x12d/0x140 fs/namespace.c:3258
__do_sys_mount fs/namespace.c:3272 [inline]
__se_sys_mount fs/namespace.c:3269 [inline]
__x64_sys_mount+0xbe/0x150 fs/namespace.c:3269
do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
RIP: 0033:0x457569
Code: fd b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7
48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff
ff 0f 83 cb b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007fde6ed96c78 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5
RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 0000000000457569
RDX: 0000000020000040 RSI: 0000000020000000 RDI: 0000000000000000
RBP: 000000000072bf00 R08: 0000000020000340 R09: 0000000000000000
R10: 0000000000200000 R11: 0000000000000246 R12: 00007fde6ed976d4
R13: 00000000004c2c24 R14: 00000000004d4990 R15: 00000000ffffffff
Allocated by task 9424:
save_stack+0x43/0xd0 mm/kasan/kasan.c:448
set_track mm/kasan/kasan.c:460 [inline]
kasan_kmalloc+0xc7/0xe0 mm/kasan/kasan.c:553
__do_kmalloc mm/slab.c:3722 [inline]
__kmalloc_track_caller+0x157/0x760 mm/slab.c:3737
kstrdup+0x39/0x70 mm/util.c:49
bpf_symlink+0x26/0x140 kernel/bpf/inode.c:356
vfs_symlink+0x37a/0x5d0 fs/namei.c:4127
do_symlinkat+0x242/0x2d0 fs/namei.c:4154
__do_sys_symlink fs/namei.c:4173 [inline]
__se_sys_symlink fs/namei.c:4171 [inline]
__x64_sys_symlink+0x59/0x80 fs/namei.c:4171
do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
Freed by task 9425:
save_stack+0x43/0xd0 mm/kasan/kasan.c:448
set_track mm/kasan/kasan.c:460 [inline]
__kasan_slab_free+0x102/0x150 mm/kasan/kasan.c:521
kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528
__cache_free mm/slab.c:3498 [inline]
kfree+0xcf/0x230 mm/slab.c:3817
bpf_evict_inode+0x11f/0x150 kernel/bpf/inode.c:565
evict+0x4b9/0x980 fs/inode.c:558
iput_final fs/inode.c:1550 [inline]
iput+0x674/0xa90 fs/inode.c:1576
do_unlinkat+0x733/0xa30 fs/namei.c:4069
__do_sys_unlink fs/namei.c:4110 [inline]
__se_sys_unlink fs/namei.c:4108 [inline]
__x64_sys_unlink+0x42/0x50 fs/namei.c:4108
do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290
entry_SYSCALL_64_after_hwframe+0x49/0xbe
In this scenario path lookup under RCU is racing with the final
unlink in case of symlinks. As Linus puts it in his analysis:
[...] We actually RCU-delay the inode freeing itself, but
when we do the final iput(), the "evict()" function is called
synchronously. Now, the simple fix would seem to just RCU-delay
the kfree() of the symlink data in bpf_evict_inode(). Maybe
that's the right thing to do. [...]
Al suggested to piggy-back on the ->destroy_inode() callback in
order to implement RCU deferral there which can then kfree() the
inode->i_link eventually right before putting inode back into
inode cache. By reusing free_inode_nonrcu() from there we can
avoid the need for our own inode cache and just reuse generic
one as we currently do.
And in-fact on top of all this we should just get rid of the
bpf_evict_inode() entirely. This means truncate_inode_pages_final()
and clear_inode() will then simply be called by the fs core via
evict(). Dropping the reference should really only be done when
inode is unhashed and nothing reachable anymore, so it's better
also moved into the final ->destroy_inode() callback.
Fixes: 0f98621bef ("bpf, inode: add support for symlinks and fix mtime/ctime")
Reported-by: syzbot+fb731ca573367b7f6564@syzkaller.appspotmail.com
Reported-by: syzbot+a13e5ead792d6df37818@syzkaller.appspotmail.com
Reported-by: syzbot+7a8ba368b47fdefca61e@syzkaller.appspotmail.com
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Analyzed-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lore.kernel.org/lkml/0000000000006946d2057bbd0eef@google.com/T/
When irq_set_affinity_notifier() replaces the notifier, then the
reference count on the old notifier is dropped which causes it to be
freed. But nothing ensures that the old notifier is not longer queued
in the work list. If it is queued this results in a use after free and
possibly in work list corruption.
Ensure that the work is canceled before the reference is dropped.
Signed-off-by: Prasad Sodagudi <psodagud@codeaurora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: marc.zyngier@arm.com
Link: https://lkml.kernel.org/r/1553439424-6529-1-git-send-email-psodagud@codeaurora.org
Timers are added to the timer wheel off by one. This is required in
case a timer is queued directly before incrementing jiffies to prevent
early timer expiry.
When reading a timer trace and relying only on the expiry time of the timer
in the timer_start trace point and on the now in the timer_expiry_entry
trace point, it seems that the timer fires late. With the current
timer_expiry_entry trace point information only now=jiffies is printed but
not the value of base->clk. This makes it impossible to draw a conclusion
to the index of base->clk and makes it impossible to examine timer problems
without additional trace points.
Therefore add the base->clk value to the timer_expire_entry trace
point, to be able to calculate the index the timer base is located at
during collecting expired timers.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fweisbec@gmail.com
Cc: peterz@infradead.org
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20190321120921.16463-5-anna-maria@linutronix.de
When placing the timer_start trace point before the timer wheel bucket
index is calculated, the index information in the trace point is useless.
It is not possible to simply move the debug_activate() call after the index
calculation, because debug_object_activate() needs to be called before
touching the object.
Therefore split debug_activate() and move the trace point into
enqueue_timer() after the new index has been calculated. The
debug_object_activate() call remains at the original place.
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fweisbec@gmail.com
Cc: peterz@infradead.org
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/20190321120921.16463-3-anna-maria@linutronix.de
Pull scheduler updates from Thomas Gleixner:
"Third more careful attempt for this set of fixes:
- Prevent a 32bit math overflow in the cpufreq code
- Fix a buffer overflow when scanning the cgroup2 cpu.max property
- A set of fixes for the NOHZ scheduler logic to prevent waking up
CPUs even if the capacity of the busy CPUs is sufficient along with
other tweaks optimizing the behaviour for asymmetric systems
(big/little)"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Skip LLC NOHZ logic for asymmetric systems
sched/fair: Tune down misfit NOHZ kicks
sched/fair: Comment some nohz_balancer_kick() kick conditions
sched/core: Fix buffer overflow in cgroup2 property cpu.max
sched/cpufreq: Fix 32-bit math overflow
Pull perf updates from Thomas Gleixner:
"A larger set of perf updates.
Not all of them are strictly fixes, but that's solely the tip
maintainers fault as they let the timely -rc1 pull request fall
through the cracks for various reasons including travel. So I'm
sending this nevertheless because rebasing and distangling fixes and
updates would be a mess and risky as well. As of tomorrow, a strict
fixes separation is happening again. Sorry for the slip-up.
Kernel:
- Handle RECORD_MMAP vs. RECORD_MMAP2 correctly so different
consumers of the mmap event get what they requested.
Tools:
- A larger set of updates to perf record/report/scripts vs. time
stamp handling
- More Python3 fixups
- A pile of memory leak plumbing
- perf BPF improvements and fixes
- Finalize the perf.data directory storage"
[ Note: the kernel part is strictly a fix, the updates are purely to
tooling - Linus ]
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
perf bpf: Show more BPF program info in print_bpf_prog_info()
perf bpf: Extract logic to create program names from perf_event__synthesize_one_bpf_prog()
perf tools: Save bpf_prog_info and BTF of new BPF programs
perf evlist: Introduce side band thread
perf annotate: Enable annotation of BPF programs
perf build: Check what binutils's 'disassembler()' signature to use
perf bpf: Process PERF_BPF_EVENT_PROG_LOAD for annotation
perf symbols: Introduce DSO_BINARY_TYPE__BPF_PROG_INFO
perf feature detection: Add -lopcodes to feature-libbfd
perf top: Add option --no-bpf-event
perf bpf: Save BTF information as headers to perf.data
perf bpf: Save BTF in a rbtree in perf_env
perf bpf: Save bpf_prog_info information as headers to perf.data
perf bpf: Save bpf_prog_info in a rbtree in perf_env
perf bpf: Make synthesize_bpf_events() receive perf_session pointer instead of perf_tool
perf bpf: Synthesize bpf events with bpf_program__get_prog_info_linear()
bpftool: use bpf_program__get_prog_info_linear() in prog.c:do_dump()
tools lib bpf: Introduce bpf_program__get_prog_info_linear()
perf record: Replace option --bpf-event with --no-bpf-event
perf tests: Fix a memory leak in test__perf_evsel__tp_sched_test()
...
Pull timer fixes from Thomas Gleixner:
"A set of small fixes plus the removal of stale board support code:
- Remove the board support code from the clpx711x clocksource driver.
This change had fallen through the cracks and I'm sending it now
rather than dealing with people who want to improve that stale code
for 3 month.
- Use the proper clocksource mask on RICSV
- Make local scope functions and variables static"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
clocksource/drivers/clps711x: Remove board support
clocksource/drivers/riscv: Fix clocksource mask
clocksource/drivers/mips-gic-timer: Make gic_compare_irqaction static
clocksource/drivers/timer-ti-dm: Make omap_dm_timer_set_load_start() static
clocksource/drivers/tcb_clksrc: Make tc_clksrc_suspend/resume() static
clocksource/drivers/clps711x: Make clps711x_clksrc_init() static
time/jiffies: Make refined_jiffies static