- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with other
trees, unfortunately. He has a lot more of these waiting on the wings
that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos, and one
on Spectre vulnerabilities.
- Various improvements to the build system, including automatic markup of
function() references because some people, for reasons I will never
understand, were of the opinion that :c:func:``function()`` is
unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAl0krAEPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Yg98H/AuLqO9LpOgUjF4LhyjxGPdzJkY9RExSJ7km
gznyreLCZgFaJR+AY6YDsd4Jw6OJlPbu1YM/Qo3C3WrZVFVhgL/s2ebvBgCo50A8
raAFd8jTf4/mGCHnAqRotAPQ3mETJUk315B66lBJ6Oc+YdpRhwXWq8ZW2bJxInFF
3HDvoFgMf0KhLuMHUkkL0u3fxH1iA+KvDu8diPbJYFjOdOWENz/CV8wqdVkXRSEW
DJxIq89h/7d+hIG3d1I7Nw+gibGsAdjSjKv4eRKauZs4Aoxd1Gpl62z0JNk6aT3m
dtq4joLdwScydonXROD/Twn2jsu4xYTrPwVzChomElMowW/ZBBY=
=D0eO
-----END PGP SIGNATURE-----
Merge tag 'docs-5.3' of git://git.lwn.net/linux
Pull Documentation updates from Jonathan Corbet:
"It's been a relatively busy cycle for docs:
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with
other trees, unfortunately. He has a lot more of these waiting on
the wings that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos,
and one on Spectre vulnerabilities.
- Various improvements to the build system, including automatic
markup of function() references because some people, for reasons I
will never understand, were of the opinion that
:c:func:``function()`` is unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc"
* tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits)
docs: automarkup.py: ignore exceptions when seeking for xrefs
docs: Move binderfs to admin-guide
Disable Sphinx SmartyPants in HTML output
doc: RCU callback locks need only _bh, not necessarily _irq
docs: format kernel-parameters -- as code
Doc : doc-guide : Fix a typo
platform: x86: get rid of a non-existent document
Add the RCU docs to the core-api manual
Documentation: RCU: Add TOC tree hooks
Documentation: RCU: Rename txt files to rst
Documentation: RCU: Convert RCU UP systems to reST
Documentation: RCU: Convert RCU linked list to reST
Documentation: RCU: Convert RCU basic concepts to reST
docs: filesystems: Remove uneeded .rst extension on toctables
scripts/sphinx-pre-install: fix out-of-tree build
docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/
Documentation: PGP: update for newer HW devices
Documentation: Add section about CPU vulnerabilities for Spectre
Documentation: platform: Delete x86-laptop-drivers.txt
docs: Note that :c:func: should no longer be used
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl0jrIMQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgptlFD/9CNsBX+Aap2lO6wKNr6QISwNAK76GMzEay
s4LSY2kGkXvzv8i89mCuY+8UVNI8WH2/22WnU+8CBAJOjWyFQMsIwH/mrq0oZWRD
J6STJE8rTr6Fc2MvJUWryp/xdBh3+eDIsAdIZVHVAkIzqYPBnpIAwEIeIw8t0xsm
v9ngpQ3WD6ep8tOj9pnG1DGKFg1CmukZCC/Y4CQV1vZtmm2I935zUwNV/TB+Egfx
G8JSC0cSV02LMK88HCnA6MnC/XSUC0qgfXbnmP+TpKlgjVX+P/fuB3oIYcZEu2Rk
3YBpIkhsQytKYbF42KRLsmBH72u6oB9G+tNZTgB1STUDrZqdtD9xwX1rjDlY0ZzP
EUDnk48jl/cxbs+VZrHoE2TcNonLiymV7Kb92juHXdIYmKFQStprGcQUbMaTkMfB
6BYrYLifWx0leu1JJ1i7qhNmug94BYCSCxcRmH0p6kPazPcY9LXNmDWMfMuBPZT7
z79VLZnHF2wNXJyT1cBluwRYYJRT4osWZ3XUaBWFKDgf1qyvXJfrN/4zmgkEIyW7
ivXC+KLlGkhntDlWo2pLKbbyOIKY1HmU6aROaI11k5Zyh0ixKB7tHKavK39l+NOo
YB41+4l6VEpQEyxyRk8tO0sbHpKaKB+evVIK3tTwbY+Q0qTExErxjfWUtOgRWhjx
iXJssPRo4w==
=VSYT
-----END PGP SIGNATURE-----
Merge tag 'for-5.3/block-20190708' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"This is the main block updates for 5.3. Nothing earth shattering or
major in here, just fixes, additions, and improvements all over the
map. This contains:
- Series of documentation fixes (Bart)
- Optimization of the blk-mq ctx get/put (Bart)
- null_blk removal race condition fix (Bob)
- req/bio_op() cleanups (Chaitanya)
- Series cleaning up the segment accounting, and request/bio mapping
(Christoph)
- Series cleaning up the page getting/putting for bios (Christoph)
- block cgroup cleanups and moving it to where it is used (Christoph)
- block cgroup fixes (Tejun)
- Series of fixes and improvements to bcache, most notably a write
deadlock fix (Coly)
- blk-iolatency STS_AGAIN and accounting fixes (Dennis)
- Series of improvements and fixes to BFQ (Douglas, Paolo)
- debugfs_create() return value check removal for drbd (Greg)
- Use struct_size(), where appropriate (Gustavo)
- Two lighnvm fixes (Heiner, Geert)
- MD fixes, including a read balance and corruption fix (Guoqing,
Marcos, Xiao, Yufen)
- block opal shadow mbr additions (Jonas, Revanth)
- sbitmap compare-and-exhange improvemnts (Pavel)
- Fix for potential bio->bi_size overflow (Ming)
- NVMe pull requests:
- improved PCIe suspent support (Keith Busch)
- error injection support for the admin queue (Akinobu Mita)
- Fibre Channel discovery improvements (James Smart)
- tracing improvements including nvmetc tracing support (Minwoo Im)
- misc fixes and cleanups (Anton Eidelman, Minwoo Im, Chaitanya
Kulkarni)"
- Various little fixes and improvements to drivers and core"
* tag 'for-5.3/block-20190708' of git://git.kernel.dk/linux-block: (153 commits)
blk-iolatency: fix STS_AGAIN handling
block: nr_phys_segments needs to be zero for REQ_OP_WRITE_ZEROES
blk-mq: simplify blk_mq_make_request()
blk-mq: remove blk_mq_put_ctx()
sbitmap: Replace cmpxchg with xchg
block: fix .bi_size overflow
block: sed-opal: check size of shadow mbr
block: sed-opal: ioctl for writing to shadow mbr
block: sed-opal: add ioctl for done-mark of shadow mbr
block: never take page references for ITER_BVEC
direct-io: use bio_release_pages in dio_bio_complete
block_dev: use bio_release_pages in bio_unmap_user
block_dev: use bio_release_pages in blkdev_bio_end_io
iomap: use bio_release_pages in iomap_dio_bio_end_io
block: use bio_release_pages in bio_map_user_iov
block: use bio_release_pages in bio_unmap_user
block: optionally mark pages dirty in bio_release_pages
block: move the BIO_NO_PAGE_REF check into bio_release_pages
block: skd_main.c: Remove call to memset after dma_alloc_coherent
block: mtip32xx: Remove call to memset after dma_alloc_coherent
...
-----BEGIN PGP SIGNATURE-----
iQIVAwUAXRyyVvu3V2unywtrAQL3xQ//eifjlELkRAPm2EReWwwahdM+9QL/0bAy
e8eAzP9EaphQGUhpIzM9Y7Cx+a8XW2xACljY8hEFGyxXhDMoLa35oSoJOeay6vQt
QcgWnDYsET8Z7HOsFCP3ZQqlbbqfsB6CbIKtZoEkZ8ib7eXpYcy1qTydu7wqrl4A
AaJalAhlUKKUx9hkGGJTh2xvgmxgSJkxx3cNEWJQ2uGgY/ustBpqqT4iwFDsgA/q
fcYTQFfNQBsC8/SmvQgxJSc+reUdQdp0z1vd8qjpSdFFcTq1qOtK0qDdz1Bbyl24
hAxvNM1KKav83C8aF7oHhEwLrkD+XiYKixdEiCJJp+A2i+vy2v8JnfgtFTpTgLNK
5xu2VmaiWmee9SLCiDIBKE4Ghtkr8DQ/5cKFCwthT8GXgQUtdsdwAaT3bWdCNfRm
DqgU/AyyXhoHXrUM25tPeF3hZuDn2yy6b1TbKA9GCpu5TtznZIHju40Px/XMIpQH
8d6s/pg+u/SnkhjYWaTvTcvsQ2FB/vZY/UzAVyosnoMBkVfL4UtAHGbb8FBVj1nf
Dv5VjSjl4vFjgOr3jygEAeD2cJ7L6jyKbtC/jo4dnOmPrSRShIjvfSU04L3z7FZS
XFjMmGb2Jj8a7vAGFmsJdwmIXZ1uoTwX56DbpNL88eCgZWFPGKU7TisdIWAmJj8U
N9wholjHJgw=
=E3bF
-----END PGP SIGNATURE-----
Merge tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring ACL support from David Howells:
"This changes the permissions model used by keys and keyrings to be
based on an internal ACL by the following means:
- Replace the permissions mask internally with an ACL that contains a
list of ACEs, each with a specific subject with a permissions mask.
Potted default ACLs are available for new keys and keyrings.
ACE subjects can be macroised to indicate the UID and GID specified
on the key (which remain). Future commits will be able to add
additional subject types, such as specific UIDs or domain
tags/namespaces.
Also split a number of permissions to give finer control. Examples
include splitting the revocation permit from the change-attributes
permit, thereby allowing someone to be granted permission to revoke
a key without allowing them to change the owner; also the ability
to join a keyring is split from the ability to link to it, thereby
stopping a process accessing a keyring by joining it and thus
acquiring use of possessor permits.
- Provide a keyctl to allow the granting or denial of one or more
permits to a specific subject. Direct access to the ACL is not
granted, and the ACL cannot be viewed"
* tag 'keys-acl-20190703' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
keys: Provide KEYCTL_GRANT_PERMISSION
keys: Replace uid/gid/perm permissions checking with an ACL
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl0Os1seHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGtx4H/j6i482XzcGFKTBm
A7mBoQpy+kLtoUov4EtBAR62OuwI8rsahW9di37QKndPoQrczWaKBmr3De6LCdPe
v3pl3O6wBbvH5ru+qBPFX9PdNbDvimEChh7LHxmMxNQq3M+AjZAZVJyfpoiFnx35
Fbge+LZaH/k8HMwZmkMr5t9Mpkip715qKg2o9Bua6dkH0AqlcpLlC8d9a+HIVw/z
aAsyGSU8jRwhoAOJsE9bJf0acQ/pZSqmFp0rDKqeFTSDMsbDRKLGq/dgv4nW0RiW
s7xqsjb/rdcvirRj3rv9+lcTVkOtEqwk0PVdL9WOf7g4iYrb3SOIZh8ZyViaDSeH
VTS5zps=
=huBY
-----END PGP SIGNATURE-----
Merge tag 'v5.2-rc6' into for-5.3/block
Merge 5.2-rc6 into for-5.3/block, so we get the same page merge leak
fix. Otherwise we end up having conflicts with future patches between
for-5.3/block and master that touch this area. In particular, it makes
the bio_full() fix hard to backport to stable.
* tag 'v5.2-rc6': (482 commits)
Linux 5.2-rc6
Revert "iommu/vt-d: Fix lock inversion between iommu->lock and device_domain_lock"
Bluetooth: Fix regression with minimum encryption key size alignment
tcp: refine memory limit test in tcp_fragment()
x86/vdso: Prevent segfaults due to hoisted vclock reads
SUNRPC: Fix a credential refcount leak
Revert "SUNRPC: Declare RPC timers as TIMER_DEFERRABLE"
net :sunrpc :clnt :Fix xps refcount imbalance on the error path
NFS4: Only set creation opendata if O_CREAT
ARM: 8867/1: vdso: pass --be8 to linker if necessary
KVM: nVMX: reorganize initial steps of vmx_set_nested_state
KVM: PPC: Book3S HV: Invalidate ERAT when flushing guest TLB entries
habanalabs: use u64_to_user_ptr() for reading user pointers
nfsd: replace Jeff by Chuck as nfsd co-maintainer
inet: clear num_timeout reqsk_alloc()
PCI/P2PDMA: Ignore root complex whitelist when an IOMMU is present
net: mvpp2: debugfs: Add pmap to fs dump
ipv6: Default fib6_type to RTN_UNICAST when not set
net: hns3: Fix inconsistent indenting
net/af_iucv: always register net_device notifier
...
Now we have counters for how many times jouranl is reclaimed, how many
times cached dirty btree nodes are flushed, but we don't know how many
jouranl buckets are really reclaimed.
This patch adds reclaimed_journal_buckets into struct cache_set, this
is an increasing only counter, to tell how many journal buckets are
reclaimed since cache set runs. From all these three counters (reclaim,
reclaimed_journal_buckets, flush_write), we can have idea how well
current journal space reclaim code works.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch improves performance for btree_flush_write() in following
ways,
- Use another spinlock journal.flush_write_lock to replace the very
hot journal.lock. We don't have to use journal.lock here, selecting
candidate btree nodes takes a lot of time, hold journal.lock here will
block other jouranling threads and drop the overall I/O performance.
- Only select flushing btree node from c->btree_cache list. When the
machine has a large system memory, mca cache may have a huge number of
cached btree nodes. Iterating all the cached nodes will take a lot
of CPU time, and most of the nodes on c->btree_cache_freeable and
c->btree_cache_freed lists are cleared and have need to flush. So only
travel mca list c->btree_cache to select flushing btree node should be
enough for most of the cases.
- Don't iterate whole c->btree_cache list, only reversely select first
BTREE_FLUSH_NR btree nodes to flush. Iterate all btree nodes from
c->btree_cache and select the oldest journal pin btree nodes consumes
huge number of CPU cycles if the list is huge (push and pop a node
into/out of a heap is expensive). The last several dirty btree nodes
on the tail of c->btree_cache list are earlest allocated and cached
btree nodes, they are relative to the oldest journal pin btree nodes.
Therefore only flushing BTREE_FLUSH_NR btree nodes from tail of
c->btree_cache probably includes the oldest journal pin btree nodes.
In my testing, the above change decreases 50%+ CPU consumption when
journal space is full. Some times IOPS drops to 0 for 5-8 seconds,
comparing blocking I/O for 120+ seconds in previous code, this is much
better. Maybe there is room to improve in future, but at this momment
the fix looks fine and performs well in my testing.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is a race between mca_reap(), btree_node_free() and journal code
btree_flush_write(), which results very rare and strange deadlock or
panic and are very hard to reproduce.
Let me explain how the race happens. In btree_flush_write() one btree
node with oldest journal pin is selected, then it is flushed to cache
device, the select-and-flush is a two steps operation. Between these two
steps, there are something may happen inside the race window,
- The selected btree node was reaped by mca_reap() and allocated to
other requesters for other btree node.
- The slected btree node was selected, flushed and released by mca
shrink callback bch_mca_scan().
When btree_flush_write() tries to flush the selected btree node, firstly
b->write_lock is held by mutex_lock(). If the race happens and the
memory of selected btree node is allocated to other btree node, if that
btree node's write_lock is held already, a deadlock very probably
happens here. A worse case is the memory of the selected btree node is
released, then all references to this btree node (e.g. b->write_lock)
will trigger NULL pointer deference panic.
This race was introduced in commit cafe563591 ("bcache: A block layer
cache"), and enlarged by commit c4dc2497d5 ("bcache: fix high CPU
occupancy during journal"), which selected 128 btree nodes and flushed
them one-by-one in a quite long time period.
Such race is not easy to reproduce before. On a Lenovo SR650 server with
48 Xeon cores, and configure 1 NVMe SSD as cache device, a MD raid0
device assembled by 3 NVMe SSDs as backing device, this race can be
observed around every 10,000 times btree_flush_write() gets called. Both
deadlock and kernel panic all happened as aftermath of the race.
The idea of the fix is to add a btree flag BTREE_NODE_journal_flush. It
is set when selecting btree nodes, and cleared after btree nodes
flushed. Then when mca_reap() selects a btree node with this bit set,
this btree node will be skipped. Since mca_reap() only reaps btree node
without BTREE_NODE_journal_flush flag, such race is avoided.
Once corner case should be noticed, that is btree_node_free(). It might
be called in some error handling code path. For example the following
code piece from btree_split(),
2149 err_free2:
2150 bkey_put(b->c, &n2->key);
2151 btree_node_free(n2);
2152 rw_unlock(true, n2);
2153 err_free1:
2154 bkey_put(b->c, &n1->key);
2155 btree_node_free(n1);
2156 rw_unlock(true, n1);
At line 2151 and 2155, the btree node n2 and n1 are released without
mac_reap(), so BTREE_NODE_journal_flush also needs to be checked here.
If btree_node_free() is called directly in such error handling path,
and the selected btree node has BTREE_NODE_journal_flush bit set, just
delay for 1 us and retry again. In this case this btree node won't
be skipped, just retry until the BTREE_NODE_journal_flush bit cleared,
and free the btree node memory.
Fixes: cafe563591 ("bcache: A block layer cache")
Signed-off-by: Coly Li <colyli@suse.de>
Reported-and-tested-by: kbuild test robot <lkp@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In struct cache_set, retry_flush_write is added for commit c4dc2497d5
("bcache: fix high CPU occupancy during journal") which is reverted in
previous patch.
Now it is useless anymore, and this patch removes it from bcache code.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When accessing or modifying BTREE_NODE_dirty bit, it is not always
necessary to acquire b->write_lock. In bch_btree_cache_free() and
mca_reap() acquiring b->write_lock is necessary, and this patch adds
comments to explain why mutex_lock(&b->write_lock) is necessary for
checking or clearing BTREE_NODE_dirty bit there.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_btree_cache_free() and btree_node_free(), BTREE_NODE_dirty is
always set no matter btree node is dirty or not. The code looks like
this,
if (btree_node_dirty(b))
btree_complete_write(b, btree_current_write(b));
clear_bit(BTREE_NODE_dirty, &b->flags);
Indeed if btree_node_dirty(b) returns false, it means BTREE_NODE_dirty
bit is cleared, then it is unnecessary to clear the bit again.
This patch only clears BTREE_NODE_dirty when btree_node_dirty(b) is
true (the bit is set), to save a few CPU cycles.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit c4dc2497d5.
This patch enlarges a race between normal btree flush code path and
flush_btree_write(), which causes deadlock when journal space is
exhausted. Reverts this patch makes the race window from 128 btree
nodes to only 1 btree nodes.
Fixes: c4dc2497d5 ("bcache: fix high CPU occupancy during journal")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 6268dc2c47.
This patch depends on commit c4dc2497d5 ("bcache: fix high CPU
occupancy during journal") which is reverted in previous patch. So
revert this one too.
Fixes: 6268dc2c47 ("bcache: free heap cache_set->flush_btree in bch_journal_free")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When cache set starts, bch_btree_check() will check all bkeys on cache
device by calculating the checksum. This operation will consume a huge
number of system memory if there are a lot of data cached. Since bcache
uses its own mca cache to maintain all its read-in btree nodes, and only
releases the cache space when system memory manage code starts to shrink
caches. Then before memory manager code to call the mca cache shrinker
callback, bcache mca cache will compete memory resource with user space
application, which may have nagive effect to performance of user space
workloads (e.g. data base, or I/O service of distributed storage node).
This patch tries to call bcache mca shrinker routine to proactively
release mca cache memory, to decrease the memory pressure of system and
avoid negative effort of the overall system I/O performance.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In journal_read_bucket() when setting ja->seq[bucket_index], there might
be potential case that a later non-maximum overwrites a better sequence
number to ja->seq[bucket_index]. This patch adds a check to make sure
that ja->seq[bucket_index] will be only set a new value if it is bigger
then current value.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more code comments in journal_read_bucket(), this is an
effort to make the code to be more understandable.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When enable lockdep and reboot system with a writeback mode bcache
device, the following potential deadlock warning is reported by lockdep
engine.
[ 101.536569][ T401] kworker/2:2/401 is trying to acquire lock:
[ 101.538575][ T401] 00000000bbf6e6c7 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 101.542054][ T401]
[ 101.542054][ T401] but task is already holding lock:
[ 101.544587][ T401] 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.548386][ T401]
[ 101.548386][ T401] which lock already depends on the new lock.
[ 101.548386][ T401]
[ 101.551874][ T401]
[ 101.551874][ T401] the existing dependency chain (in reverse order) is:
[ 101.555000][ T401]
[ 101.555000][ T401] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 101.557860][ T401] process_one_work+0x277/0x640
[ 101.559661][ T401] worker_thread+0x39/0x3f0
[ 101.561340][ T401] kthread+0x125/0x140
[ 101.562963][ T401] ret_from_fork+0x3a/0x50
[ 101.564718][ T401]
[ 101.564718][ T401] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 101.567701][ T401] lock_acquire+0xb4/0x1c0
[ 101.569651][ T401] flush_workqueue+0xae/0x4c0
[ 101.571494][ T401] drain_workqueue+0xa9/0x180
[ 101.573234][ T401] destroy_workqueue+0x17/0x250
[ 101.575109][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.577304][ T401] process_one_work+0x2a4/0x640
[ 101.579357][ T401] worker_thread+0x39/0x3f0
[ 101.581055][ T401] kthread+0x125/0x140
[ 101.582709][ T401] ret_from_fork+0x3a/0x50
[ 101.584592][ T401]
[ 101.584592][ T401] other info that might help us debug this:
[ 101.584592][ T401]
[ 101.588355][ T401] Possible unsafe locking scenario:
[ 101.588355][ T401]
[ 101.590974][ T401] CPU0 CPU1
[ 101.592889][ T401] ---- ----
[ 101.594743][ T401] lock((work_completion)(&cl->work)#2);
[ 101.596785][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.600072][ T401] lock((work_completion)(&cl->work)#2);
[ 101.602971][ T401] lock((wq_completion)bcache_writeback_wq);
[ 101.605255][ T401]
[ 101.605255][ T401] *** DEADLOCK ***
[ 101.605255][ T401]
[ 101.608310][ T401] 2 locks held by kworker/2:2/401:
[ 101.610208][ T401] #0: 00000000cf2c7d17 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 101.613709][ T401] #1: 00000000f5f305b3 ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 101.617480][ T401]
[ 101.617480][ T401] stack backtrace:
[ 101.619539][ T401] CPU: 2 PID: 401 Comm: kworker/2:2 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1
[ 101.623225][ T401] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 101.627210][ T401] Workqueue: events cached_dev_free [bcache]
[ 101.629239][ T401] Call Trace:
[ 101.630360][ T401] dump_stack+0x85/0xcb
[ 101.631777][ T401] print_circular_bug+0x19a/0x1f0
[ 101.633485][ T401] __lock_acquire+0x16cd/0x1850
[ 101.635184][ T401] ? __lock_acquire+0x6a8/0x1850
[ 101.636863][ T401] ? lock_acquire+0xb4/0x1c0
[ 101.638421][ T401] ? find_held_lock+0x34/0xa0
[ 101.640015][ T401] lock_acquire+0xb4/0x1c0
[ 101.641513][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.643248][ T401] flush_workqueue+0xae/0x4c0
[ 101.644832][ T401] ? flush_workqueue+0x87/0x4c0
[ 101.646476][ T401] ? drain_workqueue+0xa9/0x180
[ 101.648303][ T401] drain_workqueue+0xa9/0x180
[ 101.649867][ T401] destroy_workqueue+0x17/0x250
[ 101.651503][ T401] cached_dev_free+0x44/0x120 [bcache]
[ 101.653328][ T401] process_one_work+0x2a4/0x640
[ 101.655029][ T401] worker_thread+0x39/0x3f0
[ 101.656693][ T401] ? process_one_work+0x640/0x640
[ 101.658501][ T401] kthread+0x125/0x140
[ 101.660012][ T401] ? kthread_create_worker_on_cpu+0x70/0x70
[ 101.661985][ T401] ret_from_fork+0x3a/0x50
[ 101.691318][ T401] bcache: bcache_device_free() bcache0 stopped
Here is how the above potential deadlock may happen in reboot/shutdown
code path,
1) bcache_reboot() is called firstly in the reboot/shutdown code path,
then in bcache_reboot(), bcache_device_stop() is called.
2) bcache_device_stop() sets BCACHE_DEV_CLOSING on d->falgs, then call
closure_queue(&d->cl) to invoke cached_dev_flush(). And in turn
cached_dev_flush() calls cached_dev_free() via closure_at()
3) In cached_dev_free(), after stopped writebach kthread
dc->writeback_thread, the kwork dc->writeback_write_wq is stopping by
destroy_workqueue().
4) Inside destroy_workqueue(), drain_workqueue() is called. Inside
drain_workqueue(), flush_workqueue() is called. Then wq->lockdep_map
is acquired by lock_map_acquire() in flush_workqueue(). After the
lock acquired the rest part of flush_workqueue() just wait for the
workqueue to complete.
5) Now we look back at writeback thread routine bch_writeback_thread(),
in the main while-loop, write_dirty() is called via continue_at() in
read_dirty_submit(), which is called via continue_at() in while-loop
level called function read_dirty(). Inside write_dirty() it may be
re-called on workqueeu dc->writeback_write_wq via continue_at().
It means when the writeback kthread is stopped in cached_dev_free()
there might be still one kworker queued on dc->writeback_write_wq
to execute write_dirty() again.
6) Now this kworker is scheduled on dc->writeback_write_wq to run by
process_one_work() (which is called by worker_thread()). Before
calling the kwork routine, wq->lockdep_map is acquired.
7) But wq->lockdep_map is acquired already in step 4), so a A-A lock
(lockdep terminology) scenario happens.
Indeed on multiple cores syatem, the above deadlock is very rare to
happen, just as the code comments in process_one_work() says,
2263 * AFAICT there is no possible deadlock scenario between the
2264 * flush_work() and complete() primitives (except for
single-threaded
2265 * workqueues), so hiding them isn't a problem.
But it is still good to fix such lockdep warning, even no one running
bcache on single core system.
The fix is simple. This patch solves the above potential deadlock by,
- Do not destroy workqueue dc->writeback_write_wq in cached_dev_free().
- Flush and destroy dc->writeback_write_wq in writebach kthread routine
bch_writeback_thread(), where after quit the thread main while-loop
and before cached_dev_put() is called.
By this fix, dc->writeback_write_wq will be stopped and destroy before
the writeback kthread stopped, so the chance for a A-A locking on
wq->lockdep_map is disappeared, such A-A deadlock won't happen
any more.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When enable lockdep engine, a lockdep warning can be observed when
reboot or shutdown system,
[ 3142.764557][ T1] bcache: bcache_reboot() Stopping all devices:
[ 3142.776265][ T2649]
[ 3142.777159][ T2649] ======================================================
[ 3142.780039][ T2649] WARNING: possible circular locking dependency detected
[ 3142.782869][ T2649] 5.2.0-rc4-lp151.20-default+ #1 Tainted: G W
[ 3142.785684][ T2649] ------------------------------------------------------
[ 3142.788479][ T2649] kworker/3:67/2649 is trying to acquire lock:
[ 3142.790738][ T2649] 00000000aaf02291 ((wq_completion)bcache_writeback_wq){+.+.}, at: flush_workqueue+0x87/0x4c0
[ 3142.794678][ T2649]
[ 3142.794678][ T2649] but task is already holding lock:
[ 3142.797402][ T2649] 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.801462][ T2649]
[ 3142.801462][ T2649] which lock already depends on the new lock.
[ 3142.801462][ T2649]
[ 3142.805277][ T2649]
[ 3142.805277][ T2649] the existing dependency chain (in reverse order) is:
[ 3142.808902][ T2649]
[ 3142.808902][ T2649] -> #2 (&bch_register_lock){+.+.}:
[ 3142.812396][ T2649] __mutex_lock+0x7a/0x9d0
[ 3142.814184][ T2649] cached_dev_free+0x17/0x120 [bcache]
[ 3142.816415][ T2649] process_one_work+0x2a4/0x640
[ 3142.818413][ T2649] worker_thread+0x39/0x3f0
[ 3142.820276][ T2649] kthread+0x125/0x140
[ 3142.822061][ T2649] ret_from_fork+0x3a/0x50
[ 3142.823965][ T2649]
[ 3142.823965][ T2649] -> #1 ((work_completion)(&cl->work)#2){+.+.}:
[ 3142.827244][ T2649] process_one_work+0x277/0x640
[ 3142.829160][ T2649] worker_thread+0x39/0x3f0
[ 3142.830958][ T2649] kthread+0x125/0x140
[ 3142.832674][ T2649] ret_from_fork+0x3a/0x50
[ 3142.834915][ T2649]
[ 3142.834915][ T2649] -> #0 ((wq_completion)bcache_writeback_wq){+.+.}:
[ 3142.838121][ T2649] lock_acquire+0xb4/0x1c0
[ 3142.840025][ T2649] flush_workqueue+0xae/0x4c0
[ 3142.842035][ T2649] drain_workqueue+0xa9/0x180
[ 3142.844042][ T2649] destroy_workqueue+0x17/0x250
[ 3142.846142][ T2649] cached_dev_free+0x52/0x120 [bcache]
[ 3142.848530][ T2649] process_one_work+0x2a4/0x640
[ 3142.850663][ T2649] worker_thread+0x39/0x3f0
[ 3142.852464][ T2649] kthread+0x125/0x140
[ 3142.854106][ T2649] ret_from_fork+0x3a/0x50
[ 3142.855880][ T2649]
[ 3142.855880][ T2649] other info that might help us debug this:
[ 3142.855880][ T2649]
[ 3142.859663][ T2649] Chain exists of:
[ 3142.859663][ T2649] (wq_completion)bcache_writeback_wq --> (work_completion)(&cl->work)#2 --> &bch_register_lock
[ 3142.859663][ T2649]
[ 3142.865424][ T2649] Possible unsafe locking scenario:
[ 3142.865424][ T2649]
[ 3142.868022][ T2649] CPU0 CPU1
[ 3142.869885][ T2649] ---- ----
[ 3142.871751][ T2649] lock(&bch_register_lock);
[ 3142.873379][ T2649] lock((work_completion)(&cl->work)#2);
[ 3142.876399][ T2649] lock(&bch_register_lock);
[ 3142.879727][ T2649] lock((wq_completion)bcache_writeback_wq);
[ 3142.882064][ T2649]
[ 3142.882064][ T2649] *** DEADLOCK ***
[ 3142.882064][ T2649]
[ 3142.885060][ T2649] 3 locks held by kworker/3:67/2649:
[ 3142.887245][ T2649] #0: 00000000e774cdd0 ((wq_completion)events){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.890815][ T2649] #1: 00000000f7df89da ((work_completion)(&cl->work)#2){+.+.}, at: process_one_work+0x21e/0x640
[ 3142.894884][ T2649] #2: 000000004fcf89c5 (&bch_register_lock){+.+.}, at: cached_dev_free+0x17/0x120 [bcache]
[ 3142.898797][ T2649]
[ 3142.898797][ T2649] stack backtrace:
[ 3142.900961][ T2649] CPU: 3 PID: 2649 Comm: kworker/3:67 Tainted: G W 5.2.0-rc4-lp151.20-default+ #1
[ 3142.904789][ T2649] Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/13/2018
[ 3142.909168][ T2649] Workqueue: events cached_dev_free [bcache]
[ 3142.911422][ T2649] Call Trace:
[ 3142.912656][ T2649] dump_stack+0x85/0xcb
[ 3142.914181][ T2649] print_circular_bug+0x19a/0x1f0
[ 3142.916193][ T2649] __lock_acquire+0x16cd/0x1850
[ 3142.917936][ T2649] ? __lock_acquire+0x6a8/0x1850
[ 3142.919704][ T2649] ? lock_acquire+0xb4/0x1c0
[ 3142.921335][ T2649] ? find_held_lock+0x34/0xa0
[ 3142.923052][ T2649] lock_acquire+0xb4/0x1c0
[ 3142.924635][ T2649] ? flush_workqueue+0x87/0x4c0
[ 3142.926375][ T2649] flush_workqueue+0xae/0x4c0
[ 3142.928047][ T2649] ? flush_workqueue+0x87/0x4c0
[ 3142.929824][ T2649] ? drain_workqueue+0xa9/0x180
[ 3142.931686][ T2649] drain_workqueue+0xa9/0x180
[ 3142.933534][ T2649] destroy_workqueue+0x17/0x250
[ 3142.935787][ T2649] cached_dev_free+0x52/0x120 [bcache]
[ 3142.937795][ T2649] process_one_work+0x2a4/0x640
[ 3142.939803][ T2649] worker_thread+0x39/0x3f0
[ 3142.941487][ T2649] ? process_one_work+0x640/0x640
[ 3142.943389][ T2649] kthread+0x125/0x140
[ 3142.944894][ T2649] ? kthread_create_worker_on_cpu+0x70/0x70
[ 3142.947744][ T2649] ret_from_fork+0x3a/0x50
[ 3142.970358][ T2649] bcache: bcache_device_free() bcache0 stopped
Here is how the deadlock happens.
1) bcache_reboot() calls bcache_device_stop(), then inside
bcache_device_stop() BCACHE_DEV_CLOSING bit is set on d->flags.
Then closure_queue(&d->cl) is called to invoke cached_dev_flush().
2) In cached_dev_flush(), cached_dev_free() is called by continu_at().
3) In cached_dev_free(), when stopping the writeback kthread of the
cached device by kthread_stop(), dc->writeback_thread will be waken
up to quite the kthread while-loop, then cached_dev_put() is called
in bch_writeback_thread().
4) Calling cached_dev_put() in writeback kthread may drop dc->count to
0, then dc->detach kworker is scheduled, which is initialized as
cached_dev_detach_finish().
5) Inside cached_dev_detach_finish(), the last line of code is to call
closure_put(&dc->disk.cl), which drops the last reference counter of
closrure dc->disk.cl, then the callback cached_dev_flush() gets
called.
Now cached_dev_flush() is called for second time in the code path, the
first time is in step 2). And again bch_register_lock will be acquired
again, and a A-A lock (lockdep terminology) is happening.
The root cause of the above A-A lock is in cached_dev_free(), mutex
bch_register_lock is held before stopping writeback kthread and other
kworkers. Fortunately now we have variable 'bcache_is_reboot', which may
prevent device registration or unregistration during reboot/shutdown
time, so it is unncessary to hold bch_register_lock such early now.
This is how this patch fixes the reboot/shutdown time A-A lock issue:
After moving mutex_lock(&bch_register_lock) to a later location where
before atomic_read(&dc->running) in cached_dev_free(), such A-A lock
problem can be solved without any reboot time registration race.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now there is variable bcache_is_reboot to prevent device register or
unregister during reboot, it is unncessary to still hold mutex lock
bch_register_lock before stopping writeback_rate_update kworker and
writeback kthread. And if the stopping kworker or kthread holding
bch_register_lock inside their routine (we used to have such problem
in writeback thread, thanks to Junhui Wang fixed it), it is very easy
to introduce deadlock during reboot/shutdown procedure.
Therefore in this patch, the location to acquire bch_register_lock is
moved to the location before calling calc_cached_dev_sectors(). Which
is later then original location in cached_dev_detach_finish().
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
It is quite frequently to observe deadlock in bcache_reboot() happens
and hang the system reboot process. The reason is, in bcache_reboot()
when calling bch_cache_set_stop() and bcache_device_stop() the mutex
bch_register_lock is held. But in the process to stop cache set and
bcache device, bch_register_lock will be acquired again. If this mutex
is held here, deadlock will happen inside the stopping process. The
aftermath of the deadlock is, whole system reboot gets hung.
The fix is to avoid holding bch_register_lock for the following loops
in bcache_reboot(),
list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
bch_cache_set_stop(c);
list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
bcache_device_stop(&dc->disk);
A module range variable 'bcache_is_reboot' is added, it sets to true
in bcache_reboot(). In register_bcache(), if bcache_is_reboot is checked
to be true, reject the registration by returning -EBUSY immediately.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_cached_dev_attach() after bch_cached_dev_writeback_start()
called, the wrireback kthread and writeback rate update kworker of the
cached device are created, if the following bch_cached_dev_run()
failed, bch_cached_dev_attach() will return with -ENOMEM without
stopping the writeback related kthread and kworker.
This patch stops writeback kthread and writeback rate update kworker
before returning -ENOMEM if bch_cached_dev_run() returns error.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit 9baf30972b ("bcache: fix for gc and write-back race") added a
new work queue dc->writeback_write_wq, but forgot to destroy it in the
error condition when creating dc->writeback_thread failed.
This patch destroys dc->writeback_write_wq if kthread_create() returns
error pointer to dc->writeback_thread, then a memory leak is avoided.
Fixes: 9baf30972b ("bcache: fix for gc and write-back race")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In bch_cached_dev_files[] from driver/md/bcache/sysfs.c, sysfs_errors is
incorrectly inserted in. The correct entry should be sysfs_io_errors.
This patch fixes the problem and now I/O errors of cached device can be
read from /sys/block/bcache<N>/bcache/io_errors.
Fixes: c7b7bd0740 ("bcache: add io_disable to struct cached_dev")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If a bcache device is in dirty state and its cache set is not
registered, this bcache device will not appear in /dev/bcache<N>,
and there is no way to stop it or remove the bcache kernel module.
This is an as-designed behavior, but sometimes people has to reboot
whole system to release or stop the pending backing device.
This sysfs interface may remove such pending bcache devices when
write anything into the sysfs file manually.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The purpose of following code in bset_search_tree() is to avoid a branch
instruction,
994 if (likely(f->exponent != 127))
995 n = j * 2 + (((unsigned int)
996 (f->mantissa -
997 bfloat_mantissa(search, f))) >> 31);
998 else
999 n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
1000 ? j * 2
1001 : j * 2 + 1;
This piece of code is not very clear to understand, even when I tried to
add code comment for it, I made mistake. This patch removes the implict
bit operation and uses explicit branch to calculate next location in
binary tree search.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In previous bcache patches for Linux v5.2, the failure code path of
run_cache_set() is tested and fixed. So now the following comment
line can be removed from run_cache_set(),
/* XXX: test this, it's broken */
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more error message in bch_cached_dev_run() to indicate
the exact reason why an error value is returned. Please notice when
printing out the "is running already" message, pr_info() is used here,
because in this case also -EBUSY is returned, the bcache device can
continue to attach to the cache devince and run, so it won't be an
error level message in kernel message.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more error message for attaching cached device, this is
helpful to debug code failure during bache device start up.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more accurate error message for specific
ssyfs_create_link() call, to help debugging failure during
bcache device start tup.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When too many I/O errors happen on cache set and CACHE_SET_IO_DISABLE
bit is set, bch_journal() may continue to work because the journaling
bkey might be still in write set yet. The caller of bch_journal() may
believe the journal still work but the truth is in-memory journal write
set won't be written into cache device any more. This behavior may
introduce potential inconsistent metadata status.
This patch checks CACHE_SET_IO_DISABLE bit at the head of bch_journal(),
if the bit is set, bch_journal() returns NULL immediately to notice
caller to know journal does not work.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
If CACHE_SET_IO_DISABLE of a cache set flag is set by too many I/O
errors, currently allocator routines can still continue allocate
space which may introduce inconsistent metadata state.
This patch checkes CACHE_SET_IO_DISABLE bit in following allocator
routines,
- bch_bucket_alloc()
- __bch_bucket_alloc_set()
Once CACHE_SET_IO_DISABLE is set on cache set, the allocator routines
may reject allocation request earlier to avoid potential inconsistent
metadata.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Function bch_btree_keys_init() initializes b->set[].size and
b->set[].data to zero. As the code comments indicates, these code indeed
is unncessary, because both struct btree_keys and struct bset_tree are
nested embedded into struct btree, when struct btree is filled with 0
bits by kzalloc() in mca_bucket_alloc(), b->set[].size and
b->set[].data are initialized to 0 (a.k.a NULL) already.
This patch removes the redundant code, and add comments in
bch_btree_keys_init() and mca_bucket_alloc() to explain why it's safe.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds return value check to bch_cached_dev_run(), now if there
is error happens inside bch_cached_dev_run(), it can be catched.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The arrays (of strings) that are passed to __sysfs_match_string() are
static, so use sysfs_match_string() which does an implicit ARRAY_SIZE()
over these arrays.
Functionally, this doesn't change anything.
The change is more cosmetic.
It only shrinks the static arrays by 1 byte each.
Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In function bset_search_tree(), when p >= t->size, t->tree[0] will be
prefetched by the following code piece,
974 unsigned int p = n << 4;
975
976 p &= ((int) (p - t->size)) >> 31;
977
978 prefetch(&t->tree[p]);
The purpose of the above code is to avoid a branch instruction, but
when p >= t->size, prefetch(&t->tree[0]) has no positive performance
contribution at all. This patch avoids the unncessary prefetch by only
calling prefetch() when p < t->size.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When backing device super block is written by bch_write_bdev_super(),
the bio complete callback write_bdev_super_endio() simply ignores I/O
status. Indeed such write request also contribute to backing device
health status if the request failed.
This patch checkes bio->bi_status in write_bdev_super_endio(), if there
is error, bch_count_backing_io_errors() will be called to count an I/O
error to dc->io_errors.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When md raid device (e.g. raid456) is used as backing device, read-ahead
requests on a degrading and recovering md raid device might be failured
immediately by md raid code, but indeed this md raid array can still be
read or write for normal I/O requests. Therefore such failed read-ahead
request are not real hardware failure. Further more, after degrading and
recovering accomplished, read-ahead requests will be handled by md raid
array again.
For such condition, I/O failures of read-ahead requests don't indicate
real health status (because normal I/O still be served), they should not
be counted into I/O error counter dc->io_errors.
Since there is no simple way to detect whether the backing divice is a
md raid device, this patch simply ignores I/O failures for read-ahead
bios on backing device, to avoid bogus backing device failure on a
degrading md raid array.
Suggested-and-tested-by: Thorsten Knabe <linux@thorsten-knabe.de>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When cache_set_flush() is called for too many I/O errors detected on
cache device and the cache set is retiring, inside the function it
doesn't make sense to flushing cached btree nodes from c->btree_cache
because CACHE_SET_IO_DISABLE is set on c->flags already and all I/Os
onto cache device will be rejected.
This patch checks in cache_set_flush() that whether CACHE_SET_IO_DISABLE
is set. If yes, then avoids to flush the cached btree nodes to reduce
more time and make cache set retiring more faster.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 6147305c73.
Although this patch helps the failed bcache device to stop faster when
too many I/O errors detected on corresponding cached device, setting
CACHE_SET_IO_DISABLE bit to cache set c->flags was not a good idea. This
operation will disable all I/Os on cache set, which means other attached
bcache devices won't work neither.
Without this patch, the failed bcache device can also be stopped
eventually if internal I/O accomplished (e.g. writeback). Therefore here
I revert it.
Fixes: 6147305c73 ("bcache: set CACHE_SET_IO_DISABLE in bch_cached_dev_error()")
Reported-by: Yong Li <mr.liyong@qq.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When everything is OK in bch_journal_read(), finally the return value
is returned by,
return ret;
which assumes ret will be 0 here. This assumption is wrong when all
journal buckets as are full and filled with valid journal entries. In
such cache the last location referencess read_bucket() sets 'ret' to
1, which means new jset added into jset list. The jset list is list
'journal' in caller run_cache_set().
Return 1 to run_cache_set() means something wrong and the cache set
won't start, but indeed everything is OK.
This patch changes the line at end of bch_journal_read() to directly
return 0 since everything if verything is good. Then a bogus error
is fixed.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When gc is running, user space I/O processes may wait inside
bcache code, so no new I/O coming. Indeed this is not a real idle
time, maximum writeback rate should not be set in such situation.
Otherwise a faster writeback thread may compete locks with gc thread
and makes garbage collection slower, which results a longer I/O
freeze period.
This patch checks c->gc_mark_valid in set_at_max_writeback_rate(). If
c->gc_mark_valid is 0 (gc running), set_at_max_writeback_rate() returns
false, then update_writeback_rate() will not set writeback rate to
maximum value even c->idle_counter reaches an idle threshold.
Now writeback thread won't interfere gc thread performance.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
init code.
- Fix DM log-writes target's handling of super block sectors so updates
are made in order through use of completion.
- Fix DM core's argument splitting code to avoid undefined behaviour
reported as a side-effect of UBSAN analysis on ppc64le.
- Fix DM verity target to limit the amount of error messages that can
result from a corrupt block being found.
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEJfWUX4UqZ4x1O2wixSPxCi2dA1oFAl0VBp4THHNuaXR6ZXJA
cmVkaGF0LmNvbQAKCRDFI/EKLZ0DWlLKB/9wnB1FWhVIwt5j0e3YpqToThptT22N
sWO/vBKtIR8nbbohXeam7mgh15+D61SpY+8jdkgAlIQonPzCwFrgSWdtpbbveYw6
gFWAdd013R+piGX40l0EztwAQ9IawwFl7JP+fBevxFQdGAVT6SpaJfBWH0XcIBbb
udEtoeW0dVp06SFsokGq6TPSRCdxwMh9JpRplgtLmz0yhfsWeFivjw2AMIen5QqB
Z0zcJnL8UMRdJq0EEqjQ3z9CH/Th8Nryxibo8YLnADPBfv7RyR2+wCjrbode8LAj
LZHjHikxzt39F9PpJIPvVuvNMzrBdQPDF61O5MK7dOMl49GfIoz2ybvH
=oEWd
-----END PGP SIGNATURE-----
Merge tag 'for-5.2/dm-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm
Pull device mapper fixes from Mike Snitzer:
- Fix incorrect uses of kstrndup and DM logging macros in DM's early
init code.
- Fix DM log-writes target's handling of super block sectors so updates
are made in order through use of completion.
- Fix DM core's argument splitting code to avoid undefined behaviour
reported as a side-effect of UBSAN analysis on ppc64le.
- Fix DM verity target to limit the amount of error messages that can
result from a corrupt block being found.
* tag 'for-5.2/dm-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm:
dm verity: use message limit for data block corruption message
dm table: don't copy from a NULL pointer in realloc_argv()
dm log writes: make sure super sector log updates are written in order
dm init: remove trailing newline from calls to DMERR() and DMINFO()
dm init: fix incorrect uses of kstrndup()
Replace the uid/gid/perm permissions checking on a key with an ACL to allow
the SETATTR and SEARCH permissions to be split. This will also allow a
greater range of subjects to represented.
============
WHY DO THIS?
============
The problem is that SETATTR and SEARCH cover a slew of actions, not all of
which should be grouped together.
For SETATTR, this includes actions that are about controlling access to a
key:
(1) Changing a key's ownership.
(2) Changing a key's security information.
(3) Setting a keyring's restriction.
And actions that are about managing a key's lifetime:
(4) Setting an expiry time.
(5) Revoking a key.
and (proposed) managing a key as part of a cache:
(6) Invalidating a key.
Managing a key's lifetime doesn't really have anything to do with
controlling access to that key.
Expiry time is awkward since it's more about the lifetime of the content
and so, in some ways goes better with WRITE permission. It can, however,
be set unconditionally by a process with an appropriate authorisation token
for instantiating a key, and can also be set by the key type driver when a
key is instantiated, so lumping it with the access-controlling actions is
probably okay.
As for SEARCH permission, that currently covers:
(1) Finding keys in a keyring tree during a search.
(2) Permitting keyrings to be joined.
(3) Invalidation.
But these don't really belong together either, since these actions really
need to be controlled separately.
Finally, there are number of special cases to do with granting the
administrator special rights to invalidate or clear keys that I would like
to handle with the ACL rather than key flags and special checks.
===============
WHAT IS CHANGED
===============
The SETATTR permission is split to create two new permissions:
(1) SET_SECURITY - which allows the key's owner, group and ACL to be
changed and a restriction to be placed on a keyring.
(2) REVOKE - which allows a key to be revoked.
The SEARCH permission is split to create:
(1) SEARCH - which allows a keyring to be search and a key to be found.
(2) JOIN - which allows a keyring to be joined as a session keyring.
(3) INVAL - which allows a key to be invalidated.
The WRITE permission is also split to create:
(1) WRITE - which allows a key's content to be altered and links to be
added, removed and replaced in a keyring.
(2) CLEAR - which allows a keyring to be cleared completely. This is
split out to make it possible to give just this to an administrator.
(3) REVOKE - see above.
Keys acquire ACLs which consist of a series of ACEs, and all that apply are
unioned together. An ACE specifies a subject, such as:
(*) Possessor - permitted to anyone who 'possesses' a key
(*) Owner - permitted to the key owner
(*) Group - permitted to the key group
(*) Everyone - permitted to everyone
Note that 'Other' has been replaced with 'Everyone' on the assumption that
you wouldn't grant a permit to 'Other' that you wouldn't also grant to
everyone else.
Further subjects may be made available by later patches.
The ACE also specifies a permissions mask. The set of permissions is now:
VIEW Can view the key metadata
READ Can read the key content
WRITE Can update/modify the key content
SEARCH Can find the key by searching/requesting
LINK Can make a link to the key
SET_SECURITY Can change owner, ACL, expiry
INVAL Can invalidate
REVOKE Can revoke
JOIN Can join this keyring
CLEAR Can clear this keyring
The KEYCTL_SETPERM function is then deprecated.
The KEYCTL_SET_TIMEOUT function then is permitted if SET_SECURITY is set,
or if the caller has a valid instantiation auth token.
The KEYCTL_INVALIDATE function then requires INVAL.
The KEYCTL_REVOKE function then requires REVOKE.
The KEYCTL_JOIN_SESSION_KEYRING function then requires JOIN to join an
existing keyring.
The JOIN permission is enabled by default for session keyrings and manually
created keyrings only.
======================
BACKWARD COMPATIBILITY
======================
To maintain backward compatibility, KEYCTL_SETPERM will translate the
permissions mask it is given into a new ACL for a key - unless
KEYCTL_SET_ACL has been called on that key, in which case an error will be
returned.
It will convert possessor, owner, group and other permissions into separate
ACEs, if each portion of the mask is non-zero.
SETATTR permission turns on all of INVAL, REVOKE and SET_SECURITY. WRITE
permission turns on WRITE, REVOKE and, if a keyring, CLEAR. JOIN is turned
on if a keyring is being altered.
The KEYCTL_DESCRIBE function translates the ACL back into a permissions
mask to return depending on possessor, owner, group and everyone ACEs.
It will make the following mappings:
(1) INVAL, JOIN -> SEARCH
(2) SET_SECURITY -> SETATTR
(3) REVOKE -> WRITE if SETATTR isn't already set
(4) CLEAR -> WRITE
Note that the value subsequently returned by KEYCTL_DESCRIBE may not match
the value set with KEYCTL_SETATTR.
=======
TESTING
=======
This passes the keyutils testsuite for all but a couple of tests:
(1) tests/keyctl/dh_compute/badargs: The first wrong-key-type test now
returns EOPNOTSUPP rather than ENOKEY as READ permission isn't removed
if the type doesn't have ->read(). You still can't actually read the
key.
(2) tests/keyctl/permitting/valid: The view-other-permissions test doesn't
work as Other has been replaced with Everyone in the ACL.
Signed-off-by: David Howells <dhowells@redhat.com>
The WARN_ON() macro doesn't take an error message, it just takes a
condition. I've changed this to use WARN(1, "...") instead.
Fixes: 3e148a3209 ("md/raid1: fix potential data inconsistency issue with write behind device")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
DM verity should also use DMERR_LIMIT to limit repeat data block
corruption messages.
Signed-off-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
For the first call to realloc_argv() in dm_split_args(), old_argv is
NULL and size is zero. Then memcpy is called, with the NULL old_argv
as the source argument and a zero size argument. AFAIK, this is
undefined behavior and generates the following warning when compiled
with UBSAN on ppc64le:
In file included from ./arch/powerpc/include/asm/paca.h:19,
from ./arch/powerpc/include/asm/current.h:16,
from ./include/linux/sched.h:12,
from ./include/linux/kthread.h:6,
from drivers/md/dm-core.h:12,
from drivers/md/dm-table.c:8:
In function 'memcpy',
inlined from 'realloc_argv' at drivers/md/dm-table.c:565:3,
inlined from 'dm_split_args' at drivers/md/dm-table.c:588:9:
./include/linux/string.h:345:9: error: argument 2 null where non-null expected [-Werror=nonnull]
return __builtin_memcpy(p, q, size);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
drivers/md/dm-table.c: In function 'dm_split_args':
./include/linux/string.h:345:9: note: in a call to built-in function '__builtin_memcpy'
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Currently, although we submit super bios in order (and super.nr_entries
is incremented by each logged entry), submit_bio() is async so each
super sector may not be written to log device in order and then the
final nr_entries may be smaller than it should be.
This problem can be reproduced by the xfstests generic/455 with ext4:
QA output created by 455
-Silence is golden
+mark 'end' does not exist
Fix this by serializing submission of super sectors to make sure each
is written to the log disk in order.
Fixes: 0e9cebe724 ("dm: add log writes target")
Cc: stable@vger.kernel.org
Signed-off-by: zhangyi (F) <yi.zhang@huawei.com>
Suggested-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
These printing macros already add a trailing newline, so having another
one here just makes for blank lines when these prints are enabled.
Remove these needless newlines.
Fixes: 6bbc923dfc ("dm: add support to directly boot to a mapped device")
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Fix 2 kstrndup() calls with incorrect argument order.
Fixes: 6bbc923dfc ("dm: add support to directly boot to a mapped device")
Cc: stable@vger.kernel.org # v5.1
Signed-off-by: Gen Zhang <blackgod016574@gmail.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>