Commit Graph

481498 Commits

Author SHA1 Message Date
Suresh E. Warrier 3c78f78af9 KVM: PPC: Book3S HV: Tracepoints for KVM HV guest interactions
This patch adds trace points in the guest entry and exit code and also
for exceptions handled by the host in kernel mode - hypercalls and page
faults. The new events are added to /sys/kernel/debug/tracing/events
under a new subsystem called kvm_hv.

Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:29:27 +01:00
Paul Mackerras 2711e248a3 KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
Currently the calculations of stolen time for PPC Book3S HV guests
uses fields in both the vcpu struct and the kvmppc_vcore struct.  The
fields in the kvmppc_vcore struct are protected by the
vcpu->arch.tbacct_lock of the vcpu that has taken responsibility for
running the virtual core.  This works correctly but confuses lockdep,
because it sees that the code takes the tbacct_lock for a vcpu in
kvmppc_remove_runnable() and then takes another vcpu's tbacct_lock in
vcore_stolen_time(), and it thinks there is a possibility of deadlock,
causing it to print reports like this:

=============================================
[ INFO: possible recursive locking detected ]
3.18.0-rc7-kvm-00016-g8db4bc6 #89 Not tainted
---------------------------------------------
qemu-system-ppc/6188 is trying to acquire lock:
 (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb1fe8>] .vcore_stolen_time+0x48/0xd0 [kvm_hv]

but task is already holding lock:
 (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(&(&vcpu->arch.tbacct_lock)->rlock);
  lock(&(&vcpu->arch.tbacct_lock)->rlock);

 *** DEADLOCK ***

 May be due to missing lock nesting notation

3 locks held by qemu-system-ppc/6188:
 #0:  (&vcpu->mutex){+.+.+.}, at: [<d00000000eb93f98>] .vcpu_load+0x28/0xe0 [kvm]
 #1:  (&(&vcore->lock)->rlock){+.+...}, at: [<d00000000ecb41b0>] .kvmppc_vcpu_run_hv+0x530/0x1530 [kvm_hv]
 #2:  (&(&vcpu->arch.tbacct_lock)->rlock){......}, at: [<d00000000ecb25a0>] .kvmppc_remove_runnable.part.3+0x30/0xd0 [kvm_hv]

stack backtrace:
CPU: 40 PID: 6188 Comm: qemu-system-ppc Not tainted 3.18.0-rc7-kvm-00016-g8db4bc6 #89
Call Trace:
[c000000b2754f3f0] [c000000000b31b6c] .dump_stack+0x88/0xb4 (unreliable)
[c000000b2754f470] [c0000000000faeb8] .__lock_acquire+0x1878/0x2190
[c000000b2754f600] [c0000000000fbf0c] .lock_acquire+0xcc/0x1a0
[c000000b2754f6d0] [c000000000b2954c] ._raw_spin_lock_irq+0x4c/0x70
[c000000b2754f760] [d00000000ecb1fe8] .vcore_stolen_time+0x48/0xd0 [kvm_hv]
[c000000b2754f7f0] [d00000000ecb25b4] .kvmppc_remove_runnable.part.3+0x44/0xd0 [kvm_hv]
[c000000b2754f880] [d00000000ecb43ec] .kvmppc_vcpu_run_hv+0x76c/0x1530 [kvm_hv]
[c000000b2754f9f0] [d00000000eb9f46c] .kvmppc_vcpu_run+0x2c/0x40 [kvm]
[c000000b2754fa60] [d00000000eb9c9a4] .kvm_arch_vcpu_ioctl_run+0x54/0x160 [kvm]
[c000000b2754faf0] [d00000000eb94538] .kvm_vcpu_ioctl+0x498/0x760 [kvm]
[c000000b2754fcb0] [c000000000267eb4] .do_vfs_ioctl+0x444/0x770
[c000000b2754fd90] [c0000000002682a4] .SyS_ioctl+0xc4/0xe0
[c000000b2754fe30] [c0000000000092e4] syscall_exit+0x0/0x98

In order to make the locking easier to analyse, we change the code to
use a spinlock in the kvmppc_vcore struct to protect the stolen_tb and
preempt_tb fields.  This lock needs to be an irq-safe lock since it is
used in the kvmppc_core_vcpu_load_hv() and kvmppc_core_vcpu_put_hv()
functions, which are called with the scheduler rq lock held, which is
an irq-safe lock.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:20:09 +01:00
Rickard Strandqvist a0499cf746 arch: powerpc: kvm: book3s_paired_singles.c: Remove unused function
Remove the function inst_set_field() that is not used anywhere.

This was partially found by using a static code analysis program called cppcheck.

Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:13:29 +01:00
Rickard Strandqvist 6178839b01 arch: powerpc: kvm: book3s_pr.c: Remove unused function
Remove the function get_fpr_index() that is not used anywhere.

This was partially found by using a static code analysis program called cppcheck.

Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:13:16 +01:00
Rickard Strandqvist 54ca162a0c arch: powerpc: kvm: book3s.c: Remove some unused functions
Removes some functions that are not used anywhere:
kvmppc_core_load_guest_debugstate() kvmppc_core_load_host_debugstate()

This was partially found by using a static code analysis program called cppcheck.

Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:12:42 +01:00
Rickard Strandqvist 24aaaf22ea arch: powerpc: kvm: book3s_32_mmu.c: Remove unused function
Remove the function sr_nx() that is not used anywhere.

This was partially found by using a static code analysis program called cppcheck.

Signed-off-by: Rickard Strandqvist <rickard_strandqvist@spectrumdigital.se>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:12:25 +01:00
Suresh E. Warrier 1bc5d59c35 KVM: PPC: Book3S HV: Check wait conditions before sleeping in kvmppc_vcore_blocked
The kvmppc_vcore_blocked() code does not check for the wait condition
after putting the process on the wait queue. This means that it is
possible for an external interrupt to become pending, but the vcpu to
remain asleep until the next decrementer interrupt.  The fix is to
make one last check for pending exceptions and ceded state before
calling schedule().

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:25 +01:00
Cédric Le Goater ffada016fb KVM: PPC: Book3S HV: ptes are big endian
When being restored from qemu, the kvm_get_htab_header are in native
endian, but the ptes are big endian.

This patch fixes restore on a KVM LE host. Qemu also needs a fix for
this :

     http://lists.nongnu.org/archive/html/qemu-ppc/2014-11/msg00008.html

Signed-off-by: Cédric Le Goater <clg@fr.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:24 +01:00
Suresh E. Warrier 5b88cda665 KVM: PPC: Book3S HV: Fix inaccuracies in ICP emulation for H_IPI
This fixes some inaccuracies in the state machine for the virtualized
ICP when implementing the H_IPI hcall (Set_MFFR and related states):

1. The old code wipes out any pending interrupts when the new MFRR is
   more favored than the CPPR but less favored than a pending
   interrupt (by always modifying xisr and the pending_pri). This can
   cause us to lose a pending external interrupt.

   The correct code here is to only modify the pending_pri and xisr in
   the ICP if the MFRR is equal to or more favored than the current
   pending pri (since in this case, it is guaranteed that that there
   cannot be a pending external interrupt). The code changes are
   required in both kvmppc_rm_h_ipi and kvmppc_h_ipi.

2. Again, in both kvmppc_rm_h_ipi and kvmppc_h_ipi, there is a check
   for whether MFRR is being made less favored AND further if new MFFR
   is also less favored than the current CPPR, we check for any
   resends pending in the ICP. These checks look like they are
   designed to cover the case where if the MFRR is being made less
   favored, we opportunistically trigger a resend of any interrupts
   that had been previously rejected. Although, this is not a state
   described by PAPR, this is an action we actually need to do
   especially if the CPPR is already at 0xFF.  Because in this case,
   the resend bit will stay on until another ICP state change which
   may be a long time coming and the interrupt stays pending until
   then. The current code which checks for MFRR < CPPR is broken when
   CPPR is 0xFF since it will not get triggered in that case.

   Ideally, we would want to do a resend only if

   	prio(pending_interrupt) < mfrr && prio(pending_interrupt) < cppr

   where pending interrupt is the one that was rejected. But we don't
   have the priority of the pending interrupt state saved, so we
   simply trigger a resend whenever the MFRR is made less favored.

3. In kvmppc_rm_h_ipi, where we save state to pass resends to the
   virtual mode, we also need to save the ICP whose need_resend we
   reset since this does not need to be my ICP (vcpu->arch.icp) as is
   incorrectly assumed by the current code. A new field rm_resend_icp
   is added to the kvmppc_icp structure for this purpose.

Signed-off-by: Suresh Warrier <warrier@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:24 +01:00
Paul Mackerras b4a839009a KVM: PPC: Book3S HV: Fix KSM memory corruption
Testing with KSM active in the host showed occasional corruption of
guest memory.  Typically a page that should have contained zeroes
would contain values that look like the contents of a user process
stack (values such as 0x0000_3fff_xxxx_xxx).

Code inspection in kvmppc_h_protect revealed that there was a race
condition with the possibility of granting write access to a page
which is read-only in the host page tables.  The code attempts to keep
the host mapping read-only if the host userspace PTE is read-only, but
if that PTE had been temporarily made invalid for any reason, the
read-only check would not trigger and the host HPTE could end up
read-write.  Examination of the guest HPT in the failure situation
revealed that there were indeed shared pages which should have been
read-only that were mapped read-write.

To close this race, we don't let a page go from being read-only to
being read-write, as far as the real HPTE mapping the page is
concerned (the guest view can go to read-write, but the actual mapping
stays read-only).  When the guest tries to write to the page, we take
an HDSI and let kvmppc_book3s_hv_page_fault take care of providing a
writable HPTE for the page.

This eliminates the occasional corruption of shared pages
that was previously seen with KSM active.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:24 +01:00
Mahesh Salgaonkar dee6f24c33 KVM: PPC: Book3S HV: Fix an issue where guest is paused on receiving HMI
When we get an HMI (hypervisor maintenance interrupt) while in a
guest, we see that guest enters into paused state.  The reason is, in
kvmppc_handle_exit_hv it falls through default path and returns to
host instead of resuming guest.  This causes guest to enter into
paused state.  HMI is a hypervisor only interrupt and it is safe to
resume the guest since the host has handled it already.  This patch
adds a switch case to resume the guest.

Without this patch we see guest entering into paused state with following
console messages:

[ 3003.329351] Severe Hypervisor Maintenance interrupt [Recovered]
[ 3003.329356]  Error detail: Timer facility experienced an error
[ 3003.329359] 	HMER: 0840000000000000
[ 3003.329360] 	TFMR: 4a12000980a84000
[ 3003.329366] vcpu c0000007c35094c0 (40):
[ 3003.329368] pc  = c0000000000c2ba0  msr = 8000000000009032  trap = e60
[ 3003.329370] r 0 = c00000000021ddc0  r16 = 0000000000000046
[ 3003.329372] r 1 = c00000007a02bbd0  r17 = 00003ffff27d5d98
[ 3003.329375] r 2 = c0000000010980b8  r18 = 00001fffffc9a0b0
[ 3003.329377] r 3 = c00000000142d6b8  r19 = c00000000142d6b8
[ 3003.329379] r 4 = 0000000000000002  r20 = 0000000000000000
[ 3003.329381] r 5 = c00000000524a110  r21 = 0000000000000000
[ 3003.329383] r 6 = 0000000000000001  r22 = 0000000000000000
[ 3003.329386] r 7 = 0000000000000000  r23 = c00000000524a110
[ 3003.329388] r 8 = 0000000000000000  r24 = 0000000000000001
[ 3003.329391] r 9 = 0000000000000001  r25 = c00000007c31da38
[ 3003.329393] r10 = c0000000014280b8  r26 = 0000000000000002
[ 3003.329395] r11 = 746f6f6c2f68656c  r27 = c00000000524a110
[ 3003.329397] r12 = 0000000028004484  r28 = c00000007c31da38
[ 3003.329399] r13 = c00000000fe01400  r29 = 0000000000000002
[ 3003.329401] r14 = 0000000000000046  r30 = c000000003011e00
[ 3003.329403] r15 = ffffffffffffffba  r31 = 0000000000000002
[ 3003.329404] ctr = c00000000041a670  lr  = c000000000272520
[ 3003.329405] srr0 = c00000000007e8d8 srr1 = 9000000000001002
[ 3003.329406] sprg0 = 0000000000000000 sprg1 = c00000000fe01400
[ 3003.329407] sprg2 = c00000000fe01400 sprg3 = 0000000000000005
[ 3003.329408] cr = 48004482  xer = 2000000000000000  dsisr = 42000000
[ 3003.329409] dar = 0000010015020048
[ 3003.329410] fault dar = 0000010015020048 dsisr = 42000000
[ 3003.329411] SLB (8 entries):
[ 3003.329412]   ESID = c000000008000000 VSID = 40016e7779000510
[ 3003.329413]   ESID = d000000008000001 VSID = 400142add1000510
[ 3003.329414]   ESID = f000000008000004 VSID = 4000eb1a81000510
[ 3003.329415]   ESID = 00001f000800000b VSID = 40004fda0a000d90
[ 3003.329416]   ESID = 00003f000800000c VSID = 400039f536000d90
[ 3003.329417]   ESID = 000000001800000d VSID = 0001251b35150d90
[ 3003.329417]   ESID = 000001000800000e VSID = 4001e46090000d90
[ 3003.329418]   ESID = d000080008000019 VSID = 40013d349c000400
[ 3003.329419] lpcr = c048800001847001 sdr1 = 0000001b19000006 last_inst = ffffffff
[ 3003.329421] trap=0xe60 | pc=0xc0000000000c2ba0 | msr=0x8000000000009032
[ 3003.329524] Severe Hypervisor Maintenance interrupt [Recovered]
[ 3003.329526]  Error detail: Timer facility experienced an error
[ 3003.329527] 	HMER: 0840000000000000
[ 3003.329527] 	TFMR: 4a12000980a94000
[ 3006.359786] Severe Hypervisor Maintenance interrupt [Recovered]
[ 3006.359792]  Error detail: Timer facility experienced an error
[ 3006.359795] 	HMER: 0840000000000000
[ 3006.359797] 	TFMR: 4a12000980a84000

 Id    Name                           State
----------------------------------------------------
 2     guest2                         running
 3     guest3                         paused
 4     guest4                         running

Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:24 +01:00
Paul Mackerras d506735b1a KVM: PPC: Book3S HV: Fix computation of tlbie operand
The B (segment size) field in the RB operand for the tlbie
instruction is two bits, which we get from the top two bits of
the first doubleword of the HPT entry to be invalidated.  These
bits go in bits 8 and 9 of the RB operand (bits 54 and 55 in IBM
bit numbering).

The compute_tlbie_rb() function gets these bits as v >> (62 - 8),
which is not correct as it will bring in the top 10 bits, not
just the top two.  These extra bits could corrupt the AP, AVAL
and L fields in the RB value.  To fix this we shift right 62 bits
and then shift left 8 bits, so we only get the two bits of the
B field.

The first doubleword of the HPT entry is under the control of the
guest kernel.  In fact, Linux guests will always put zeroes in bits
54 -- 61 (IBM bits 2 -- 9), but we should not rely on guests doing
this.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:23 +01:00
Aneesh Kumar K.V f6fb9e848c KVM: PPC: Book3S HV: Add missing HPTE unlock
In kvm_test_clear_dirty(), if we find an invalid HPTE we move on to the
next HPTE without unlocking the invalid one.  In fact we should never
find an invalid and unlocked HPTE in the rmap chain, but for robustness
we should unlock it.  This adds the missing unlock.

Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:23 +01:00
Alexander Graf b6b612571e KVM: PPC: BookE: Improve irq inject tracepoint
When injecting an IRQ, we only document which IRQ priority (which translates
to IRQ type) gets injected. However, when reading traces you don't necessarily
have all the numbers in your head to know which IRQ really is meant.

This patch converts the IRQ number field to a symbolic name that is in sync
with the respective define. That way it's a lot easier for readers to figure
out what interrupt gets injected.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-15 13:27:23 +01:00
Radim Krčmář e08e833616 KVM: cpuid: recompute CPUID 0xD.0:EBX,ECX
We reused host EBX and ECX, but KVM might not support all features;
emulated XSAVE size should be smaller.

EBX depends on unknown XCR0, so we default to ECX.

SDM CPUID (EAX = 0DH, ECX = 0):
 EBX Bits 31-00: Maximum size (bytes, from the beginning of the
     XSAVE/XRSTOR save area) required by enabled features in XCR0. May
     be different than ECX if some features at the end of the XSAVE save
     area are not enabled.

 ECX Bit 31-00: Maximum size (bytes, from the beginning of the
     XSAVE/XRSTOR save area) of the XSAVE/XRSTOR save area required by
     all supported features in the processor, i.e all the valid bit
     fields in XCR0.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:49 +01:00
Wanpeng Li 81dc01f749 kvm: vmx: add nested virtualization support for xsaves
Add nested virtualization support for xsaves.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:44 +01:00
Wanpeng Li 203000993d kvm: vmx: add MSR logic for XSAVES
Add logic to get/set the XSS model-specific register.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:39 +01:00
Wanpeng Li f53cd63c2d kvm: x86: handle XSAVES vmcs and vmexit
Initialize the XSS exit bitmap.  It is zero so there should be no XSAVES
or XRSTORS exits.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:33 +01:00
Paolo Bonzini 404e0a19e1 KVM: cpuid: mask more bits in leaf 0xd and subleaves
- EAX=0Dh, ECX=1: output registers EBX/ECX/EDX are reserved.

- EAX=0Dh, ECX>1: output register ECX bit 0 is clear for all the CPUID
leaves we support, because variable "supported" comes from XCR0 and not
XSS.  Bits above 0 are reserved, so ECX is overall zero.  Output register
EDX is reserved.

Source: Intel Architecture Instruction Set Extensions Programming
Reference, ref. number 319433-022

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:17 +01:00
Paolo Bonzini 412a3c411e KVM: cpuid: set CPUID(EAX=0xd,ECX=1).EBX correctly
This is the size of the XSAVES area.  This starts providing guest support
for XSAVES (with no support yet for supervisor states, i.e. XSS == 0
always in guests for now).

Wanpeng Li suggested testing XSAVEC as well as XSAVES, since in practice
no real processor exists that only has one of them, and there is no
other way for userspace programs to compute the area of the XSAVEC
save area.  CPUID(EAX=0xd,ECX=1).EBX provides an upper bound.

Suggested-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Tested-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:17 +01:00
Wanpeng Li 55412b2eda kvm: x86: Add kvm_x86_ops hook that enables XSAVES for guest
Expose the XSAVES feature to the guest if the kvm_x86_ops say it is
available.

Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:16 +01:00
Paolo Bonzini 5c404cabd1 KVM: x86: use F() macro throughout cpuid.c
For code that deals with cpuid, this makes things a bit more readable.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:15 +01:00
Paolo Bonzini df1daba7d1 KVM: x86: support XSAVES usage in the host
Userspace is expecting non-compacted format for KVM_GET_XSAVE, but
struct xsave_struct might be using the compacted format.  Convert
in order to preserve userspace ABI.

Likewise, userspace is passing non-compacted format for KVM_SET_XSAVE
but the kernel will pass it to XRSTORS, and we need to convert back.

Fixes: f31a9f7c71
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: stable@vger.kernel.org
Cc: H. Peter Anvin <hpa@linux.intel.com>
Tested-by: Nadav Amit <namit@cs.technion.ac.il>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:57:05 +01:00
Paolo Bonzini ba7b39203a x86: export get_xsave_addr
get_xsave_addr is the API to access XSAVE states, and KVM would
like to use it.  Export it.

Cc: stable@vger.kernel.org
Cc: x86@kernel.org
Cc: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-05 13:55:44 +01:00
Paolo Bonzini 28145be0a7 KVM: s390: Fixups for kvm/next (3.19)
Here we have two fixups of the latest interrupt rework and
 one architectural fixup.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.14 (GNU/Linux)
 
 iQIcBAABAgAGBQJUgIO9AAoJEBF7vIC1phx8U5YQALKPvkoyVaGOexDCQQJrz04+
 9W5ZQuvg020jj1EmRPlv9yekhtYBTYA/OVT+FsDG3eq+xCS4Y04vlvUfk2Lq0YAB
 Bk+cU7plNP8f1Ml/kRTC/yfWcPe8iCVI1WA7zqA2wwEbaEZCz+9+i76wyriDWtJM
 FJEKXqVmLZH/H+GAw4GQG0YrO4uZ70Sk5F5YVtceGN5mDlqCATXa2xADm4ciAiIW
 L6w+G3KjIuv/Opds6DFMfJgYQeAF+0MFFWpD2rUfVLwIvdtBTtnxVwQZfpoXH7rF
 SeNU6n7CILS0csW/ZMcuTE8UrYgW1kkj1iVgc6fT7nkTWWZ5+iGRbAKQG5WPKibn
 84f9cn7kJ22ZobayaLskNfe041o1a+zMUCswHdFYTgF29WefeqkikoPx0B80g4p6
 O1jZqSZXKiTtlmIqiISikJhDVx0/kC+ftlu4MJLKq7O8RgcaYmAJp7gSGz50sMPB
 AybcfNkoYsg5J85sinT16TA/Vmcd3ZBWRqaokiRFD/uuqh5cKnyZOTpPwph8Welq
 QxBtqpG36cBLRJRMzlSJNXg1LKvb8WAxWYxGjiSL/8y/V3intnSFYdLjhNpx3yj8
 WCxaG3m2Gf68RQOVSdqlvgH//xBeSz0l9grX+BzJNvBY7aZMmTbXHwIt/lSCiBZd
 radGCMmVN4YEq4OoTgyr
 =ZZSq
 -----END PGP SIGNATURE-----

Merge tag 'kvm-s390-next-20141204' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

KVM: s390: Fixups for kvm/next (3.19)

Here we have two fixups of the latest interrupt rework and
one architectural fixup.
2014-12-05 13:55:40 +01:00
Jens Freimann 99e20009ae KVM: s390: clean up return code handling in irq delivery code
Instead of returning a possibly random or'ed together value, let's
always return -EFAULT if rc is set.

Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-12-04 16:39:00 +01:00
Jens Freimann 9185124e87 KVM: s390: use atomic bitops to access pending_irqs bitmap
Currently we use a mixture of atomic/non-atomic bitops
and the local_int spin lock to protect the pending_irqs bitmap
and interrupt payload data.

We need to use atomic bitops for the pending_irqs bitmap everywhere
and in addition acquire the local_int lock where interrupt data needs
to be protected.

Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-12-04 16:38:57 +01:00
David Hildenbrand 467fc29892 KVM: s390: some ext irqs have to clear the ext cpu addr
The cpu address of a source cpu (responsible for an external irq) is only to
be stored if bit 6 of the ext irq code is set.

If bit 6 is not set, it is to be zeroed out.

The special external irq code used for virtio and pfault uses the cpu addr as a
parameter field. As bit 6 is set, this implementation is correct.

Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-12-04 16:38:38 +01:00
Christian Borntraeger 7a72f7a140 KVM: track pid for VCPU only on KVM_RUN ioctl
We currently track the pid of the task that runs the VCPU in vcpu_load.
If a yield to that VCPU is triggered while the PID of the wrong thread
is active, the wrong thread might receive a yield, but this will most
likely not help the executing thread at all.  Instead, if we only track
the pid on the KVM_RUN ioctl, there are two possibilities:

1) the thread that did a non-KVM_RUN ioctl is holding a mutex that
the VCPU thread is waiting for.  In this case, the VCPU thread is not
runnable, but we also do not do a wrong yield.

2) the thread that did a non-KVM_RUN ioctl is sleeping, or doing
something that does not block the VCPU thread.  In this case, the
VCPU thread can receive the directed yield correctly.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
CC: Rik van Riel <riel@redhat.com>
CC: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
CC: Michael Mueller <mimu@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:13 +01:00
David Hildenbrand eed6e79d73 KVM: don't check for PF_VCPU when yielding
kvm_enter_guest() has to be called with preemption disabled and will
set PF_VCPU.  Current code takes PF_VCPU as a hint that the VCPU thread
is running and therefore needs no yield.

However, the check on PF_VCPU is wrong on s390, where preemption has
to stay enabled in order to correctly process page faults.  Thus,
s390 reenables preemption and starts to execute the guest.  The thread
might be scheduled out between kvm_enter_guest() and kvm_exit_guest(),
resulting in PF_VCPU being set but not being run.  When this happens,
the opportunity for directed yield is missed.

However, this check is done already in kvm_vcpu_on_spin before calling
kvm_vcpu_yield_loop:

        if (!ACCESS_ONCE(vcpu->preempted))
                continue;

so the check on PF_VCPU is superfluous in general, and this patch
removes it.

Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:12 +01:00
Igor Mammedov 9c1a5d3878 kvm: optimize GFN to memslot lookup with large slots amount
Current linear search doesn't scale well when
large amount of memslots is used and looked up slot
is not in the beginning memslots array.
Taking in account that memslots don't overlap, it's
possible to switch sorting order of memslots array from
'npages' to 'base_gfn' and use binary search for
memslot lookup by GFN.

As result of switching to binary search lookup times
are reduced with large amount of memslots.

Following is a table of search_memslot() cycles
during WS2008R2 guest boot.

                         boot,          boot + ~10 min
                         mostly same    of using it,
                         slot lookup    randomized lookup
                max      average        average
                cycles   cycles         cycles

13 slots      : 1450       28           30

13 slots      : 1400       30           40
binary search

117 slots     : 13000      30           460

117 slots     : 2000       35           180
binary search

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:11 +01:00
Igor Mammedov 0e60b0799f kvm: change memslot sorting rule from size to GFN
it will allow to use binary search for GFN -> memslot
lookups, reducing lookup cost with large slots amount.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:11 +01:00
Igor Mammedov d4ae84a02b kvm: search_memslots: add simple LRU memslot caching
In typical guest boot workload only 2-3 memslots are used
extensively, and at that it's mostly the same memslot
lookup operation.

Adding LRU cache improves average lookup time from
46 to 28 cycles (~40%) for this workload.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:10 +01:00
Igor Mammedov 7f379cff11 kvm: update_memslots: drop not needed check for the same slot
UP/DOWN shift loops will shift array in needed
direction and stop at place where new slot should
be placed regardless of old slot size.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:09 +01:00
Igor Mammedov 5a38b6e6b4 kvm: update_memslots: drop not needed check for the same number of pages
if number of pages haven't changed sorting algorithm
will do nothing, so there is no need to do extra check
to avoid entering sorting logic.

Signed-off-by: Igor Mammedov <imammedo@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:09 +01:00
Radim Krčmář 45c3094a64 KVM: x86: allow 256 logical x2APICs again
While fixing an x2apic bug,
 17d68b7 KVM: x86: fix guest-initiated crash with x2apic (CVE-2013-6376)
we've made only one cluster available.  This means that the amount of
logically addressible x2APICs was reduced to 16 and VCPUs kept
overwriting themselves in that region, so even the first cluster wasn't
set up correctly.

This patch extends x2APIC support back to the logical_map's limit, and
keeps the CVE fixed as messages for non-present APICs are dropped.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:08 +01:00
Radim Krčmář 25995e5b4a KVM: x86: check bounds of APIC maps
They can't be violated now, but play it safe for the future.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:08 +01:00
Radim Krčmář fa834e9197 KVM: x86: fix APIC physical destination wrapping
x2apic allows destinations > 0xff and we don't want them delivered to
lower APICs.  They are correctly handled by doing nothing.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:07 +01:00
Radim Krčmář 085563fb04 KVM: x86: deliver phys lowest-prio
Physical mode can't address more than one APIC, but lowest-prio is
allowed, so we just reuse our paths.

SDM 10.6.2.1 Physical Destination:
  Also, for any non-broadcast IPI or I/O subsystem initiated interrupt
  with lowest priority delivery mode, software must ensure that APICs
  defined in the interrupt address are present and enabled to receive
  interrupts.

We could warn on top of that.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:06 +01:00
Radim Krčmář 698f9755d9 KVM: x86: don't retry hopeless APIC delivery
False from kvm_irq_delivery_to_apic_fast() means that we don't handle it
in the fast path, but we still return false in cases that were perfectly
handled, fix that.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:06 +01:00
Radim Krčmář decdc28382 KVM: x86: use MSR_ICR instead of a number
0x830 MSR is 0x300 xAPIC MMIO, which is MSR_ICR.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:05 +01:00
Nadav Amit c69d3d9bc1 KVM: x86: Fix reserved x2apic registers
x2APIC has no registers for DFR and ICR2 (see Intel SDM 10.12.1.2 "x2APIC
Register Address Space"). KVM needs to cause #GP on such accesses.

Fix it (DFR and ICR2 on read, ICR2 on write, DFR already handled on writes).

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:05 +01:00
Nadav Amit 39f062ff51 KVM: x86: Generate #UD when memory operand is required
Certain x86 instructions that use modrm operands only allow memory operand
(i.e., mod012), and cause a #UD exception otherwise. KVM ignores this fact.
Currently, the instructions that are such and are emulated by KVM are MOVBE,
MOVNTPS, MOVNTPD and MOVNTI.  MOVBE is the most blunt example, since it may be
emulated by the host regardless of MMIO.

The fix introduces a new group for handling such instructions, marking mod3 as
illegal instruction.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-12-04 15:29:04 +01:00
Paolo Bonzini be06b6bece KVM: s390: Several fixes,cleanups and reworks
Here is a bunch of fixes that deal mostly with architectural compliance:
 - interrupt priorities
 - interrupt handling
 - intruction exit handling
 
 We also provide a helper function for getting the guest visible storage key.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.14 (GNU/Linux)
 
 iQIcBAABAgAGBQJUeHKOAAoJEBF7vIC1phx8fS8P/2i1zXvsB+Mp9FafU6FO3Ci6
 yM/ZBLFEsX2jmU0TGR2szZCP4xuHqomJm441+2CX9bXzjf8vnA2hGiDYX0bnBraK
 1/klx6Li1fQxsiSHXIgBXr0wh5ftNUdFVZiJoifY9dEdrhVI+YEiptIl7lADCFXi
 SdGtjEAzrVEe8H0g6OuBXeEfPzHvxAzNJ31yHuiCKl7vbFVnXNVPeZhq3dJZwmWC
 iIdlSqGIjbcHNMLXvrScLDAScBe6WruBLhPSy5aTIA2eBU6f4qkOedSFABJkIAq+
 V6v5pXWbrVBIqfLXE7Vp7jxhP7+viBGzu/gPkfT8HV1pQZDa94WojF8hGU0DLGLd
 vgZuFDV8cMOZMUS/onXOwnIXN5VPvP8V2v3y8gTiap3MykRiyTGEzq2auU9p0K5n
 /8W6Cn1P/WBS8MOFYg726DGmMAWkzpEVz9rxpCLaTpzz7QVyLuSLq/n3SXyQNQIl
 zhox/KzwUQD0t1062USoK3w4suYNvnX0BuFOwxXvS7f4bsb+6V/t0GyIBnVAL/OF
 DZzJSIyzP/Ur/9krxJQxML3kEELU1CjwSLOrzDUnZA3ytaKvsLrHkTb9nK6fREDK
 14AGRnp94B3EMPR6T+7T6gvwK2Y/QIo8Y/EFAa2BwXY4Q/BQPSVU3x3RK6L9+7jY
 VaG9sgn4OC2ZPzxjqMTc
 =MQUy
 -----END PGP SIGNATURE-----

Merge tag 'kvm-s390-next-20141128' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

KVM: s390: Several fixes,cleanups and reworks

Here is a bunch of fixes that deal mostly with architectural compliance:
- interrupt priorities
- interrupt handling
- intruction exit handling

We also provide a helper function for getting the guest visible storage key.
2014-12-03 15:20:11 +01:00
Jens Freimann fc2020cfe9 KVM: s390: allow injecting all kinds of machine checks
Allow to specify CR14, logout area, external damage code
and failed storage address.

Since more then one machine check can be indicated to the guest at
a time we need to combine all indication bits with already pending
requests.

Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-28 13:59:05 +01:00
Jens Freimann 383d0b0501 KVM: s390: handle pending local interrupts via bitmap
This patch adapts handling of local interrupts to be more compliant with
the z/Architecture Principles of Operation and introduces a data
structure
which allows more efficient handling of interrupts.

* get rid of li->active flag, use bitmap instead
* Keep interrupts in a bitmap instead of a list
* Deliver interrupts in the order of their priority as defined in the
  PoP
* Use a second bitmap for sigp emergency requests, as a CPU can have
  one request pending from every other CPU in the system.

Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-28 13:59:04 +01:00
Jens Freimann c0e6159d51 KVM: s390: add bitmap for handling cpu-local interrupts
Adds a bitmap to the vcpu structure which is used to keep track
of local pending interrupts. Also add enum with all interrupt
types sorted in order of priority (highest to lowest)

Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-28 13:59:04 +01:00
Jens Freimann 0fb97abe05 KVM: s390: refactor interrupt delivery code
Move delivery code for cpu-local interrupt from the huge do_deliver_interrupt()
to smaller functions which handle one type of interrupt.

Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-28 13:59:03 +01:00
Jens Freimann 60f90a14dd KVM: s390: add defines for virtio and pfault interrupt code
Get rid of open coded value for virtio and pfault completion interrupts.

Signed-off-by: Jens Freimann <jfrei@linux.vnet.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-28 13:59:03 +01:00
David Hildenbrand af43eb2fd7 KVM: s390: external param not valid for cpu timer and ckc
The 32bit external interrupt parameter is only valid for timing-alert and
service-signal interrupts.

Signed-off-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
2014-11-28 13:59:02 +01:00