Comet Lake is the new 10th Gen Intel processor. Add two new CPU model
numbers to the Intel family list.
The CPU model numbers are not published in the SDM yet but they come
from an authoritative internal source.
[ bp: Touch up commit message. ]
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Cc: ak@linux.intel.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/1570549810-25049-2-git-send-email-kan.liang@linux.intel.com
We discussed a better location for this file, and agreed that
core-api/ is a good fit. Rename it to symbol-namespaces.rst
for disambiguation, and also add it to index.rst and MAINTAINERS.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Matthias Maennich <maennich@google.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
There are no return value checking when using kzalloc() and kcalloc() for
memory allocation. so add it.
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Will Deacon <will@kernel.org>
With the use of the barrier implied by barrier_data(), there is no need
for memzero_explicit() to be extern. Making it inline saves the overhead
of a function call, and allows the code to be reused in arch/*/purgatory
without having to duplicate the implementation.
Tested-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H . Peter Anvin <hpa@zytor.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephan Mueller <smueller@chronox.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-crypto@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Fixes: 906a4bb97f ("crypto: sha256 - Use get/put_unaligned_be32 to get input, memzero_explicit")
Link: https://lkml.kernel.org/r/20191007220000.GA408752@rani.riverdale.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
LLVM's assembler doesn't accept the short form INL instruction:
inl (%%dx)
but instead insists on the output register to be explicitly specified:
<inline asm>:1:7: error: invalid operand for instruction
inl (%dx)
^
LLVM ERROR: Error parsing inline asm
Use the full form of the instruction to fix the build.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Thomas Hellstrom <thellstrom@vmware.com>
Cc: clang-built-linux@googlegroups.com
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: "VMware, Inc." <pv-drivers@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/734
Link: https://lkml.kernel.org/r/20191007192129.104336-1-samitolvanen@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
As per "AMD64 Architecture Programmer's Manual Volume 3: General-Purpose
and System Instructions", MWAITX EAX[7:4]+1 specifies the optional hint
of the optimized C-state. For C0 state, EAX[7:4] should be set to 0xf.
Currently, a value of 0xf is set for EAX[3:0] instead of EAX[7:4]. Fix
this by changing MWAITX_DISABLE_CSTATES from 0xf to 0xf0.
This hasn't had any implications so far because setting reserved bits in
EAX is simply ignored by the CPU.
[ bp: Fixup comment in delay_mwaitx() and massage. ]
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20191007190011.4859-1-Janakarajan.Natarajan@amd.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
GCC throws warning message as below:
‘clone_src_i_size’ may be used uninitialized in this function
[-Wmaybe-uninitialized]
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
^
fs/btrfs/send.c:5088:6: note: ‘clone_src_i_size’ was declared here
u64 clone_src_i_size;
^
The clone_src_i_size is only used as call-by-reference
in a call to get_inode_info().
Silence the warning by initializing clone_src_i_size to 0.
Note that the warning is a false positive and reported by older versions
of GCC (eg. 7.x) but not eg 9.x. As there have been numerous people, the
patch is applied. Setting clone_src_i_size to 0 does not otherwise make
sense and would not do any action in case the code changes in the future.
Signed-off-by: Austin Kim <austindh.kim@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
Currently the check for tbl_size being less than zero is always false
because tbl_size is unsigned. Fix this by making it a signed int.
Addresses-Coverity: ("Unsigned compared against 0")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-janitors@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Fixes: e658c82be5 ("efi/tpm: Only set 'efi_tpm_final_log_size' after successful event log parsing")
Link: https://lkml.kernel.org/r/20191008100153.8499-1-colin.king@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The panel-tpo-td043mtea1 driver incorrectly includes the OF vendor
prefix in its SPI alias. Fix it, and move the manual alias to an SPI
module device table.
Fixes: dc2e1e5b27 ("drm/panel: Add driver for the Toppoly TD043MTEA1 panel")
Reported-by: H. Nikolaus Schaller <hns@goldelico.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191007170801.27647-6-laurent.pinchart@ideasonboard.com
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Tested-by: H. Nikolaus Schaller <hns@goldelico.com>
The panel-tpo-td028ttec1 driver incorrectly includes the OF vendor
prefix in its SPI alias. Fix it.
Fixes: 415b8dd087 ("drm/panel: Add driver for the Toppoly TD028TTEC1 panel")
Reported-by: H. Nikolaus Schaller <hns@goldelico.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191007170801.27647-5-laurent.pinchart@ideasonboard.com
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Tested-by: H. Nikolaus Schaller <hns@goldelico.com>
Tested-by: Andreas Kemnade <andreas@kemnade.info>
The panel-sony-acx565akm driver incorrectly includes the OF vendor
prefix in its SPI alias. Fix it, and move the manual alias to an SPI
module device table.
Fixes: 1c8fc3f0c5 ("drm/panel: Add driver for the Sony ACX565AKM panel")
Reported-by: H. Nikolaus Schaller <hns@goldelico.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191007170801.27647-4-laurent.pinchart@ideasonboard.com
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.com>
The panel-nec-nl8048hl11 driver incorrectly includes the OF vendor
prefix in its SPI alias. Fix it, and move the manual alias to an SPI
module device table.
Fixes: df439abe65 ("drm/panel: Add driver for the NEC NL8048HL11 panel")
Reported-by: H. Nikolaus Schaller <hns@goldelico.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191007170801.27647-3-laurent.pinchart@ideasonboard.com
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.com>
The panel-lg-lb035q02 driver incorrectly includes the OF vendor prefix
in its SPI alias. Fix it, and move the manual alias to an SPI module
device table.
Fixes: f5b0c65424 ("drm/panel: Add driver for the LG Philips LB035Q02 panel")
Reported-by: H. Nikolaus Schaller <hns@goldelico.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Tomi Valkeinen <tomi.valkeinen@ti.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191007170801.27647-2-laurent.pinchart@ideasonboard.com
Acked-by: Sam Ravnborg <sam@ravnborg.org>
Reviewed-by: Sebastian Reichel <sebastian.reichel@collabora.com>
Any changes interesting to tasks waiting in io_cqring_wait() are
commited with io_cqring_ev_posted(). However, io_ring_drop_ctx_refs()
also tries to do that but with no reason, that means spurious wakeups
every io_free_req() and io_uring_enter().
Just use percpu_ref_put() instead.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Merge misc fixes from Andrew Morton:
"The usual shower of hotfixes.
Chris's memcg patches aren't actually fixes - they're mature but a few
niggling review issues were late to arrive.
The ocfs2 fixes are quite old - those took some time to get reviewer
attention.
Subsystems affected by this patch series: ocfs2, hotfixes, mm/memcg,
mm/slab-generic"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm, sl[aou]b: guarantee natural alignment for kmalloc(power-of-two)
mm, sl[ou]b: improve memory accounting
mm, memcg: make scan aggression always exclude protection
mm, memcg: make memory.emin the baseline for utilisation determination
mm, memcg: proportional memory.{low,min} reclaim
mm/vmpressure.c: fix a signedness bug in vmpressure_register_event()
mm/page_alloc.c: fix a crash in free_pages_prepare()
mm/z3fold.c: claim page in the beginning of free
kernel/sysctl.c: do not override max_threads provided by userspace
memcg: only record foreign writebacks with dirty pages when memcg is not disabled
mm: fix -Wmissing-prototypes warnings
writeback: fix use-after-free in finish_writeback_work()
mm/memremap: drop unused SECTION_SIZE and SECTION_MASK
panic: ensure preemption is disabled during panic()
fs: ocfs2: fix a possible null-pointer dereference in ocfs2_info_scan_inode_alloc()
fs: ocfs2: fix a possible null-pointer dereference in ocfs2_write_end_nolock()
fs: ocfs2: fix possible null-pointer dereferences in ocfs2_xa_prepare_entry()
ocfs2: clear zero in unaligned direct IO
In most configurations, kmalloc() happens to return naturally aligned
(i.e. aligned to the block size itself) blocks for power of two sizes.
That means some kmalloc() users might unknowingly rely on that
alignment, until stuff breaks when the kernel is built with e.g.
CONFIG_SLUB_DEBUG or CONFIG_SLOB, and blocks stop being aligned. Then
developers have to devise workaround such as own kmem caches with
specified alignment [1], which is not always practical, as recently
evidenced in [2].
The topic has been discussed at LSF/MM 2019 [3]. Adding a
'kmalloc_aligned()' variant would not help with code unknowingly relying
on the implicit alignment. For slab implementations it would either
require creating more kmalloc caches, or allocate a larger size and only
give back part of it. That would be wasteful, especially with a generic
alignment parameter (in contrast with a fixed alignment to size).
Ideally we should provide to mm users what they need without difficult
workarounds or own reimplementations, so let's make the kmalloc()
alignment to size explicitly guaranteed for power-of-two sizes under all
configurations. What this means for the three available allocators?
* SLAB object layout happens to be mostly unchanged by the patch. The
implicitly provided alignment could be compromised with
CONFIG_DEBUG_SLAB due to redzoning, however SLAB disables redzoning for
caches with alignment larger than unsigned long long. Practically on at
least x86 this includes kmalloc caches as they use cache line alignment,
which is larger than that. Still, this patch ensures alignment on all
arches and cache sizes.
* SLUB layout is also unchanged unless redzoning is enabled through
CONFIG_SLUB_DEBUG and boot parameter for the particular kmalloc cache.
With this patch, explicit alignment is guaranteed with redzoning as
well. This will result in more memory being wasted, but that should be
acceptable in a debugging scenario.
* SLOB has no implicit alignment so this patch adds it explicitly for
kmalloc(). The potential downside is increased fragmentation. While
pathological allocation scenarios are certainly possible, in my testing,
after booting a x86_64 kernel+userspace with virtme, around 16MB memory
was consumed by slab pages both before and after the patch, with
difference in the noise.
[1] https://lore.kernel.org/linux-btrfs/c3157c8e8e0e7588312b40c853f65c02fe6c957a.1566399731.git.christophe.leroy@c-s.fr/
[2] https://lore.kernel.org/linux-fsdevel/20190225040904.5557-1-ming.lei@redhat.com/
[3] https://lwn.net/Articles/787740/
[akpm@linux-foundation.org: documentation fixlet, per Matthew]
Link: http://lkml.kernel.org/r/20190826111627.7505-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: David Sterba <dsterba@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "guarantee natural alignment for kmalloc()", v2.
This patch (of 2):
SLOB currently doesn't account its pages at all, so in /proc/meminfo the
Slab field shows zero. Modifying a counter on page allocation and
freeing should be acceptable even for the small system scenarios SLOB is
intended for. Since reclaimable caches are not separated in SLOB,
account everything as unreclaimable.
SLUB currently doesn't account kmalloc() and kmalloc_node() allocations
larger than order-1 page, that are passed directly to the page
allocator. As they also don't appear in /proc/slabinfo, it might look
like a memory leak. For consistency, account them as well. (SLAB
doesn't actually use page allocator directly, so no change there).
Ideally SLOB and SLUB would be handled in separate patches, but due to
the shared kmalloc_order() function and different kfree()
implementations, it's easier to patch both at once to prevent
inconsistencies.
Link: http://lkml.kernel.org/r/20190826111627.7505-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Darrick J . Wong" <darrick.wong@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is an incremental improvement on the existing
memory.{low,min} relative reclaim work to base its scan pressure
calculations on how much protection is available compared to the current
usage, rather than how much the current usage is over some protection
threshold.
This change doesn't change the experience for the user in the normal
case too much. One benefit is that it replaces the (somewhat arbitrary)
100% cutoff with an indefinite slope, which makes it easier to ballpark
a memory.low value.
As well as this, the old methodology doesn't quite apply generically to
machines with varying amounts of physical memory. Let's say we have a
top level cgroup, workload.slice, and another top level cgroup,
system-management.slice. We want to roughly give 12G to
system-management.slice, so on a 32GB machine we set memory.low to 20GB
in workload.slice, and on a 64GB machine we set memory.low to 52GB.
However, because these are relative amounts to the total machine size,
while the amount of memory we want to generally be willing to yield to
system.slice is absolute (12G), we end up putting more pressure on
system.slice just because we have a larger machine and a larger workload
to fill it, which seems fairly unintuitive. With this new behaviour, we
don't end up with this unintended side effect.
Previously the way that memory.low protection works is that if you are
50% over a certain baseline, you get 50% of your normal scan pressure.
This is certainly better than the previous cliff-edge behaviour, but it
can be improved even further by always considering memory under the
currently enforced protection threshold to be out of bounds. This means
that we can set relatively low memory.low thresholds for variable or
bursty workloads while still getting a reasonable level of protection,
whereas with the previous version we may still trivially hit the 100%
clamp. The previous 100% clamp is also somewhat arbitrary, whereas this
one is more concretely based on the currently enforced protection
threshold, which is likely easier to reason about.
There is also a subtle issue with the way that proportional reclaim
worked previously -- it promotes having no memory.low, since it makes
pressure higher during low reclaim. This happens because we base our
scan pressure modulation on how far memory.current is between memory.min
and memory.low, but if memory.low is unset, we only use the overage
method. In most cromulent configurations, this then means that we end
up with *more* pressure than with no memory.low at all when we're in low
reclaim, which is not really very usable or expected.
With this patch, memory.low and memory.min affect reclaim pressure in a
more understandable and composable way. For example, from a user
standpoint, "protected" memory now remains untouchable from a reclaim
aggression standpoint, and users can also have more confidence that
bursty workloads will still receive some amount of guaranteed
protection.
Link: http://lkml.kernel.org/r/20190322160307.GA3316@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Roman points out that when when we do the low reclaim pass, we scale the
reclaim pressure relative to position between 0 and the maximum
protection threshold.
However, if the maximum protection is based on memory.elow, and
memory.emin is above zero, this means we still may get binary behaviour
on second-pass low reclaim. This is because we scale starting at 0, not
starting at memory.emin, and since we don't scan at all below emin, we
end up with cliff behaviour.
This should be a fairly uncommon case since usually we don't go into the
second pass, but it makes sense to scale our low reclaim pressure
starting at emin.
You can test this by catting two large sparse files, one in a cgroup
with emin set to some moderate size compared to physical RAM, and
another cgroup without any emin. In both cgroups, set an elow larger
than 50% of physical RAM. The one with emin will have less page
scanning, as reclaim pressure is lower.
Rebase on top of and apply the same idea as what was applied to handle
cgroup_memory=disable properly for the original proportional patch
http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name ("mm,
memcg: Handle cgroup_disable=memory when getting memcg protection").
Link: http://lkml.kernel.org/r/20190201051810.GA18895@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Suggested-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup v2 introduces two memory protection thresholds: memory.low
(best-effort) and memory.min (hard protection). While they generally do
what they say on the tin, there is a limitation in their implementation
that makes them difficult to use effectively: that cliff behaviour often
manifests when they become eligible for reclaim. This patch implements
more intuitive and usable behaviour, where we gradually mount more
reclaim pressure as cgroups further and further exceed their protection
thresholds.
This cliff edge behaviour happens because we only choose whether or not
to reclaim based on whether the memcg is within its protection limits
(see the use of mem_cgroup_protected in shrink_node), but we don't vary
our reclaim behaviour based on this information. Imagine the following
timeline, with the numbers the lruvec size in this zone:
1. memory.low=1000000, memory.current=999999. 0 pages may be scanned.
2. memory.low=1000000, memory.current=1000000. 0 pages may be scanned.
3. memory.low=1000000, memory.current=1000001. 1000001* pages may be
scanned. (?!)
* Of course, we won't usually scan all available pages in the zone even
without this patch because of scan control priority, over-reclaim
protection, etc. However, as shown by the tests at the end, these
techniques don't sufficiently throttle such an extreme change in input,
so cliff-like behaviour isn't really averted by their existence alone.
Here's an example of how this plays out in practice. At Facebook, we are
trying to protect various workloads from "system" software, like
configuration management tools, metric collectors, etc (see this[0] case
study). In order to find a suitable memory.low value, we start by
determining the expected memory range within which the workload will be
comfortable operating. This isn't an exact science -- memory usage deemed
"comfortable" will vary over time due to user behaviour, differences in
composition of work, etc, etc. As such we need to ballpark memory.low,
but doing this is currently problematic:
1. If we end up setting it too low for the workload, it won't have
*any* effect (see discussion above). The group will receive the full
weight of reclaim and won't have any priority while competing with the
less important system software, as if we had no memory.low configured
at all.
2. Because of this behaviour, we end up erring on the side of setting
it too high, such that the comfort range is reliably covered. However,
protected memory is completely unavailable to the rest of the system,
so we might cause undue memory and IO pressure there when we *know* we
have some elasticity in the workload.
3. Even if we get the value totally right, smack in the middle of the
comfort zone, we get extreme jumps between no pressure and full
pressure that cause unpredictable pressure spikes in the workload due
to the current binary reclaim behaviour.
With this patch, we can set it to our ballpark estimation without too much
worry. Any undesirable behaviour, such as too much or too little reclaim
pressure on the workload or system will be proportional to how far our
estimation is off. This means we can set memory.low much more
conservatively and thus waste less resources *without* the risk of the
workload falling off a cliff if we overshoot.
As a more abstract technical description, this unintuitive behaviour
results in having to give high-priority workloads a large protection
buffer on top of their expected usage to function reliably, as otherwise
we have abrupt periods of dramatically increased memory pressure which
hamper performance. Having to set these thresholds so high wastes
resources and generally works against the principle of work conservation.
In addition, having proportional memory reclaim behaviour has other
benefits. Most notably, before this patch it's basically mandatory to set
memory.low to a higher than desirable value because otherwise as soon as
you exceed memory.low, all protection is lost, and all pages are eligible
to scan again. By contrast, having a gradual ramp in reclaim pressure
means that you now still get some protection when thresholds are exceeded,
which means that one can now be more comfortable setting memory.low to
lower values without worrying that all protection will be lost. This is
important because workingset size is really hard to know exactly,
especially with variable workloads, so at least getting *some* protection
if your workingset size grows larger than you expect increases user
confidence in setting memory.low without a huge buffer on top being
needed.
Thanks a lot to Johannes Weiner and Tejun Heo for their advice and
assistance in thinking about how to make this work better.
In testing these changes, I intended to verify that:
1. Changes in page scanning become gradual and proportional instead of
binary.
To test this, I experimented stepping further and further down
memory.low protection on a workload that floats around 19G workingset
when under memory.low protection, watching page scan rates for the
workload cgroup:
+------------+-----------------+--------------------+--------------+
| memory.low | test (pgscan/s) | control (pgscan/s) | % of control |
+------------+-----------------+--------------------+--------------+
| 21G | 0 | 0 | N/A |
| 17G | 867 | 3799 | 23% |
| 12G | 1203 | 3543 | 34% |
| 8G | 2534 | 3979 | 64% |
| 4G | 3980 | 4147 | 96% |
| 0 | 3799 | 3980 | 95% |
+------------+-----------------+--------------------+--------------+
As you can see, the test kernel (with a kernel containing this
patch) ramps up page scanning significantly more gradually than the
control kernel (without this patch).
2. More gradual ramp up in reclaim aggression doesn't result in
premature OOMs.
To test this, I wrote a script that slowly increments the number of
pages held by stress(1)'s --vm-keep mode until a production system
entered severe overall memory contention. This script runs in a highly
protected slice taking up the majority of available system memory.
Watching vmstat revealed that page scanning continued essentially
nominally between test and control, without causing forward reclaim
progress to become arrested.
[0]: https://facebookmicrosites.github.io/cgroup2/docs/overview.html#case-study-the-fbtax2-project
[akpm@linux-foundation.org: reflow block comments to fit in 80 cols]
[chris@chrisdown.name: handle cgroup_disable=memory when getting memcg protection]
Link: http://lkml.kernel.org/r/20190201045711.GA18302@chrisdown.name
Link: http://lkml.kernel.org/r/20190124014455.GA6396@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "mode" and "level" variables are enums and in this context GCC will
treat them as unsigned ints so the error handling is never triggered.
I also removed the bogus initializer because it isn't required any more
and it's sort of confusing.
[akpm@linux-foundation.org: reduce implicit and explicit typecasting]
[akpm@linux-foundation.org: fix return value, add comment, per Matthew]
Link: http://lkml.kernel.org/r/20190925110449.GO3264@mwanda
Fixes: 3cadfa2b94 ("mm/vmpressure.c: convert to use match_string() helper")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Enrico Weigelt <info@metux.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's a really hard to reproduce race in z3fold between z3fold_free()
and z3fold_reclaim_page(). z3fold_reclaim_page() can claim the page
after z3fold_free() has checked if the page was claimed and
z3fold_free() will then schedule this page for compaction which may in
turn lead to random page faults (since that page would have been
reclaimed by then).
Fix that by claiming page in the beginning of z3fold_free() and not
forgetting to clear the claim in the end.
[vitalywool@gmail.com: v2]
Link: http://lkml.kernel.org/r/20190928113456.152742cf@bigdell
Link: http://lkml.kernel.org/r/20190926104844.4f0c6efa1366b8f5741eaba9@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Reported-by: Markus Linnala <markus.linnala@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Henry Burns <henrywolfeburns@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Markus Linnala <markus.linnala@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Partially revert 16db3d3f11 ("kernel/sysctl.c: threads-max observe
limits") because the patch is causing a regression to any workload which
needs to override the auto-tuning of the limit provided by kernel.
set_max_threads is implementing a boot time guesstimate to provide a
sensible limit of the concurrently running threads so that runaways will
not deplete all the memory. This is a good thing in general but there
are workloads which might need to increase this limit for an application
to run (reportedly WebSpher MQ is affected) and that is simply not
possible after the mentioned change. It is also very dubious to
override an admin decision by an estimation that doesn't have any direct
relation to correctness of the kernel operation.
Fix this by dropping set_max_threads from sysctl_max_threads so any
value is accepted as long as it fits into MAX_THREADS which is important
to check because allowing more threads could break internal robust futex
restriction. While at it, do not use MIN_THREADS as the lower boundary
because it is also only a heuristic for automatic estimation and admin
might have a good reason to stop new threads to be created even when
below this limit.
This became more severe when we switched x86 from 4k to 8k kernel
stacks. Starting since 6538b8ea88 ("x86_64: expand kernel stack to
16K") (3.16) we use THREAD_SIZE_ORDER = 2 and that halved the auto-tuned
value.
In the particular case
3.12
kernel.threads-max = 515561
4.4
kernel.threads-max = 200000
Neither of the two values is really insane on 32GB machine.
I am not sure we want/need to tune the max_thread value further. If
anything the tuning should be removed altogether if proven not useful in
general. But we definitely need a way to override this auto-tuning.
Link: http://lkml.kernel.org/r/20190922065801.GB18814@dhcp22.suse.cz
Fixes: 16db3d3f11 ("kernel/sysctl.c: threads-max observe limits")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In kdump kernel, memcg usually is disabled with 'cgroup_disable=memory'
for saving memory. Now kdump kernel will always panic when dump vmcore
to local disk:
BUG: kernel NULL pointer dereference, address: 0000000000000ab8
Oops: 0000 [#1] SMP NOPTI
CPU: 0 PID: 598 Comm: makedumpfile Not tainted 5.3.0+ #26
Hardware name: HPE ProLiant DL385 Gen10/ProLiant DL385 Gen10, BIOS A40 10/02/2018
RIP: 0010:mem_cgroup_track_foreign_dirty_slowpath+0x38/0x140
Call Trace:
__set_page_dirty+0x52/0xc0
iomap_set_page_dirty+0x50/0x90
iomap_write_end+0x6e/0x270
iomap_write_actor+0xce/0x170
iomap_apply+0xba/0x11e
iomap_file_buffered_write+0x62/0x90
xfs_file_buffered_aio_write+0xca/0x320 [xfs]
new_sync_write+0x12d/0x1d0
vfs_write+0xa5/0x1a0
ksys_write+0x59/0xd0
do_syscall_64+0x59/0x1e0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
And this will corrupt the 1st kernel too with 'cgroup_disable=memory'.
Via the trace and with debugging, it is pointing to commit 97b27821b4
("writeback, memcg: Implement foreign dirty flushing") which introduced
this regression. Disabling memcg causes the null pointer dereference at
uninitialized data in function mem_cgroup_track_foreign_dirty_slowpath().
Fix it by returning directly if memcg is disabled, but not trying to
record the foreign writebacks with dirty pages.
Link: http://lkml.kernel.org/r/20190924141928.GD31919@MiWiFi-R3L-srv
Fixes: 97b27821b4 ("writeback, memcg: Implement foreign dirty flushing")
Signed-off-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We get two warnings when build kernel W=1:
mm/shuffle.c:36:12: warning: no previous prototype for `shuffle_show' [-Wmissing-prototypes]
mm/sparse.c:220:6: warning: no previous prototype for `subsection_mask_set' [-Wmissing-prototypes]
Make the functions static to fix this.
Link: http://lkml.kernel.org/r/1566978161-7293-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SECTION_SIZE and SECTION_MASK macros are not getting used anymore. But
they do conflict with existing definitions on arm64 platform causing
following warning during build. Lets drop these unused macros.
mm/memremap.c:16: warning: "SECTION_MASK" redefined
#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
arch/arm64/include/asm/pgtable-hwdef.h:79: note: this is the location of the previous definition
#define SECTION_MASK (~(SECTION_SIZE-1))
mm/memremap.c:17: warning: "SECTION_SIZE" redefined
#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)
arch/arm64/include/asm/pgtable-hwdef.h:78: note: this is the location of the previous definition
#define SECTION_SIZE (_AC(1, UL) << SECTION_SHIFT)
Link: http://lkml.kernel.org/r/1569312010-31313-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: kbuild test robot <lkp@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling 'panic()' on a kernel with CONFIG_PREEMPT=y can leave the
calling CPU in an infinite loop, but with interrupts and preemption
enabled. From this state, userspace can continue to be scheduled,
despite the system being "dead" as far as the kernel is concerned.
This is easily reproducible on arm64 when booting with "nosmp" on the
command line; a couple of shell scripts print out a periodic "Ping"
message whilst another triggers a crash by writing to
/proc/sysrq-trigger:
| sysrq: Trigger a crash
| Kernel panic - not syncing: sysrq triggered crash
| CPU: 0 PID: 1 Comm: init Not tainted 5.2.15 #1
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0x0/0x148
| show_stack+0x14/0x20
| dump_stack+0xa0/0xc4
| panic+0x140/0x32c
| sysrq_handle_reboot+0x0/0x20
| __handle_sysrq+0x124/0x190
| write_sysrq_trigger+0x64/0x88
| proc_reg_write+0x60/0xa8
| __vfs_write+0x18/0x40
| vfs_write+0xa4/0x1b8
| ksys_write+0x64/0xf0
| __arm64_sys_write+0x14/0x20
| el0_svc_common.constprop.0+0xb0/0x168
| el0_svc_handler+0x28/0x78
| el0_svc+0x8/0xc
| Kernel Offset: disabled
| CPU features: 0x0002,24002004
| Memory Limit: none
| ---[ end Kernel panic - not syncing: sysrq triggered crash ]---
| Ping 2!
| Ping 1!
| Ping 1!
| Ping 2!
The issue can also be triggered on x86 kernels if CONFIG_SMP=n,
otherwise local interrupts are disabled in 'smp_send_stop()'.
Disable preemption in 'panic()' before re-enabling interrupts.
Link: http://lkml.kernel.org/r/20191002123538.22609-1-will@kernel.org
Link: https://lore.kernel.org/r/BX1W47JXPMR8.58IYW53H6M5N@dragonstone
Signed-off-by: Will Deacon <will@kernel.org>
Reported-by: Xogium <contact@xogium.me>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_info_scan_inode_alloc(), there is an if statement on line 283
to check whether inode_alloc is NULL:
if (inode_alloc)
When inode_alloc is NULL, it is used on line 287:
ocfs2_inode_lock(inode_alloc, &bh, 0);
ocfs2_inode_lock_full_nested(inode, ...)
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
Thus, a possible null-pointer dereference may occur.
To fix this bug, inode_alloc is checked on line 286.
This bug is found by a static analysis tool STCheck written by us.
Link: http://lkml.kernel.org/r/20190726033717.32359-1-baijiaju1990@gmail.com
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_write_end_nolock(), there are an if statement on lines 1976,
2047 and 2058, to check whether handle is NULL:
if (handle)
When handle is NULL, it is used on line 2045:
ocfs2_update_inode_fsync_trans(handle, inode, 1);
oi->i_sync_tid = handle->h_transaction->t_tid;
Thus, a possible null-pointer dereference may occur.
To fix this bug, handle is checked before calling
ocfs2_update_inode_fsync_trans().
This bug is found by a static analysis tool STCheck written by us.
Link: http://lkml.kernel.org/r/20190726033705.32307-1-baijiaju1990@gmail.com
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In ocfs2_xa_prepare_entry(), there is an if statement on line 2136 to
check whether loc->xl_entry is NULL:
if (loc->xl_entry)
When loc->xl_entry is NULL, it is used on line 2158:
ocfs2_xa_add_entry(loc, name_hash);
loc->xl_entry->xe_name_hash = cpu_to_le32(name_hash);
loc->xl_entry->xe_name_offset = cpu_to_le16(loc->xl_size);
and line 2164:
ocfs2_xa_add_namevalue(loc, xi);
loc->xl_entry->xe_value_size = cpu_to_le64(xi->xi_value_len);
loc->xl_entry->xe_name_len = xi->xi_name_len;
Thus, possible null-pointer dereferences may occur.
To fix these bugs, if loc-xl_entry is NULL, ocfs2_xa_prepare_entry()
abnormally returns with -EINVAL.
These bugs are found by a static analysis tool STCheck written by us.
[akpm@linux-foundation.org: remove now-unused ocfs2_xa_add_entry()]
Link: http://lkml.kernel.org/r/20190726101447.9153-1-baijiaju1990@gmail.com
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Unused portion of a part-written fs-block-sized block is not set to zero
in unaligned append direct write.This can lead to serious data
inconsistencies.
Ocfs2 manage disk with cluster size(for example, 1M), part-written in
one cluster will change the cluster state from UN-WRITTEN to WRITTEN,
VFS(function dio_zero_block) doesn't do the cleaning because bh's state
is not set to NEW in function ocfs2_dio_wr_get_block when we write a
WRITTEN cluster. For example, the cluster size is 1M, file size is 8k
and we direct write from 14k to 15k, then 12k~14k and 15k~16k will
contain dirty data.
We have to deal with two cases:
1.The starting position of direct write is outside the file.
2.The starting position of direct write is located in the file.
We need set bh's state to NEW in the first case. In the second case, we
need mapped twice because bh's state of area out file should be set to
NEW while area in file not.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/5292e287-8f1a-fd4a-1a14-661e555e0bed@huawei.com
Signed-off-by: Jia Guo <guojia12@huawei.com>
Reviewed-by: Yiwen Jiang <jiangyiwen@huawei.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently execution of panic() continues until Xen's panic notifier
(xen_panic_event()) is called at which point we make a hypercall that
never returns.
This means that any notifier that is supposed to be called later as
well as significant part of panic() code (such as pstore writes from
kmsg_dump()) is never executed.
There is no reason for xen_panic_event() to be this last point in
execution since panic()'s emergency_restart() will call into
xen_emergency_restart() from where we can perform our hypercall.
Nevertheless, we will provide xen_legacy_crash boot option that will
preserve original behavior during crash. This option could be used,
for example, if running kernel dumper (which happens after panic
notifiers) is undesirable.
Reported-by: James Dingwall <james@dingwall.me.uk>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
For the kernel space, all ebreak instructions are determined at compile
time because the kernel space debugging module is currently unsupported.
Hence, it should be treated as a bug if an ebreak instruction which does
not belong to BUG_TRAP_TYPE_WARN or BUG_TRAP_TYPE_BUG is executed in
kernel space. For the userspace, debugging module or user problem may
intentionally insert an ebreak instruction to trigger a SIGTRAP signal.
To approach the above two situations, the do_trap_break() will direct
the BUG_TRAP_TYPE_NONE ebreak exception issued in kernel space to die()
and will send a SIGTRAP to the trapped process only when the ebreak is
in userspace.
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[paul.walmsley@sifive.com: fixed checkpatch issue]
Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
On RISC-V, when the kernel runs code on behalf of a user thread, and the
kernel executes a WARN() or WARN_ON(), the user thread will be sent
a bogus SIGTRAP. Fix the RISC-V kernel code to not send a SIGTRAP when
a WARN()/WARN_ON() is executed.
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
[paul.walmsley@sifive.com: fixed subject]
Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
When the CONFIG_GENERIC_BUG is disabled by disabling CONFIG_BUG, if a
kernel thread is trapped by BUG(), the whole system will be in the
loop that infinitely handles the ebreak exception instead of entering the
die function. To fix this problem, the do_trap_break() will always call
the die() to deal with the break exception as the type of break is
BUG_TRAP_TYPE_BUG.
Signed-off-by: Vincent Chen <vincent.chen@sifive.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Paul Walmsley <paul.walmsley@sifive.com>
Commit 3c1d3f0979 ("MIPS: futex: Emit Loongson3 sync workarounds
within asm") inadvertently removed the newlines following
__WEAK_LLSC_MB, which causes build failures for configurations in which
__WEAK_LLSC_MB expands to a sync instruction:
{standard input}: Assembler messages:
{standard input}:9346: Error: symbol `sync3' is already defined
{standard input}:9380: Error: symbol `sync3' is already defined
...
Fix this by restoring the newlines to separate the sync instruction from
anything following it (such as the 3: label), preventing inadvertent
concatenation.
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: 3c1d3f0979 ("MIPS: futex: Emit Loongson3 sync workarounds within asm")
In commit 9f79b78ef7 ("Convert filldir[64]() from __put_user() to
unsafe_put_user()") I made filldir() use unsafe_put_user(), which
improves code generation on x86 enormously.
But because we didn't have a "unsafe_copy_to_user()", the dirent name
copy was also done by hand with unsafe_put_user() in a loop, and it
turns out that a lot of other architectures didn't like that, because
unlike x86, they have various alignment issues.
Most non-x86 architectures trap and fix it up, and some (like xtensa)
will just fail unaligned put_user() accesses unconditionally. Which
makes that "copy using put_user() in a loop" not work for them at all.
I could make that code do explicit alignment etc, but the architectures
that don't like unaligned accesses also don't really use the fancy
"user_access_begin/end()" model, so they might just use the regular old
__copy_to_user() interface.
So this commit takes that looping implementation, turns it into the x86
version of "unsafe_copy_to_user()", and makes other architectures
implement the unsafe copy version as __copy_to_user() (the same way they
do for the other unsafe_xyz() accessor functions).
Note that it only does this for the copying _to_ user space, and we
still don't have a unsafe version of copy_from_user().
That's partly because we have no current users of it, but also partly
because the copy_from_user() case is slightly different and cannot
efficiently be implemented in terms of a unsafe_get_user() loop (because
gcc can't do asm goto with outputs).
It would be trivial to do this using "rep movsb", which would work
really nicely on newer x86 cores, but really badly on some older ones.
Al Viro is looking at cleaning up all our user copy routines to make
this all a non-issue, but for now we have this simple-but-stupid version
for x86 that works fine for the dirent name copy case because those
names are short strings and we simply don't need anything fancier.
Fixes: 9f79b78ef7 ("Convert filldir[64]() from __put_user() to unsafe_put_user()")
Reported-by: Guenter Roeck <linux@roeck-us.net>
Reported-and-tested-by: Tony Luck <tony.luck@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since dropping the set-to-gtt-domain in commit a679f58d05 ("drm/i915:
Flush pages on acquisition"), we no longer mark the contents as dirty on
a write fault. This has the issue of us then not marking the pages as
dirty on releasing the buffer, which means the contents are not written
out to the swap device (should we ever pick that buffer as a victim).
Notably, this is visible in the dumb buffer interface used for cursors.
Having updated the cursor contents via mmap, and swapped away, if the
shrinker should evict the old cursor, upon next reuse, the cursor would
be invisible.
E.g. echo 80 > /proc/sys/kernel/sysrq ; echo f > /proc/sysrq-trigger
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111541
Fixes: a679f58d05 ("drm/i915: Flush pages on acquisition")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Matthew Auld <matthew.william.auld@gmail.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Cc: <stable@vger.kernel.org> # v5.2+
Reviewed-by: Matthew Auld <matthew.william.auld@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190920121821.7223-1-chris@chris-wilson.co.uk
(cherry picked from commit 5028851cdf)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Force bonded requests to run on distinct engines so that they cannot be
shuffled onto the same engine where timeslicing will reverse the order.
A bonded request will often wait on a semaphore signaled by its master,
creating an implicit dependency -- if we ignore that implicit dependency
and allow the bonded request to run on the same engine and before its
master, we will cause a GPU hang. [Whether it will hang the GPU is
debatable, we should keep on timeslicing and each timeslice should be
"accidentally" counted as forward progress, in which case it should run
but at one-half to one-third speed.]
We can prevent this inversion by restricting which engines we allow
ourselves to jump to upon preemption, i.e. baking in the arrangement
established at first execution. (We should also consider capturing the
implicit dependency using i915_sched_add_dependency(), but first we need
to think about the constraints that requires on the execution/retirement
ordering.)
Fixes: 8ee36e048c ("drm/i915/execlists: Minimalistic timeslicing")
References: ee1136908e ("drm/i915/execlists: Virtual engine bonding")
Testcase: igt/gem_exec_balancer/bonded-slice
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190923152844.8914-3-chris@chris-wilson.co.uk
(cherry picked from commit e2144503bf)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
The officially validated plane width limit is 4k on skl+, however
we already had people using 5k displays before we started to enforce
the limit. Also it seems Windows allows 5k resolutions as well
(though not sure if they do it with one plane or two).
According to hw folks 5k should work with the possible
exception of the following features:
- Ytile (already limited to 4k)
- FP16 (already limited to 4k)
- render compression (already limited to 4k)
- KVMR sprite and cursor (don't care)
- horizontal panning (need to verify this)
- pipe and plane scaling (need to verify this)
So apart from last two items on that list we are already
fine. We should really verify what happens with those last
two items but I don't have a 5k display on hand atm so it'll
have to wait.
In the meantime let's just bump the limit back up to 5k since
several users have already been using it without apparent issues.
At least we'll be no worse off than we were prior to lowering
the limits.
Cc: stable@vger.kernel.org
Cc: Sean Paul <sean@poorly.run>
Cc: José Roberto de Souza <jose.souza@intel.com>
Tested-by: Leho Kraav <leho@kraav.com>
Fixes: 372b9ffb57 ("drm/i915: Fix skl+ max plane width")
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111501
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190905135044.2001-1-ville.syrjala@linux.intel.com
Reviewed-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
Reviewed-by: Sean Paul <sean@poorly.run>
(cherry picked from commit bed34ef544)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
A few times in CI, we have detected a GPU hang on our Haswell GT2
systems with the characteristic IPEHR of 0x780c0000. When the PSMI w/a
was first introducted, it was applied to all Haswell, but later on we
found an erratum that supposedly restricted the issue to GT1 and so
constrained it only be applied on GT1. That may have been a mistake...
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111692
Fixes: 167bc759e8 ("drm/i915: Restrict PSMI context load w/a to Haswell GT1")
References: 2c55018347 ("drm/i915: Disable PSMI sleep messages on all rings around context switches")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Acked-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190917194746.26710-1-chris@chris-wilson.co.uk
(cherry picked from commit 56c05de6bd)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
While srcu may use an integer tag, it does not exclude potential error
codes and so may overlap with our own use of -EINTR. Use a separate
outparam to store the tag, and report the error code separately.
Fixes: 2caffbf117 ("drm/i915: Revoke mmaps and prevent access to fence registers across reset")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190912160834.30601-1-chris@chris-wilson.co.uk
(cherry picked from commit eebab60f22)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
This allows userspace to use "legacy" mode for push constants, where
they are committed at 3DPRIMITIVE or flush time, rather than being
committed at 3DSTATE_BINDING_TABLE_POINTERS_XS time. Gen6-8 and Gen11
both use the "legacy" behavior - only Gen9 works in the "new" way.
Conflating push constants with binding tables is painful for userspace,
we would like to be able to avoid doing so.
Signed-off-by: Kenneth Graunke <kenneth@whitecape.org>
Cc: stable@vger.kernel.org
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190911014801.26821-1-kenneth@whitecape.org
(cherry picked from commit 0606259e3b)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
As soon as we re-enable the various functions within the HW, they may go
off and read data via a GGTT offset. Hence, if we have not yet restored
the GGTT PTE before then, they may read and even *write* random locations
in memory.
Detected by DMAR faults during resume.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Martin Peres <martin.peres@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190909110011.8958-4-chris@chris-wilson.co.uk
(cherry picked from commit cec5ca08e3)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
As we may unwind incomplete requests (for preemption) prior to
processing the CSB and the schedule-out events, we may update rq->engine
(resetting it to point back to the parent virtual engine) prior to
calling execlists_schedule_out(), invalidating the assertion that the
request still points to the inflight engine. (The likelihood of this is
increased if the CSB interrupt processing is pushed to the ksoftirqd for
being too slow and direct submission overtakes it.)
Tvrtko summarised it as:
"So unwind from direct submission resets rq->engine and races with
process_csb from the tasklet which notices request has actually
completed."
Reported-by: Vinay Belgaumkar <vinay.belgaumkar@intel.com>
Fixes: df40306902 ("drm/i915/execlists: Lift process_csb() out of the irq-off spinlock")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Vinay Belgaumkar <vinay.belgaumkar@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190907105046.19934-1-chris@chris-wilson.co.uk
(cherry picked from commit d810583fc2)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
IOC3 chips in SGI system are conntected to a bridge ASIC, which has
a 1-wire prom attached with part number information. This changeset
uses this information to create PCI subsystem information, which
the MFD driver uses for further platform device setup.
Signed-off-by: Thomas Bogendoerfer <tbogendoerfer@suse.de>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: James Hogan <jhogan@kernel.org>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Cc: Alessandro Zummo <a.zummo@towertech.it>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jiri Slaby <jslaby@suse.com>
Cc: linux-doc@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: linux-rtc@vger.kernel.org
Cc: linux-serial@vger.kernel.org