Uninitialized memmaps contain garbage and in the worst case trigger
kernel BUGs, especially with CONFIG_PAGE_POISONING. They should not get
touched.
For example, when not onlining a memory block that is spanned by a zone
and reading /proc/pagetypeinfo with CONFIG_DEBUG_VM_PGFLAGS and
CONFIG_PAGE_POISONING, we can trigger a kernel BUG:
:/# echo 1 > /sys/devices/system/memory/memory40/online
:/# echo 1 > /sys/devices/system/memory/memory42/online
:/# cat /proc/pagetypeinfo > test.file
page:fffff2c585200000 is uninitialized and poisoned
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
raw: ffffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffff
page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
There is not page extension available.
------------[ cut here ]------------
kernel BUG at include/linux/mm.h:1107!
invalid opcode: 0000 [#1] SMP NOPTI
Please note that this change does not affect ZONE_DEVICE, because
pagetypeinfo_showmixedcount_print() is called from
mm/vmstat.c:pagetypeinfo_showmixedcount() only for populated zones, and
ZONE_DEVICE is never populated (zone->present_pages always 0).
[david@redhat.com: move check to outer loop, add comment, rephrase description]
Link: http://lkml.kernel.org/r/20191011140638.8160-1-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visible after d0dc12e86b
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should check for pfn_to_online_page() to not access uninitialized
memmaps. Reshuffle the code so we don't have to duplicate the error
message.
Link: http://lkml.kernel.org/r/20191009142435.3975-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") [visible after d0dc12e86b]
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org> [4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mmap /dev/dax more than once, then read the poison location using
address from one of the mappings. The other mappings due to not having
the page mapped in will cause SIGKILLs delivered to the process.
SIGKILL succeeds over SIGBUS, so user process loses the opportunity to
handle the UE.
Although one may add MAP_POPULATE to mmap(2) to work around the issue,
MAP_POPULATE makes mapping 128GB of pmem several magnitudes slower, so
isn't always an option.
Details -
ndctl inject-error --block=10 --count=1 namespace6.0
./read_poison -x dax6.0 -o 5120 -m 2
mmaped address 0x7f5bb6600000
mmaped address 0x7f3cf3600000
doing local read at address 0x7f3cf3601400
Killed
Console messages in instrumented kernel -
mce: Uncorrected hardware memory error in user-access at edbe201400
Memory failure: tk->addr = 7f5bb6601000
Memory failure: address edbe201: call dev_pagemap_mapping_shift
dev_pagemap_mapping_shift: page edbe201: no PUD
Memory failure: tk->size_shift == 0
Memory failure: Unable to find user space address edbe201 in read_poison
Memory failure: tk->addr = 7f3cf3601000
Memory failure: address edbe201: call dev_pagemap_mapping_shift
Memory failure: tk->size_shift = 21
Memory failure: 0xedbe201: forcibly killing read_poison:22434 because of failure to unmap corrupted page
=> to deliver SIGKILL
Memory failure: 0xedbe201: Killing read_poison:22434 due to hardware memory corruption
=> to deliver SIGBUS
Link: http://lkml.kernel.org/r/1565112345-28754-3-git-send-email-jane.chu@oracle.com
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Suggested-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix kernel-doc warning in mm/slab.c:
mm/slab.c:4215: warning: Function parameter or member 'objp' not described in '__ksize'
Also add Return: documentation section for this function.
Link: http://lkml.kernel.org/r/68c9fd7d-f09e-d376-e292-c7b2bdf1774d@infradead.org
Fixes: 10d1f8cb39 ("mm/slab: refactor common ksize KASAN logic into slab_common.c")
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Florian and Dave reported [1] a NULL pointer dereference in
__reset_isolation_pfn(). While the exact cause is unclear, staring at
the code revealed two bugs, which might be related.
One bug is that if zone starts in the middle of pageblock, block_page
might correspond to different pfn than block_pfn, and then the
pfn_valid_within() checks will check different pfn's than those accessed
via struct page. This might result in acessing an unitialized page in
CONFIG_HOLES_IN_ZONE configs.
The other bug is that end_page refers to the first page of next
pageblock and not last page of current pageblock. The online and valid
check is then wrong and with sections, the while (page < end_page) loop
might wander off actual struct page arrays.
[1] https://lore.kernel.org/linux-xfs/87o8z1fvqu.fsf@mid.deneb.enyo.de/
Link: http://lkml.kernel.org/r/20191008152915.24704-1-vbabka@suse.cz
Fixes: 6b0868c820 ("mm/compaction.c: correct zone boundary handling when resetting pageblock skip hints")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Florian Weimer <fw@deneb.enyo.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit b39d0ee263 ("mm, page_alloc: avoid expensive reclaim when
compaction may not succeed") has chnaged the allocator to bail out from
the allocator early to prevent from a potentially excessive memory
reclaim. __GFP_RETRY_MAYFAIL is designed to retry the allocation,
reclaim and compaction loop as long as there is a reasonable chance to
make forward progress. Neither COMPACT_SKIPPED nor COMPACT_DEFERRED at
the INIT_COMPACT_PRIORITY compaction attempt gives this feedback.
The most obvious affected subsystem is hugetlbfs which allocates huge
pages based on an admin request (or via admin configured overcommit). I
have done a simple test which tries to allocate half of the memory for
hugetlb pages while the memory is full of a clean page cache. This is
not an unusual situation because we try to cache as much of the memory
as possible and sysctl/sysfs interface to allocate huge pages is there
for flexibility to allocate hugetlb pages at any time.
System has 1GB of RAM and we are requesting 515MB worth of hugetlb pages
after the memory is prefilled by a clean page cache:
root@test1:~# cat hugetlb_test.sh
set -x
echo 0 > /proc/sys/vm/nr_hugepages
echo 3 > /proc/sys/vm/drop_caches
echo 1 > /proc/sys/vm/compact_memory
dd if=/mnt/data/file-1G of=/dev/null bs=$((4<<10))
TS=$(date +%s)
echo 256 > /proc/sys/vm/nr_hugepages
cat /proc/sys/vm/nr_hugepages
The results for 2 consecutive runs on clean 5.3
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.0694 s, 51.0 MB/s
+ date +%s
+ TS=1569905284
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
256
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.7548 s, 49.4 MB/s
+ date +%s
+ TS=1569905311
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
256
Now with b39d0ee263 applied
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 20.1815 s, 53.2 MB/s
+ date +%s
+ TS=1569905516
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
11
root@test1:~# sh hugetlb_test.sh
+ echo 0
+ echo 3
+ echo 1
+ dd if=/mnt/data/file-1G of=/dev/null bs=4096
262144+0 records in
262144+0 records out
1073741824 bytes (1.1 GB) copied, 21.9485 s, 48.9 MB/s
+ date +%s
+ TS=1569905541
+ echo 256
+ cat /proc/sys/vm/nr_hugepages
12
The success rate went down by factor of 20!
Although hugetlb allocation requests might fail and it is reasonable to
expect them to under extremely fragmented memory or when the memory is
under a heavy pressure but the above situation is not that case.
Fix the regression by reverting back to the previous behavior for
__GFP_RETRY_MAYFAIL requests and disable the beail out heuristic for
those requests.
Mike said:
: hugetlbfs allocations are commonly done via sysctl/sysfs shortly after
: boot where this may not be as much of an issue. However, I am aware of at
: least three use cases where allocations are made after the system has been
: up and running for quite some time:
:
: - DB reconfiguration. If sysctl/sysfs fails to get required number of
: huge pages, system is rebooted to perform allocation after boot.
:
: - VM provisioning. If unable get required number of huge pages, fall
: back to base pages.
:
: - An application that does not preallocate pool, but rather allocates
: pages at fault time for optimal NUMA locality.
:
: In all cases, I would expect b39d0ee263 to cause regressions and
: noticable behavior changes.
:
: My quick/limited testing in
: https://lkml.kernel.org/r/3468b605-a3a9-6978-9699-57c52a90bd7e@oracle.com
: was insufficient. It was also mentioned that if something like
: b39d0ee263 went forward, I would like exemptions for __GFP_RETRY_MAYFAIL
: requests as in this patch.
[mhocko@suse.com: reworded changelog]
Link: http://lkml.kernel.org/r/20191007075548.12456-1-mhocko@kernel.org
Fixes: b39d0ee263 ("mm, page_alloc: avoid expensive reclaim when compaction may not succeed")
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
slab_alloc_node() already zeroed out the freelist pointer if
init_on_free was on. Thibaut Sautereau noticed that the same needs to
be done for kmem_cache_alloc_bulk(), which performs the allocations
separately.
kmem_cache_alloc_bulk() is currently used in two places in the kernel,
so this change is unlikely to have a major performance impact.
SLAB doesn't require a similar change, as auto-initialization makes the
allocator store the freelist pointers off-slab.
Link: http://lkml.kernel.org/r/20191007091605.30530-1-glider@google.com
Fixes: 6471384af2 ("mm: security: introduce init_on_alloc=1 and init_on_free=1 boot options")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Thibaut Sautereau <thibaut@sautereau.fr>
Reported-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A long time ago we fixed a similar deadlock in show_slab_objects() [1].
However, it is apparently due to the commits like 01fb58bcba ("slab:
remove synchronous synchronize_sched() from memcg cache deactivation
path") and 03afc0e25f ("slab: get_online_mems for
kmem_cache_{create,destroy,shrink}"), this kind of deadlock is back by
just reading files in /sys/kernel/slab which will generate a lockdep
splat below.
Since the "mem_hotplug_lock" here is only to obtain a stable online node
mask while racing with NUMA node hotplug, in the worst case, the results
may me miscalculated while doing NUMA node hotplug, but they shall be
corrected by later reads of the same files.
WARNING: possible circular locking dependency detected
------------------------------------------------------
cat/5224 is trying to acquire lock:
ffff900012ac3120 (mem_hotplug_lock.rw_sem){++++}, at:
show_slab_objects+0x94/0x3a8
but task is already holding lock:
b8ff009693eee398 (kn->count#45){++++}, at: kernfs_seq_start+0x44/0xf0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (kn->count#45){++++}:
lock_acquire+0x31c/0x360
__kernfs_remove+0x290/0x490
kernfs_remove+0x30/0x44
sysfs_remove_dir+0x70/0x88
kobject_del+0x50/0xb0
sysfs_slab_unlink+0x2c/0x38
shutdown_cache+0xa0/0xf0
kmemcg_cache_shutdown_fn+0x1c/0x34
kmemcg_workfn+0x44/0x64
process_one_work+0x4f4/0x950
worker_thread+0x390/0x4bc
kthread+0x1cc/0x1e8
ret_from_fork+0x10/0x18
-> #1 (slab_mutex){+.+.}:
lock_acquire+0x31c/0x360
__mutex_lock_common+0x16c/0xf78
mutex_lock_nested+0x40/0x50
memcg_create_kmem_cache+0x38/0x16c
memcg_kmem_cache_create_func+0x3c/0x70
process_one_work+0x4f4/0x950
worker_thread+0x390/0x4bc
kthread+0x1cc/0x1e8
ret_from_fork+0x10/0x18
-> #0 (mem_hotplug_lock.rw_sem){++++}:
validate_chain+0xd10/0x2bcc
__lock_acquire+0x7f4/0xb8c
lock_acquire+0x31c/0x360
get_online_mems+0x54/0x150
show_slab_objects+0x94/0x3a8
total_objects_show+0x28/0x34
slab_attr_show+0x38/0x54
sysfs_kf_seq_show+0x198/0x2d4
kernfs_seq_show+0xa4/0xcc
seq_read+0x30c/0x8a8
kernfs_fop_read+0xa8/0x314
__vfs_read+0x88/0x20c
vfs_read+0xd8/0x10c
ksys_read+0xb0/0x120
__arm64_sys_read+0x54/0x88
el0_svc_handler+0x170/0x240
el0_svc+0x8/0xc
other info that might help us debug this:
Chain exists of:
mem_hotplug_lock.rw_sem --> slab_mutex --> kn->count#45
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(kn->count#45);
lock(slab_mutex);
lock(kn->count#45);
lock(mem_hotplug_lock.rw_sem);
*** DEADLOCK ***
3 locks held by cat/5224:
#0: 9eff00095b14b2a0 (&p->lock){+.+.}, at: seq_read+0x4c/0x8a8
#1: 0eff008997041480 (&of->mutex){+.+.}, at: kernfs_seq_start+0x34/0xf0
#2: b8ff009693eee398 (kn->count#45){++++}, at:
kernfs_seq_start+0x44/0xf0
stack backtrace:
Call trace:
dump_backtrace+0x0/0x248
show_stack+0x20/0x2c
dump_stack+0xd0/0x140
print_circular_bug+0x368/0x380
check_noncircular+0x248/0x250
validate_chain+0xd10/0x2bcc
__lock_acquire+0x7f4/0xb8c
lock_acquire+0x31c/0x360
get_online_mems+0x54/0x150
show_slab_objects+0x94/0x3a8
total_objects_show+0x28/0x34
slab_attr_show+0x38/0x54
sysfs_kf_seq_show+0x198/0x2d4
kernfs_seq_show+0xa4/0xcc
seq_read+0x30c/0x8a8
kernfs_fop_read+0xa8/0x314
__vfs_read+0x88/0x20c
vfs_read+0xd8/0x10c
ksys_read+0xb0/0x120
__arm64_sys_read+0x54/0x88
el0_svc_handler+0x170/0x240
el0_svc+0x8/0xc
I think it is important to mention that this doesn't expose the
show_slab_objects to use-after-free. There is only a single path that
might really race here and that is the slab hotplug notifier callback
__kmem_cache_shrink (via slab_mem_going_offline_callback) but that path
doesn't really destroy kmem_cache_node data structures.
[1] http://lkml.iu.edu/hypermail/linux/kernel/1101.0/02850.html
[akpm@linux-foundation.org: add comment explaining why we don't need mem_hotplug_lock]
Link: http://lkml.kernel.org/r/1570192309-10132-1-git-send-email-cai@lca.pw
Fixes: 01fb58bcba ("slab: remove synchronous synchronize_sched() from memcg cache deactivation path")
Fixes: 03afc0e25f ("slab: get_online_mems for kmem_cache_{create,destroy,shrink}")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 37389167a2 ("mm, page_owner: keep owner info when freeing the
page") has introduced a flag PAGE_EXT_OWNER_ACTIVE to indicate that page
is tracked as being allocated. Kirril suggested naming it
PAGE_EXT_OWNER_ALLOCATED to make it more clear, as "active is somewhat
loaded term for a page".
Link: http://lkml.kernel.org/r/20190930122916.14969-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 8974558f49 ("mm, page_owner, debug_pagealloc: save and dump
freeing stack trace") enhanced page_owner to also store freeing stack
trace, when debug_pagealloc is also enabled. KASAN would also like to
do this [1] to improve error reports to debug e.g. UAF issues.
Kirill has suggested that the freeing stack trace saving should be also
possible to be enabled separately from KASAN or debug_pagealloc, i.e.
with an extra boot option. Qian argued that we have enough options
already, and avoiding the extra overhead is not worth the complications
in the case of a debugging option. Kirill noted that the extra stack
handle in struct page_owner requires 0.1% of memory.
This patch therefore enables free stack saving whenever page_owner is
enabled, regardless of whether debug_pagealloc or KASAN is also enabled.
KASAN kernels booted with page_owner=on will thus benefit from the
improved error reports.
[1] https://bugzilla.kernel.org/show_bug.cgi?id=203967
[vbabka@suse.cz: v3]
Link: http://lkml.kernel.org/r/20191007091808.7096-3-vbabka@suse.cz
Link: http://lkml.kernel.org/r/20190930122916.14969-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Qian Cai <cai@lca.pw>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Suggested-by: Walter Wu <walter-zh.wu@mediatek.com>
Suggested-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "followups to debug_pagealloc improvements through
page_owner", v3.
These are followups to [1] which made it to Linus meanwhile. Patches 1
and 3 are based on Kirill's review, patch 2 on KASAN request [2]. It
would be nice if all of this made it to 5.4 with [1] already there (or
at least Patch 1).
This patch (of 3):
As noted by Kirill, commit 7e2f2a0cd1 ("mm, page_owner: record page
owner for each subpage") has introduced an off-by-one error in
__set_page_owner_handle() when looking up page_ext for subpages. As a
result, the head page page_owner info is set twice, while for the last
tail page, it's not set at all.
Fix this and also make the code more efficient by advancing the page_ext
pointer we already have, instead of calling lookup_page_ext() for each
subpage. Since the full size of struct page_ext is not known at compile
time, we can't use a simple page_ext++ statement, so introduce a
page_ext_next() inline function for that.
Link: http://lkml.kernel.org/r/20190930122916.14969-2-vbabka@suse.cz
Fixes: 7e2f2a0cd1 ("mm, page_owner: record page owner for each subpage")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Kirill A. Shutemov <kirill@shutemov.name>
Reported-by: Miles Chen <miles.chen@mediatek.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Walter Wu <walter-zh.wu@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case of an error (e.g. memory pool too small), kmemleak disables
itself and cleans up the already allocated metadata objects. However, if
this happens early before the RCU callback mechanism is available,
put_object() skips call_rcu() and frees the object directly. This is not
safe with the RCU list traversal in __kmemleak_do_cleanup().
Change the list traversal in __kmemleak_do_cleanup() to
list_for_each_entry_safe() and remove the rcu_read_{lock,unlock} since
the kmemleak is already disabled at this point. In addition, avoid an
unnecessary metadata object rb-tree look-up since it already has the
struct kmemleak_object pointer.
Fixes: c566586818 ("mm: kmemleak: use the memory pool for early allocations")
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reported-by: Marc Dionne <marc.c.dionne@gmail.com>
Reported-by: Ted Ts'o <tytso@mit.edu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull mount fixes from Al Viro:
"A couple of regressions from the mount series"
* 'work.mount3' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: add missing blkdev_put() in get_tree_bdev()
shmem: fix LSM options parsing
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is an incremental improvement on the existing
memory.{low,min} relative reclaim work to base its scan pressure
calculations on how much protection is available compared to the current
usage, rather than how much the current usage is over some protection
threshold.
This change doesn't change the experience for the user in the normal
case too much. One benefit is that it replaces the (somewhat arbitrary)
100% cutoff with an indefinite slope, which makes it easier to ballpark
a memory.low value.
As well as this, the old methodology doesn't quite apply generically to
machines with varying amounts of physical memory. Let's say we have a
top level cgroup, workload.slice, and another top level cgroup,
system-management.slice. We want to roughly give 12G to
system-management.slice, so on a 32GB machine we set memory.low to 20GB
in workload.slice, and on a 64GB machine we set memory.low to 52GB.
However, because these are relative amounts to the total machine size,
while the amount of memory we want to generally be willing to yield to
system.slice is absolute (12G), we end up putting more pressure on
system.slice just because we have a larger machine and a larger workload
to fill it, which seems fairly unintuitive. With this new behaviour, we
don't end up with this unintended side effect.
Previously the way that memory.low protection works is that if you are
50% over a certain baseline, you get 50% of your normal scan pressure.
This is certainly better than the previous cliff-edge behaviour, but it
can be improved even further by always considering memory under the
currently enforced protection threshold to be out of bounds. This means
that we can set relatively low memory.low thresholds for variable or
bursty workloads while still getting a reasonable level of protection,
whereas with the previous version we may still trivially hit the 100%
clamp. The previous 100% clamp is also somewhat arbitrary, whereas this
one is more concretely based on the currently enforced protection
threshold, which is likely easier to reason about.
There is also a subtle issue with the way that proportional reclaim
worked previously -- it promotes having no memory.low, since it makes
pressure higher during low reclaim. This happens because we base our
scan pressure modulation on how far memory.current is between memory.min
and memory.low, but if memory.low is unset, we only use the overage
method. In most cromulent configurations, this then means that we end
up with *more* pressure than with no memory.low at all when we're in low
reclaim, which is not really very usable or expected.
With this patch, memory.low and memory.min affect reclaim pressure in a
more understandable and composable way. For example, from a user
standpoint, "protected" memory now remains untouchable from a reclaim
aggression standpoint, and users can also have more confidence that
bursty workloads will still receive some amount of guaranteed
protection.
Link: http://lkml.kernel.org/r/20190322160307.GA3316@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Roman points out that when when we do the low reclaim pass, we scale the
reclaim pressure relative to position between 0 and the maximum
protection threshold.
However, if the maximum protection is based on memory.elow, and
memory.emin is above zero, this means we still may get binary behaviour
on second-pass low reclaim. This is because we scale starting at 0, not
starting at memory.emin, and since we don't scan at all below emin, we
end up with cliff behaviour.
This should be a fairly uncommon case since usually we don't go into the
second pass, but it makes sense to scale our low reclaim pressure
starting at emin.
You can test this by catting two large sparse files, one in a cgroup
with emin set to some moderate size compared to physical RAM, and
another cgroup without any emin. In both cgroups, set an elow larger
than 50% of physical RAM. The one with emin will have less page
scanning, as reclaim pressure is lower.
Rebase on top of and apply the same idea as what was applied to handle
cgroup_memory=disable properly for the original proportional patch
http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name ("mm,
memcg: Handle cgroup_disable=memory when getting memcg protection").
Link: http://lkml.kernel.org/r/20190201051810.GA18895@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Suggested-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup v2 introduces two memory protection thresholds: memory.low
(best-effort) and memory.min (hard protection). While they generally do
what they say on the tin, there is a limitation in their implementation
that makes them difficult to use effectively: that cliff behaviour often
manifests when they become eligible for reclaim. This patch implements
more intuitive and usable behaviour, where we gradually mount more
reclaim pressure as cgroups further and further exceed their protection
thresholds.
This cliff edge behaviour happens because we only choose whether or not
to reclaim based on whether the memcg is within its protection limits
(see the use of mem_cgroup_protected in shrink_node), but we don't vary
our reclaim behaviour based on this information. Imagine the following
timeline, with the numbers the lruvec size in this zone:
1. memory.low=1000000, memory.current=999999. 0 pages may be scanned.
2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned.
3. memory.low=1000000, memory.current=1000001. 1000001* pages may be
scanned. (?!)
* Of course, we won't usually scan all available pages in the zone even
without this patch because of scan control priority, over-reclaim
protection, etc. However, as shown by the tests at the end, these
techniques don't sufficiently throttle such an extreme change in input,
so cliff-like behaviour isn't really averted by their existence alone.
Here's an example of how this plays out in practice. At Facebook, we are
trying to protect various workloads from "system" software, like
configuration management tools, metric collectors, etc (see this[0] case
study). In order to find a suitable memory.low value, we start by
determining the expected memory range within which the workload will be
comfortable operating. This isn't an exact science -- memory usage deemed
"comfortable" will vary over time due to user behaviour, differences in
composition of work, etc, etc. As such we need to ballpark memory.low,
but doing this is currently problematic:
1. If we end up setting it too low for the workload, it won't have
*any* effect (see discussion above). The group will receive the full
weight of reclaim and won't have any priority while competing with the
less important system software, as if we had no memory.low configured
at all.
2. Because of this behaviour, we end up erring on the side of setting
it too high, such that the comfort range is reliably covered. However,
protected memory is completely unavailable to the rest of the system,
so we might cause undue memory and IO pressure there when we *know* we
have some elasticity in the workload.
3. Even if we get the value totally right, smack in the middle of the
comfort zone, we get extreme jumps between no pressure and full
pressure that cause unpredictable pressure spikes in the workload due
to the current binary reclaim behaviour.
With this patch, we can set it to our ballpark estimation without too much
worry. Any undesirable behaviour, such as too much or too little reclaim
pressure on the workload or system will be proportional to how far our
estimation is off. This means we can set memory.low much more
conservatively and thus waste less resources *without* the risk of the
workload falling off a cliff if we overshoot.
As a more abstract technical description, this unintuitive behaviour
results in having to give high-priority workloads a large protection
buffer on top of their expected usage to function reliably, as otherwise
we have abrupt periods of dramatically increased memory pressure which
hamper performance. Having to set these thresholds so high wastes
resources and generally works against the principle of work conservation.
In addition, having proportional memory reclaim behaviour has other
benefits. Most notably, before this patch it's basically mandatory to set
memory.low to a higher than desirable value because otherwise as soon as
you exceed memory.low, all protection is lost, and all pages are eligible
to scan again. By contrast, having a gradual ramp in reclaim pressure
means that you now still get some protection when thresholds are exceeded,
which means that one can now be more comfortable setting memory.low to
lower values without worrying that all protection will be lost. This is
important because workingset size is really hard to know exactly,
especially with variable workloads, so at least getting *some* protection
if your workingset size grows larger than you expect increases user
confidence in setting memory.low without a huge buffer on top being
needed.
Thanks a lot to Johannes Weiner and Tejun Heo for their advice and
assistance in thinking about how to make this work better.
In testing these changes, I intended to verify that:
1. Changes in page scanning become gradual and proportional instead of
binary.
To test this, I experimented stepping further and further down
memory.low protection on a workload that floats around 19G workingset
when under memory.low protection, watching page scan rates for the
workload cgroup:
+------------+-----------------+--------------------+--------------+
| memory.low | test (pgscan/s) | control (pgscan/s) | % of control |
+------------+-----------------+--------------------+--------------+
| 21G | 0 | 0 | N/A |
| 17G | 867 | 3799 | 23% |
| 12G | 1203 | 3543 | 34% |
| 8G | 2534 | 3979 | 64% |
| 4G | 3980 | 4147 | 96% |
| 0 | 3799 | 3980 | 95% |
+------------+-----------------+--------------------+--------------+
As you can see, the test kernel (with a kernel containing this
patch) ramps up page scanning significantly more gradually than the
control kernel (without this patch).
2. More gradual ramp up in reclaim aggression doesn't result in
premature OOMs.
To test this, I wrote a script that slowly increments the number of
pages held by stress(1)'s --vm-keep mode until a production system
entered severe overall memory contention. This script runs in a highly
protected slice taking up the majority of available system memory.
Watching vmstat revealed that page scanning continued essentially
nominally between test and control, without causing forward reclaim
progress to become arrested.
[0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project
[akpm@linux-foundation.org: reflow block comments to fit in 80 cols]
[chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection]
Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name
Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "mode" and "level" variables are enums and in this context GCC will
treat them as unsigned ints so the error handling is never triggered.
I also removed the bogus initializer because it isn't required any more
and it's sort of confusing.
[akpm@linux-foundation.org: reduce implicit and explicit typecasting]
[akpm@linux-foundation.org: fix return value, add comment, per Matthew]
Link: http://lkml.kernel.org/r/20190925110449.GO3264@mwanda
Fixes: 3cadfa2b94 ("mm/vmpressure.c: convert to use match_string() helper")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Enrico Weigelt <info@metux.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a really hard to reproduce race in z3fold between z3fold_free()
and z3fold_reclaim_page(). z3fold_reclaim_page() can claim the page
after z3fold_free() has checked if the page was claimed and
z3fold_free() will then schedule this page for compaction which may in
turn lead to random page faults (since that page would have been
reclaimed by then).
Fix that by claiming page in the beginning of z3fold_free() and not
forgetting to clear the claim in the end.
[vitalywool@gmail.com: v2]
Link: http://lkml.kernel.org/r/20190928113456.152742cf@bigdell
Link: http://lkml.kernel.org/r/20190926104844.4f0c6efa1366b8f5741eaba9@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reported-by: Markus Linnala <markus.linnala@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Markus Linnala <markus.linnala@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We get two warnings when build kernel W=1:
mm/shuffle.c:36:12: warning: no previous prototype for `shuffle_show' [-Wmissing-prototypes]
mm/sparse.c:220:6: warning: no previous prototype for `subsection_mask_set' [-Wmissing-prototypes]
Make the functions static to fix this.
Link: http://lkml.kernel.org/r/1566978161-7293-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SECTION_SIZE and SECTION_MASK macros are not getting used anymore. But
they do conflict with existing definitions on arm64 platform causing
following warning during build. Lets drop these unused macros.
mm/memremap.c:16: warning: "SECTION_MASK" redefined
#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
arch/arm64/include/asm/pgtable-hwdef.h:79: note: this is the location of the previous definition
#define SECTION_MASK (~(SECTION_SIZE-1))
mm/memremap.c:17: warning: "SECTION_SIZE" redefined
#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)
arch/arm64/include/asm/pgtable-hwdef.h:78: note: this is the location of the previous definition
#define SECTION_SIZE (_AC(1, UL) << SECTION_SHIFT)
Link: http://lkml.kernel.org/r/1569312010-31313-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A removable block device, such as NVMe or SSD connected over Thunderbolt
can be hot-removed any time including when the system is suspended. When
device is hot-removed during suspend and the system gets resumed, kernel
first resumes devices and then thaws the userspace including freezable
workqueues. What happens in that case is that the NVMe driver notices
that the device is unplugged and removes it from the system. This ends
up calling bdi_unregister() for the gendisk which then schedules
wb_workfn() to be run one more time.
However, since the bdi_wq is still frozen flush_delayed_work() call in
wb_shutdown() blocks forever halting system resume process. User sees
this as hang as nothing is happening anymore.
Triggering sysrq-w reveals this:
Workqueue: nvme-wq nvme_remove_dead_ctrl_work [nvme]
Call Trace:
? __schedule+0x2c5/0x630
? wait_for_completion+0xa4/0x120
schedule+0x3e/0xc0
schedule_timeout+0x1c9/0x320
? resched_curr+0x1f/0xd0
? wait_for_completion+0xa4/0x120
wait_for_completion+0xc3/0x120
? wake_up_q+0x60/0x60
__flush_work+0x131/0x1e0
? flush_workqueue_prep_pwqs+0x130/0x130
bdi_unregister+0xb9/0x130
del_gendisk+0x2d2/0x2e0
nvme_ns_remove+0xed/0x110 [nvme_core]
nvme_remove_namespaces+0x96/0xd0 [nvme_core]
nvme_remove+0x5b/0x160 [nvme]
pci_device_remove+0x36/0x90
device_release_driver_internal+0xdf/0x1c0
nvme_remove_dead_ctrl_work+0x14/0x30 [nvme]
process_one_work+0x1c2/0x3f0
worker_thread+0x48/0x3e0
kthread+0x100/0x140
? current_work+0x30/0x30
? kthread_park+0x80/0x80
ret_from_fork+0x35/0x40
This is not limited to NVMes so exactly same issue can be reproduced by
hot-removing SSD (over Thunderbolt) while the system is suspended.
Prevent this from happening by removing WQ_FREEZABLE from bdi_wq.
Reported-by: AceLan Kao <acelan.kao@canonical.com>
Link: https://marc.info/?l=linux-kernel&m=138695698516487
Link: https://bugzilla.kernel.org/show_bug.cgi?id=204385
Link: https://lore.kernel.org/lkml/20191002122136.GD2819@lahna.fi.intel.com/#t
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge hugepage allocation updates from David Rientjes:
"We (mostly Linus, Andrea, and myself) have been discussing offlist how
to implement a sane default allocation strategy for hugepages on NUMA
platforms.
With these reverts in place, the page allocator will happily allocate
a remote hugepage immediately rather than try to make a local hugepage
available. This incurs a substantial performance degradation when
memory compaction would have otherwise made a local hugepage
available.
This series reverts those reverts and attempts to propose a more sane
default allocation strategy specifically for hugepages. Andrea
acknowledges this is likely to fix the swap storms that he originally
reported that resulted in the patches that removed __GFP_THISNODE from
hugepage allocations.
The immediate goal is to return 5.3 to the behavior the kernel has
implemented over the past several years so that remote hugepages are
not immediately allocated when local hugepages could have been made
available because the increased access latency is untenable.
The next goal is to introduce a sane default allocation strategy for
hugepages allocations in general regardless of the configuration of
the system so that we prevent thrashing of local memory when
compaction is unlikely to succeed and can prefer remote hugepages over
remote native pages when the local node is low on memory."
Note on timing: this reverts the hugepage VM behavior changes that got
introduced fairly late in the 5.3 cycle, and that fixed a huge
performance regression for certain loads that had been around since
4.18.
Andrea had this note:
"The regression of 4.18 was that it was taking hours to start a VM
where 3.10 was only taking a few seconds, I reported all the details
on lkml when it was finally tracked down in August 2018.
https://lore.kernel.org/linux-mm/20180820032640.9896-2-aarcange@redhat.com/
__GFP_THISNODE in MADV_HUGEPAGE made the above enterprise vfio
workload degrade like in the "current upstream" above. And it still
would have been that bad as above until 5.3-rc5"
where the bad behavior ends up happening as you fill up a local node,
and without that change, you'd get into the nasty swap storm behavior
due to compaction working overtime to make room for more memory on the
nodes.
As a result 5.3 got the two performance fix reverts in rc5.
However, David Rientjes then noted that those performance fixes in turn
regressed performance for other loads - although not quite to the same
degree. He suggested reverting the reverts and instead replacing them
with two small changes to how hugepage allocations are done (patch
descriptions rephrased by me):
- "avoid expensive reclaim when compaction may not succeed": just admit
that the allocation failed when you're trying to allocate a huge-page
and compaction wasn't successful.
- "allow hugepage fallback to remote nodes when madvised": when that
node-local huge-page allocation failed, retry without forcing the
local node.
but by then I judged it too late to replace the fixes for a 5.3 release.
So 5.3 was released with behavior that harked back to the pre-4.18 logic.
But now we're in the merge window for 5.4, and we can see if this
alternate model fixes not just the horrendous swap storm behavior, but
also restores the performance regression that the late reverts caused.
Fingers crossed.
* emailed patches from David Rientjes <rientjes@google.com>:
mm, page_alloc: allow hugepage fallback to remote nodes when madvised
mm, page_alloc: avoid expensive reclaim when compaction may not succeed
Revert "Revert "Revert "mm, thp: consolidate THP gfp handling into alloc_hugepage_direct_gfpmask""
Revert "Revert "mm, thp: restore node-local hugepage allocations""
For systems configured to always try hard to allocate transparent
hugepages (thp defrag setting of "always") or for memory that has been
explicitly madvised to MADV_HUGEPAGE, it is often better to fallback to
remote memory to allocate the hugepage if the local allocation fails
first.
The point is to allow the initial call to __alloc_pages_node() to attempt
to defragment local memory to make a hugepage available, if possible,
rather than immediately fallback to remote memory. Local hugepages will
always have a better access latency than remote (huge)pages, so an attempt
to make a hugepage available locally is always preferred.
If memory compaction cannot be successful locally, however, it is likely
better to fallback to remote memory. This could take on two forms: either
allow immediate fallback to remote memory or do per-zone watermark checks.
It would be possible to fallback only when per-zone watermarks fail for
order-0 memory, since that would require local reclaim for all subsequent
faults so remote huge allocation is likely better than thrashing the local
zone for large workloads.
In this case, it is assumed that because the system is configured to try
hard to allocate hugepages or the vma is advised to explicitly want to try
hard for hugepages that remote allocation is better when local allocation
and memory compaction have both failed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory compaction has a couple significant drawbacks as the allocation
order increases, specifically:
- isolate_freepages() is responsible for finding free pages to use as
migration targets and is implemented as a linear scan of memory
starting at the end of a zone,
- failing order-0 watermark checks in memory compaction does not account
for how far below the watermarks the zone actually is: to enable
migration, there must be *some* free memory available. Per the above,
watermarks are not always suffficient if isolate_freepages() cannot
find the free memory but it could require hundreds of MBs of reclaim to
even reach this threshold (read: potentially very expensive reclaim with
no indication compaction can be successful), and
- if compaction at this order has failed recently so that it does not even
run as a result of deferred compaction, looping through reclaim can often
be pointless.
For hugepage allocations, these are quite substantial drawbacks because
these are very high order allocations (order-9 on x86) and falling back to
doing reclaim can potentially be *very* expensive without any indication
that compaction would even be successful.
Reclaim itself is unlikely to free entire pageblocks and certainly no
reliance should be put on it to do so in isolation (recall lumpy reclaim).
This means we should avoid reclaim and simply fail hugepage allocation if
compaction is deferred.
It is also not helpful to thrash a zone by doing excessive reclaim if
compaction may not be able to access that memory. If order-0 watermarks
fail and the allocation order is sufficiently large, it is likely better
to fail the allocation rather than thrashing the zone.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 92717d429b.
Since commit a8282608c8 ("Revert "mm, thp: restore node-local hugepage
allocations"") is reverted in this series, it is better to restore the
previous 5.2 behavior between the thp allocation and the page allocator
rather than to attempt any consolidation or cleanup for a policy that is
now reverted. It's less risky during an rc cycle and subsequent patches
in this series further modify the same policy that the pre-5.3 behavior
implements.
Consolidation and cleanup can be done subsequent to a sane default page
allocation strategy, so this patch reverts a cleanup done on a strategy
that is now reverted and thus is the least risky option.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit a8282608c8.
The commit references the original intended semantic for MADV_HUGEPAGE
which has subsequently taken on three unique purposes:
- enables or disables thp for a range of memory depending on the system's
config (is thp "enabled" set to "always" or "madvise"),
- determines the synchronous compaction behavior for thp allocations at
fault (is thp "defrag" set to "always", "defer+madvise", or "madvise"),
and
- reverts a previous MADV_NOHUGEPAGE (there is no madvise mode to only
clear previous hugepage advice).
These are the three purposes that currently exist in 5.2 and over the
past several years that userspace has been written around. Adding a
NUMA locality preference adds a fourth dimension to an already conflated
advice mode.
Based on the semantic that MADV_HUGEPAGE has provided over the past
several years, there exist workloads that use the tunable based on these
principles: specifically that the allocation should attempt to
defragment a local node before falling back. It is agreed that remote
hugepages typically (but not always) have a better access latency than
remote native pages, although on Naples this is at parity for
intersocket.
The revert commit that this patch reverts allows hugepage allocation to
immediately allocate remotely when local memory is fragmented. This is
contrary to the semantic of MADV_HUGEPAGE over the past several years:
that is, memory compaction should be attempted locally before falling
back.
The performance degradation of remote hugepages over local hugepages on
Rome, for example, is 53.5% increased access latency. For this reason,
the goal is to revert back to the 5.2 and previous behavior that would
attempt local defragmentation before falling back. With the patch that
is reverted by this patch, we see performance degradations at the tail
because the allocator happily allocates the remote hugepage rather than
even attempting to make a local hugepage available.
zone_reclaim_mode is not a solution to this problem since it does not
only impact hugepage allocations but rather changes the memory
allocation strategy for *all* page allocations.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are many common parts between MADV_COLD and MADV_PAGEOUT.
This patch factor them out to save code duplication.
Link: http://lkml.kernel.org/r/20190726023435.214162-6-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: kbuild test robot <lkp@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a process expects no accesses to a certain memory range for a long
time, it could hint kernel that the pages can be reclaimed instantly but
data should be preserved for future use. This could reduce workingset
eviction so it ends up increasing performance.
This patch introduces the new MADV_PAGEOUT hint to madvise(2) syscall.
MADV_PAGEOUT can be used by a process to mark a memory range as not
expected to be used for a long time so that kernel reclaims *any LRU*
pages instantly. The hint can help kernel in deciding which pages to
evict proactively.
A note: It doesn't apply SWAP_CLUSTER_MAX LRU page isolation limit
intentionally because it's automatically bounded by PMD size. If PMD
size(e.g., 256) makes some trouble, we could fix it later by limit it to
SWAP_CLUSTER_MAX[1].
- man-page material
MADV_PAGEOUT (since Linux x.x)
Do not expect access in the near future so pages in the specified
regions could be reclaimed instantly regardless of memory pressure.
Thus, access in the range after successful operation could cause
major page fault but never lose the up-to-date contents unlike
MADV_DONTNEED. Pages belonging to a shared mapping are only processed
if a write access is allowed for the calling process.
MADV_PAGEOUT cannot be applied to locked pages, Huge TLB pages, or
VM_PFNMAP pages.
[1] https://lore.kernel.org/lkml/20190710194719.GS29695@dhcp22.suse.cz/
[minchan@kernel.org: clear PG_active on MADV_PAGEOUT]
Link: http://lkml.kernel.org/r/20190802200643.GA181880@google.com
[akpm@linux-foundation.org: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/20190726023435.214162-5-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The local variable references in shrink_page_list is PAGEREF_RECLAIM_CLEAN
as default. It is for preventing to reclaim dirty pages when CMA try to
migrate pages. Strictly speaking, we don't need it because CMA didn't
allow to write out by .may_writepage = 0 in reclaim_clean_pages_from_list.
Moreover, it has a problem to prevent anonymous pages's swap out even
though force_reclaim = true in shrink_page_list on upcoming patch. So
this patch makes references's default value to PAGEREF_RECLAIM and rename
force_reclaim with ignore_references to make it more clear.
This is a preparatory work for next patch.
Link: http://lkml.kernel.org/r/20190726023435.214162-3-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: kbuild test robot <lkp@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Introduce MADV_COLD and MADV_PAGEOUT", v7.
- Background
The Android terminology used for forking a new process and starting an app
from scratch is a cold start, while resuming an existing app is a hot
start. While we continually try to improve the performance of cold
starts, hot starts will always be significantly less power hungry as well
as faster so we are trying to make hot start more likely than cold start.
To increase hot start, Android userspace manages the order that apps
should be killed in a process called ActivityManagerService.
ActivityManagerService tracks every Android app or service that the user
could be interacting with at any time and translates that into a ranked
list for lmkd(low memory killer daemon). They are likely to be killed by
lmkd if the system has to reclaim memory. In that sense they are similar
to entries in any other cache. Those apps are kept alive for
opportunistic performance improvements but those performance improvements
will vary based on the memory requirements of individual workloads.
- Problem
Naturally, cached apps were dominant consumers of memory on the system.
However, they were not significant consumers of swap even though they are
good candidate for swap. Under investigation, swapping out only begins
once the low zone watermark is hit and kswapd wakes up, but the overall
allocation rate in the system might trip lmkd thresholds and cause a
cached process to be killed(we measured performance swapping out vs.
zapping the memory by killing a process. Unsurprisingly, zapping is 10x
times faster even though we use zram which is much faster than real
storage) so kill from lmkd will often satisfy the high zone watermark,
resulting in very few pages actually being moved to swap.
- Approach
The approach we chose was to use a new interface to allow userspace to
proactively reclaim entire processes by leveraging platform information.
This allowed us to bypass the inaccuracy of the kernel’s LRUs for pages
that are known to be cold from userspace and to avoid races with lmkd by
reclaiming apps as soon as they entered the cached state. Additionally,
it could provide many chances for platform to use much information to
optimize memory efficiency.
To achieve the goal, the patchset introduce two new options for madvise.
One is MADV_COLD which will deactivate activated pages and the other is
MADV_PAGEOUT which will reclaim private pages instantly. These new
options complement MADV_DONTNEED and MADV_FREE by adding non-destructive
ways to gain some free memory space. MADV_PAGEOUT is similar to
MADV_DONTNEED in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed immediately; MADV_COLD is similar
to MADV_FREE in a way that it hints the kernel that memory region is not
currently needed and should be reclaimed when memory pressure rises.
This patch (of 5):
When a process expects no accesses to a certain memory range, it could
give a hint to kernel that the pages can be reclaimed when memory pressure
happens but data should be preserved for future use. This could reduce
workingset eviction so it ends up increasing performance.
This patch introduces the new MADV_COLD hint to madvise(2) syscall.
MADV_COLD can be used by a process to mark a memory range as not expected
to be used in the near future. The hint can help kernel in deciding which
pages to evict early during memory pressure.
It works for every LRU pages like MADV_[DONTNEED|FREE]. IOW, It moves
active file page -> inactive file LRU
active anon page -> inacdtive anon LRU
Unlike MADV_FREE, it doesn't move active anonymous pages to inactive file
LRU's head because MADV_COLD is a little bit different symantic.
MADV_FREE means it's okay to discard when the memory pressure because the
content of the page is *garbage* so freeing such pages is almost zero
overhead since we don't need to swap out and access afterward causes just
minor fault. Thus, it would make sense to put those freeable pages in
inactive file LRU to compete other used-once pages. It makes sense for
implmentaion point of view, too because it's not swapbacked memory any
longer until it would be re-dirtied. Even, it could give a bonus to make
them be reclaimed on swapless system. However, MADV_COLD doesn't mean
garbage so reclaiming them requires swap-out/in in the end so it's bigger
cost. Since we have designed VM LRU aging based on cost-model, anonymous
cold pages would be better to position inactive anon's LRU list, not file
LRU. Furthermore, it would help to avoid unnecessary scanning if system
doesn't have a swap device. Let's start simpler way without adding
complexity at this moment. However, keep in mind, too that it's a caveat
that workloads with a lot of pages cache are likely to ignore MADV_COLD on
anonymous memory because we rarely age anonymous LRU lists.
* man-page material
MADV_COLD (since Linux x.x)
Pages in the specified regions will be treated as less-recently-accessed
compared to pages in the system with similar access frequencies. In
contrast to MADV_FREE, the contents of the region are preserved regardless
of subsequent writes to pages.
MADV_COLD cannot be applied to locked pages, Huge TLB pages, or VM_PFNMAP
pages.
[akpm@linux-foundation.org: resolve conflicts with hmm.git]
Link: http://lkml.kernel.org/r/20190726023435.214162-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Chris Zankel <chris@zankel.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Daniel Colascione <dancol@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Oleksandr Natalenko <oleksandr@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tim Murray <timmurray@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There isn't a good reason to differentiate between the user address space
layout modification syscalls and the other memory permission/attributes
ones (e.g. mprotect, madvise) w.r.t. the tagged address ABI. Untag the
user addresses on entry to these functions.
Link: http://lkml.kernel.org/r/20190821164730.47450-2-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Szabolcs Nagy <szabolcs.nagy@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Dave P Martin <Dave.Martin@arm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
get_vaddr_frames uses provided user pointers for vma lookups, which can
only by done with untagged pointers. Instead of locating and changing all
callers of this function, perform untagging in it.
Link: http://lkml.kernel.org/r/28f05e49c92b2a69c4703323d6c12208f3d881fe.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
mm/gup.c provides a kernel interface that accepts user addresses and
manipulates user pages directly (for example get_user_pages, that is used
by the futex syscall). Since a user can provided tagged addresses, we
need to handle this case.
Add untagging to gup.c functions that use user addresses for vma lookups.
Link: http://lkml.kernel.org/r/4731bddba3c938658c10ff4ed55cc01c60f4c8f8.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is a part of a series that extends kernel ABI to allow to pass
tagged user pointers (with the top byte set to something else other than
0x00) as syscall arguments.
This patch allows tagged pointers to be passed to the following memory
syscalls: get_mempolicy, madvise, mbind, mincore, mlock, mlock2, mprotect,
mremap, msync, munlock, move_pages.
The mmap and mremap syscalls do not currently accept tagged addresses.
Architectures may interpret the tag as a background colour for the
corresponding vma.
Link: http://lkml.kernel.org/r/aaf0c0969d46b2feb9017f3e1b3ef3970b633d91.1563904656.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eric Auger <eric.auger@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jens Wiklander <jens.wiklander@linaro.org>
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add RB_DECLARE_CALLBACKS_MAX, which generates augmented rbtree callbacks
for the case where the augmented value is a scalar whose definition
follows a max(f(node)) pattern. This actually covers all present uses of
RB_DECLARE_CALLBACKS, and saves some (source) code duplication in the
various RBCOMPUTE function definitions.
[walken@google.com: fix mm/vmalloc.c]
Link: http://lkml.kernel.org/r/CANN689FXgK13wDYNh1zKxdipeTuALG4eKvKpsdZqKFJ-rvtGiQ@mail.gmail.com
[walken@google.com: re-add check to check_augmented()]
Link: http://lkml.kernel.org/r/20190727022027.GA86863@google.com
Link: http://lkml.kernel.org/r/20190703040156.56953-3-walken@google.com
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_zspage_inuse() was introduced in the commit 4f42047bbd ("zsmalloc:
use accessor") but all the users of it were removed later by the commits,
bdb0af7ca8 ("zsmalloc: factor page chain functionality out")
3783689a1a ("zsmalloc: introduce zspage structure")
so the function can be safely removed now.
Link: http://lkml.kernel.org/r/1568658408-19374-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zswap_writeback_entry() maps a handle to read swpentry first, and
then in the most common case it would map the same handle again.
This is ok when zbud is the backend since its mapping callback is
plain and simple, but it slows things down for z3fold.
Since there's hardly a point in unmapping a handle _that_ fast as
zswap_writeback_entry() does when it reads swpentry, the
suggestion is to keep the handle mapped till the end.
Link: http://lkml.kernel.org/r/20190916004640.b453167d3556c4093af4cf7d@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reviewed-by: Dan Streetman <ddstreet@ieee.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a zpool_driver, zsmalloc can allocate movable memory because it support
migate pages. But zbud and z3fold cannot allocate movable memory.
Add malloc_support_movable to zpool_driver. If a zpool_driver support
allocate movable memory, set it to true. And add
zpool_malloc_support_movable check malloc_support_movable to make sure if
a zpool support allocate movable memory.
Link: http://lkml.kernel.org/r/20190605100630.13293-1-teawaterz@linux.alibaba.com
Signed-off-by: Hui Zhu <teawaterz@linux.alibaba.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
madvise_behavior() converts -ENOMEM to -EAGAIN in several places using
identical code.
Move that code to a common error handling path.
No functional changes.
Link: http://lkml.kernel.org/r/1564640896-1210-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Pankaj Gupta <pagupta@redhat.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The AF_XDP sockets umem mapping interface uses XDP_UMEM_PGOFF_FILL_RING
and XDP_UMEM_PGOFF_COMPLETION_RING offsets. These offsets are
established already and are part of the configuration interface.
But for 32-bit systems, using AF_XDP socket configuration, these values
are too large to pass the maximum allowed file size verification. The
offsets can be tuned off, but instead of changing the existing
interface, let's extend the max allowed file size for sockets.
No one has been using this until this patch with 32 bits as without
this fix af_xdp sockets can't be used at all, so it unblocks af_xdp
socket usage for 32bit systems.
All list of mmap cbs for sockets was verified for side effects and all
of them contain dummy cb - sock_no_mmap() at this moment, except the
following:
xsk_mmap() - it's what this fix is needed for.
tcp_mmap() - doesn't have obvious issues with pgoff - no any references on it.
packet_mmap() - return -EINVAL if it's even set.
Link: http://lkml.kernel.org/r/20190812124326.32146-1-ivan.khoronzhuk@linaro.org
Signed-off-by: Ivan Khoronzhuk <ivan.khoronzhuk@linaro.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Björn Töpel <bjorn.topel@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Magnus Karlsson <magnus.karlsson@intel.com>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When addr is out of range of the whole rb_tree, pprev will point to the
right-most node. rb_tree facility already provides a helper function,
rb_last(), to do this task. We can leverage this instead of
reimplementing it.
This patch refines find_vma_prev() with rb_last() to make it a little
nicer to read.
[akpm@linux-foundation.org: little cleanup, per Vlastimil]
Link: http://lkml.kernel.org/r/20190809001928.4950-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commits selects ARCH_HAS_ELF_RANDOMIZE when an arch uses the generic
topdown mmap layout functions so that this security feature is on by
default.
Note that this commit also removes the possibility for arm64 to have elf
randomization and no MMU: without MMU, the security added by randomization
is worth nothing.
Link: http://lkml.kernel.org/r/20190730055113.23635-6-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
arm64 handles top-down mmap layout in a way that can be easily reused by
other architectures, so make it available in mm. It then introduces a new
config ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT that can be set by other
architectures to benefit from those functions. Note that this new config
depends on MMU being enabled, if selected without MMU support, a warning
will be thrown.
Link: http://lkml.kernel.org/r/20190730055113.23635-5-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Provide generic top-down mmap layout functions", v6.
This series introduces generic functions to make top-down mmap layout
easily accessible to architectures, in particular riscv which was the
initial goal of this series. The generic implementation was taken from
arm64 and used successively by arm, mips and finally riscv.
Note that in addition the series fixes 2 issues:
- stack randomization was taken into account even if not necessary.
- [1] fixed an issue with mmap base which did not take into account
randomization but did not report it to arm and mips, so by moving arm64
into a generic library, this problem is now fixed for both
architectures.
This work is an effort to factorize architecture functions to avoid code
duplication and oversights as in [1].
[1]: https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg1429066.html
This patch (of 14):
This preparatory commit moves this function so that further introduction
of generic topdown mmap layout is contained only in mm/util.c.
Link: http://lkml.kernel.org/r/20190730055113.23635-2-alex@ghiti.fr
Signed-off-by: Alexandre Ghiti <alex@ghiti.fr>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
khugepaged needs exclusive mmap_sem to access page table. When it fails
to lock mmap_sem, the page will fault in as pte-mapped THP. As the page
is already a THP, khugepaged will not handle this pmd again.
This patch enables the khugepaged to retry collapse the page table.
struct mm_slot (in khugepaged.c) is extended with an array, containing
addresses of pte-mapped THPs. We use array here for simplicity. We can
easily replace it with more advanced data structures when needed.
In khugepaged_scan_mm_slot(), if the mm contains pte-mapped THP, we try to
collapse the page table.
Since collapse may happen at an later time, some pages may already fault
in. collapse_pte_mapped_thp() is added to properly handle these pages.
collapse_pte_mapped_thp() also double checks whether all ptes in this pmd
are mapping to the same THP. This is necessary because some subpage of
the THP may be replaced, for example by uprobe. In such cases, it is not
possible to collapse the pmd.
[kirill.shutemov@linux.intel.com: add comments for retract_page_tables()]
Link: http://lkml.kernel.org/r/20190816145443.6ard3iilytc6jlgv@box
Link: http://lkml.kernel.org/r/20190815164525.1848545-6-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce a new foll_flag: FOLL_SPLIT_PMD. As the name says
FOLL_SPLIT_PMD splits huge pmd for given mm_struct, the underlining huge
page stays as-is.
FOLL_SPLIT_PMD is useful for cases where we need to use regular pages, but
would switch back to huge page and huge pmd on. One of such example is
uprobe. The following patches use FOLL_SPLIT_PMD in uprobe.
Link: http://lkml.kernel.org/r/20190815164525.1848545-4-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "THP aware uprobe", v13.
This patchset makes uprobe aware of THPs.
Currently, when uprobe is attached to text on THP, the page is split by
FOLL_SPLIT. As a result, uprobe eliminates the performance benefit of
THP.
This set makes uprobe THP-aware. Instead of FOLL_SPLIT, we introduces
FOLL_SPLIT_PMD, which only split PMD for uprobe.
After all uprobes within the THP are removed, the PTE-mapped pages are
regrouped as huge PMD.
This set (plus a few THP patches) is also available at
https://github.com/liu-song-6/linux/tree/uprobe-thp
This patch (of 6):
Move memcmp_pages() to mm/util.c and pages_identical() to mm.h, so that we
can use them in other files.
Link: http://lkml.kernel.org/r/20190815164525.1848545-2-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <matthew.wilcox@oracle.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration. For example the below test would
run into premature OOM easily:
$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000
transhuge-stress comes from kernel selftest.
It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.
Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue. The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg. When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.
Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.
[yang.shi@linux.alibaba.com: simplify deferred split queue dereference per Kirill Tkhai]
Link: http://lkml.kernel.org/r/1566496227-84952-5-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-5-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently shrinker is just allocated and can work when memcg kmem is
enabled. But, THP deferred split shrinker is not slab shrinker, it
doesn't make too much sense to have such shrinker depend on memcg kmem.
It should be able to reclaim THP even though memcg kmem is disabled.
Introduce a new shrinker flag, SHRINKER_NONSLAB, for non-slab shrinker.
When memcg kmem is disabled, just such shrinkers can be called in
shrinking memcg slab.
[yang.shi@linux.alibaba.com: add comment]
Link: http://lkml.kernel.org/r/1566496227-84952-4-git-send-email-yang.shi@linux.alibaba.com
Link: http://lkml.kernel.org/r/1565144277-36240-4-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A later patch makes THP deferred split shrinker memcg aware, but it needs
page->mem_cgroup information in THP destructor, which is called after
mem_cgroup_uncharge() now.
So move mem_cgroup_uncharge() from __page_cache_release() to compound page
destructor, which is called by both THP and other compound pages except
HugeTLB. And call it in __put_single_page() for single order page.
Link: http://lkml.kernel.org/r/1565144277-36240-3-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Make deferred split shrinker memcg aware", v6.
Currently THP deferred split shrinker is not memcg aware, this may cause
premature OOM with some configuration. For example the below test would
run into premature OOM easily:
$ cgcreate -g memory:thp
$ echo 4G > /sys/fs/cgroup/memory/thp/memory/limit_in_bytes
$ cgexec -g memory:thp transhuge-stress 4000
transhuge-stress comes from kernel selftest.
It is easy to hit OOM, but there are still a lot THP on the deferred split
queue, memcg direct reclaim can't touch them since the deferred split
shrinker is not memcg aware.
Convert deferred split shrinker memcg aware by introducing per memcg
deferred split queue. The THP should be on either per node or per memcg
deferred split queue if it belongs to a memcg. When the page is
immigrated to the other memcg, it will be immigrated to the target memcg's
deferred split queue too.
Reuse the second tail page's deferred_list for per memcg list since the
same THP can't be on multiple deferred split queues.
Make deferred split shrinker not depend on memcg kmem since it is not
slab. It doesn't make sense to not shrink THP even though memcg kmem is
disabled.
With the above change the test demonstrated above doesn't trigger OOM even
though with cgroup.memory=nokmem.
This patch (of 4):
Put split_queue, split_queue_lock and split_queue_len into a struct in
order to reduce code duplication when we convert deferred_split to memcg
aware in the later patches.
Link: http://lkml.kernel.org/r/1565144277-36240-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Suggested-by: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In previous patch, an application could put part of its text section in
THP via madvise(). These THPs will be protected from writes when the
application is still running (TXTBSY). However, after the application
exits, the file is available for writes.
This patch avoids writes to file THP by dropping page cache for the file
when the file is open for write. A new counter nr_thps is added to struct
address_space. In do_dentry_open(), if the file is open for write and
nr_thps is non-zero, we drop page cache for the whole file.
Link: http://lkml.kernel.org/r/20190801184244.3169074-8-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Reported-by: kbuild test robot <lkp@intel.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is (hopefully) the first step to enable THP for non-shmem
filesystems.
This patch enables an application to put part of its text sections to THP
via madvise, for example:
madvise((void *)0x600000, 0x200000, MADV_HUGEPAGE);
We tried to reuse the logic for THP on tmpfs.
Currently, write is not supported for non-shmem THP. khugepaged will only
process vma with VM_DENYWRITE. sys_mmap() ignores VM_DENYWRITE requests
(see ksys_mmap_pgoff). The only way to create vma with VM_DENYWRITE is
execve(). This requirement limits non-shmem THP to text sections.
The next patch will handle writes, which would only happen when the all
the vmas with VM_DENYWRITE are unmapped.
An EXPERIMENTAL config, READ_ONLY_THP_FOR_FS, is added to gate this
feature.
[songliubraving@fb.com: fix build without CONFIG_SHMEM]
Link: http://lkml.kernel.org/r/F53407FB-96CC-42E8-9862-105C92CC2B98@fb.com
[songliubraving@fb.com: fix double unlock in collapse_file()]
Link: http://lkml.kernel.org/r/B960CBFA-8EFC-4DA4-ABC5-1977FFF2CA57@fb.com
Link: http://lkml.kernel.org/r/20190801184244.3169074-7-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Next patch will add khugepaged support of non-shmem files. This patch
renames these two functions to reflect the new functionality:
collapse_shmem() => collapse_file()
khugepaged_scan_shmem() => khugepaged_scan_file()
Link: http://lkml.kernel.org/r/20190801184244.3169074-6-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In preparation for non-shmem THP, this patch adds a few stats and exposes
them in /proc/meminfo, /sys/bus/node/devices/<node>/meminfo, and
/proc/<pid>/task/<tid>/smaps.
This patch is mostly a rewrite of Kirill A. Shutemov's earlier version:
https://lkml.kernel.org/r/20170126115819.58875-5-kirill.shutemov@linux.intel.com/
Link: http://lkml.kernel.org/r/20190801184244.3169074-5-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With THP, current check of offset:
VM_BUG_ON_PAGE(page->index != offset, page);
is no longer accurate. Update it to:
VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
Link: http://lkml.kernel.org/r/20190801184244.3169074-4-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Similar to previous patch, pagecache_get_page() avoids race condition with
truncate by checking page->mapping == mapping. This does not work for
compound pages. This patch let it check compound_head(page)->mapping
instead.
Link: http://lkml.kernel.org/r/20190801184244.3169074-3-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Enable THP for text section of non-shmem files", v10;
This patchset follows up discussion at LSF/MM 2019. The motivation is to
put text section of an application in THP, and thus reduces iTLB miss rate
and improves performance. Both Facebook and Oracle showed strong
interests to this feature.
To make reviews easier, this set aims a mininal valid product. Current
version of the work does not have any changes to file system specific
code. This comes with some limitations (discussed later).
This set enables an application to "hugify" its text section by simply
running something like:
madvise(0x600000, 0x80000, MADV_HUGEPAGE);
Before this call, the /proc/<pid>/maps looks like:
00400000-074d0000 r-xp 00000000 00:27 2006927 app
After this call, part of the text section is split out and mapped to
THP:
00400000-00425000 r-xp 00000000 00:27 2006927 app
00600000-00e00000 r-xp 00200000 00:27 2006927 app <<< on THP
00e00000-074d0000 r-xp 00a00000 00:27 2006927 app
Limitations:
1. This only works for text section (vma with VM_DENYWRITE).
2. Original limitation #2 is removed in v3.
We gated this feature with an experimental config, READ_ONLY_THP_FOR_FS.
Once we get better support on the write path, we can remove the config and
enable it by default.
Tested cases:
1. Tested with btrfs and ext4.
2. Tested with real work application (memcache like caching service).
3. Tested with "THP aware uprobe":
https://patchwork.kernel.org/project/linux-mm/list/?series=131339
This patch (of 7):
Currently, filemap_fault() avoids race condition with truncate by checking
page->mapping == mapping. This does not work for compound pages. This
patch let it check compound_head(page)->mapping instead.
Link: http://lkml.kernel.org/r/20190801184244.3169074-2-songliubraving@fb.com
Signed-off-by: Song Liu <songliubraving@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocating hugetlbfs pool pages via /proc/sys/vm/nr_hugepages, the
pages will be interleaved between all nodes of the system. If nodes are
not equal, it is quite possible for one node to fill up before the others.
When this happens, the code still attempts to allocate pages from the
full node. This results in calls to direct reclaim and compaction which
slow things down considerably.
When allocating pool pages, note the state of the previous allocation for
each node. If previous allocation failed, do not use the aggressive retry
algorithm on successive attempts. The allocation will still succeed if
there is memory available, but it will not try as hard to free up memory.
Link: http://lkml.kernel.org/r/20190806014744.15446-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Kravetz reports that "hugetlb allocations could stall for minutes or
hours when should_compact_retry() would return true more often then it
should. Specifically, this was in the case where compact_result was
COMPACT_DEFERRED and COMPACT_PARTIAL_SKIPPED and no progress was being
made."
The problem is that the compaction_withdrawn() test in
should_compact_retry() includes compaction outcomes that are only possible
on low compaction priority, and results in a retry without increasing the
priority. This may result in furter reclaim, and more incomplete
compaction attempts.
With this patch, compaction priority is raised when possible, or
should_compact_retry() returns false.
The COMPACT_SKIPPED result doesn't really fit together with the other
outcomes in compaction_withdrawn(), as that's a result caused by
insufficient order-0 pages, not due to low compaction priority. With this
patch, it is moved to a new compaction_needs_reclaim() function, and for
that outcome we keep the current logic of retrying if it looks like
reclaim will be able to help.
Link: http://lkml.kernel.org/r/20190806014744.15446-4-mike.kravetz@oracle.com
Reported-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit "mm, reclaim: make should_continue_reclaim perform dryrun
detection", closer look at the function shows, that nr_reclaimed == 0
means the function will always return false. And since non-zero
nr_reclaimed implies non_zero nr_scanned, testing nr_scanned serves no
purpose, and so does the testing for __GFP_RETRY_MAYFAIL.
This patch thus cleans up the function to test only !nr_reclaimed upfront,
and remove the __GFP_RETRY_MAYFAIL test and nr_scanned parameter
completely. Comment is also updated, explaining that approximating "full
LRU list has been scanned" with nr_scanned == 0 didn't really work.
Link: http://lkml.kernel.org/r/20190806014744.15446-3-mike.kravetz@oracle.com
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "address hugetlb page allocation stalls", v2.
Allocation of hugetlb pages via sysctl or procfs can stall for minutes or
hours. A simple example on a two node system with 8GB of memory is as
follows:
echo 4096 > /sys/devices/system/node/node1/hugepages/hugepages-2048kB/nr_hugepages
echo 4096 > /proc/sys/vm/nr_hugepages
Obviously, both allocation attempts will fall short of their 8GB goal.
However, one or both of these commands may stall and not be interruptible.
The issues were initially discussed in mail thread [1] and RFC code at
[2].
This series addresses the issues causing the stalls. There are two
distinct fixes, a cleanup, and an optimization. The reclaim patch by
Hillf and compaction patch by Vlasitmil address corner cases in their
respective areas. hugetlb page allocation could stall due to either of
these issues. Vlasitmil added a cleanup patch after Hillf's
modifications. The hugetlb patch by Mike is an optimization suggested
during the debug and development process.
[1] http://lkml.kernel.org/r/d38a095e-dc39-7e82-bb76-2c9247929f07@oracle.com
[2] http://lkml.kernel.org/r/20190724175014.9935-1-mike.kravetz@oracle.com
This patch (of 4):
Address the issue of should_continue_reclaim returning true too often for
__GFP_RETRY_MAYFAIL attempts when !nr_reclaimed and nr_scanned. This was
observed during hugetlb page allocation causing stalls for minutes or
hours.
We can stop reclaiming pages if compaction reports it can make a progress.
There might be side-effects for other high-order allocations that would
potentially benefit from reclaiming more before compaction so that they
would be faster and less likely to stall. However, the consequences of
premature/over-reclaim are considered worse.
We can also bail out of reclaiming pages if we know that there are not
enough inactive lru pages left to satisfy the costly allocation.
We can give up reclaiming pages too if we see dryrun occur, with the
certainty of plenty of inactive pages. IOW with dryrun detected, we are
sure we have reclaimed as many pages as we could.
Link: http://lkml.kernel.org/r/20190806014744.15446-2-mike.kravetz@oracle.com
Signed-off-by: Hillf Danton <hdanton@sina.com>
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Tested-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cgroup v1 memcg controller has exposed a dedicated kmem limit to users
which turned out to be really a bad idea because there are paths which
cannot shrink the kernel memory usage enough to get below the limit (e.g.
because the accounted memory is not reclaimable). There are cases when
the failure is even not allowed (e.g. __GFP_NOFAIL). This means that the
kmem limit is in excess to the hard limit without any way to shrink and
thus completely useless. OOM killer cannot be invoked to handle the
situation because that would lead to a premature oom killing.
As a result many places might see ENOMEM returning from kmalloc and result
in unexpected errors. E.g. a global OOM killer when there is a lot of
free memory because ENOMEM is translated into VM_FAULT_OOM in #PF path and
therefore pagefault_out_of_memory would result in OOM killer.
Please note that the kernel memory is still accounted to the overall limit
along with the user memory so removing the kmem specific limit should
still allow to contain kernel memory consumption. Unlike the kmem one,
though, it invokes memory reclaim and targeted memcg oom killing if
necessary.
Start the deprecation process by crying to the kernel log. Let's see
whether there are relevant usecases and simply return to EINVAL in the
second stage if nobody complains in few releases.
[akpm@linux-foundation.org: tweak documentation text]
Link: http://lkml.kernel.org/r/20190911151612.GI4023@dhcp22.suse.cz
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Thomas Lindroth <thomas.lindroth@gmail.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_id_get() was introduced in commit 73f576c04b ("mm:memcontrol:
fix cgroup creation failure after many small jobs").
Later, it no longer has any user since the commits,
1f47b61fb4 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup")
58fa2a5512 ("mm: memcontrol: add sanity checks for memcg->id.ref on get/put")
so safe to remove it.
Link: http://lkml.kernel.org/r/1568648453-5482-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
constrained_alloc() calculates the size of the oom domain by using
node_spanned_pages which is incorrect because this is the full range of
the physical memory range that the numa node occupies rather than the
memory that backs that range which is represented by node_present_pages.
Sparsely populated nodes (e.g. after memory hot remove or simply sparse
due to memory layout) can have really a large difference between the two.
This shouldn't really cause any real user observable problems because the
oom calculates a ratio against totalpages and used memory cannot exceed
present pages but it is confusing and wrong from code point of view.
Link: http://lkml.kernel.org/r/20190829163443.899-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ac311a14c6 ("oom: decouple mems_allowed from
oom_unkillable_task") changed has_intersects_mems_allowed() to
oom_cpuset_eligible(), but didn't change the comment.
Link: http://lkml.kernel.org/r/1566959929-10638-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For an OOM event: print oom_score_adj value for the OOM Killed process to
document what the oom score adjust value was at the time the process was
OOM Killed. The adjustment value can be set by user code and it affects
the resulting oom_score so it is used to influence kill process selection.
When eligible tasks are not printed (sysctl oom_dump_tasks = 0) printing
this value is the only documentation of the value for the process being
killed. Having this value on the Killed process message is useful to
document if a miscconfiguration occurred or to confirm that the
oom_score_adj configuration applies as expected.
An example which illustates both misconfiguration and validation that the
oom_score_adj was applied as expected is:
Aug 14 23:00:02 testserver kernel: Out of memory: Killed process 2692
(systemd-udevd) total-vm:1056800kB, anon-rss:1052760kB, file-rss:4kB,
shmem-rss:0kB pgtables:22kB oom_score_adj:1000
The systemd-udevd is a critical system application that should have an
oom_score_adj of -1000. It was miconfigured to have a adjustment of 1000
making it a highly favored OOM kill target process. The output documents
both the misconfiguration and the fact that the process was correctly
targeted by OOM due to the miconfiguration. This can be quite helpful for
triage and problem determination.
The addition of the pgtables_bytes shows page table usage by the process
and is a useful measure of the memory size of the process.
Link: http://lkml.kernel.org/r/20190822173157.1569-1-echron@arista.com
Signed-off-by: Edward Chron <echron@arista.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the event of an oom kill, useful information about the killed process
is printed to dmesg. Users, especially system administrators, will find
it useful to immediately see the UID of the process.
We already print uid when dumping eligible tasks so it is not overly hard
to find that information in the oom report. However this information is
unavailable when dumping of eligible tasks is disabled.
In the following example, abuse_the_ram is the name of a program that
attempts to iteratively allocate all available memory until it is stopped
by force.
Current message:
Out of memory: Killed process 35389 (abuse_the_ram)
total-vm:133718232kB, anon-rss:129624980kB, file-rss:0kB,
shmem-rss:0kB
Patched message:
Out of memory: Killed process 2739 (abuse_the_ram),
total-vm:133880028kB, anon-rss:129754836kB, file-rss:0kB,
shmem-rss:0kB, UID:0
[akpm@linux-foundation.org: s/UID %d/UID:%u/ in printk]
Link: http://lkml.kernel.org/r/1560362273-534-1-git-send-email-jsavitz@redhat.com
Signed-off-by: Joel Savitz <jsavitz@redhat.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1) task_nodes = cpuset_mems_allowed(current);
-> cpuset_mems_allowed() guaranteed to return some non-empty
subset of node_states[N_MEMORY].
2) nodes_and(*new, *new, task_nodes);
-> after nodes_and(), the 'new' should be empty or appropriate
nodemask(online node and with memory).
After 1) and 2), we could remove unnecessary check whether the 'new'
AND node_states[N_MEMORY] is empty.
Link: http://lkml.kernel.org/r/20190806023634.55356-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
total_{migrate,free}_scanned will be added to COMPACTMIGRATE_SCANNED and
COMPACTFREE_SCANNED in compact_zone(). We should clear them before
scanning a new zone. In the proc triggered compaction, we forgot clearing
them.
[laoar.shao@gmail.com: introduce a helper compact_zone_counters_init()]
Link: http://lkml.kernel.org/r/1563869295-25748-1-git-send-email-laoar.shao@gmail.com
[akpm@linux-foundation.org: expand compact_zone_counters_init() into its single callsite, per mhocko]
[vbabka@suse.cz: squash compact_zone() list_head init as well]
Link: http://lkml.kernel.org/r/1fb6f7da-f776-9e42-22f8-bbb79b030b98@suse.cz
[akpm@linux-foundation.org: kcompactd_do_work(): avoid unnecessary initialization of cc.zone]
Link: http://lkml.kernel.org/r/1563789275-9639-1-git-send-email-laoar.shao@gmail.com
Fixes: 7f354a548d ("mm, compaction: add vmstats for kcompactd work")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there is a leak in init_z3fold_page() -- it allocates handles
from kmem cache even for headless pages, but then they are never used and
never freed, so eventually kmem cache may get exhausted. This patch
provides a fix for that.
Link: http://lkml.kernel.org/r/20190917185352.44cf285d3ebd9e64548de5de@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reported-by: Markus Linnala <markus.linnala@gmail.com>
Tested-by: Markus Linnala <markus.linnala@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When compiling a kernel with W=1, there are several of those warnings due
to arm64 overriding a field on purpose. Just disable those warnings for
both GCC and Clang of this file, so it will help dig "gems" hidden in the
W=1 warnings by reducing some noises.
mm/init-mm.c:39:2: warning: initializer overrides prior initialization
of this subobject [-Winitializer-overrides]
INIT_MM_CONTEXT(init_mm)
^~~~~~~~~~~~~~~~~~~~~~~~
./arch/arm64/include/asm/mmu.h:133:9: note: expanded from macro
'INIT_MM_CONTEXT'
.pgd = init_pg_dir,
^~~~~~~~~~~
mm/init-mm.c:30:10: note: previous initialization is here
.pgd = swapper_pg_dir,
^~~~~~~~~~~~~~
Note: there is a side project trying to support explicitly allowing
specific initializer overrides in Clang, but there is no guarantee it
will happen or not.
https://github.com/ClangBuiltLinux/linux/issues/639
Link: http://lkml.kernel.org/r/1566920867-27453-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace open-coded bitmap array initialization of init_mm.cpu_bitmask with
neat CPU_BITS_NONE macro.
And, since init_mm.cpu_bitmask is statically set to zero, there is no way
to clear it again in start_kernel().
Link: http://lkml.kernel.org/r/1565703815-8584-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If !area->pages statement is true where memory allocation fails, area is
freed.
In this case 'area->pages = pages' should not executed. So move
'area->pages = pages' after if statement.
[akpm@linux-foundation.org: give area->pages the same treatment]
Link: http://lkml.kernel.org/r/20190830035716.GA190684@LGEARND20B15
Signed-off-by: Austin Kim <austindh.kim@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Roman Penyaev <rpenyaev@suse.de>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Objective
---------
The current implementation of struct vmap_area wasted space.
After applying this commit, sizeof(struct vmap_area) has been
reduced from 11 words to 8 words.
Description
-----------
1) Pack "subtree_max_size", "vm" and "purge_list". This is no problem
because
A) "subtree_max_size" is only used when vmap_area is in "free" tree
B) "vm" is only used when vmap_area is in "busy" tree
C) "purge_list" is only used when vmap_area is in vmap_purge_list
2) Eliminate "flags".
;Since only one flag VM_VM_AREA is being used, and the same thing can be
done by judging whether "vm" is NULL, then the "flags" can be eliminated.
Link: http://lkml.kernel.org/r/20190716152656.12255-3-lpf.vector@gmail.com
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Suggested-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The busy tree can be quite big, even though the area is freed or unmapped
it still stays there until "purge" logic removes it.
1) Optimize and reduce the size of "busy" tree by removing a node from
it right away as soon as user triggers free paths. It is possible to
do so, because the allocation is done using another augmented tree.
The vmalloc test driver shows the difference, for example the
"fix_size_alloc_test" is ~11% better comparing with default configuration:
sudo ./test_vmalloc.sh performance
<default>
Summary: fix_size_alloc_test loops: 1000000 avg: 993985 usec
Summary: full_fit_alloc_test loops: 1000000 avg: 973554 usec
Summary: long_busy_list_alloc_test loops: 1000000 avg: 12617652 usec
<default>
<this patch>
Summary: fix_size_alloc_test loops: 1000000 avg: 882263 usec
Summary: full_fit_alloc_test loops: 1000000 avg: 973407 usec
Summary: long_busy_list_alloc_test loops: 1000000 avg: 12593929 usec
<this patch>
2) Since the busy tree now contains allocated areas only and does not
interfere with lazily free nodes, introduce the new function
show_purge_info() that dumps "unpurged" areas that is propagated
through "/proc/vmallocinfo".
3) Eliminate VM_LAZY_FREE flag.
Link: http://lkml.kernel.org/r/20190716152656.12255-2-lpf.vector@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Pengfei Li <lpf.vector@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no possibility for memmap to be NULL in the current codebase.
This check was added in commit 95a4774d05 ("memory-hotplug: update
mce_bad_pages when removing the memory") where memmap was originally
inited to NULL, and only conditionally given a value.
The code that could have passed a NULL has been removed by commit
ba72b4c8cf ("mm/sparsemem: support sub-section hotplug"), so there is no
longer a possibility that memmap can be NULL.
Link: http://lkml.kernel.org/r/20190829035151.20975-1-alastair@d-silva.org
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the function written to do it instead.
Link: http://lkml.kernel.org/r/20190827053656.32191-2-alastair@au1.ibm.com
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__pfn_to_section is defined as __nr_to_section(pfn_to_section_nr(pfn)).
Since we already get section_nr, it is not necessary to get mem_section
from start_pfn. By doing so, we reduce one redundant operation.
Link: http://lkml.kernel.org/r/20190809010242.29797-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Tested-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The size argument passed into sparse_buffer_alloc() has already been
aligned with PAGE_SIZE or PMD_SIZE.
If the size after aligned is not power of 2 (e.g. 0x480000), the
PTR_ALIGN() will return wrong value. Use roundup to round sparsemap_buf
up to next multiple of size.
Link: http://lkml.kernel.org/r/20190705114826.28586-1-lecopzer.chen@mediatek.com
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Mark-PK Tsai <Mark-PK.Tsai@mediatek.com>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse_buffer_alloc(xsize) gets the size of memory from sparsemap_buf
after being aligned with the size. However, the size is at least
PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION) and usually larger
than PAGE_SIZE.
Also, sparse_buffer_fini() only frees memory between sparsemap_buf and
sparsemap_buf_end, since sparsemap_buf may be changed by PTR_ALIGN()
first, the aligned space before sparsemap_buf is wasted and no one will
touch it.
In our ARM32 platform (without SPARSEMEM_VMEMMAP)
Sparse_buffer_init
Reserve d359c000 - d3e9c000 (9M)
Sparse_buffer_alloc
Alloc d3a00000 - d3E80000 (4.5M)
Sparse_buffer_fini
Free d3e80000 - d3e9c000 (~=100k)
The reserved memory between d359c000 - d3a00000 (~=4.4M) is unfreed.
In ARM64 platform (with SPARSEMEM_VMEMMAP)
sparse_buffer_init
Reserve ffffffc07d623000 - ffffffc07f623000 (32M)
Sparse_buffer_alloc
Alloc ffffffc07d800000 - ffffffc07f600000 (30M)
Sparse_buffer_fini
Free ffffffc07f600000 - ffffffc07f623000 (140K)
The reserved memory between ffffffc07d623000 - ffffffc07d800000
(~=1.9M) is unfreed.
Let's explicit free redundant aligned memory.
[arnd@arndb.de: mark sparse_buffer_free as __meminit]
Link: http://lkml.kernel.org/r/20190709185528.3251709-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/20190705114730.28534-1-lecopzer.chen@mediatek.com
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Mark-PK Tsai <Mark-PK.Tsai@mediatek.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
walk_system_ram_range() will fail with -EINVAL in case
online_pages_range() was never called (== no resource applicable in the
range). Otherwise, we will always call online_pages_range() with nr_pages
> 0 and, therefore, have online_pages > 0.
Remove that special handling.
Link: http://lkml.kernel.org/r/20190814154109.3448-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a9cd410a3d ("mm/page_alloc.c: memory hotplug: free pages as
higher order") assumed that any PFN we get via memory resources is aligned
to to MAX_ORDER - 1, I am not convinced that is always true. Let's play
safe, check the alignment and fallback to single pages.
akpm: warn in this situation so we get to find out if and why this ever
occurs.
[akpm@linux-foundation.org: add WARN_ON_ONCE()]
Link: http://lkml.kernel.org/r/20190814154109.3448-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
online_pages always corresponds to nr_pages. Simplify the code, getting
rid of online_pages_blocks(). Add some comments.
Link: http://lkml.kernel.org/r/20190814154109.3448-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
move_pfn_range_to_zone() will set all pages to PG_reserved via
memmap_init_zone(). The only way a page could no longer be reserved would
be if a MEM_GOING_ONLINE notifier would clear PG_reserved - which is not
done (the online_page callback is used for that purpose by e.g., Hyper-V
instead). walk_system_ram_range() will never call online_pages_range()
with duplicate PFNs, so drop the PageReserved() check.
This seems to be a leftover from ancient times where the memmap was
initialized when adding memory and we wanted to check for already onlined
memory.
Link: http://lkml.kernel.org/r/20190814154109.3448-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When offlining a node in try_offline_node(), pgdat is not released. So
that pgdat could be reused in hotadd_new_pgdat(). While we reallocate
pgdat->per_cpu_nodestats if this pgdat is reused.
This patch prevents the memory leak by just allocating per_cpu_nodestats
when it is a new pgdat.
Link: http://lkml.kernel.org/r/20190813020608.10194-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each memory block spans the same amount of sections/pages/bytes. The size
is determined before the first memory block is created. No need to store
what we can easily calculate - and the calculations even look simpler now.
Michal brought up the idea of variable-sized memory blocks. However, if
we ever implement something like this, we will need an API compatibility
switch and reworks at various places (most code assumes a fixed memory
block size). So let's cleanup what we have right now.
While at it, fix the variable naming in register_mem_sect_under_node() -
we no longer talk about a single section.
Link: http://lkml.kernel.org/r/20190809110200.2746-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>