-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEET63h6RnJhTJHuKTjXOwUVIRcSScFAmNu2EkACgkQXOwUVIRc
SSebKhAA0ffmp5jJgEJpQYNABGLYIJcwKkBrGClDbMJLtwCjevGZJajT9fpbCLb1
eK6EIhdfR0NTO+0KtUVkZ8WMa81OmLEJYdTNtJfNE23ENMpssiAWhlhDF8AoXeKv
Bo3j719gn3Cw9PWXQoircH3wpj+5RMDnjxy4iYlA5yNrvzC7XVmssMF+WALvQnuK
CGrfR57hxdgmphmasRqeCzEoriwihwPsG3k6eQN8rf7ZytLhs90tMVgT9L3Cd2u9
DafA0Xl8mZdz2mHhThcJhQVq4MUymZj44ufuHDiOs1j6nhUlWToyQuvegPOqxKti
uLGtZul0ls+3UP0Lbrv1oEGU/MWMxyDz4IBc0EVs0k3ItQbmSKs6r9WuPFGd96Sb
GHk68qFVySeLGN0LfKe3rCHJ9ZoIOPYJg9qT8Rd5bOhetgGwSsxZTxUI39BxkFup
CEqwIDnts1TMU37GDjj+vssKW91k4jEzMZVtRfsL3J36aJs28k/Ez4AqLXg6WU6u
ADqFaejVPcXbN9rX90onIYxxiL28gZSeT+i8qOPELZtqTQmNWz+tC/ySVuWnD8Mn
Nbs7PZ1IWiNZpsKS8pZnpd6j4mlBeJnwXkPKiFy+xHGuwRSRdYl6G9e5CtlRely/
rwQ8DtaOpRYMrGhnmBEdAOCa9t/iqzrzHzjoigjJ7iAST4ToJ5s=
=Y+/e
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Andrii Nakryiko says:
====================
bpf-next 2022-11-11
We've added 49 non-merge commits during the last 9 day(s) which contain
a total of 68 files changed, 3592 insertions(+), 1371 deletions(-).
The main changes are:
1) Veristat tool improvements to support custom filtering, sorting, and replay
of results, from Andrii Nakryiko.
2) BPF verifier precision tracking fixes and improvements,
from Andrii Nakryiko.
3) Lots of new BPF documentation for various BPF maps, from Dave Tucker,
Donald Hunter, Maryam Tahhan, Bagas Sanjaya.
4) BTF dedup improvements and libbpf's hashmap interface clean ups, from
Eduard Zingerman.
5) Fix veth driver panic if XDP program is attached before veth_open, from
John Fastabend.
6) BPF verifier clean ups and fixes in preparation for follow up features,
from Kumar Kartikeya Dwivedi.
7) Add access to hwtstamp field from BPF sockops programs,
from Martin KaFai Lau.
8) Various fixes for BPF selftests and samples, from Artem Savkov,
Domenico Cerasuolo, Kang Minchul, Rong Tao, Yang Jihong.
9) Fix redirection to tunneling device logic, preventing skb->len == 0, from
Stanislav Fomichev.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (49 commits)
selftests/bpf: fix veristat's singular file-or-prog filter
selftests/bpf: Test skops->skb_hwtstamp
selftests/bpf: Fix incorrect ASSERT in the tcp_hdr_options test
bpf: Add hwtstamp field for the sockops prog
selftests/bpf: Fix xdp_synproxy compilation failure in 32-bit arch
bpf, docs: Document BPF_MAP_TYPE_ARRAY
docs/bpf: Document BPF map types QUEUE and STACK
docs/bpf: Document BPF ARRAY_OF_MAPS and HASH_OF_MAPS
docs/bpf: Document BPF_MAP_TYPE_CPUMAP map
docs/bpf: Document BPF_MAP_TYPE_LPM_TRIE map
libbpf: Hashmap.h update to fix build issues using LLVM14
bpf: veth driver panics when xdp prog attached before veth_open
selftests: Fix test group SKIPPED result
selftests/bpf: Tests for btf_dedup_resolve_fwds
libbpf: Resolve unambigous forward declarations
libbpf: Hashmap interface update to allow both long and void* keys/values
samples/bpf: Fix sockex3 error: Missing BPF prog type
selftests/bpf: Fix u32 variable compared with less than zero
Documentation: bpf: Escape underscore in BPF type name prefix
selftests/bpf: Use consistent build-id type for liburandom_read.so
...
====================
Link: https://lore.kernel.org/r/20221111233733.1088228-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
kmemleak reports this issue:
unreferenced object 0xffff88817139d000 (size 2048):
comm "test_progs", pid 33246, jiffies 4307381979 (age 45851.820s)
hex dump (first 32 bytes):
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<0000000045f075f0>] kmalloc_trace+0x27/0xa0
[<0000000098b7c90a>] __check_func_call+0x316/0x1230
[<00000000b4c3c403>] check_helper_call+0x172e/0x4700
[<00000000aa3875b7>] do_check+0x21d8/0x45e0
[<000000001147357b>] do_check_common+0x767/0xaf0
[<00000000b5a595b4>] bpf_check+0x43e3/0x5bc0
[<0000000011e391b1>] bpf_prog_load+0xf26/0x1940
[<0000000007f765c0>] __sys_bpf+0xd2c/0x3650
[<00000000839815d6>] __x64_sys_bpf+0x75/0xc0
[<00000000946ee250>] do_syscall_64+0x3b/0x90
[<0000000000506b7f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root case here is: In function prepare_func_exit(), the callee is
not released in the abnormal scenario after "state->curframe--;". To
fix, move "state->curframe--;" to the very bottom of the function,
right when we free callee and reset frame[] pointer to NULL, as Andrii
suggested.
In addition, function __check_func_call() has a similar problem. In
the abnormal scenario before "state->curframe++;", the callee also
should be released by free_func_state().
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Fixes: fd978bf7fd ("bpf: Add reference tracking to verifier")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Link: https://lore.kernel.org/r/1667884291-15666-1-git-send-email-wangyufen@huawei.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Exploit the property of about-to-be-checkpointed state to be able to
forget all precise markings up to that point even more aggressively. We
now clear all potentially inherited precise markings right before
checkpointing and branching off into child state. If any of children
states require precise knowledge of any SCALAR register, those will be
propagated backwards later on before this state is finalized, preserving
correctness.
There is a single selftests BPF program change, but tremendous one: 25x
reduction in number of verified instructions and states in
trace_virtqueue_add_sgs.
Cilium results are more modest, but happen across wider range of programs.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
loop6.bpf.linked1.o trace_virtqueue_add_sgs 398057 15114 -382943 (-96.20%) 8717 336 -8381 (-96.15%)
------------------- ----------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_host.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_host.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3446 3406 -40 (-1.16%) 203 198 -5 (-2.46%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23426 23221 -205 (-0.88%) 1537 1515 -22 (-1.43%)
bpf_lxc.o tail_handle_nat_fwd_ipv6 13009 12904 -105 (-0.81%) 719 708 -11 (-1.53%)
bpf_lxc.o tail_ipv4_ct_egress 5074 4897 -177 (-3.49%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv4_ct_ingress_policy_only 5100 4923 -177 (-3.47%) 255 248 -7 (-2.75%)
bpf_lxc.o tail_ipv6_ct_egress 4558 4536 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_ipv6_ct_ingress_policy_only 4578 4556 -22 (-0.48%) 188 187 -1 (-0.53%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 5261 5196 -65 (-1.24%) 247 243 -4 (-1.62%)
bpf_overlay.o tail_nodeport_nat_ipv6_egress 3482 3442 -40 (-1.15%) 204 201 -3 (-1.47%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17200 15619 -1581 (-9.19%) 1111 1010 -101 (-9.09%)
------------- -------------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.
Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.
End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.
SELFTESTS RESULTS
=================
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_iter_ksym.bpf.linked1.o dump_ksym 347 285 -62 (-17.87%) 20 19 -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o on_event 3678 3736 +58 (+1.58%) 276 285 +9 (+3.26%)
setget_sockopt.bpf.linked1.o skops_sockopt 4038 3947 -91 (-2.25%) 347 343 -4 (-1.15%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 2611 -1948 (-42.73%) 118 105 -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o balancer_ingress 6279 6268 -11 (-0.18%) 237 236 -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1307 1303 -4 (-0.31%) 100 99 -1 (-1.00%)
test_sk_lookup.bpf.linked1.o ctx_narrow_access 456 447 -9 (-1.97%) 39 38 -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o sysctl_tcp_mem 1389 1384 -5 (-0.36%) 26 25 -1 (-3.85%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio101 518 485 -33 (-6.37%) 51 46 -5 (-9.80%)
test_tc_dtime.bpf.linked1.o egress_host 519 468 -51 (-9.83%) 50 44 -6 (-12.00%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 842 1000 +158 (+18.76%) 73 88 +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 405757 373173 -32584 (-8.03%) 25735 22882 -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 479055 371590 -107465 (-22.43%) 29145 22207 -6938 (-23.81%)
--------------------------------------- ---------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.
CILIUM RESULTS
==============
$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o cil_from_host 762 556 -206 (-27.03%) 43 37 -6 (-13.95%)
bpf_host.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_host.o tail_nodeport_nat_egress_ipv4 33592 33566 -26 (-0.08%) 2163 2161 -2 (-0.09%)
bpf_lxc.o tail_handle_nat_fwd_ipv4 23541 23426 -115 (-0.49%) 1538 1537 -1 (-0.07%)
bpf_overlay.o tail_nodeport_nat_egress_ipv4 33581 33543 -38 (-0.11%) 2160 2157 -3 (-0.14%)
bpf_xdp.o tail_handle_nat_fwd_ipv4 21659 20920 -739 (-3.41%) 1440 1376 -64 (-4.44%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 17084 17039 -45 (-0.26%) 907 905 -2 (-0.22%)
bpf_xdp.o tail_lb_ipv4 73442 73430 -12 (-0.02%) 4370 4369 -1 (-0.02%)
bpf_xdp.o tail_lb_ipv6 152114 151895 -219 (-0.14%) 6493 6479 -14 (-0.22%)
bpf_xdp.o tail_nodeport_nat_egress_ipv4 17377 17200 -177 (-1.02%) 1125 1111 -14 (-1.24%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6405 6397 -8 (-0.12%) 309 308 -1 (-0.32%)
bpf_xdp.o tail_rev_nodeport_lb4 7126 6934 -192 (-2.69%) 414 402 -12 (-2.90%)
bpf_xdp.o tail_rev_nodeport_lb6 18059 17905 -154 (-0.85%) 1105 1096 -9 (-0.81%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.
This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.
But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.
First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.
To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.
More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.
Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.
Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.
This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.
With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
pyperf600_bpf_loop.bpf.linked1.o on_event 3966 3678 -288 (-7.26%) 306 276 -30 (-9.80%)
pyperf_global.bpf.linked1.o on_event 7563 7530 -33 (-0.44%) 520 517 -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o on_event 36358 36934 +576 (+1.58%) 2499 2531 +32 (+1.28%)
setget_sockopt.bpf.linked1.o skops_sockopt 3965 4038 +73 (+1.84%) 343 347 +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 64965 64901 -64 (-0.10%) 4619 4612 -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o misc_estab 1491 1307 -184 (-12.34%) 110 100 -10 (-9.09%)
test_pkt_access.bpf.linked1.o test_pkt_access 354 349 -5 (-1.41%) 25 24 -1 (-4.00%)
test_sock_fields.bpf.linked1.o egress_read_sock_fields 435 375 -60 (-13.79%) 22 20 -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o sysctl_tcp_mem 1508 1501 -7 (-0.46%) 29 28 -1 (-3.45%)
test_tc_dtime.bpf.linked1.o egress_fwdns_prio100 468 435 -33 (-7.05%) 45 41 -4 (-8.89%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio100 398 408 +10 (+2.51%) 42 39 -3 (-7.14%)
test_tc_dtime.bpf.linked1.o ingress_fwdns_prio101 1096 842 -254 (-23.18%) 97 73 -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o estab 2758 2408 -350 (-12.69%) 208 181 -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o urand_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urand_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_with_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o urandlib_read_without_sema 466 448 -18 (-3.86%) 31 28 -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o balancer_ingress_v6 4302 4294 -8 (-0.19%) 257 256 -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 583722 405757 -177965 (-30.49%) 35846 25735 -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 609123 479055 -130068 (-21.35%) 35452 29145 -6307 (-17.79%)
---------------------------------------- -------------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When equivalent completed state is found and it has additional precision
restrictions, BPF verifier propagates precision to
currently-being-verified state chain (i.e., including parent states) so
that if some of the states in the chain are not yet completed, necessary
precision restrictions are enforced.
Unfortunately, right now this happens only for the last frame (deepest
active subprogram's frame), not all the frames. This can lead to
incorrect matching of states due to missing precision marker. Currently
this doesn't seem possible as BPF verifier forces everything to precise
when validated BPF program has any subprograms. But with the next patch
lifting this restriction, this becomes problematic.
In fact, without this fix, we'll start getting failure in one of the
existing test_verifier test cases:
#906/p precise: cross frame pruning FAIL
Unexpected success to load!
verification time 48 usec
stack depth 0+0
processed 26 insns (limit 1000000) max_states_per_insn 3 total_states 17 peak_states 17 mark_read 8
This patch adds precision propagation across all frames.
Fixes: a3ce685dd0 ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When processing ALU/ALU64 operations (apart from BPF_MOV, which is
handled correctly already; and BPF_NEG and BPF_END are special and don't
have source register), if destination register is already marked
precise, this causes problem with potentially missing precision tracking
for the source register. E.g., when we have r1 >>= r5 and r1 is marked
precise, but r5 isn't, this will lead to r5 staying as imprecise. This
is due to the precision backtracking logic stopping early when it sees
r1 is already marked precise. If r1 wasn't precise, we'd keep
backtracking and would add r5 to the set of registers that need to be
marked precise. So there is a discrepancy here which can lead to invalid
and incompatible states matched due to lack of precision marking on r5.
If r1 wasn't precise, precision backtracking would correctly mark both
r1 and r5 as precise.
This is simple to fix, though. During the forward instruction simulation
pass, for arithmetic operations of `scalar <op>= scalar` form (where
<op> is ALU or ALU64 operations), if destination register is already
precise, mark source register as precise. This applies only when both
involved registers are SCALARs. `ptr += scalar` and `scalar += ptr`
cases are already handled correctly.
This does have (negative) effect on some selftest programs and few
Cilium programs. ~/baseline-tmp-results.csv are veristat results with
this patch, while ~/baseline-results.csv is without it. See post
scriptum for instructions on how to make Cilium programs testable with
veristat. Correctness has a price.
$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/baseline-tmp-results.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_cubic.bpf.linked1.o bpf_cubic_cong_avoid 997 1700 +703 (+70.51%) 62 90 +28 (+45.16%)
test_l4lb.bpf.linked1.o balancer_ingress 4559 5469 +910 (+19.96%) 118 126 +8 (+6.78%)
----------------------- -------------------- --------------- --------------- ------------------ ---------------- ---------------- -------------------
$ ./veristat -C -e file,prog,verdict,insns,states ~/baseline-results-cilium.csv ~/baseline-tmp-results-cilium.csv | grep -v '+0'
File Program Total insns (A) Total insns (B) Total insns (DIFF) Total states (A) Total states (B) Total states (DIFF)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_host.o tail_nodeport_nat_ipv6_egress 3396 3446 +50 (+1.47%) 201 203 +2 (+1.00%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4448 5261 +813 (+18.28%) 234 247 +13 (+5.56%)
bpf_xdp.o tail_lb_ipv4 71736 73442 +1706 (+2.38%) 4295 4370 +75 (+1.75%)
------------- ------------------------------ --------------- --------------- ------------------ ---------------- ---------------- -------------------
P.S. To make Cilium ([0]) programs libbpf-compatible and thus
veristat-loadable, apply changes from topmost commit in [1], which does
minimal changes to Cilium source code, mostly around SEC() annotations
and BPF map definitions.
[0] https://github.com/cilium/cilium/
[1] https://github.com/anakryiko/cilium/commits/libbpf-friendliness
Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.
While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.
As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.
Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.
The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.
Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.
Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
It is not scalable to maintain a list of types that can have non-zero
ref_obj_id. It is never set for scalars anyway, so just remove the
conditional on register types and print it whenever it is non-zero.
Acked-by: Dave Marchevsky <davemarchevsky@fb.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For the case where allow_ptr_leaks is false, code is checking whether
slot type is STACK_INVALID and STACK_SPILL and rejecting other cases.
This is a consequence of incorrectly checking for register type instead
of the slot type (NOT_INIT and SCALAR_VALUE respectively). Fix the
check.
Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When support was added for spilled PTR_TO_BTF_ID to be accessed by
helper memory access, the stack slot was not overwritten to STACK_MISC
(and that too is only safe when env->allow_ptr_leaks is true).
This means that helpers who take ARG_PTR_TO_MEM and write to it may
essentially overwrite the value while the verifier continues to track
the slot for spilled register.
This can cause issues when PTR_TO_BTF_ID is spilled to stack, and then
overwritten by helper write access, which can then be passed to BPF
helpers or kfuncs.
Handle this by falling back to the case introduced in a later commit,
which will also handle PTR_TO_BTF_ID along with other pointer types,
i.e. cd17d38f8b ("bpf: Permits pointers on stack for helper calls").
Finally, include a comment on why REG_LIVE_WRITTEN is not being set when
clobber is set to true. In short, the reason is that while when clobber
is unset, we know that we won't be writing, when it is true, we *may*
write to any of the stack slots in that range. It may be a partial or
complete write, to just one or many stack slots.
We cannot be sure, hence to be conservative, we leave things as is and
never set REG_LIVE_WRITTEN for any stack slot. However, clobber still
needs to reset them to STACK_MISC assuming writes happened. However read
marks still need to be propagated upwards from liveness point of view,
as parent stack slot's contents may still continue to matter to child
states.
Cc: Yonghong Song <yhs@meta.com>
Fixes: 1d68f22b3d ("bpf: Handle spilled PTR_TO_BTF_ID properly when checking stack_boundary")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.
Fixes: fd978bf7fd ("bpf: Add reference tracking to verifier")
Signed-off-by: Youlin Li <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20221103093440.3161-1-liulin063@gmail.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCY2GuKgAKCRDbK58LschI
gy32AP9PI0e/bUGDExKJ8g97PeeEtnpj4TTI6g+XKILtYnyXlgD/Rk4j2D/f3IBF
Ha9TmqYvAUim+U/g50vUrNuoNLNJ5w8=
=OKC1
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
bpf-next 2022-11-02
We've added 70 non-merge commits during the last 14 day(s) which contain
a total of 96 files changed, 3203 insertions(+), 640 deletions(-).
The main changes are:
1) Make cgroup local storage available to non-cgroup attached BPF programs
such as tc BPF ones, from Yonghong Song.
2) Avoid unnecessary deadlock detection and failures wrt BPF task storage
helpers, from Martin KaFai Lau.
3) Add LLVM disassembler as default library for dumping JITed code
in bpftool, from Quentin Monnet.
4) Various kprobe_multi_link fixes related to kernel modules,
from Jiri Olsa.
5) Optimize x86-64 JIT with emitting BMI2-based shift instructions,
from Jie Meng.
6) Improve BPF verifier's memory type compatibility for map key/value
arguments, from Dave Marchevsky.
7) Only create mmap-able data section maps in libbpf when data is exposed
via skeletons, from Andrii Nakryiko.
8) Add an autoattach option for bpftool to load all object assets,
from Wang Yufen.
9) Various memory handling fixes for libbpf and BPF selftests,
from Xu Kuohai.
10) Initial support for BPF selftest's vmtest.sh on arm64,
from Manu Bretelle.
11) Improve libbpf's BTF handling to dedup identical structs,
from Alan Maguire.
12) Add BPF CI and denylist documentation for BPF selftests,
from Daniel Müller.
13) Check BPF cpumap max_entries before doing allocation work,
from Florian Lehner.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (70 commits)
samples/bpf: Fix typo in README
bpf: Remove the obsolte u64_stats_fetch_*_irq() users.
bpf: check max_entries before allocating memory
bpf: Fix a typo in comment for DFS algorithm
bpftool: Fix spelling mistake "disasembler" -> "disassembler"
selftests/bpf: Fix bpftool synctypes checking failure
selftests/bpf: Panic on hard/soft lockup
docs/bpf: Add documentation for new cgroup local storage
selftests/bpf: Add test cgrp_local_storage to DENYLIST.s390x
selftests/bpf: Add selftests for new cgroup local storage
selftests/bpf: Fix test test_libbpf_str/bpf_map_type_str
bpftool: Support new cgroup local storage
libbpf: Support new cgroup local storage
bpf: Implement cgroup storage available to non-cgroup-attached bpf progs
bpf: Refactor some inode/task/sk storage functions for reuse
bpf: Make struct cgroup btf id global
selftests/bpf: Tracing prog can still do lookup under busy lock
selftests/bpf: Ensure no task storage failure for bpf_lsm.s prog due to deadlock detection
bpf: Add new bpf_task_storage_delete proto with no deadlock detection
bpf: bpf_task_storage_delete_recur does lookup first before the deadlock check
...
====================
Link: https://lore.kernel.org/r/20221102062120.5724-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If an error (NULL) is returned by krealloc(), callers of realloc_array()
were setting their allocation pointers to NULL, but on error krealloc()
does not touch the original allocation. This would result in a memory
resource leak. Instead, free the old allocation on the error handling
path.
The memory leak information is as follows as also reported by Zhengchao:
unreferenced object 0xffff888019801800 (size 256):
comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000b211474b>] __kmalloc_node_track_caller+0x45/0xc0
[<0000000086712a0b>] krealloc+0x83/0xd0
[<00000000139aab02>] realloc_array+0x82/0xe2
[<00000000b1ca41d1>] grow_stack_state+0xfb/0x186
[<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341
[<0000000081780455>] do_check_common+0x5358/0xb350
[<0000000015f6b091>] bpf_check.cold+0xc3/0x29d
[<000000002973c690>] bpf_prog_load+0x13db/0x2240
[<00000000028d1644>] __sys_bpf+0x1605/0x4ce0
[<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0
[<0000000056fedaf5>] do_syscall_64+0x35/0x80
[<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fixes: c69431aab6 ("bpf: verifier: Improve function state reallocation")
Reported-by: Zhengchao Shao <shaozhengchao@huawei.com>
Reported-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Bill Wendling <morbo@google.com>
Cc: Lorenz Bauer <oss@lmb.io>
Link: https://lore.kernel.org/bpf/20221029025433.2533810-1-keescook@chromium.org
There is a typo in comment for DFS algorithm in bpf/verifier.c. The top
element should not be popped until all its neighbors have been checked.
Fix it.
Fixes: 475fb78fbf ("bpf: verifier (add branch/goto checks)")
Signed-off-by: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221027034458.2925218-1-xukuohai@huaweicloud.com
Similar to sk/inode/task storage, implement similar cgroup local storage.
There already exists a local storage implementation for cgroup-attached
bpf programs. See map type BPF_MAP_TYPE_CGROUP_STORAGE and helper
bpf_get_local_storage(). But there are use cases such that non-cgroup
attached bpf progs wants to access cgroup local storage data. For example,
tc egress prog has access to sk and cgroup. It is possible to use
sk local storage to emulate cgroup local storage by storing data in socket.
But this is a waste as it could be lots of sockets belonging to a particular
cgroup. Alternatively, a separate map can be created with cgroup id as the key.
But this will introduce additional overhead to manipulate the new map.
A cgroup local storage, similar to existing sk/inode/task storage,
should help for this use case.
The life-cycle of storage is managed with the life-cycle of the
cgroup struct. i.e. the storage is destroyed along with the owning cgroup
with a call to bpf_cgrp_storage_free() when cgroup itself
is deleted.
The userspace map operations can be done by using a cgroup fd as a key
passed to the lookup, update and delete operations.
Typically, the following code is used to get the current cgroup:
struct task_struct *task = bpf_get_current_task_btf();
... task->cgroups->dfl_cgrp ...
and in structure task_struct definition:
struct task_struct {
....
struct css_set __rcu *cgroups;
....
}
With sleepable program, accessing task->cgroups is not protected by rcu_read_lock.
So the current implementation only supports non-sleepable program and supporting
sleepable program will be the next step together with adding rcu_read_lock
protection for rcu tagged structures.
Since map name BPF_MAP_TYPE_CGROUP_STORAGE has been used for old cgroup local
storage support, the new map name BPF_MAP_TYPE_CGRP_STORAGE is used
for cgroup storage available to non-cgroup-attached bpf programs. The old
cgroup storage supports bpf_get_local_storage() helper to get the cgroup data.
The new cgroup storage helper bpf_cgrp_storage_get() can provide similar
functionality. While old cgroup storage pre-allocates storage memory, the new
mechanism can also pre-allocate with a user space bpf_map_update_elem() call
to avoid potential run-time memory allocation failure.
Therefore, the new cgroup storage can provide all functionality w.r.t.
the old one. So in uapi bpf.h, the old BPF_MAP_TYPE_CGROUP_STORAGE is alias to
BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED to indicate the old cgroup storage can
be deprecated since the new one can provide the same functionality.
Acked-by: David Vernet <void@manifault.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221026042850.673791-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmNVkYkACgkQ6rmadz2v
bTqzHw/+NYMwfLm5Ck+BK0+HiYU5VVLoG4jp8G7B3sJL/6nUDduajzoqa+nM19Xl
+HEjbMza7CizmhkCRkzIs1VVtx8mtvKdTxbhvm77SU2+GBn+X1es+XhtFd4EOpok
MINNHs+cOC/HlnPD/QbFgvxKiKkjyjWxInjUp6Y/mLMcKCn7l9KOkc07/la9Dj3j
RI0gXCywq1pJaPuTCnt0/wcYLJvzn6QsZnKmmksQwt59GQqOd11HWid3rBWZhDp6
beEoHDIMGHROtu60vm4DB0p4l6tauZfeXyPCeu3Tx5ZSsypJIyU1iTdKiIUjG963
ilpy55nrX9bWxadB7LIKHyYfW3in4o+D1ZZaUvLIato/69CZJZ7Uc4kU1RF4Ay1F
Df1Fmal2WeNAxxETPmQPvVeCePvQvwLHl4KNogdZZvd/67cyc1cDhnuTJp37iPak
FALHaaw0VOrTdTvxsWym7yEbkhPbCHpPrKYFZFHgGrRTFk/GM2k38mM07lcLxFGw
aKyooS+eoIZMEgtK5Hma2wpeIVSlkJiJk1d0K20OxdnIUyYEsMXmI+uV1gMxq/8z
EHNi0+296xOoxy22I1Bd5Tu7fIeecHFN44q7YFmpGsB54UNLpFsP0vYUmYT/6hLI
Y0KVZu4c3oQDX7ttifMvkeOCURDJBPrZx37bpNpNXF55fB5ehNk=
=eV7W
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Alexei Starovoitov says:
====================
pull-request: bpf 2022-10-23
We've added 7 non-merge commits during the last 18 day(s) which contain
a total of 8 files changed, 69 insertions(+), 5 deletions(-).
The main changes are:
1) Wait for busy refill_work when destroying bpf memory allocator, from Hou.
2) Allow bpf_user_ringbuf_drain() callbacks to return 1, from David.
3) Fix dispatcher patchable function entry to 5 bytes nop, from Jiri.
4) Prevent decl_tag from being referenced in func_proto, from Stanislav.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Use __llist_del_all() whenever possbile during memory draining
bpf: Wait for busy refill_work when destroying bpf memory allocator
bpf: Fix dispatcher patchable function entry to 5 bytes nop
bpf: prevent decl_tag from being referenced in func_proto
selftests/bpf: Add reproducer for decl_tag in func_proto return type
selftests/bpf: Make bpf_user_ringbuf_drain() selftest callback return 1
bpf: Allow bpf_user_ringbuf_drain() callbacks to return 1
====================
Link: https://lore.kernel.org/r/20221023192244.81137-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
After the previous patch, which added PTR_TO_MEM | MEM_ALLOC type
map_key_value_types, the only difference between map_key_value_types and
mem_types sets is PTR_TO_BUF and PTR_TO_MEM, which are in the latter set
but not the former.
Helpers which expect ARG_PTR_TO_MAP_KEY or ARG_PTR_TO_MAP_VALUE
already effectively expect a valid blob of arbitrary memory that isn't
necessarily explicitly associated with a map. When validating a
PTR_TO_MAP_{KEY,VALUE} arg, the verifier expects meta->map_ptr to have
already been set, either by an earlier ARG_CONST_MAP_PTR arg, or custom
logic like that in process_timer_func or process_kptr_func.
So let's get rid of map_key_value_types and just use mem_types for those
args.
This has the effect of adding PTR_TO_BUF and PTR_TO_MEM to the set of
compatible types for ARG_PTR_TO_MAP_KEY and ARG_PTR_TO_MAP_VALUE.
PTR_TO_BUF is used by various bpf_iter implementations to represent a
chunk of valid r/w memory in ctx args for iter prog.
PTR_TO_MEM is used by networking, tracing, and ringbuf helpers to
represent a chunk of valid memory. The PTR_TO_MEM | MEM_ALLOC
type added in previous commit is specific to ringbuf helpers.
Presence or absence of MEM_ALLOC doesn't change the validity of using
PTR_TO_MEM as a map_{key,val} input.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds support for the following pattern:
struct some_data *data = bpf_ringbuf_reserve(&ringbuf, sizeof(struct some_data, 0));
if (!data)
return;
bpf_map_lookup_elem(&another_map, &data->some_field);
bpf_ringbuf_submit(data);
Currently the verifier does not consider bpf_ringbuf_reserve's
PTR_TO_MEM | MEM_ALLOC ret type a valid key input to bpf_map_lookup_elem.
Since PTR_TO_MEM is by definition a valid region of memory, it is safe
to use it as a key for lookups.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221020160721.4030492-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The bpf_user_ringbuf_drain() helper function allows a BPF program to
specify a callback that is invoked when draining entries from a
BPF_MAP_TYPE_USER_RINGBUF ring buffer map. The API is meant to allow the
callback to return 0 if it wants to continue draining samples, and 1 if
it's done draining. Unfortunately, bpf_user_ringbuf_drain() landed shortly
after commit 1bfe26fb08 ("bpf: Add verifier support for custom
callback return range"), which changed the default behavior of callbacks
to only support returning 0.
This patch corrects that oversight by allowing bpf_user_ringbuf_drain()
callbacks to return 0 or 1. A follow-on patch will update the
user_ringbuf selftests to also return 1 from a bpf_user_ringbuf_drain()
callback to prevent this from regressing in the future.
Fixes: 2057156738 ("bpf: Add bpf_user_ringbuf_drain() helper")
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221012232015.1510043-2-void@manifault.com
The prandom_u32() function has been a deprecated inline wrapper around
get_random_u32() for several releases now, and compiles down to the
exact same code. Replace the deprecated wrapper with a direct call to
the real function. The same also applies to get_random_int(), which is
just a wrapper around get_random_u32(). This was done as a basic find
and replace.
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Yury Norov <yury.norov@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz> # for ext4
Acked-by: Toke Høiland-Jørgensen <toke@toke.dk> # for sch_cake
Acked-by: Chuck Lever <chuck.lever@oracle.com> # for nfsd
Acked-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com> # for thunderbolt
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Acked-by: Helge Deller <deller@gmx.de> # for parisc
Acked-by: Heiko Carstens <hca@linux.ibm.com> # for s390
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as
parameters in kfuncs. Also, ensure that dynamic pointers passed as argument
are valid and initialized, are a pointer to the stack, and of the type
local. More dynamic pointer types can be supported in the future.
To properly detect whether a parameter is of the desired type, introduce
the stringify_struct() macro to compare the returned structure name with
the desired name. In addition, protect against structure renames, by
halting the build with BUILD_BUG_ON(), so that developers have to revisit
the code.
To check if a dynamic pointer passed to the kfunc is valid and initialized,
and if its type is local, export the existing functions
is_dynptr_reg_valid_init() and is_dynptr_type_expected().
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Move dynptr type check to is_dynptr_type_expected() from
is_dynptr_reg_valid_init(), so that callers can better determine the cause
of a negative result (dynamic pointer not valid/initialized, dynamic
pointer of the wrong type). It will be useful for example for BTF, to
restrict which dynamic pointer types can be passed to kfuncs, as initially
only the local type will be supported.
Also, splitting makes the code more readable, since checking the dynamic
pointer type is not necessarily related to validity and initialization.
Split the validity/initialization and dynamic pointer type check also in
the verifier, and adjust the expected error message in the test (a test for
an unexpected dynptr type passed to a helper cannot be added due to missing
suitable helpers, but this case has been tested manually).
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-4-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In a prior change, we added a new BPF_MAP_TYPE_USER_RINGBUF map type which
will allow user-space applications to publish messages to a ring buffer
that is consumed by a BPF program in kernel-space. In order for this
map-type to be useful, it will require a BPF helper function that BPF
programs can invoke to drain samples from the ring buffer, and invoke
callbacks on those samples. This change adds that capability via a new BPF
helper function:
bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)
BPF programs may invoke this function to run callback_fn() on a series of
samples in the ring buffer. callback_fn() has the following signature:
long callback_fn(struct bpf_dynptr *dynptr, void *context);
Samples are provided to the callback in the form of struct bpf_dynptr *'s,
which the program can read using BPF helper functions for querying
struct bpf_dynptr's.
In order to support bpf_ringbuf_drain(), a new PTR_TO_DYNPTR register
type is added to the verifier to reflect a dynptr that was allocated by
a helper function and passed to a BPF program. Unlike PTR_TO_STACK
dynptrs which are allocated on the stack by a BPF program, PTR_TO_DYNPTR
dynptrs need not use reference tracking, as the BPF helper is trusted to
properly free the dynptr before returning. The verifier currently only
supports PTR_TO_DYNPTR registers that are also DYNPTR_TYPE_LOCAL.
Note that while the corresponding user-space libbpf logic will be added
in a subsequent patch, this patch does contain an implementation of the
.map_poll() callback for BPF_MAP_TYPE_USER_RINGBUF maps. This
.map_poll() callback guarantees that an epoll-waiting user-space
producer will receive at least one event notification whenever at least
one sample is drained in an invocation of bpf_user_ringbuf_drain(),
provided that the function is not invoked with the BPF_RB_NO_WAKEUP
flag. If the BPF_RB_FORCE_WAKEUP flag is provided, a wakeup
notification is sent even if no sample was drained.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-3-void@manifault.com
We want to support a ringbuf map type where samples are published from
user-space, to be consumed by BPF programs. BPF currently supports a
kernel -> user-space circular ring buffer via the BPF_MAP_TYPE_RINGBUF
map type. We'll need to define a new map type for user-space -> kernel,
as none of the helpers exported for BPF_MAP_TYPE_RINGBUF will apply
to a user-space producer ring buffer, and we'll want to add one or
more helper functions that would not apply for a kernel-producer
ring buffer.
This patch therefore adds a new BPF_MAP_TYPE_USER_RINGBUF map type
definition. The map type is useless in its current form, as there is no
way to access or use it for anything until we one or more BPF helpers. A
follow-on patch will therefore add a new helper function that allows BPF
programs to run callbacks on samples that are published to the ring
buffer.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-2-void@manifault.com
BPF_PTR_POISON was added in commit c0a5a21c25 ("bpf: Allow storing
referenced kptr in map") to denote a bpf_func_proto btf_id which the
verifier will replace with a dynamically-determined btf_id at verification
time.
This patch adds verifier 'poison' functionality to BPF_PTR_POISON in
order to prepare for expanded use of the value to poison ret- and
arg-btf_id in ongoing work, namely rbtree and linked list patchsets
[0, 1]. Specifically, when the verifier checks helper calls, it assumes
that BPF_PTR_POISON'ed ret type will be replaced with a valid type before
- or in lieu of - the default ret_btf_id logic. Similarly for arg btf_id.
If poisoned btf_id reaches default handling block for either, consider
this a verifier internal error and fail verification. Otherwise a helper
w/ poisoned btf_id but no verifier logic replacing the type will cause a
crash as the invalid pointer is dereferenced.
Also move BPF_PTR_POISON to existing include/linux/posion.h header and
remove unnecessary shift.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com
[1]: lore.kernel.org/bpf/20220904204145.3089-1-memxor@gmail.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220912154544.1398199-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Verifier logic to confirm that a callback function returns 0 or 1 was
added in commit 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper").
At the time, callback return value was only used to continue or stop
iteration.
In order to support callbacks with a broader return value range, such as
those added in rbtree series[0] and others, add a callback_ret_range to
bpf_func_state. Verifier's helpers which set in_callback_fn will also
set the new field, which the verifier will later use to check return
value bounds.
Default to tnum_range(0, 0) instead of using tnum_unknown as a sentinel
value as the latter would prevent the valid range (0, U64_MAX) being
used. Previous global default tnum_range(0, 1) is explicitly set for
extant callback helpers. The change to global default was made after
discussion around this patch in rbtree series [1], goal here is to make
it more obvious that callback_ret_range should be explicitly set.
[0]: lore.kernel.org/bpf/20220830172759.4069786-1-davemarchevsky@fb.com/
[1]: lore.kernel.org/bpf/20220830172759.4069786-2-davemarchevsky@fb.com/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Reviewed-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220908230716.2751723-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Since commit 27ae7997a6 ("bpf: Introduce BPF_PROG_TYPE_STRUCT_OPS")
there has existed bpf_verifier_ops:btf_struct_access. When
btf_struct_access is _unset_ for a prog type, the verifier runs the
default implementation, which is to enforce read only:
if (env->ops->btf_struct_access) {
[...]
} else {
if (atype != BPF_READ) {
verbose(env, "only read is supported\n");
return -EACCES;
}
[...]
}
When btf_struct_access is _set_, the expectation is that
btf_struct_access has full control over accesses, including if writes
are allowed.
Rather than carve out an exception for each prog type that may write to
BTF ptrs, delete the redundant check and give full control to
btf_struct_access.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/962da2bff1238746589e332ff1aecc49403cd7ce.1662568410.git.dxu@dxuuu.xyz
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For a lot of use cases in future patches, we will want to modify the
state of registers part of some same 'group' (e.g. same ref_obj_id). It
won't just be limited to releasing reference state, but setting a type
flag dynamically based on certain actions, etc.
Hence, we need a way to easily pass a callback to the function that
iterates over all registers in current bpf_verifier_state in all frames
upto (and including) the curframe.
While in C++ we would be able to easily use a lambda to pass state and
the callback together, sadly we aren't using C++ in the kernel. The next
best thing to avoid defining a function for each case seems like
statement expressions in GNU C. The kernel already uses them heavily,
hence they can passed to the macro in the style of a lambda. The
statement expression will then be substituted in the for loop bodies.
Variables __state and __reg are set to current bpf_func_state and reg
for each invocation of the expression inside the passed in verifier
state.
Then, convert mark_ptr_or_null_regs, clear_all_pkt_pointers,
release_reference, find_good_pkt_pointers, find_equal_scalars to
use bpf_for_each_reg_in_vstate.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220904204145.3089-16-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For drivers (outside of network), the incoming data is not statically
defined in a struct. Most of the time the data buffer is kzalloc-ed
and thus we can not rely on eBPF and BTF to explore the data.
This commit allows to return an arbitrary memory, previously allocated by
the driver.
An interesting extra point is that the kfunc can mark the exported
memory region as read only or read/write.
So, when a kfunc is not returning a pointer to a struct but to a plain
type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or
rdwr_buf_size
- and this argument is a const from the caller point of view
We can then use this parameter as the size of the allocated memory.
The memory is either read-only or read-write based on the name
of the size parameter.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a function was trying to access data from context in a syscall eBPF
program, the verifier was rejecting the call unless it was accessing the
first element.
This is because the syscall context is not known at compile time, and
so we need to check this when actually accessing it.
Check for the valid memory access if there is no convert_ctx callback,
and allow such situation to happen.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-4-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
btf_check_subprog_arg_match() was used twice in verifier.c:
- when checking for the type mismatches between a (sub)prog declaration
and BTF
- when checking the call of a subprog to see if the provided arguments
are correct and valid
This is problematic when we check if the first argument of a program
(pointer to ctx) is correctly accessed:
To be able to ensure we access a valid memory in the ctx, the verifier
assumes the pointer to context is not null.
This has the side effect of marking the program accessing the entire
context, even if the context is never dereferenced.
For example, by checking the context access with the current code, the
following eBPF program would fail with -EINVAL if the ctx is set to null
from the userspace:
```
SEC("syscall")
int prog(struct my_ctx *args) {
return 0;
}
```
In that particular case, we do not want to actually check that the memory
is correct while checking for the BTF validity, but we just want to
ensure that the (sub)prog definition matches the BTF we have.
So split btf_check_subprog_arg_match() in two so we can actually check
for the memory used when in a call, and ignore that part when not.
Note that a further patch is in preparation to disentangled
btf_check_func_arg_match() from these two purposes, and so right now we
just add a new hack around that by adding a boolean to this function.
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-3-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2022-09-05
The following pull-request contains BPF updates for your *net-next* tree.
We've added 106 non-merge commits during the last 18 day(s) which contain
a total of 159 files changed, 5225 insertions(+), 1358 deletions(-).
There are two small merge conflicts, resolve them as follows:
1) tools/testing/selftests/bpf/DENYLIST.s390x
Commit 27e23836ce ("selftests/bpf: Add lru_bug to s390x deny list") in
bpf tree was needed to get BPF CI green on s390x, but it conflicted with
newly added tests on bpf-next. Resolve by adding both hunks, result:
[...]
lru_bug # prog 'printk': failed to auto-attach: -524
setget_sockopt # attach unexpected error: -524 (trampoline)
cb_refs # expected error message unexpected error: -524 (trampoline)
cgroup_hierarchical_stats # JIT does not support calling kernel function (kfunc)
htab_update # failed to attach: ERROR: strerror_r(-524)=22 (trampoline)
[...]
2) net/core/filter.c
Commit 1227c1771d ("net: Fix data-races around sysctl_[rw]mem_(max|default).")
from net tree conflicts with commit 29003875bd ("bpf: Change bpf_setsockopt(SOL_SOCKET)
to reuse sk_setsockopt()") from bpf-next tree. Take the code as it is from
bpf-next tree, result:
[...]
if (getopt) {
if (optname == SO_BINDTODEVICE)
return -EINVAL;
return sk_getsockopt(sk, SOL_SOCKET, optname,
KERNEL_SOCKPTR(optval),
KERNEL_SOCKPTR(optlen));
}
return sk_setsockopt(sk, SOL_SOCKET, optname,
KERNEL_SOCKPTR(optval), *optlen);
[...]
The main changes are:
1) Add any-context BPF specific memory allocator which is useful in particular for BPF
tracing with bonus of performance equal to full prealloc, from Alexei Starovoitov.
2) Big batch to remove duplicated code from bpf_{get,set}sockopt() helpers as an effort
to reuse the existing core socket code as much as possible, from Martin KaFai Lau.
3) Extend BPF flow dissector for BPF programs to just augment the in-kernel dissector
with custom logic. In other words, allow for partial replacement, from Shmulik Ladkani.
4) Add a new cgroup iterator to BPF with different traversal options, from Hao Luo.
5) Support for BPF to collect hierarchical cgroup statistics efficiently through BPF
integration with the rstat framework, from Yosry Ahmed.
6) Support bpf_{g,s}et_retval() under more BPF cgroup hooks, from Stanislav Fomichev.
7) BPF hash table and local storages fixes under fully preemptible kernel, from Hou Tao.
8) Add various improvements to BPF selftests and libbpf for compilation with gcc BPF
backend, from James Hilliard.
9) Fix verifier helper permissions and reference state management for synchronous
callbacks, from Kumar Kartikeya Dwivedi.
10) Add support for BPF selftest's xskxceiver to also be used against real devices that
support MAC loopback, from Maciej Fijalkowski.
11) Various fixes to the bpf-helpers(7) man page generation script, from Quentin Monnet.
12) Document BPF verifier's tnum_in(tnum_range(), ...) gotchas, from Shung-Hsi Yu.
13) Various minor misc improvements all over the place.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (106 commits)
bpf: Optimize rcu_barrier usage between hash map and bpf_mem_alloc.
bpf: Remove usage of kmem_cache from bpf_mem_cache.
bpf: Remove prealloc-only restriction for sleepable bpf programs.
bpf: Prepare bpf_mem_alloc to be used by sleepable bpf programs.
bpf: Remove tracing program restriction on map types
bpf: Convert percpu hash map to per-cpu bpf_mem_alloc.
bpf: Add percpu allocation support to bpf_mem_alloc.
bpf: Batch call_rcu callbacks instead of SLAB_TYPESAFE_BY_RCU.
bpf: Adjust low/high watermarks in bpf_mem_cache
bpf: Optimize call_rcu in non-preallocated hash map.
bpf: Optimize element count in non-preallocated hash map.
bpf: Relax the requirement to use preallocated hash maps in tracing progs.
samples/bpf: Reduce syscall overhead in map_perf_test.
selftests/bpf: Improve test coverage of test_maps
bpf: Convert hash map to bpf_mem_alloc.
bpf: Introduce any context BPF specific memory allocator.
selftest/bpf: Add test for bpf_getsockopt()
bpf: Change bpf_getsockopt(SOL_IPV6) to reuse do_ipv6_getsockopt()
bpf: Change bpf_getsockopt(SOL_IP) to reuse do_ip_getsockopt()
bpf: Change bpf_getsockopt(SOL_TCP) to reuse do_tcp_getsockopt()
...
====================
Link: https://lore.kernel.org/r/20220905161136.9150-1-daniel@iogearbox.net
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Since hash map is now converted to bpf_mem_alloc and it's waiting for rcu and
rcu_tasks_trace GPs before freeing elements into global memory slabs it's safe
to use dynamically allocated hash maps in sleepable bpf programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-15-alexei.starovoitov@gmail.com
The hash map is now fully converted to bpf_mem_alloc. Its implementation is not
allocating synchronously and not calling call_rcu() directly. It's now safe to
use non-preallocated hash maps in all types of tracing programs including
BPF_PROG_TYPE_PERF_EVENT that runs out of NMI context.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-13-alexei.starovoitov@gmail.com
Since bpf hash map was converted to use bpf_mem_alloc it is safe to use
from tracing programs and in RT kernels.
But per-cpu hash map is still using dynamic allocation for per-cpu map
values, hence keep the warning for this map type.
In the future alloc_percpu_gfp can be front-end-ed with bpf_mem_cache
and this restriction will be completely lifted.
perf_event (NMI) bpf programs have to use preallocated hash maps,
because free_htab_elem() is using call_rcu which might crash if re-entered.
Sleepable bpf programs have to use preallocated hash maps, because
life time of the map elements is not protected by rcu_read_lock/unlock.
This restriction can be lifted in the future as well.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220902211058.60789-6-alexei.starovoitov@gmail.com
Hsin-Wei reported a KASAN splat triggered by their BPF runtime fuzzer which
is based on a customized syzkaller:
BUG: KASAN: slab-out-of-bounds in bpf_int_jit_compile+0x1257/0x13f0
Read of size 8 at addr ffff888004e90b58 by task syz-executor.0/1489
CPU: 1 PID: 1489 Comm: syz-executor.0 Not tainted 5.19.0 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x9c/0xc9
print_address_description.constprop.0+0x1f/0x1f0
? bpf_int_jit_compile+0x1257/0x13f0
kasan_report.cold+0xeb/0x197
? kvmalloc_node+0x170/0x200
? bpf_int_jit_compile+0x1257/0x13f0
bpf_int_jit_compile+0x1257/0x13f0
? arch_prepare_bpf_dispatcher+0xd0/0xd0
? rcu_read_lock_sched_held+0x43/0x70
bpf_prog_select_runtime+0x3e8/0x640
? bpf_obj_name_cpy+0x149/0x1b0
bpf_prog_load+0x102f/0x2220
? __bpf_prog_put.constprop.0+0x220/0x220
? find_held_lock+0x2c/0x110
? __might_fault+0xd6/0x180
? lock_downgrade+0x6e0/0x6e0
? lock_is_held_type+0xa6/0x120
? __might_fault+0x147/0x180
__sys_bpf+0x137b/0x6070
? bpf_perf_link_attach+0x530/0x530
? new_sync_read+0x600/0x600
? __fget_files+0x255/0x450
? lock_downgrade+0x6e0/0x6e0
? fput+0x30/0x1a0
? ksys_write+0x1a8/0x260
__x64_sys_bpf+0x7a/0xc0
? syscall_enter_from_user_mode+0x21/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f917c4e2c2d
The problem here is that a range of tnum_range(0, map->max_entries - 1) has
limited ability to represent the concrete tight range with the tnum as the
set of resulting states from value + mask can result in a superset of the
actual intended range, and as such a tnum_in(range, reg->var_off) check may
yield true when it shouldn't, for example tnum_range(0, 2) would result in
00XX -> v = 0000, m = 0011 such that the intended set of {0, 1, 2} is here
represented by a less precise superset of {0, 1, 2, 3}. As the register is
known const scalar, really just use the concrete reg->var_off.value for the
upper index check.
Fixes: d2e4c1e6c2 ("bpf: Constant map key tracking for prog array pokes")
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/r/984b37f9fdf7ac36831d2137415a4a915744c1b6.1661462653.git.daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Precision markers need to be propagated whenever we have an ARG_CONST_*
style argument, as the verifier cannot consider imprecise scalars to be
equivalent for the purposes of states_equal check when such arguments
refine the return value (in this case, set mem_size for PTR_TO_MEM). The
resultant mem_size for the R0 is derived from the constant value, and if
the verifier incorrectly prunes states considering them equivalent where
such arguments exist (by seeing that both registers have reg->precise as
false in regsafe), we can end up with invalid programs passing the
verifier which can do access beyond what should have been the correct
mem_size in that explored state.
To show a concrete example of the problem:
0000000000000000 <prog>:
0: r2 = *(u32 *)(r1 + 80)
1: r1 = *(u32 *)(r1 + 76)
2: r3 = r1
3: r3 += 4
4: if r3 > r2 goto +18 <LBB5_5>
5: w2 = 0
6: *(u32 *)(r1 + 0) = r2
7: r1 = *(u32 *)(r1 + 0)
8: r2 = 1
9: if w1 == 0 goto +1 <LBB5_3>
10: r2 = -1
0000000000000058 <LBB5_3>:
11: r1 = 0 ll
13: r3 = 0
14: call bpf_ringbuf_reserve
15: if r0 == 0 goto +7 <LBB5_5>
16: r1 = r0
17: r1 += 16777215
18: w2 = 0
19: *(u8 *)(r1 + 0) = r2
20: r1 = r0
21: r2 = 0
22: call bpf_ringbuf_submit
00000000000000b8 <LBB5_5>:
23: w0 = 0
24: exit
For the first case, the single line execution's exploration will prune
the search at insn 14 for the branch insn 9's second leg as it will be
verified first using r2 = -1 (UINT_MAX), while as w1 at insn 9 will
always be 0 so at runtime we don't get error for being greater than
UINT_MAX/4 from bpf_ringbuf_reserve. The verifier during regsafe just
sees reg->precise as false for both r2 registers in both states, hence
considers them equal for purposes of states_equal.
If we propagated precise markers using the backtracking support, we
would use the precise marking to then ensure that old r2 (UINT_MAX) was
within the new r2 (1) and this would never be true, so the verification
would rightfully fail.
The end result is that the out of bounds access at instruction 19 would
be permitted without this fix.
Note that reg->precise is always set to true when user does not have
CAP_BPF (or when subprog count is greater than 1 (i.e. use of any static
or global functions)), hence this is only a problem when precision marks
need to be explicitly propagated (i.e. privileged users with CAP_BPF).
A simplified test case has been included in the next patch to prevent
future regressions.
Fixes: 457f44363a ("bpf: Implement BPF ring buffer and verifier support for it")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823185300.406-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.
While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.
A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).
Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.
Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.
Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).
In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller).
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220823013125.24938-1-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add KF_DESTRUCTIVE flag for destructive functions. Functions with this
flag set will require CAP_SYS_BOOT capabilities.
Signed-off-by: Artem Savkov <asavkov@redhat.com>
Link: https://lore.kernel.org/r/20220810065905.475418-2-asavkov@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When a data slice is obtained from a dynptr (through the bpf_dynptr_data API),
the ref obj id of the dynptr must be found and then associated with the data
slice.
The ref obj id of the dynptr must be found *before* the caller saved regs are
reset. Without this fix, the ref obj id tracking is not correct for
dynptrs that are at an offset from the frame pointer.
Please also note that the data slice's ref obj id must be assigned after the
ret types are parsed, since RET_PTR_TO_ALLOC_MEM-type return regs get
zero-marked.
Fixes: 34d4ef5775 ("bpf: Add dynptr data slices")
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20220809214055.4050604-1-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Discussion around a recently-submitted patch provided historical
context for check_refcount_ok [0]. Specifically, the function and its
helpers - may_be_acquire_function and arg_type_may_be_refcounted -
predate the OBJ_RELEASE type flag and the addition of many more helpers
with acquire/release semantics.
The purpose of check_refcount_ok is to ensure:
1) Helper doesn't have multiple uses of return reg's ref_obj_id
2) Helper with release semantics only has one arg needing to be
released, since that's tracked using meta->ref_obj_id
With current verifier, it's safe to remove check_refcount_ok and its
helpers. Since addition of OBJ_RELEASE type flag, case 2) has been
handled by the arg_type_is_release check in check_func_arg. To ensure
case 1) won't result in verifier silently prioritizing one use of
ref_obj_id, this patch adds a helper_multiple_ref_obj_use check which
fails loudly if a helper passes > 1 test for use of ref_obj_id.
[0]: lore.kernel.org/bpf/20220713234529.4154673-1-davemarchevsky@fb.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220808171559.3251090-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch cleans up a few things in the verifier:
* type_is_pkt_pointer():
Future work (skb + xdp dynptrs [0]) will be using the reg type
PTR_TO_PACKET | PTR_MAYBE_NULL. type_is_pkt_pointer() should return
true for any type whose base type is PTR_TO_PACKET, regardless of
flags attached to it.
* reg_type_may_be_refcounted_or_null():
Get the base type at the start of the function to avoid
having to recompute it / improve readability
* check_func_proto(): remove unnecessary 'meta' arg
* check_helper_call():
Use switch casing on the base type of return value instead of
nested ifs on the full type
There are no functional behavior changes.
[0] https://lore.kernel.org/bpf/20220726184706.954822-1-joannelkoong@gmail.com/
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20220802214638.3643235-1-joannelkoong@gmail.com
Instead of populating multiple sets to indicate some attribute and then
researching the same BTF ID in them, prepare a single unified BTF set
which indicates whether a kfunc is allowed to be called, and also its
attributes if any at the same time. Now, only one call is needed to
perform the lookup for both kfunc availability and its attributes.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220721134245.2450-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Syzkaller found a problem similar to d1a6edecc1 ("bpf: Check
attach_func_proto more carefully in check_return_code") where
attach_func_proto might be NULL:
RIP: 0010:check_helper_call+0x3dcb/0x8d50 kernel/bpf/verifier.c:7330
do_check kernel/bpf/verifier.c:12302 [inline]
do_check_common+0x6e1e/0xb980 kernel/bpf/verifier.c:14610
do_check_main kernel/bpf/verifier.c:14673 [inline]
bpf_check+0x661e/0xc520 kernel/bpf/verifier.c:15243
bpf_prog_load+0x11ae/0x1f80 kernel/bpf/syscall.c:2620
With the following reproducer:
bpf$BPF_PROG_RAW_TRACEPOINT_LOAD(0x5, &(0x7f0000000780)={0xf, 0x4, &(0x7f0000000040)=@framed={{}, [@call={0x85, 0x0, 0x0, 0xbb}]}, &(0x7f0000000000)='GPL\x00', 0x0, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, 0x2b, 0xffffffffffffffff, 0x8, 0x0, 0x0, 0x10, 0x0}, 0x80)
Let's do the same here, only check attach_func_proto for the prog types
where we are certain that attach_func_proto is defined.
Fixes: 69fd337a97 ("bpf: per-cgroup lsm flavor")
Reported-by: syzbot+0f8d989b1fba1addc5e0@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220720164729.147544-1-sdf@google.com
The commit 7337224fc1 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
accidently made bpf_prog_ksym_set_name() conservative for bpf subprograms.
Fixed it so instead of "bpf_prog_tag_F" the stack traces print "bpf_prog_tag_full_subprog_name".
Fixes: 7337224fc1 ("bpf: Improve the info.func_info and info.func_info_rec_size behavior")
Reported-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220714211637.17150-1-alexei.starovoitov@gmail.com
BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE is also tracing type, which may
cause unexpected memory allocation if we set BPF_F_NO_PREALLOC. Let's
also warn on it similar as we do in case of BPF_PROG_TYPE_RAW_TRACEPOINT.
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220713160936.57488-1-laoar.shao@gmail.com
This patch does two things:
1. For matching against the arg type, the match should be against the
base type of the arg type, since the arg type can have different
bpf_type_flags set on it.
2. Uses switch casing to improve readability + efficiency.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220712210603.123791-1-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2022-07-09
We've added 94 non-merge commits during the last 19 day(s) which contain
a total of 125 files changed, 5141 insertions(+), 6701 deletions(-).
The main changes are:
1) Add new way for performing BTF type queries to BPF, from Daniel Müller.
2) Add inlining of calls to bpf_loop() helper when its function callback is
statically known, from Eduard Zingerman.
3) Implement BPF TCP CC framework usability improvements, from Jörn-Thorben Hinz.
4) Add LSM flavor for attaching per-cgroup BPF programs to existing LSM
hooks, from Stanislav Fomichev.
5) Remove all deprecated libbpf APIs in prep for 1.0 release, from Andrii Nakryiko.
6) Add benchmarks around local_storage to BPF selftests, from Dave Marchevsky.
7) AF_XDP sample removal (given move to libxdp) and various improvements around AF_XDP
selftests, from Magnus Karlsson & Maciej Fijalkowski.
8) Add bpftool improvements for memcg probing and bash completion, from Quentin Monnet.
9) Add arm64 JIT support for BPF-2-BPF coupled with tail calls, from Jakub Sitnicki.
10) Sockmap optimizations around throughput of UDP transmissions which have been
improved by 61%, from Cong Wang.
11) Rework perf's BPF prologue code to remove deprecated functions, from Jiri Olsa.
12) Fix sockmap teardown path to avoid sleepable sk_psock_stop, from John Fastabend.
13) Fix libbpf's cleanup around legacy kprobe/uprobe on error case, from Chuang Wang.
14) Fix libbpf's bpf_helpers.h to work with gcc for the case of its sec/pragma
macro, from James Hilliard.
15) Fix libbpf's pt_regs macros for riscv to use a0 for RC register, from Yixun Lan.
16) Fix bpftool to show the name of type BPF_OBJ_LINK, from Yafang Shao.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (94 commits)
selftests/bpf: Fix xdp_synproxy build failure if CONFIG_NF_CONNTRACK=m/n
bpf: Correctly propagate errors up from bpf_core_composites_match
libbpf: Disable SEC pragma macro on GCC
bpf: Check attach_func_proto more carefully in check_return_code
selftests/bpf: Add test involving restrict type qualifier
bpftool: Add support for KIND_RESTRICT to gen min_core_btf command
MAINTAINERS: Add entry for AF_XDP selftests files
selftests, xsk: Rename AF_XDP testing app
bpf, docs: Remove deprecated xsk libbpf APIs description
selftests/bpf: Add benchmark for local_storage RCU Tasks Trace usage
libbpf, riscv: Use a0 for RC register
libbpf: Remove unnecessary usdt_rel_ip assignments
selftests/bpf: Fix few more compiler warnings
selftests/bpf: Fix bogus uninitialized variable warning
bpftool: Remove zlib feature test from Makefile
libbpf: Cleanup the legacy uprobe_event on failed add/attach_event()
libbpf: Fix wrong variable used in perf_event_uprobe_open_legacy()
libbpf: Cleanup the legacy kprobe_event on failed add/attach_event()
selftests/bpf: Add type match test against kernel's task_struct
selftests/bpf: Add nested type to type based tests
...
====================
Link: https://lore.kernel.org/r/20220708233145.32365-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Syzkaller reports the following crash:
RIP: 0010:check_return_code kernel/bpf/verifier.c:10575 [inline]
RIP: 0010:do_check kernel/bpf/verifier.c:12346 [inline]
RIP: 0010:do_check_common+0xb3d2/0xd250 kernel/bpf/verifier.c:14610
With the following reproducer:
bpf$PROG_LOAD_XDP(0x5, &(0x7f00000004c0)={0xd, 0x3, &(0x7f0000000000)=ANY=[@ANYBLOB="1800000000000019000000000000000095"], &(0x7f0000000300)='GPL\x00', 0x0, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, 0x2b, 0xffffffffffffffff, 0x8, 0x0, 0x0, 0x10, 0x0}, 0x80)
Because we don't enforce expected_attach_type for XDP programs,
we end up in hitting 'if (prog->expected_attach_type == BPF_LSM_CGROUP'
part in check_return_code and follow up with testing
`prog->aux->attach_func_proto->type`, but `prog->aux->attach_func_proto`
is NULL.
Add explicit prog_type check for the "Note, BPF_LSM_CGROUP that
attach ..." condition. Also, don't skip return code check for
LSM/STRUCT_OPS.
The above actually brings an issue with existing selftest which
tries to return EPERM from void inet_csk_clone. Fix the
test (and move called_socket_clone to make sure it's not
incremented in case of an error) and add a new one to explicitly
verify this condition.
Fixes: 69fd337a97 ("bpf: per-cgroup lsm flavor")
Reported-by: syzbot+5cc0730bd4b4d2c5f152@syzkaller.appspotmail.com
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220708175000.2603078-1-sdf@google.com
Kuee reported a corner case where the tnum becomes constant after the call
to __reg_bound_offset(), but the register's bounds are not, that is, its
min bounds are still not equal to the register's max bounds.
This in turn allows to leak pointers through turning a pointer register as
is into an unknown scalar via adjust_ptr_min_max_vals().
Before:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit
What can be seen here is that R3=scalar(umin=32767,umax=32768,var_off=(0x7fff;
0x8000)) after the operation R3 += -32767 results in a 'malformed' constant, that
is, R3_w=scalar(imm=0,umax=1,var_off=(0x0; 0x0)). Intersecting with var_off has
not been done at that point via __update_reg_bounds(), which would have improved
the umax to be equal to umin.
Refactor the tnum <> min/max bounds information flow into a reg_bounds_sync()
helper and use it consistently everywhere. After the fix, bounds have been
corrected to R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) and thus the register
is regarded as a 'proper' constant scalar of 0.
After:
func#0 @0
0: R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
0: (b7) r0 = 1 ; R0_w=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0))
1: (b7) r3 = 0 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0))
2: (87) r3 = -r3 ; R3_w=scalar()
3: (87) r3 = -r3 ; R3_w=scalar()
4: (47) r3 |= 32767 ; R3_w=scalar(smin=-9223372036854743041,umin=32767,var_off=(0x7fff; 0xffffffffffff8000),s32_min=-2147450881)
5: (75) if r3 s>= 0x0 goto pc+1 ; R3_w=scalar(umin=9223372036854808575,var_off=(0x8000000000007fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
6: (95) exit
from 5 to 7: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
7: (d5) if r3 s<= 0x8000 goto pc+1 ; R3=scalar(umin=32769,umax=9223372036854775807,var_off=(0x7fff; 0x7fffffffffff8000),s32_min=-2147450881,u32_min=32767)
8: (95) exit
from 7 to 9: R0=scalar(imm=1,umin=1,umax=1,var_off=(0x1; 0x0)) R1=ctx(off=0,imm=0,umax=0,var_off=(0x0; 0x0)) R3=scalar(umin=32767,umax=32768,var_off=(0x7fff; 0x8000)) R10=fp(off=0,imm=0,umax=0,var_off=(0x0; 0x0))
9: (07) r3 += -32767 ; R3_w=scalar(imm=0,umax=0,var_off=(0x0; 0x0)) <--- [*]
10: (95) exit
Fixes: b03c9f9fdc ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-2-daniel@iogearbox.net
Kuee reported a quirk in the jmp32's jeq/jne simulation, namely that the
register value does not match expectations for the fall-through path. For
example:
Before fix:
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P571 <--- [*]
6: (95) exit
R0 !read_ok
After fix:
0: R1=ctx(off=0,imm=0) R10=fp0
0: (b7) r2 = 0 ; R2_w=P0
1: (b7) r6 = 563 ; R6_w=P563
2: (87) r2 = -r2 ; R2_w=Pscalar()
3: (87) r2 = -r2 ; R2_w=Pscalar()
4: (4c) w2 |= w6 ; R2_w=Pscalar(umin=563,umax=4294967295,var_off=(0x233; 0xfffffdcc),s32_min=-2147483085) R6_w=P563
5: (56) if w2 != 0x8 goto pc+1 ; R2_w=P8 <--- [*]
6: (95) exit
R0 !read_ok
As can be seen on line 5 for the branch fall-through path in R2 [*] is that
given condition w2 != 0x8 is false, verifier should conclude that r2 = 8 as
upper 32 bit are known to be zero. However, verifier incorrectly concludes
that r2 = 571 which is far off.
The problem is it only marks false{true}_reg as known in the switch for JE/NE
case, but at the end of the function, it uses {false,true}_{64,32}off to
update {false,true}_reg->var_off and they still hold the prior value of
{false,true}_reg->var_off before it got marked as known. The subsequent
__reg_combine_32_into_64() then propagates this old var_off and derives new
bounds. The information between min/max bounds on {false,true}_reg from
setting the register to known const combined with the {false,true}_reg->var_off
based on the old information then derives wrong register data.
Fix it by detangling the BPF_JEQ/BPF_JNE cases and updating relevant
{false,true}_{64,32}off tnums along with the register marking to known
constant.
Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Kuee K1r0a <liulin063@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20220701124727.11153-1-daniel@iogearbox.net
Allow attaching to lsm hooks in the cgroup context.
Attaching to per-cgroup LSM works exactly like attaching
to other per-cgroup hooks. New BPF_LSM_CGROUP is added
to trigger new mode; the actual lsm hook we attach to is
signaled via existing attach_btf_id.
For the hooks that have 'struct socket' or 'struct sock' as its first
argument, we use the cgroup associated with that socket. For the rest,
we use 'current' cgroup (this is all on default hierarchy == v2 only).
Note that for some hooks that work on 'struct sock' we still
take the cgroup from 'current' because some of them work on the socket
that hasn't been properly initialized yet.
Behind the scenes, we allocate a shim program that is attached
to the trampoline and runs cgroup effective BPF programs array.
This shim has some rudimentary ref counting and can be shared
between several programs attaching to the same lsm hook from
different cgroups.
Note that this patch bloats cgroup size because we add 211
cgroup_bpf_attach_type(s) for simplicity sake. This will be
addressed in the subsequent patch.
Also note that we only add non-sleepable flavor for now. To enable
sleepable use-cases, bpf_prog_run_array_cg has to grab trace rcu,
shim programs have to be freed via trace rcu, cgroup_bpf.effective
should be also trace-rcu-managed + maybe some other changes that
I'm not aware of.
Reviewed-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20220628174314.1216643-4-sdf@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As reported by Dan Carpenter, the following statements in inline_bpf_loop()
might cause a use-after-free bug:
struct bpf_prog *new_prog;
// ...
new_prog = bpf_patch_insn_data(env, position, insn_buf, *cnt);
// ...
env->prog->insnsi[call_insn_offset].imm = callback_offset;
The bpf_patch_insn_data() might free the memory used by env->prog.
Fixes: 1ade237119 ("bpf: Inline calls to bpf_loop when callback is known")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220624020613.548108-2-eddyz87@gmail.com
The BPF core/verifier is hard-coded to permit mixing bpf2bpf and tail
calls for only x86-64. Change the logic to instead rely on a new weak
function 'bool bpf_jit_supports_subprog_tailcalls(void)', which a capable
JIT backend can override.
Update the x86-64 eBPF JIT to reflect this.
Signed-off-by: Tony Ambardar <Tony.Ambardar@gmail.com>
[jakub: drop MIPS bits and tweak patch subject]
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220617105735.733938-2-jakub@cloudflare.com
Calls to `bpf_loop` are replaced with direct loops to avoid
indirection. E.g. the following:
bpf_loop(10, foo, NULL, 0);
Is replaced by equivalent of the following:
for (int i = 0; i < 10; ++i)
foo(i, NULL);
This transformation could be applied when:
- callback is known and does not change during program execution;
- flags passed to `bpf_loop` are always zero.
Inlining logic works as follows:
- During execution simulation function `update_loop_inline_state`
tracks the following information for each `bpf_loop` call
instruction:
- is callback known and constant?
- are flags constant and zero?
- Function `optimize_bpf_loop` increases stack depth for functions
where `bpf_loop` calls can be inlined and invokes `inline_bpf_loop`
to apply the inlining. The additional stack space is used to spill
registers R6, R7 and R8. These registers are used as loop counter,
loop maximal bound and callback context parameter;
Measurements using `benchs/run_bench_bpf_loop.sh` inside QEMU / KVM on
i7-4710HQ CPU show a drop in latency from 14 ns/op to 2 ns/op.
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/r/20220620235344.569325-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Before this commit, the BPF verifier required ARG_PTR_TO_MEM arguments
to be followed by ARG_CONST_SIZE holding the size of the memory region.
The helpers had to check that size in runtime.
There are cases where the size expected by a helper is a compile-time
constant. Checking it in runtime is an unnecessary overhead and waste of
BPF registers.
This commit allows helpers to accept pointers to memory without the
corresponding ARG_CONST_SIZE, given that they define the memory region
size in struct bpf_func_proto and use ARG_PTR_TO_FIXED_SIZE_MEM type.
arg_size is unionized with arg_btf_id to reduce the kernel image size,
and it's valid because they are used by different argument types.
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Reviewed-by: Tariq Toukan <tariqt@nvidia.com>
Link: https://lore.kernel.org/r/20220615134847.3753567-3-maximmi@nvidia.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
uprobe and kprobe programs have the same program type, KPROBE, which is
currently not allowed to load sleepable programs.
To avoid adding a new UPROBE type, instead allow sleepable KPROBE
programs to load and defer the is-it-actually-a-uprobe-program check
to attachment time, where there's already validation of the
corresponding perf_event.
A corollary of this patch is that you can now load a sleepable kprobe
program but cannot attach it.
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Delyan Kratunov <delyank@fb.com>
Link: https://lore.kernel.org/r/fcd44a7cd204f372f6bb03ef794e829adeaef299.1655248076.git.delyank@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, BTF only supports upto 32bit enum value with BTF_KIND_ENUM.
But in kernel, some enum indeed has 64bit values, e.g.,
in uapi bpf.h, we have
enum {
BPF_F_INDEX_MASK = 0xffffffffULL,
BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
};
In this case, BTF_KIND_ENUM will encode the value of BPF_F_CTXLEN_MASK
as 0, which certainly is incorrect.
This patch added a new btf kind, BTF_KIND_ENUM64, which permits
64bit value to cover the above use case. The BTF_KIND_ENUM64 has
the following three fields followed by the common type:
struct bpf_enum64 {
__u32 nume_off;
__u32 val_lo32;
__u32 val_hi32;
};
Currently, btf type section has an alignment of 4 as all element types
are u32. Representing the value with __u64 will introduce a pad
for bpf_enum64 and may also introduce misalignment for the 64bit value.
Hence, two members of val_hi32 and val_lo32 are chosen to avoid these issues.
The kflag is also introduced for BTF_KIND_ENUM and BTF_KIND_ENUM64
to indicate whether the value is signed or unsigned. The kflag intends
to provide consistent output of BTF C fortmat with the original
source code. For example, the original BTF_KIND_ENUM bit value is 0xffffffff.
The format C has two choices, printing out 0xffffffff or -1 and current libbpf
prints out as unsigned value. But if the signedness is preserved in btf,
the value can be printed the same as the original source code.
The kflag value 0 means unsigned values, which is consistent to the default
by libbpf and should also cover most cases as well.
The new BTF_KIND_ENUM64 is intended to support the enum value represented as
64bit value. But it can represent all BTF_KIND_ENUM values as well.
The compiler ([1]) and pahole will generate BTF_KIND_ENUM64 only if the value has
to be represented with 64 bits.
In addition, a static inline function btf_kind_core_compat() is introduced which
will be used later when libbpf relo_core.c changed. Here the kernel shares the
same relo_core.c with libbpf.
[1] https://reviews.llvm.org/D124641
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220607062600.3716578-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch adds a new helper function
void *bpf_dynptr_data(struct bpf_dynptr *ptr, u32 offset, u32 len);
which returns a pointer to the underlying data of a dynptr. *len*
must be a statically known value. The bpf program may access the returned
data slice as a normal buffer (eg can do direct reads and writes), since
the verifier associates the length with the returned pointer, and
enforces that no out of bounds accesses occur.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-6-joannelkoong@gmail.com
Currently, our only way of writing dynamically-sized data into a ring
buffer is through bpf_ringbuf_output but this incurs an extra memcpy
cost. bpf_ringbuf_reserve + bpf_ringbuf_commit avoids this extra
memcpy, but it can only safely support reservation sizes that are
statically known since the verifier cannot guarantee that the bpf
program won’t access memory outside the reserved space.
The bpf_dynptr abstraction allows for dynamically-sized ring buffer
reservations without the extra memcpy.
There are 3 new APIs:
long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct bpf_dynptr *ptr);
void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags);
void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags);
These closely follow the functionalities of the original ringbuf APIs.
For example, all ringbuffer dynptrs that have been reserved must be
either submitted or discarded before the program exits.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-4-joannelkoong@gmail.com
This patch adds a new api bpf_dynptr_from_mem:
long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr);
which initializes a dynptr to point to a bpf program's local memory. For now
only local memory that is of reg type PTR_TO_MAP_VALUE is supported.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-3-joannelkoong@gmail.com
This patch adds the bulk of the verifier work for supporting dynamic
pointers (dynptrs) in bpf.
A bpf_dynptr is opaque to the bpf program. It is a 16-byte structure
defined internally as:
struct bpf_dynptr_kern {
void *data;
u32 size;
u32 offset;
} __aligned(8);
The upper 8 bits of *size* is reserved (it contains extra metadata about
read-only status and dynptr type). Consequently, a dynptr only supports
memory less than 16 MB.
There are different types of dynptrs (eg malloc, ringbuf, ...). In this
patchset, the most basic one, dynptrs to a bpf program's local memory,
is added. For now only local memory that is of reg type PTR_TO_MAP_VALUE
is supported.
In the verifier, dynptr state information will be tracked in stack
slots. When the program passes in an uninitialized dynptr
(ARG_PTR_TO_DYNPTR | MEM_UNINIT), the stack slots corresponding
to the frame pointer where the dynptr resides at are marked
STACK_DYNPTR. For helper functions that take in initialized dynptrs (eg
bpf_dynptr_read + bpf_dynptr_write which are added later in this
patchset), the verifier enforces that the dynptr has been initialized
properly by checking that their corresponding stack slots have been
marked as STACK_DYNPTR.
The 6th patch in this patchset adds test cases that the verifier should
successfully reject, such as for example attempting to use a dynptr
after doing a direct write into it inside the bpf program.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20220523210712.3641569-2-joannelkoong@gmail.com
Kernel Test Robot complains about passing zero to PTR_ERR for the said
line, suppress it by using PTR_ERR_OR_ZERO.
Fixes: c0a5a21c25 ("bpf: Allow storing referenced kptr in map")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220521132620.1976921-1-memxor@gmail.com
This patch implements a new struct bpf_func_proto, named
bpf_skc_to_mptcp_sock_proto. Define a new bpf_id BTF_SOCK_TYPE_MPTCP,
and a new helper bpf_skc_to_mptcp_sock(), which invokes another new
helper bpf_mptcp_sock_from_subflow() in net/mptcp/bpf.c to get struct
mptcp_sock from a given subflow socket.
v2: Emit BTF type, add func_id checks in verifier.c and bpf_trace.c,
remove build check for CONFIG_BPF_JIT
v5: Drop EXPORT_SYMBOL (Martin)
Co-developed-by: Nicolas Rybowski <nicolas.rybowski@tessares.net>
Co-developed-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Nicolas Rybowski <nicolas.rybowski@tessares.net>
Signed-off-by: Matthieu Baerts <matthieu.baerts@tessares.net>
Signed-off-by: Geliang Tang <geliang.tang@suse.com>
Signed-off-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220519233016.105670-2-mathew.j.martineau@linux.intel.com
Instead of having uninitialized versions of arguments as separate
bpf_arg_types (eg ARG_PTR_TO_UNINIT_MEM as the uninitialized version
of ARG_PTR_TO_MEM), we can instead use MEM_UNINIT as a bpf_type_flag
modifier to denote that the argument is uninitialized.
Doing so cleans up some of the logic in the verifier. We no longer
need to do two checks against an argument type (eg "if
(base_type(arg_type) == ARG_PTR_TO_MEM || base_type(arg_type) ==
ARG_PTR_TO_UNINIT_MEM)"), since uninitialized and initialized
versions of the same argument type will now share the same base type.
In the near future, MEM_UNINIT will be used by dynptr helper functions
as well.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20220509224257.3222614-2-joannelkoong@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add new ebpf helpers bpf_map_lookup_percpu_elem.
The implementation method is relatively simple, refer to the implementation
method of map_lookup_elem of percpu map, increase the parameters of cpu, and
obtain it according to the specified cpu.
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Link: https://lore.kernel.org/r/20220511093854.411-2-zhoufeng.zf@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The func_id parameter in find_kfunc_desc_btf() is not used, get rid of it.
Fixes: 2357672c54 ("bpf: Introduce BPF support for kernel module function calls")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/bpf/20220505070114.3522522-1-ytcoode@gmail.com
The current of behavior of btf_struct_ids_match for release arguments is
that when type match fails, it retries with first member type again
(recursively). Since the offset is already 0, this is akin to just
casting the pointer in normal C, since if type matches it was just
embedded inside parent sturct as an object. However, we want to reject
cases for release function type matching, be it kfunc or BPF helpers.
An example is the following:
struct foo {
struct bar b;
};
struct foo *v = acq_foo();
rel_bar(&v->b); // btf_struct_ids_match fails btf_types_are_same, then
// retries with first member type and succeeds, while
// it should fail.
Hence, don't walk the struct and only rely on btf_types_are_same for
strict mode. All users of strict mode must be dealing with zero offset
anyway, since otherwise they would want the struct to be walked.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-10-memxor@gmail.com
While we can guarantee that even for unreferenced kptr, the object
pointer points to being freed etc. can be handled by the verifier's
exception handling (normal load patching to PROBE_MEM loads), we still
cannot allow the user to pass these pointers to BPF helpers and kfunc,
because the same exception handling won't be done for accesses inside
the kernel. The same is true if a referenced pointer is loaded using
normal load instruction. Since the reference is not guaranteed to be
held while the pointer is used, it must be marked as untrusted.
Hence introduce a new type flag, PTR_UNTRUSTED, which is used to mark
all registers loading unreferenced and referenced kptr from BPF maps,
and ensure they can never escape the BPF program and into the kernel by
way of calling stable/unstable helpers.
In check_ptr_to_btf_access, the !type_may_be_null check to reject type
flags is still correct, as apart from PTR_MAYBE_NULL, only MEM_USER,
MEM_PERCPU, and PTR_UNTRUSTED may be set for PTR_TO_BTF_ID. The first
two are checked inside the function and rejected using a proper error
message, but we still want to allow dereference of untrusted case.
Also, we make sure to inherit PTR_UNTRUSTED when chain of pointers are
walked, so that this flag is never dropped once it has been set on a
PTR_TO_BTF_ID (i.e. trusted to untrusted transition can only be in one
direction).
In convert_ctx_accesses, extend the switch case to consider untrusted
PTR_TO_BTF_ID in addition to normal PTR_TO_BTF_ID for PROBE_MEM
conversion for BPF_LDX.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-5-memxor@gmail.com
Extending the code in previous commits, introduce referenced kptr
support, which needs to be tagged using 'kptr_ref' tag instead. Unlike
unreferenced kptr, referenced kptr have a lot more restrictions. In
addition to the type matching, only a newly introduced bpf_kptr_xchg
helper is allowed to modify the map value at that offset. This transfers
the referenced pointer being stored into the map, releasing the
references state for the program, and returning the old value and
creating new reference state for the returned pointer.
Similar to unreferenced pointer case, return value for this case will
also be PTR_TO_BTF_ID_OR_NULL. The reference for the returned pointer
must either be eventually released by calling the corresponding release
function, otherwise it must be transferred into another map.
It is also allowed to call bpf_kptr_xchg with a NULL pointer, to clear
the value, and obtain the old value if any.
BPF_LDX, BPF_STX, and BPF_ST cannot access referenced kptr. A future
commit will permit using BPF_LDX for such pointers, but attempt at
making it safe, since the lifetime of object won't be guaranteed.
There are valid reasons to enforce the restriction of permitting only
bpf_kptr_xchg to operate on referenced kptr. The pointer value must be
consistent in face of concurrent modification, and any prior values
contained in the map must also be released before a new one is moved
into the map. To ensure proper transfer of this ownership, bpf_kptr_xchg
returns the old value, which the verifier would require the user to
either free or move into another map, and releases the reference held
for the pointer being moved in.
In the future, direct BPF_XCHG instruction may also be permitted to work
like bpf_kptr_xchg helper.
Note that process_kptr_func doesn't have to call
check_helper_mem_access, since we already disallow rdonly/wronly flags
for map, which is what check_map_access_type checks, and we already
ensure the PTR_TO_MAP_VALUE refers to kptr by obtaining its off_desc,
so check_map_access is also not required.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-4-memxor@gmail.com
Add a new type flag for bpf_arg_type that when set tells verifier that
for a release function, that argument's register will be the one for
which meta.ref_obj_id will be set, and which will then be released
using release_reference. To capture the regno, introduce a new field
release_regno in bpf_call_arg_meta.
This would be required in the next patch, where we may either pass NULL
or a refcounted pointer as an argument to the release function
bpf_kptr_xchg. Just releasing only when meta.ref_obj_id is set is not
enough, as there is a case where the type of argument needed matches,
but the ref_obj_id is set to 0. Hence, we must enforce that whenever
meta.ref_obj_id is zero, the register that is to be released can only
be NULL for a release function.
Since we now indicate whether an argument is to be released in
bpf_func_proto itself, is_release_function helper has lost its utitlity,
hence refactor code to work without it, and just rely on
meta.release_regno to know when to release state for a ref_obj_id.
Still, the restriction of one release argument and only one ref_obj_id
passed to BPF helper or kfunc remains. This may be lifted in the future.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-3-memxor@gmail.com
This commit introduces a new pointer type 'kptr' which can be embedded
in a map value to hold a PTR_TO_BTF_ID stored by a BPF program during
its invocation. When storing such a kptr, BPF program's PTR_TO_BTF_ID
register must have the same type as in the map value's BTF, and loading
a kptr marks the destination register as PTR_TO_BTF_ID with the correct
kernel BTF and BTF ID.
Such kptr are unreferenced, i.e. by the time another invocation of the
BPF program loads this pointer, the object which the pointer points to
may not longer exist. Since PTR_TO_BTF_ID loads (using BPF_LDX) are
patched to PROBE_MEM loads by the verifier, it would safe to allow user
to still access such invalid pointer, but passing such pointers into
BPF helpers and kfuncs should not be permitted. A future patch in this
series will close this gap.
The flexibility offered by allowing programs to dereference such invalid
pointers while being safe at runtime frees the verifier from doing
complex lifetime tracking. As long as the user may ensure that the
object remains valid, it can ensure data read by it from the kernel
object is valid.
The user indicates that a certain pointer must be treated as kptr
capable of accepting stores of PTR_TO_BTF_ID of a certain type, by using
a BTF type tag 'kptr' on the pointed to type of the pointer. Then, this
information is recorded in the object BTF which will be passed into the
kernel by way of map's BTF information. The name and kind from the map
value BTF is used to look up the in-kernel type, and the actual BTF and
BTF ID is recorded in the map struct in a new kptr_off_tab member. For
now, only storing pointers to structs is permitted.
An example of this specification is shown below:
#define __kptr __attribute__((btf_type_tag("kptr")))
struct map_value {
...
struct task_struct __kptr *task;
...
};
Then, in a BPF program, user may store PTR_TO_BTF_ID with the type
task_struct into the map, and then load it later.
Note that the destination register is marked PTR_TO_BTF_ID_OR_NULL, as
the verifier cannot know whether the value is NULL or not statically, it
must treat all potential loads at that map value offset as loading a
possibly NULL pointer.
Only BPF_LDX, BPF_STX, and BPF_ST (with insn->imm = 0 to denote NULL)
are allowed instructions that can access such a pointer. On BPF_LDX, the
destination register is updated to be a PTR_TO_BTF_ID, and on BPF_STX,
it is checked whether the source register type is a PTR_TO_BTF_ID with
same BTF type as specified in the map BTF. The access size must always
be BPF_DW.
For the map in map support, the kptr_off_tab for outer map is copied
from the inner map's kptr_off_tab. It was chosen to do a deep copy
instead of introducing a refcount to kptr_off_tab, because the copy only
needs to be done when paramterizing using inner_map_fd in the map in map
case, hence would be unnecessary for all other users.
It is not permitted to use MAP_FREEZE command and mmap for BPF map
having kptrs, similar to the bpf_timer case. A kptr also requires that
BPF program has both read and write access to the map (hence both
BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG are disallowed).
Note that check_map_access must be called from both
check_helper_mem_access and for the BPF instructions, hence the kptr
check must distinguish between ACCESS_DIRECT and ACCESS_HELPER, and
reject ACCESS_HELPER cases. We rename stack_access_src to bpf_access_src
and reuse it for this purpose.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-2-memxor@gmail.com
Some functions in next patch want to use this function, and those
functions will be called by check_map_access, hence move it before
check_map_access.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/bpf/20220415160354.1050687-3-memxor@gmail.com
It is not permitted to write to PTR_TO_MAP_KEY, but the current code in
check_helper_mem_access would allow for it, reject this case as well, as
helpers taking ARG_PTR_TO_UNINIT_MEM also take PTR_TO_MAP_KEY.
Fixes: 69c087ba62 ("bpf: Add bpf_for_each_map_elem() helper")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The commit being fixed was aiming to disallow users from incorrectly
obtaining writable pointer to memory that is only meant to be read. This
is enforced now using a MEM_RDONLY flag.
For instance, in case of global percpu variables, when the BTF type is
not struct (e.g. bpf_prog_active), the verifier marks register type as
PTR_TO_MEM | MEM_RDONLY from bpf_this_cpu_ptr or bpf_per_cpu_ptr
helpers. However, when passing such pointer to kfunc, global funcs, or
BPF helpers, in check_helper_mem_access, there is no expectation
MEM_RDONLY flag will be set, hence it is checked as pointer to writable
memory. Later, verifier sets up argument type of global func as
PTR_TO_MEM | PTR_MAYBE_NULL, so user can use a global func to get around
the limitations imposed by this flag.
This check will also cover global non-percpu variables that may be
introduced in kernel BTF in future.
Also, we update the log message for PTR_TO_BUF case to be similar to
PTR_TO_MEM case, so that the reason for error is clear to user.
Fixes: 34d3a78c68 ("bpf: Make per_cpu_ptr return rdonly PTR_TO_MEM.")
Reviewed-by: Hao Luo <haoluo@google.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When passing pointer to some map value to kfunc or global func, in
verifier we are passing meta as NULL to various functions, which uses
meta->raw_mode to check whether memory is being written to. Since some
kfunc or global funcs may also write to memory pointers they receive as
arguments, we must check for write access to memory. E.g. in some case
map may be read only and this will be missed by current checks.
However meta->raw_mode allows for uninitialized memory (e.g. on stack),
since there is not enough info available through BTF, we must perform
one call for read access (raw_mode = false), and one for write access
(raw_mode = true).
Fixes: e5069b9c23 ("bpf: Support pointers in global func args")
Fixes: d583691c47 ("bpf: Introduce mem, size argument pair support for kfunc")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220319080827.73251-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This reverts commit 97ee4d20ee.
Following change is adding more complexity to bpf_get_func_ip
helper for kprobe_multi programs, which can't be inlined easily.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220321070113.1449167-2-jolsa@kernel.org
Currently, local storage memory can only be allocated atomically
(GFP_ATOMIC). This restriction is too strict for sleepable bpf
programs.
In this patch, the verifier detects whether the program is sleepable,
and passes the corresponding GFP_KERNEL or GFP_ATOMIC flag as a
5th argument to bpf_task/sk/inode_storage_get. This flag will propagate
down to the local storage functions that allocate memory.
Please note that bpf_task/sk/inode_storage_update_elem functions are
invoked by userspace applications through syscalls. Preemption is
disabled before bpf_task/sk/inode_storage_update_elem is called, which
means they will always have to allocate memory atomically.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: KP Singh <kpsingh@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220318045553.3091807-2-joannekoong@fb.com
It is the bpf_jit_harden counterpart to commit 60b58afc96 ("bpf: fix
net.core.bpf_jit_enable race"). bpf_jit_harden will be tested twice
for each subprog if there are subprogs in bpf program and constant
blinding may increase the length of program, so when running
"./test_progs -t subprogs" and toggling bpf_jit_harden between 0 and 2,
jit_subprogs may fail because constant blinding increases the length
of subprog instructions during extra passs.
So cache the value of bpf_jit_blinding_enabled() during program
allocation, and use the cached value during constant blinding, subprog
JITing and args tracking of tail call.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220309123321.2400262-4-houtao1@huawei.com
Use offsetofend() instead of offsetof() + sizeof() to simplify
MIN_BPF_LINEINFO_SIZE macro definition.
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Link: https://lore.kernel.org/bpf/20220310161518.534544-1-ytcoode@gmail.com
Instead of determining buf_info string in the caller of check_buffer_access(),
we can determine whether the register type is read-only through
type_is_rdonly_mem() helper inside check_buffer_access() and construct
buf_info, making the code slightly cleaner.
Signed-off-by: Shung-Hsi Yu <shung-hsi.yu@suse.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/YiWYLnAkEZXBP/gH@syu-laptop
With the introduction of the btf_type_tag "percpu", we can add a
MEM_PERCPU to identify those pointers that point to percpu memory.
The ability of differetiating percpu pointers from regular memory
pointers have two benefits:
1. It forbids unexpected use of percpu pointers, such as direct loads.
In kernel, there are special functions used for accessing percpu
memory. Directly loading percpu memory is meaningless. We already
have BPF helpers like bpf_per_cpu_ptr() and bpf_this_cpu_ptr() that
wrap the kernel percpu functions. So we can now convert percpu
pointers into regular pointers in a safe way.
2. Previously, bpf_per_cpu_ptr() and bpf_this_cpu_ptr() only work on
PTR_TO_PERCPU_BTF_ID, a special reg_type which describes static
percpu variables in kernel (we rely on pahole to encode them into
vmlinux BTF). Now, since we can identify __percpu tagged pointers,
we can also identify dynamically allocated percpu memory as well.
It means we can use bpf_xxx_cpu_ptr() on dynamic percpu memory.
This would be very convenient when accessing fields like
"cgroup->rstat_cpu".
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220304191657.981240-4-haoluo@google.com
With the introduction of MEM_USER in
commit c6f1bfe89a ("bpf: reject program if a __user tagged memory accessed in kernel way")
PTR_TO_BTF_ID can be combined with a MEM_USER tag. Therefore, most
likely, when we compare reg_type against PTR_TO_BTF_ID, we want to use
the reg's base_type. Previously the check in check_mem_access() wants
to say: if the reg is BTF_ID but not NULL, the execution flow falls
into the 'then' branch. But now a reg of (BTF_ID | MEM_USER), which
should go into the 'then' branch, goes into the 'else'.
The end results before and after this patch are the same: regs tagged
with MEM_USER get rejected, but not in a way we intended. So fix the
condition, the error message now is correct.
Before (log from commit 696c390115):
$ ./test_progs -v -n 22/3
...
libbpf: prog 'test_user1': BPF program load failed: Permission denied
libbpf: prog 'test_user1': -- BEGIN PROG LOAD LOG --
R1 type=ctx expected=fp
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
; int BPF_PROG(test_user1, struct bpf_testmod_btf_type_tag_1 *arg)
0: (79) r1 = *(u64 *)(r1 +0)
func 'bpf_testmod_test_btf_type_tag_user_1' arg0 has btf_id 136561 type STRUCT 'bpf_testmod_btf_type_tag_1'
1: R1_w=user_ptr_bpf_testmod_btf_type_tag_1(id=0,off=0,imm=0)
; g = arg->a;
1: (61) r1 = *(u32 *)(r1 +0)
R1 invalid mem access 'user_ptr_'
Now:
libbpf: prog 'test_user1': BPF program load failed: Permission denied
libbpf: prog 'test_user1': -- BEGIN PROG LOAD LOG --
R1 type=ctx expected=fp
0: R1=ctx(id=0,off=0,imm=0) R10=fp0
; int BPF_PROG(test_user1, struct bpf_testmod_btf_type_tag_1 *arg)
0: (79) r1 = *(u64 *)(r1 +0)
func 'bpf_testmod_test_btf_type_tag_user_1' arg0 has btf_id 104036 type STRUCT 'bpf_testmod_btf_type_tag_1'
1: R1_w=user_ptr_bpf_testmod_btf_type_tag_1(id=0,ref_obj_id=0,off=0,imm=0)
; g = arg->a;
1: (61) r1 = *(u32 *)(r1 +0)
R1 is ptr_bpf_testmod_btf_type_tag_1 access user memory: off=0
Note the error message for the reason of rejection.
Fixes: c6f1bfe89a ("bpf: reject program if a __user tagged memory accessed in kernel way")
Signed-off-by: Hao Luo <haoluo@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220304191657.981240-2-haoluo@google.com
Let's ensure that the PTR_TO_BTF_ID reg being passed in to release BPF
helpers and kfuncs always has its offset set to 0. While not a real
problem now, there's a very real possibility this will become a problem
when more and more kfuncs are exposed, and more BPF helpers are added
which can release PTR_TO_BTF_ID.
Previous commits already protected against non-zero var_off. One of the
case we are concerned about now is when we have a type that can be
returned by e.g. an acquire kfunc:
struct foo {
int a;
int b;
struct bar b;
};
... and struct bar is also a type that can be returned by another
acquire kfunc.
Then, doing the following sequence:
struct foo *f = bpf_get_foo(); // acquire kfunc
if (!f)
return 0;
bpf_put_bar(&f->b); // release kfunc
... would work with the current code, since the btf_struct_ids_match
takes reg->off into account for matching pointer type with release kfunc
argument type, but would obviously be incorrect, and most likely lead to
a kernel crash. A test has been included later to prevent regressions in
this area.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-5-memxor@gmail.com
check_ptr_off_reg only allows fixed offset to be set for PTR_TO_BTF_ID,
where reg->off < 0 doesn't make sense. This would shift the pointer
backwards, and fails later in btf_struct_ids_match or btf_struct_walk
due to out of bounds access (since offset is interpreted as unsigned).
Improve the verifier by rejecting this case by using a better error
message for BPF helpers and kfunc, by putting a check inside the
check_func_arg_reg_off function.
Also, update existing verifier selftests to work with new error string.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-4-memxor@gmail.com
Lift the list of register types allowed for having fixed and variable
offsets when passed as helper function arguments into a common helper,
so that they can be reused for kfunc checks in later commits. Keeping a
common helper aids maintainability and allows us to follow the same
consistent rules across helpers and kfuncs. Also, convert check_func_arg
to use this function.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220304224645.3677453-2-memxor@gmail.com
In particular these include:
1) Remove output of inv for scalars in print_verifier_state
2) Replace inv with scalar in verifier error messages
3) Remove _value suffixes for umin/umax/s32_min/etc (except map_value)
4) Remove output of id=0
5) Remove output of ref_obj_id=0
Signed-off-by: Mykola Lysenko <mykolal@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220301222745.1667206-1-mykolal@fb.com
Now kfunc call uses s32 to represent the offset between the address of
kfunc and __bpf_call_base, but it doesn't check whether or not s32 will
be overflowed. The overflow is possible when kfunc is in module and the
offset between module and kernel is greater than 2GB. Take arm64 as an
example, before commit b2eed9b588 ("arm64/kernel: kaslr: reduce module
randomization range to 2 GB"), the offset between module symbol and
__bpf_call_base will in 4GB range due to KASLR and may overflow s32.
So add an extra checking to reject these invalid kfunc calls.
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220215065732.3179408-1-houtao1@huawei.com
Using prog->jited_len is simpler and more accurate than current
estimation (header + header->size).
Also, fix missing prog->jited_len with multi function program. This hasn't
been a real issue before this.
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220204185742.271030-5-song@kernel.org
BPF verifier supports direct memory access for BPF_PROG_TYPE_TRACING type
of bpf programs, e.g., a->b. If "a" is a pointer
pointing to kernel memory, bpf verifier will allow user to write
code in C like a->b and the verifier will translate it to a kernel
load properly. If "a" is a pointer to user memory, it is expected
that bpf developer should be bpf_probe_read_user() helper to
get the value a->b. Without utilizing BTF __user tagging information,
current verifier will assume that a->b is a kernel memory access
and this may generate incorrect result.
Now BTF contains __user information, it can check whether the
pointer points to a user memory or not. If it is, the verifier
can reject the program and force users to use bpf_probe_read_user()
helper explicitly.
In the future, we can easily extend btf_add_space for other
address space tagging, for example, rcu/percpu etc.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220127154606.654961-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Daniel Borkmann says:
====================
pull-request: bpf-next 2022-01-24
We've added 80 non-merge commits during the last 14 day(s) which contain
a total of 128 files changed, 4990 insertions(+), 895 deletions(-).
The main changes are:
1) Add XDP multi-buffer support and implement it for the mvneta driver,
from Lorenzo Bianconi, Eelco Chaudron and Toke Høiland-Jørgensen.
2) Add unstable conntrack lookup helpers for BPF by using the BPF kfunc
infra, from Kumar Kartikeya Dwivedi.
3) Extend BPF cgroup programs to export custom ret value to userspace via
two helpers bpf_get_retval() and bpf_set_retval(), from YiFei Zhu.
4) Add support for AF_UNIX iterator batching, from Kuniyuki Iwashima.
5) Complete missing UAPI BPF helper description and change bpf_doc.py script
to enforce consistent & complete helper documentation, from Usama Arif.
6) Deprecate libbpf's legacy BPF map definitions and streamline XDP APIs to
follow tc-based APIs, from Andrii Nakryiko.
7) Support BPF_PROG_QUERY for BPF programs attached to sockmap, from Di Zhu.
8) Deprecate libbpf's bpf_map__def() API and replace users with proper getters
and setters, from Christy Lee.
9) Extend libbpf's btf__add_btf() with an additional hashmap for strings to
reduce overhead, from Kui-Feng Lee.
10) Fix bpftool and libbpf error handling related to libbpf's hashmap__new()
utility function, from Mauricio Vásquez.
11) Add support to BTF program names in bpftool's program dump, from Raman Shukhau.
12) Fix resolve_btfids build to pick up host flags, from Connor O'Brien.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (80 commits)
selftests, bpf: Do not yet switch to new libbpf XDP APIs
selftests, xsk: Fix rx_full stats test
bpf: Fix flexible_array.cocci warnings
xdp: disable XDP_REDIRECT for xdp frags
bpf: selftests: add CPUMAP/DEVMAP selftests for xdp frags
bpf: selftests: introduce bpf_xdp_{load,store}_bytes selftest
net: xdp: introduce bpf_xdp_pointer utility routine
bpf: generalise tail call map compatibility check
libbpf: Add SEC name for xdp frags programs
bpf: selftests: update xdp_adjust_tail selftest to include xdp frags
bpf: test_run: add xdp_shared_info pointer in bpf_test_finish signature
bpf: introduce frags support to bpf_prog_test_run_xdp()
bpf: move user_size out of bpf_test_init
bpf: add frags support to xdp copy helpers
bpf: add frags support to the bpf_xdp_adjust_tail() API
bpf: introduce bpf_xdp_get_buff_len helper
net: mvneta: enable jumbo frames if the loaded XDP program support frags
bpf: introduce BPF_F_XDP_HAS_FRAGS flag in prog_flags loading the ebpf program
net: mvneta: add frags support to XDP_TX
xdp: add frags support to xdp_return_{buff/frame}
...
====================
Link: https://lore.kernel.org/r/20220124221235.18993-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>