Commit Graph

7 Commits

Author SHA1 Message Date
Linus Torvalds 94a855111e - Add the call depth tracking mitigation for Retbleed which has
been long in the making. It is a lighterweight software-only fix for
 Skylake-based cores where enabling IBRS is a big hammer and causes a
 significant performance impact.
 
 What it basically does is, it aligns all kernel functions to 16 bytes
 boundary and adds a 16-byte padding before the function, objtool
 collects all functions' locations and when the mitigation gets applied,
 it patches a call accounting thunk which is used to track the call depth
 of the stack at any time.
 
 When that call depth reaches a magical, microarchitecture-specific value
 for the Return Stack Buffer, the code stuffs that RSB and avoids its
 underflow which could otherwise lead to the Intel variant of Retbleed.
 
 This software-only solution brings a lot of the lost performance back,
 as benchmarks suggest:
 
   https://lore.kernel.org/all/20220915111039.092790446@infradead.org/
 
 That page above also contains a lot more detailed explanation of the
 whole mechanism
 
 - Implement a new control flow integrity scheme called FineIBT which is
 based on the software kCFI implementation and uses hardware IBT support
 where present to annotate and track indirect branches using a hash to
 validate them
 
 - Other misc fixes and cleanups
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmOZp5EACgkQEsHwGGHe
 VUrZFxAAvi/+8L0IYSK4mKJvixGbTFjxN/Swo2JVOfs34LqGUT6JaBc+VUMwZxdb
 VMTFIZ3ttkKEodjhxGI7oGev6V8UfhI37SmO2lYKXpQVjXXnMlv/M+Vw3teE38CN
 gopi+xtGnT1IeWQ3tc/Tv18pleJ0mh5HKWiW+9KoqgXj0wgF9x4eRYDz1TDCDA/A
 iaBzs56j8m/FSykZHnrWZ/MvjKNPdGlfJASUCPeTM2dcrXQGJ93+X2hJctzDte0y
 Nuiw6Y0htfFBE7xoJn+sqm5Okr+McoUM18/CCprbgSKYk18iMYm3ZtAi6FUQZS1A
 ua4wQCf49loGp15PO61AS5d3OBf5D3q/WihQRbCaJvTVgPp9sWYnWwtcVUuhMllh
 ZQtBU9REcVJ/22bH09Q9CjBW0VpKpXHveqQdqRDViLJ6v/iI6EFGmD24SW/VxyRd
 73k9MBGrL/dOf1SbEzdsnvcSB3LGzp0Om8o/KzJWOomrVKjBCJy16bwTEsCZEJmP
 i406m92GPXeaN1GhTko7vmF0GnkEdJs1GVCZPluCAxxbhHukyxHnrjlQjI4vC80n
 Ylc0B3Kvitw7LGJsPqu+/jfNHADC/zhx1qz/30wb5cFmFbN1aRdp3pm8JYUkn+l/
 zri2Y6+O89gvE/9/xUhMohzHsWUO7xITiBavewKeTP9GSWybWUs=
 =cRy1
 -----END PGP SIGNATURE-----

Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Borislav Petkov:

 - Add the call depth tracking mitigation for Retbleed which has been
   long in the making. It is a lighterweight software-only fix for
   Skylake-based cores where enabling IBRS is a big hammer and causes a
   significant performance impact.

   What it basically does is, it aligns all kernel functions to 16 bytes
   boundary and adds a 16-byte padding before the function, objtool
   collects all functions' locations and when the mitigation gets
   applied, it patches a call accounting thunk which is used to track
   the call depth of the stack at any time.

   When that call depth reaches a magical, microarchitecture-specific
   value for the Return Stack Buffer, the code stuffs that RSB and
   avoids its underflow which could otherwise lead to the Intel variant
   of Retbleed.

   This software-only solution brings a lot of the lost performance
   back, as benchmarks suggest:

       https://lore.kernel.org/all/20220915111039.092790446@infradead.org/

   That page above also contains a lot more detailed explanation of the
   whole mechanism

 - Implement a new control flow integrity scheme called FineIBT which is
   based on the software kCFI implementation and uses hardware IBT
   support where present to annotate and track indirect branches using a
   hash to validate them

 - Other misc fixes and cleanups

* tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (80 commits)
  x86/paravirt: Use common macro for creating simple asm paravirt functions
  x86/paravirt: Remove clobber bitmask from .parainstructions
  x86/debug: Include percpu.h in debugreg.h to get DECLARE_PER_CPU() et al
  x86/cpufeatures: Move X86_FEATURE_CALL_DEPTH from bit 18 to bit 19 of word 11, to leave space for WIP X86_FEATURE_SGX_EDECCSSA bit
  x86/Kconfig: Enable kernel IBT by default
  x86,pm: Force out-of-line memcpy()
  objtool: Fix weak hole vs prefix symbol
  objtool: Optimize elf_dirty_reloc_sym()
  x86/cfi: Add boot time hash randomization
  x86/cfi: Boot time selection of CFI scheme
  x86/ibt: Implement FineIBT
  objtool: Add --cfi to generate the .cfi_sites section
  x86: Add prefix symbols for function padding
  objtool: Add option to generate prefix symbols
  objtool: Avoid O(bloody terrible) behaviour -- an ode to libelf
  objtool: Slice up elf_create_section_symbol()
  kallsyms: Revert "Take callthunks into account"
  x86: Unconfuse CONFIG_ and X86_FEATURE_ namespaces
  x86/retpoline: Fix crash printing warning
  x86/paravirt: Fix a !PARAVIRT build warning
  ...
2022-12-14 15:03:00 -08:00
Eric Biggers 2d203c46a0 crypto: x86/sm4 - fix crash with CFI enabled
sm4_aesni_avx_ctr_enc_blk8(), sm4_aesni_avx_cbc_dec_blk8(),
sm4_aesni_avx_cfb_dec_blk8(), sm4_aesni_avx2_ctr_enc_blk16(),
sm4_aesni_avx2_cbc_dec_blk16(), and sm4_aesni_avx2_cfb_dec_blk16() are
called via indirect function calls.  Therefore they need to use
SYM_TYPED_FUNC_START instead of SYM_FUNC_START to cause their type
hashes to be emitted when the kernel is built with CONFIG_CFI_CLANG=y.
Otherwise, the code crashes with a CFI failure.

(Or at least that should be the case.  For some reason the CFI checks in
sm4_avx_cbc_decrypt(), sm4_avx_cfb_decrypt(), and sm4_avx_ctr_crypt()
are not always being generated, using current tip-of-tree clang.
Anyway, this patch is a good idea anyway.)

Fixes: ccace936ee ("x86: Add types to indirectly called assembly functions")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2022-11-25 17:39:19 +08:00
Thomas Gleixner 2f93238b87 crypto: x86/sm[34]: Remove redundant alignments
SYM_FUNC_START*() and friends already imply alignment, remove custom
alignment hacks to make code consistent. This prepares for future
function call ABI changes.

Also, with having pushed the function alignment to 16 bytes, this
custom alignment is completely superfluous.

( this code couldn't seem to make up it's mind about what alignment it
  actually wanted, randomly mixing 8 and 16 bytes )

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111144.868540856@infradead.org
2022-10-17 16:41:02 +02:00
Peter Zijlstra f94909ceb1 x86: Prepare asm files for straight-line-speculation
Replace all ret/retq instructions with RET in preparation of making
RET a macro. Since AS is case insensitive it's a big no-op without
RET defined.

  find arch/x86/ -name \*.S | while read file
  do
	sed -i 's/\<ret[q]*\>/RET/' $file
  done

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211204134907.905503893@infradead.org
2021-12-08 12:25:37 +01:00
Tianjia Zhang f8690a4b5a crypto: x86/sm4 - Fix invalid section entry size
This fixes the following warning:

  vmlinux.o: warning: objtool: elf_update: invalid section entry size

The size of the rodata section is 164 bytes, directly using the
entry_size of 164 bytes will cause errors in some versions of the
gcc compiler, while using 16 bytes directly will cause errors in
the clang compiler. This patch correct it by filling the size of
rodata to a 16-byte boundary.

Fixes: a7ee22ee14 ("crypto: x86/sm4 - add AES-NI/AVX/x86_64 implementation")
Fixes: 5b2efa2bb8 ("crypto: x86/sm4 - add AES-NI/AVX2/x86_64 implementation")
Reported-by: Peter Zijlstra <peterz@infradead.org>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Tested-by: Heyuan Shi <heyuan@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-10-22 20:23:01 +08:00
Josh Poimboeuf 0e14ef3866 crypto: x86/sm4 - Fix frame pointer stack corruption
sm4_aesni_avx_crypt8() sets up the frame pointer (which includes pushing
RBP) before doing a conditional sibling call to sm4_aesni_avx_crypt4(),
which sets up an additional frame pointer.  Things will not go well when
sm4_aesni_avx_crypt4() pops only the innermost single frame pointer and
then tries to return to the outermost frame pointer.

Sibling calls need to occur with an empty stack frame.  Do the
conditional sibling call *before* setting up the stack pointer.

This fixes the following warning:

  arch/x86/crypto/sm4-aesni-avx-asm_64.o: warning: objtool: sm4_aesni_avx_crypt8()+0x8: sibling call from callable instruction with modified stack frame

Fixes: a7ee22ee14 ("crypto: x86/sm4 - add AES-NI/AVX/x86_64 implementation")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Arnd Bergmann <arnd@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-09-24 15:58:50 +08:00
Tianjia Zhang a7ee22ee14 crypto: x86/sm4 - add AES-NI/AVX/x86_64 implementation
This patch adds AES-NI/AVX/x86_64 assembler implementation of SM4
block cipher. Through two affine transforms, we can use the AES S-Box
to simulate the SM4 S-Box to achieve the effect of instruction
acceleration.

The main algorithm implementation comes from SM4 AES-NI work by
libgcrypt and Markku-Juhani O. Saarinen at:
https://github.com/mjosaarinen/sm4ni

This optimization supports the four modes of SM4, ECB, CBC, CFB, and
CTR. Since CBC and CFB do not support multiple block parallel
encryption, the optimization effect is not obvious.

Benchmark on Intel Xeon Cascadelake, the data comes from the 218 mode
and 518 mode of tcrypt. The abscissas are blocks of different lengths.
The data is tabulated and the unit is Mb/s:

sm4-generic   |    16      64     128     256    1024    1420    4096
      ECB enc | 40.99   46.50   48.05   48.41   49.20   49.25   49.28
      ECB dec | 41.07   46.99   48.15   48.67   49.20   49.25   49.29
      CBC enc | 37.71   45.28   46.77   47.60   48.32   48.37   48.40
      CBC dec | 36.48   44.82   46.43   47.45   48.23   48.30   48.36
      CFB enc | 37.94   44.84   46.12   46.94   47.57   47.46   47.68
      CFB dec | 37.50   42.84   43.74   44.37   44.85   44.80   44.96
      CTR enc | 39.20   45.63   46.75   47.49   48.09   47.85   48.08
      CTR dec | 39.64   45.70   46.72   47.47   47.98   47.88   48.06
sm4-aesni-avx
      ECB enc | 33.75  134.47  221.64  243.43  264.05  251.58  258.13
      ECB dec | 34.02  134.92  223.11  245.14  264.12  251.04  258.33
      CBC enc | 38.85   46.18   47.67   48.34   49.00   48.96   49.14
      CBC dec | 33.54  131.29  223.88  245.27  265.50  252.41  263.78
      CFB enc | 38.70   46.10   47.58   48.29   49.01   48.94   49.19
      CFB dec | 32.79  128.40  223.23  244.87  265.77  253.31  262.79
      CTR enc | 32.58  122.23  220.29  241.16  259.57  248.32  256.69
      CTR dec | 32.81  122.47  218.99  241.54  258.42  248.58  256.61

Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2021-07-30 10:58:31 +08:00