This change introduces statistics exports for the cpu sub-system, these are
added through the use of a stat file similar to that exported by other
subsystems.
The following exports are included:
nr_periods: number of periods in which execution occurred
nr_throttled: the number of periods above in which execution was throttle
throttled_time: cumulative wall-time that any cpus have been throttled for
this group
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.198901931@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
With the machinery in place to throttle and unthrottle entities, as well as
handle their participation (or lack there of) we can now enable throttling.
There are 2 points that we must check whether it's time to set throttled state:
put_prev_entity() and enqueue_entity().
- put_prev_entity() is the typical throttle path, we reach it by exceeding our
allocated run-time within update_curr()->account_cfs_rq_runtime() and going
through a reschedule.
- enqueue_entity() covers the case of a wake-up into an already throttled
group. In this case we know the group cannot be on_rq and can throttle
immediately. Checks are added at time of put_prev_entity() and
enqueue_entity()
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184758.091415417@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Throttled tasks are invisisble to cpu-offline since they are not eligible for
selection by pick_next_task(). The regular 'escape' path for a thread that is
blocked at offline is via ttwu->select_task_rq, however this will not handle a
throttled group since there are no individual thread wakeups on an unthrottle.
Resolve this by unthrottling offline cpus so that threads can be migrated.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.989000590@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Buddies allow us to select "on-rq" entities without actually selecting them
from a cfs_rq's rb_tree. As a result we must ensure that throttled entities
are not falsely nominated as buddies. The fact that entities are dequeued
within throttle_entity is not sufficient for clearing buddy status as the
nomination may occur after throttling.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.886850167@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
From the perspective of load-balance and shares distribution, throttled
entities should be invisible.
However, both of these operations work on 'active' lists and are not
inherently aware of what group hierarchies may be present. In some cases this
may be side-stepped (e.g. we could sideload via tg_load_down in load balance)
while in others (e.g. update_shares()) it is more difficult to compute without
incurring some O(n^2) costs.
Instead, track hierarchicaal throttled state at time of transition. This
allows us to easily identify whether an entity belongs to a throttled hierarchy
and avoid incorrect interactions with it.
Also, when an entity leaves a throttled hierarchy we need to advance its
time averaging for shares averaging so that the elapsed throttled time is not
considered as part of the cfs_rq's operation.
We also use this information to prevent buddy interactions in the wakeup and
yield_to() paths.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.777916795@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
At the start of each period we refresh the global bandwidth pool. At this time
we must also unthrottle any cfs_rq entities who are now within bandwidth once
more (as quota permits).
Unthrottled entities have their corresponding cfs_rq->throttled flag cleared
and their entities re-enqueued.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.574628950@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that consumption is tracked (via update_curr()) we add support to throttle
group entities (and their corresponding cfs_rqs) in the case where this is no
run-time remaining.
Throttled entities are dequeued to prevent scheduling, additionally we mark
them as throttled (using cfs_rq->throttled) to prevent them from becoming
re-enqueued until they are unthrottled. A list of a task_group's throttled
entities are maintained on the cfs_bandwidth structure.
Note: While the machinery for throttling is added in this patch the act of
throttling an entity exceeding its bandwidth is deferred until later within
the series.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.480608533@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since quota is managed using a global state but consumed on a per-cpu basis
we need to ensure that our per-cpu state is appropriately synchronized.
Most importantly, runtime that is state (from a previous period) should not be
locally consumable.
We take advantage of existing sched_clock synchronization about the jiffy to
efficiently detect whether we have (globally) crossed a quota boundary above.
One catch is that the direction of spread on sched_clock is undefined,
specifically, we don't know whether our local clock is behind or ahead
of the one responsible for the current expiration time.
Fortunately we can differentiate these by considering whether the
global deadline has advanced. If it has not, then we assume our clock to be
"fast" and advance our local expiration; otherwise, we know the deadline has
truly passed and we expire our local runtime.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.379275352@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds a per-task_group timer which handles the refresh of the global
CFS bandwidth pool.
Since the RT pool is using a similar timer there's some small refactoring to
share this support.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.277271273@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Account bandwidth usage on the cfs_rq level versus the task_groups to which
they belong. Whether we are tracking bandwidth on a given cfs_rq is maintained
under cfs_rq->runtime_enabled.
cfs_rq's which belong to a bandwidth constrained task_group have their runtime
accounted via the update_curr() path, which withdraws bandwidth from the global
pool as desired. Updates involving the global pool are currently protected
under cfs_bandwidth->lock, local runtime is protected by rq->lock.
This patch only assigns and tracks quota, no action is taken in the case that
cfs_rq->runtime_used exceeds cfs_rq->runtime_assigned.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.179386821@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add constraints validation for CFS bandwidth hierarchies.
Validate that:
max(child bandwidth) <= parent_bandwidth
In a quota limited hierarchy, an unconstrained entity
(e.g. bandwidth==RUNTIME_INF) inherits the bandwidth of its parent.
This constraint is chosen over sum(child_bandwidth) as notion of over-commit is
valuable within SCHED_OTHER. Some basic code from the RT case is re-factored
for reuse.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184757.083774572@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In this patch we introduce the notion of CFS bandwidth, partitioned into
globally unassigned bandwidth, and locally claimed bandwidth.
- The global bandwidth is per task_group, it represents a pool of unclaimed
bandwidth that cfs_rqs can allocate from.
- The local bandwidth is tracked per-cfs_rq, this represents allotments from
the global pool bandwidth assigned to a specific cpu.
Bandwidth is managed via cgroupfs, adding two new interfaces to the cpu subsystem:
- cpu.cfs_period_us : the bandwidth period in usecs
- cpu.cfs_quota_us : the cpu bandwidth (in usecs) that this tg will be allowed
to consume over period above.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Nikhil Rao <ncrao@google.com>
Signed-off-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184756.972636699@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce hierarchical task accounting for the group scheduling case in CFS, as
well as promoting the responsibility for maintaining rq->nr_running to the
scheduling classes.
The primary motivation for this is that with scheduling classes supporting
bandwidth throttling it is possible for entities participating in throttled
sub-trees to not have root visible changes in rq->nr_running across activate
and de-activate operations. This in turn leads to incorrect idle and
weight-per-task load balance decisions.
This also allows us to make a small fixlet to the fastpath in pick_next_task()
under group scheduling.
Note: this issue also exists with the existing sched_rt throttling mechanism.
This patch does not address that.
Signed-off-by: Paul Turner <pjt@google.com>
Reviewed-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110721184756.878333391@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since [sched/cpupri: Remove the vec->lock], member pri_active
of struct cpupri is not needed any more, just remove it. Also
clean stuff related to it.
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110806001004.GA2207@zhy
Signed-off-by: Ingo Molnar <mingo@elte.hu>
[ This patch actually compiles. Thanks to Mike Galbraith for pointing
that out. I compiled and booted this patch with no issues. ]
Re-examining the cpupri patch, I see there's a possible race because the
update of the two priorities vec->counts are not protected by a memory
barrier.
When a RT runqueue is overloaded and wants to push an RT task to another
runqueue, it scans the RT priority vectors in a loop from lowest
priority to highest.
When we queue or dequeue an RT task that changes a runqueue's highest
priority task, we update the vectors to show that a runqueue is rated at
a different priority. To do this, we first set the new priority mask,
and increment the vec->count, and then set the old priority mask by
decrementing the vec->count.
If we are lowering the runqueue's RT priority rating, it will trigger a
RT pull, and we do not care if we miss pushing to this runqueue or not.
But if we raise the priority, but the priority is still lower than an RT
task that is looking to be pushed, we must make sure that this runqueue
is still seen by the push algorithm (the loop).
Because the loop reads from lowest to highest, and the new priority is
set before the old one is cleared, we will either see the new or old
priority set and the vector will be checked.
But! Since there's no memory barrier between the updates of the two, the
old count may be decremented first before the new count is incremented.
This means the loop may see the old count of zero and skip it, and also
the new count of zero before it was updated. A possible runqueue that
the RT task could move to could be missed.
A conditional memory barrier is placed between the vec->count updates
and is only called when both updates are done.
The smp_wmb() has also been changed to smp_mb__before_atomic_inc/dec(),
as they are not needed by archs that already synchronize
atomic_inc/dec().
The smp_rmb() has been moved to be called at every iteration of the loop
so that the race between seeing the two updates is visible by each
iteration of the loop, as an arch is free to optimize the reading of
memory of the counters in the loop.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1312547269.18583.194.camel@gandalf.stny.rr.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
sched/cpupri: Remove the vec->lock
The cpupri vec->lock has been showing up as a top contention
lately. This is because of the RT push/pull logic takes an
agressive approach for migrating RT tasks. The cpupri logic is
in place to improve the performance of the push/pull when dealing
with large number CPU machines.
The problem though is a vec->lock is required, where a vec is a
global per RT priority structure. That is, if there are lots of
RT tasks at the same priority, every time they are added or removed
from the RT queue, this global vec->lock is taken. Now that more
kernel threads are becoming RT (RCU boost and threaded interrupts)
this is becoming much more of an issue.
There are two variables that are being synced by the vec->lock.
The cpupri bitmask, and the vec->counter. The cpupri bitmask
is one bit per priority. If a RT priority vec has a process queued,
then the vec->count is > 0 and the cpupri bitmask is set for that
RT priority.
If the cpupri bitmask gets out of sync with the vec->counter, we could
end up pushing a low proirity RT task to a high priority queue.
That RT task that could have run immediately could be queued on a
run queue with a higher priority task indefinitely.
The solution is not to use the cpupri bitmask and just look at the
vec->count directly when doing a pull. The cpupri bitmask is just
a fast way to scan the RT priorities when a pull is made. Instead
of using the bitmask, and just examine all RT priorities, and
look at the vec->counts, we could eliminate the vec->lock. The
scan of RT tasks is to find a run queue that we can push an RT task
to, and we do not push to a high priority queue, thus the scan only
needs to go from 1 to RT task->prio, and not all 100 RT priorities.
The push algorithm, which does the scan of RT priorities (and
scan of the bitmask) only happens when we have an overloaded RT run
queue (more than one RT task queued). The grabbing of the vec->lock
happens every time any RT task is queued or dequeued on the run
queue for that priority. The slowing down of the scan by not using
a bitmask is negligible by the speed up of removing the vec->lock
contention, and replacing it with an atomic counter and memory barrier.
To prove this, I wrote a patch that times both the loop and the code
that grabs the vec->locks. I passed the patches to various people
(and companies) to test and show the results. I let everyone choose
their own load to test, giving different loads on the system,
for various different setups.
Here's some of the results: (snipping to a few CPUs to not make
this change log huge, but the results were consistent across
the entire system).
System 1 (24 CPUs)
Before patch:
CPU: Name Count Max Min Average Total
---- ---- ----- --- --- ------- -----
[...]
cpu 20: loop 3057 1.766 0.061 0.642 1963.170
vec 6782949 90.469 0.089 0.414 2811760.503
cpu 21: loop 2617 1.723 0.062 0.641 1679.074
vec 6782810 90.499 0.089 0.291 1978499.900
cpu 22: loop 2212 1.863 0.063 0.699 1547.160
vec 6767244 85.685 0.089 0.435 2949676.898
cpu 23: loop 2320 2.013 0.062 0.594 1380.265
vec 6781694 87.923 0.088 0.431 2928538.224
After patch:
cpu 20: loop 2078 1.579 0.061 0.533 1108.006
vec 6164555 5.704 0.060 0.143 885185.809
cpu 21: loop 2268 1.712 0.065 0.575 1305.248
vec 6153376 5.558 0.060 0.187 1154960.469
cpu 22: loop 1542 1.639 0.095 0.533 823.249
vec 6156510 5.720 0.060 0.190 1172727.232
cpu 23: loop 1650 1.733 0.068 0.545 900.781
vec 6170784 5.533 0.060 0.167 1034287.953
All times are in microseconds. The 'loop' is the amount of time spent
doing the loop across the priorities (before patch uses bitmask).
the 'vec' is the amount of time in the code that requires grabbing
the vec->lock. The second patch just does not have the vec lock, but
encompasses the same code.
Amazingly the loop code even went down on average. The vec code went
from .5 down to .18, that's more than half the time spent!
Note, more than one test was run, but they all had the same results.
System 2 (64 CPUs)
Before patch:
CPU: Name Count Max Min Average Total
---- ---- ----- --- --- ------- -----
cpu 60: loop 0 0 0 0 0
vec 5410840 277.954 0.084 0.782 4232895.727
cpu 61: loop 0 0 0 0 0
vec 4915648 188.399 0.084 0.570 2803220.301
cpu 62: loop 0 0 0 0 0
vec 5356076 276.417 0.085 0.786 4214544.548
cpu 63: loop 0 0 0 0 0
vec 4891837 170.531 0.085 0.799 3910948.833
After patch:
cpu 60: loop 0 0 0 0 0
vec 5365118 5.080 0.021 0.063 340490.267
cpu 61: loop 0 0 0 0 0
vec 4898590 1.757 0.019 0.071 347903.615
cpu 62: loop 0 0 0 0 0
vec 5737130 3.067 0.021 0.119 687108.734
cpu 63: loop 0 0 0 0 0
vec 4903228 1.822 0.021 0.071 348506.477
The test run during the measurement did not have any (very few,
from other CPUs) RT tasks pushing. But this shows that it helped
out tremendously with the contention, as the contention happens
because the vec->lock is taken only on queuing at an RT priority,
and different CPUs that queue tasks at the same priority will
have contention.
I tested on my own 4 CPU machine with the following results:
Before patch:
CPU: Name Count Max Min Average Total
---- ---- ----- --- --- ------- -----
cpu 0: loop 2377 1.489 0.158 0.588 1398.395
vec 4484 770.146 2.301 4.396 19711.755
cpu 1: loop 2169 1.962 0.160 0.576 1250.110
vec 4425 152.769 2.297 4.030 17834.228
cpu 2: loop 2324 1.749 0.155 0.559 1299.799
vec 4368 779.632 2.325 4.665 20379.268
cpu 3: loop 2325 1.629 0.157 0.561 1306.113
vec 4650 408.782 2.394 4.348 20222.577
After patch:
CPU: Name Count Max Min Average Total
---- ---- ----- --- --- ------- -----
cpu 0: loop 2121 1.616 0.113 0.636 1349.189
vec 4303 1.151 0.225 0.421 1811.966
cpu 1: loop 2130 1.638 0.178 0.644 1372.927
vec 4627 1.379 0.235 0.428 1983.648
cpu 2: loop 2056 1.464 0.165 0.637 1310.141
vec 4471 1.311 0.217 0.433 1937.927
cpu 3: loop 2154 1.481 0.162 0.601 1295.083
vec 4236 1.253 0.230 0.425 1803.008
This was running my migrate.c code that can be found at:
http://lwn.net/Articles/425763/
The migrate code does stress the RT tasks a bit. This shows that
the loop did increase a little after the patch, but not by much.
The vec code dropped dramatically. From 4.3us down to .42us.
That's a 10x improvement!
Tested-by: Mike Galbraith <mgalbraith@suse.de>
Tested-by: Luis Claudio R. Gonçalves <lgoncalv@redhat.com>
Tested-by: Matthew Hank Sabins<msabins@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Reviewed-by: Gregory Haskins <gregory.haskins@gmail.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Chris Mason <chris.mason@oracle.com>
Link: http://lkml.kernel.org/r/1312317372.18583.101.camel@gandalf.stny.rr.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Hillf Danton proposed a patch (see link) that cleaned up the
sched_rt code that calculates the priority of the next highest priority
task to be used in finding run queues to pull from.
His patch removed the calculating of the next prio to just use the current
prio when deteriming if we should examine a run queue to pull from. The problem
with his patch was that it caused more false checks. Because we check a run
queue for pushable tasks if the current priority of that run queue is higher
in priority than the task about to run on our run queue. But after grabbing
the locks and doing the real check, we find that there may not be a task
that has a higher prio task to pull. Thus the locks were taken with nothing to
do.
I added some trace_printks() to record when and how many times the run queue
locks were taken to check for pullable tasks, compared to how many times we
pulled a task.
With the current method, it was:
3806 locks taken vs 2812 pulled tasks
With Hillf's patch:
6728 locks taken vs 2804 pulled tasks
The number of times locks were taken to pull a task went up almost double with
no more success rate.
But his patch did get me thinking. When we look at the priority of the highest
task to consider taking the locks to do a pull, a failure to pull can be one
of the following: (in order of most likely)
o RT task was pushed off already between the check and taking the lock
o Waiting RT task can not be migrated
o RT task's CPU affinity does not include the target run queue's CPU
o RT task's priority changed between the check and taking the lock
And with Hillf's patch, the thing that caused most of the failures, is
the RT task to pull was not at the right priority to pull (not greater than
the current RT task priority on the target run queue).
Most of the above cases we can't help. But the current method does not check
if the next highest prio RT task can be migrated or not, and if it can not,
we still grab the locks to do the test (we don't find out about this fact until
after we have the locks). I thought about this case, and realized that the
pushable task plist that is maintained only holds RT tasks that can migrate.
If we move the calculating of the next highest prio task from the inc/dec_rt_task()
functions into the queuing of the pushable tasks, then we only measure the
priorities of those tasks that we push, and we get this basically for free.
Not only does this patch make the code a little more efficient, it cleans it
up and makes it a little simpler.
Thanks to Hillf Danton for inspiring me on this patch.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Gregory Haskins <ghaskins@novell.com>
Link: http://lkml.kernel.org/r/BANLkTimQ67180HxCx5vgMqumqw1EkFh3qg@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a new task is woken, the code to balance the RT task is currently
skipped in the select_task_rq() call. But it will be pushed if the rq
is currently overloaded with RT tasks anyway. The issue is that we
already queued the task, and if it does get pushed, it will have to
be dequeued and requeued on the new run queue. The advantage with
pushing it first is that we avoid this requeuing as we are pushing it
off before the task is ever queued.
See commit 318e0893ce ("sched: pre-route RT tasks on wakeup")
for more details.
The return of select_task_rq() when it is not a wake up has also been
changed to return task_cpu() instead of smp_processor_id(). This is more
of a sanity because the current only other user of select_task_rq()
besides wake ups, is an exec, where task_cpu() should also be the same
as smp_processor_id(). But if it is used for other purposes, lets keep
the task on the same CPU. Why would we mant to migrate it to the current
CPU?
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hillf Danton <dhillf@gmail.com>
Link: http://lkml.kernel.org/r/20110617015919.832743148@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There's no reason to clean the exec_start in put_prev_task_rt() as it is reset
when the task gets back to the run queue. This saves us doing a store() in the
fast path.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Yong Zhang <yong.zhang0@gmail.com>
Link: http://lkml.kernel.org/r/BANLkTimqWD=q6YnSDi-v9y=LMWecgEzEWg@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Do not call dequeue_pushable_task() when failing to push an eligible
task, as it remains pushable, merely not at this particular moment.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Mike Galbraith <mgalbraith@gmx.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Yong Zhang <yong.zhang0@gmail.com>
Link: http://lkml.kernel.org/r/1306895385.4791.26.camel@marge.simson.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Checking for the validity of sd is removed, since it is already
checked by the for_each_domain macro.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/BANLkTimT+Tut-3TshCDm-NiLLXrOznibNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When computing the next priority for a given run-queue, the check for
RT priority of the task determined by the pick_next_highest_task_rt()
function could be removed, since only RT tasks are returned by the
function.
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/BANLkTimxmWiof9s5AvS3v_0X+sMiE=0x5g@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Setting child->prio = current->normal_prio _after_ SCHED_RESET_ON_FORK has
been handled for an RT parent gives birth to a deranged mutant child with
non-RT policy, but RT prio and sched_class.
Move PI leakage protection up, always set priorities and weight, and if the
child is leaving RT class, reset rt_priority to the proper value.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311779695.8691.2.camel@marge.simson.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove the WAKEUP_PREEMPT feature, disabling it doesn't make any sense
and its outlived its use by a long long while.
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Acked-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110729082033.GB12106@zhy
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since commit a2d47777 ("sched: fix stale value in average load per task")
the variable rq->avg_load_per_task is no longer required. Remove it.
Signed-off-by: Jan H. Schönherr <schnhrr@cs.tu-berlin.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1312189408-17172-1-git-send-email-schnhrr@cs.tu-berlin.de
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Watchdog kthreads can use kthread_create_on_node() to NUMA affine their
stack and task_struct.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1312394344-18815-1-git-send-email-dzickus@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, an event's 'pmu' field is set after pmu::event_init() is
called. This means that pmu::event_init() must figure out which struct
pmu the event was initialised from. This makes it difficult to
consolidate common event initialisation code for similar PMUs, and
very difficult to implement drivers for PMUs which can have multiple
instances (e.g. a USB controller PMU, a GPU PMU, etc).
This patch sets the 'pmu' field before initialising the event, allowing
event init code to identify the struct pmu instance easily. In the
event of failure to initialise an event, the event is destroyed via
kfree() without calling perf_event::destroy(), so this shouldn't
result in bad behaviour even if the destroy field was set before
failure to initialise was noted.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1313062280-19123-1-git-send-email-mark.rutland@arm.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Francis reports that s2r gets him spurious NMIs, this is because the
suspend code leaves the boot cpu up and running.
Cure this by adding a suspend notifier. The problem is that hotplug
and suspend are completely un-serialized and the PM notifiers run
before the suspend cpu unplug of all but the boot cpu.
This leaves a window where the user can initialize another hotplug
operation (either remove or add a cpu) resulting in either one too
many or one too few hotplug ops. Thus we cannot use the hotplug code
for the suspend case.
There's another reason to not use the hotplug code, which is that the
hotplug code totally destroys the perf state, we can do better for
suspend and simply remove all counters from the PMU so that we can
re-instate them on resume.
Reported-by: Francis Moreau <francis.moro@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-1cvevybkgmv4s6v5y37t4847@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
The patch http://lkml.org/lkml/2003/7/13/226 introduced an RLIMIT_NPROC
check in set_user() to check for NPROC exceeding via setuid() and
similar functions.
Before the check there was a possibility to greatly exceed the allowed
number of processes by an unprivileged user if the program relied on
rlimit only. But the check created new security threat: many poorly
written programs simply don't check setuid() return code and believe it
cannot fail if executed with root privileges. So, the check is removed
in this patch because of too often privilege escalations related to
buggy programs.
The NPROC can still be enforced in the common code flow of daemons
spawning user processes. Most of daemons do fork()+setuid()+execve().
The check introduced in execve() (1) enforces the same limit as in
setuid() and (2) doesn't create similar security issues.
Neil Brown suggested to track what specific process has exceeded the
limit by setting PF_NPROC_EXCEEDED process flag. With the change only
this process would fail on execve(), and other processes' execve()
behaviour is not changed.
Solar Designer suggested to re-check whether NPROC limit is still
exceeded at the moment of execve(). If the process was sleeping for
days between set*uid() and execve(), and the NPROC counter step down
under the limit, the defered execve() failure because NPROC limit was
exceeded days ago would be unexpected. If the limit is not exceeded
anymore, we clear the flag on successful calls to execve() and fork().
The flag is also cleared on successful calls to set_user() as the limit
was exceeded for the previous user, not the current one.
Similar check was introduced in -ow patches (without the process flag).
v3 - clear PF_NPROC_EXCEEDED on successful calls to set_user().
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Acked-by: NeilBrown <neilb@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf symbols: Check '/tmp/perf-' symbol file ownership
perf sched: Usage leftover from trace -> script rename
perf sched: Do not delete session object prematurely
perf tools: Check $HOME/.perfconfig ownership
perf, x86: Add model 45 SandyBridge support
perf tools: Add support to install perf python extension
perf tools: do not look at ./config for configuration
perf tools: Make clean leaves some files
perf lock: Dropping unsupported ':r' modifier
perf probe: Fix coredump introduced by probe module option
jump label: Reduce the cycle count by changing the link order
perf report: Use ui__warning in some more places
perf python: Add PERF_RECORD_{LOST,READ,SAMPLE} routine tables
perf evlist: Introduce 'disable' method
trace events: Update version number reference to new 3.x scheme for EVENT_POWER_TRACING_DEPRECATED
perf buildid-cache: Zero out buffer of filenames when adding/removing buildid
Add FLUSH/FUA support to blktrace. As FLUSH precedes WRITE and/or
FUA follows WRITE, use the same 'F' flag for both cases and
distinguish them by their (relative) position. The end results
look like (other flags might be shown also):
- WRITE: W
- WRITE_FLUSH: FW
- WRITE_FUA: WF
- WRITE_FLUSH_FUA: FWF
Note that we reuse TC_BARRIER due to lack of bit space of act_mask
so that the older versions of blktrace tools will report flush
requests as barriers from now on.
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Reviewed-by: Jeff Moyer <jmoyer@redhat.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Copy the information needed from struct module into a local module list
held within tracepoint.c from within the module coming/going notifier.
This vastly simplifies locking of tracepoint registration /
unregistration, because we don't have to take the module mutex to
register and unregister tracepoints anymore. Steven Rostedt ran into
dependency problems related to modules mutex vs kprobes mutex vs ftrace
mutex vs tracepoint mutex that seems to be hard to fix without removing
this dependency between tracepoint and module mutex. (note: it should be
investigated whether kprobes could benefit of being dissociated from the
modules mutex too.)
This also fixes module handling of tracepoint list iterators, because it
was expecting the list to be sorted by pointer address. Given we have
control on our own list now, it's OK to sort this list which has
tracepoints as its only purpose. The reason why this sorting is required
is to handle the fact that seq files (and any read() operation from
user-space) cannot hold the tracepoint mutex across multiple calls, so
list entries may vanish between calls. With sorting, the tracepoint
iterator becomes usable even if the list don't contain the exact item
pointed to by the iterator anymore.
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Jason Baron <jbaron@redhat.com>
CC: Ingo Molnar <mingo@elte.hu>
CC: Lai Jiangshan <laijs@cn.fujitsu.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Link: http://lkml.kernel.org/r/20110810191839.GC8525@Krystal
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
gcc incorrectly states that the variable "fmt" is uninitialized when
CC_OPITMIZE_FOR_SIZE is set.
Instead of just blindly setting fmt to NULL, the code is cleaned up
a little to be a bit easier for humans to follow, as well as gcc
to know the variables are initialized.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This allows cleaner detection of the RTC device being registered, rather
then probing any time someone calls alarmtimer_get_rtcdev.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
There's a number of edge cases when cancelling a alarm, so
to be sure we accurately do so, introduce try_to_cancel, which
returns proper failure errors if it cannot. Also modify cancel
to spin until the alarm is properly disabled.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to allow for functionality like try_to_cancel, add
more refined state tracking (similar to hrtimers).
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Now that periodic alarmtimers are managed by the handler function,
remove the period value from the alarm structure and let the handlers
manage the interval on their own.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Now that the alarmtimers code has been refactored, the interval
cap limit can be removed.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to avoid wasting time expiring and re-adding very high freq
periodic alarmtimers, introduce alarm_forward() which is similar to
hrtimer_forward and moves the timer to the next future expiration time
and returns the number of overruns.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
This patch pushes the periodic alarmtimer re-arming down into the alarmtimer
handler, mimicking how hrtimers handle this.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
In order to properly fix the denial of service issue with high freq
periodic alarm timers, we need to push the re-arming logic into the
alarm timer handler, much as the hrtimer code does.
This patch introduces alarmtimer_restart enum and changes the
alarmtimer handler declarations to use it as a return value. Further,
to ease following changes, it extends the alarmtimer handler functions
to also take the time at expiration. No logic is yet modified.
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Its possible to jam up the alarm timers by setting very small interval
timers, which will cause the alarmtimer subsystem to spend all of its time
firing and restarting timers. This can effectivly lock up a box.
A deeper fix is needed, closely mimicking the hrtimer code, but for now
just cap the interval to 100us to avoid userland hanging the system.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
Following common_timer_get, zero out the itimerspec passed in.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
We don't check if old_setting is non null before assigning it, so
correct this.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: stable@kernel.org
Signed-off-by: John Stultz <john.stultz@linaro.org>
syslog-ng versions before 3.3.0beta1 (2011-05-12) assume that
CAP_SYS_ADMIN is sufficient to access syslog, so ever since CAP_SYSLOG
was introduced (2010-11-25) they have triggered a warning.
Commit ee24aebffb ("cap_syslog: accept CAP_SYS_ADMIN for now")
improved matters a little by making syslog-ng work again, just keeping
the WARN_ONCE(). But still, this is a warning that writes a stack trace
we don't care about to syslog, sets a taint flag, and alarms sysadmins
when nothing worse has happened than use of an old userspace with a
recent kernel.
Convert the WARN_ONCE to a printk_once to avoid that while continuing to
give userspace developers a hint that this is an unwanted
backward-compatibility feature and won't be around forever.
Reported-by: Ralf Hildebrandt <ralf.hildebrandt@charite.de>
Reported-by: Niels <zorglub_olsen@hotmail.com>
Reported-by: Paweł Sikora <pluto@agmk.net>
Signed-off-by: Jonathan Nieder <jrnieder@gmail.com>
Liked-by: Gergely Nagy <algernon@madhouse-project.org>
Acked-by: Serge Hallyn <serge@hallyn.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
match_held_lock() was assuming it was being called on a lock class
that had already seen usage.
This condition was true for bug-free code using lockdep_assert_held(),
since you're in fact holding the lock when calling it. However the
assumption fails the moment you assume the assertion can fail, which
is the whole point of having the assertion in the first place.
Anyway, now that there's more lockdep_is_held() users, notably
__rcu_dereference_check(), its much easier to trigger this since we
test for a number of locks and we only need to hold any one of them to
be good.
Reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1312547787.28695.2.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In the course of testing jump labels for use with the CFS
bandwidth controller, Paul Turner, discovered that using jump
labels reduced the branch count and the instruction count, but
did not reduce the cycle count or wall time.
I noticed that having the jump_label.o included in the kernel
but not used in any way still caused this increase in cycle
count and wall time. Thus, I moved jump_label.o in the
kernel/Makefile, thus changing the link order, and presumably
moving it out of hot icache areas. This brought down the cycle
count/time as expected.
In addition to Paul's testing, I've tested the patch using a
single 'static_branch()' in the getppid() path, and basically
running tight loops of calls to getppid(). Here are my results
for the branch disabled case:
With jump labels turned on (CONFIG_JUMP_LABEL), branch disabled:
Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs):
3,969,510,217 instructions # 0.864 IPC ( +-0.000% )
4,592,334,954 cycles ( +- 0.046% )
751,634,470 branches ( +- 0.000% )
1.722635797 seconds time elapsed ( +- 0.046% )
Jump labels turned off (CONFIG_JUMP_LABEL not set), branch
disabled:
Performance counter stats for 'bash -c /tmp/getppid;true' (50 runs):
4,009,611,846 instructions # 0.867 IPC ( +-0.000% )
4,622,210,580 cycles ( +- 0.012% )
771,662,904 branches ( +- 0.000% )
1.734341454 seconds time elapsed ( +- 0.022% )
Signed-off-by: Jason Baron <jbaron@redhat.com>
Cc: rth@redhat.com
Cc: a.p.zijlstra@chello.nl
Cc: rostedt@goodmis.org
Link: http://lkml.kernel.org/r/20110805204040.GG2522@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Tested-by: Paul Turner <pjt@google.com>
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
slab, lockdep: Annotate the locks before using them
lockdep: Clear whole lockdep_map on initialization
slab, lockdep: Annotate slab -> rcu -> debug_object -> slab
lockdep: Fix up warning
lockdep: Fix trace_hardirqs_on_caller()
futex: Fix regression with read only mappings
lockdep_init_map() only initializes parts of lockdep_map and triggers
kmemcheck warning when it is copied as a whole. There isn't anything
to be gained by clearing selectively. memset() the whole structure
and remove loop for ->class_cache[] clearing.
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=35532
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-and-tested-by: Christian Casteyde <casteyde.christian@free.fr>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=35532
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110714131909.GJ3455@htj.dyndns.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Sun, 2011-07-24 at 21:06 -0400, Arnaud Lacombe wrote:
> /src/linux/linux/kernel/lockdep.c: In function 'mark_held_locks':
> /src/linux/linux/kernel/lockdep.c:2471:31: warning: comparison of
> distinct pointer types lacks a cast
The warning is harmless in this case, but the below makes it go away.
Reported-by: Arnaud Lacombe <lacombar@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311588599.2617.56.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit dd4e5d3ac4 ("lockdep: Fix trace_[soft,hard]irqs_[on,off]()
recursion") made a bit of a mess of the various checks and error
conditions.
In particular it moved the check for !irqs_disabled() before the
spurious enable test, resulting in some warnings.
Reported-by: Arnaud Lacombe <lacombar@gmail.com>
Reported-by: Dave Jones <davej@redhat.com>
Reported-and-tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311679697.24752.28.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The core device layer sends tons of uevent notifications for each device
it finds, and if the kernel has been built with a non-empty
CONFIG_UEVENT_HELPER_PATH that will make us try to execute the usermode
helper binary for all these events very early in the boot.
Not only won't the root filesystem even be mounted at that point, we
literally won't have necessarily even initialized all the process
handling data structures at that point, which causes no end of silly
problems even when the usermode helper doesn't actually succeed in
executing.
So just use our existing infrastructure to disable the usermodehelpers
to make the kernel start out with them disabled. We enable them when
we've at least initialized stuff a bit.
Problems related to an uninitialized
init_ipc_ns.ids[IPC_SHM_IDS].rw_mutex
reported by various people.
Reported-by: Manuel Lauss <manuel.lauss@googlemail.com>
Reported-by: Richard Weinberger <richard@nod.at>
Reported-by: Marc Zyngier <maz@misterjones.org>
Acked-by: Kay Sievers <kay.sievers@vrfy.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vasiliy Kulikov <segoon@openwall.com>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When send_cpu_listeners() finds the orphaned listener it marks it as
!valid and drops listeners->sem. Before it takes this sem for writing,
s->pid can be reused and add_del_listener() can wrongly try to re-use
this entry.
Change add_del_listener() to check ->valid = T.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Vasiliy Kulikov <segoon@openwall.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. Commit 26c4caea9d "don't allow duplicate entries in listener mode"
changed add_del_listener(REGISTER) so that "next_cpu:" can reuse the
listener allocated for the previous cpu, this doesn't look exactly
right even if minor.
Change the code to kfree() in the already-registered case, this case
is unlikely anyway so the extra kmalloc_node() shouldn't hurt but
looke more correct and clean.
2. use the plain list_for_each_entry() instead of _safe() to scan
listeners->list.
3. Remove the unneeded INIT_LIST_HEAD(&s->list), we are going to
list_add(&s->list).
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Jerome Marchand <jmarchan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jwessel/linux-2.6-kgdb:
kdb,kgdb: Allow arbitrary kgdb magic knock sequences
kdb: Remove all references to DOING_KGDB2
kdb,kgdb: Implement switch and pass buffer from kdb -> gdb
kdb: cleanup unused variables missed in the original kdb merge
The first packet that gdb sends when the kernel is in kdb mode seems
to change with every release of gdb. Instead of continuing to add
many different gdb packets, change kdb to automatically look for any
thing that looks like a gdb packet.
Example 1 cold start test:
echo g > /proc/sysrq-trigger
$D#44+
Example 2 cold start test:
echo g > /proc/sysrq-trigger
$3#33
The second one should re-enter kdb's shell right away and is purely a
test.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
The DOING_KGDB2 was originally a state variable for one of the two
ways to automatically transition from kdb to kgdb. Purge all these
variables and just use one single state for the transition.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
When switching from kdb mode to kgdb mode packets were getting lost
depending on the size of the fifo queue of the serial chip. When gdb
initially connects if it is in kdb mode it should entirely send any
character buffer over to the gdbstub when switching connections.
Previously kdb was zero'ing out the character buffer and this could
lead to gdb failing to connect at all, or a lengthy pause could occur
on the initial connect.
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
The BTARGS and BTSYMARG variables do not have any function in the
mainline version of kdb.
Reported-by: Tim Bird <tim.bird@am.sony.com>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux-m68k:
m68k/math-emu: Remove unnecessary code
m68k/math-emu: Remove commented out old code
m68k: Kill warning in setup_arch() when compiling for Sun3
m68k/atari: Prefix GPIO_{IN,OUT} with CODEC_
sparc: iounmap() and *_free_coherent() - Use lookup_resource()
m68k/atari: Reserve some ST-RAM early on for device buffer use
m68k/amiga: Chip RAM - Use lookup_resource()
resources: Add lookup_resource()
sparc: _sparc_find_resource() should check for exact matches
m68k/amiga: Chip RAM - Offset resource end by CHIP_PHYSADDR
m68k/amiga: Chip RAM - Use resource_size() to fix off-by-one error
m68k/amiga: Chip RAM - Change chipavail to an atomic_t
m68k/amiga: Chip RAM - Always allocate from the start of memory
m68k/amiga: Chip RAM - Convert from printk() to pr_*()
m68k/amiga: Chip RAM - Use tabs for indentation
Add a function to find an existing resource by a resource start address.
This allows to implement simple allocators (with a malloc/free-alike API)
on top of the resource system.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
* 'v4l_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-2.6: (430 commits)
[media] ir-mce_kbd-decoder: include module.h for its facilities
[media] ov5642: include module.h for its facilities
[media] em28xx: Fix DVB-C maxsize for em2884
[media] tda18271c2dd: Fix saw filter configuration for DVB-C @6MHz
[media] v4l: mt9v032: Fix Bayer pattern
[media] V4L: mt9m111: rewrite set_pixfmt
[media] V4L: mt9m111: fix missing return value check mt9m111_reg_clear
[media] V4L: initial driver for ov5642 CMOS sensor
[media] V4L: sh_mobile_ceu_camera: fix Oops when USERPTR mapping fails
[media] V4L: soc-camera: remove soc-camera bus and devices on it
[media] V4L: soc-camera: un-export the soc-camera bus
[media] V4L: sh_mobile_csi2: switch away from using the soc-camera bus notifier
[media] V4L: add media bus configuration subdev operations
[media] V4L: soc-camera: group struct field initialisations together
[media] V4L: soc-camera: remove now unused soc-camera specific PM hooks
[media] V4L: pxa-camera: switch to using standard PM hooks
[media] NetUP Dual DVB-T/C CI RF: force card hardware revision by module param
[media] Don't OOPS if videobuf_dvb_get_frontend return NULL
[media] NetUP Dual DVB-T/C CI RF: load firmware according card revision
[media] omap3isp: Support configurable HS/VS polarities
...
Fix up conflicts:
- arch/arm/mach-omap2/board-rx51-peripherals.c:
cleanup regulator supply definitions in mach-omap2
vs
OMAP3: RX-51: define vdds_csib regulator supply
- drivers/staging/tm6000/tm6000-alsa.c (trivial)
* 'next/dt' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux-arm-soc: (21 commits)
arm/dt: tegra devicetree support
arm/versatile: Add device tree support
dt/irq: add irq_domain_generate_simple() helper
irq: add irq_domain translation infrastructure
dmaengine: imx-sdma: add device tree probe support
dmaengine: imx-sdma: sdma_get_firmware does not need to copy fw_name
dmaengine: imx-sdma: use platform_device_id to identify sdma version
mmc: sdhci-esdhc-imx: add device tree probe support
mmc: sdhci-pltfm: dt device does not pass parent to sdhci_alloc_host
mmc: sdhci-esdhc-imx: get rid of the uses of cpu_is_mx()
mmc: sdhci-esdhc-imx: do not reference platform data after probe
mmc: sdhci-esdhc-imx: extend card_detect and write_protect support for mx5
net/fec: add device tree probe support
net: ibm_newemac: convert it to use of_get_phy_mode
dt/net: add helper function of_get_phy_mode
net/fec: gasket needs to be enabled for some i.mx
serial/imx: add device tree probe support
serial/imx: get rid of the uses of cpu_is_mx1()
arm/dt: Add dtb make rule
arm/dt: Add skeleton dtsi file
...
Interrupt descriptors can be allocated from modules. The interrupts
are used by other modules, but we have no refcount on the module which
provides the interrupts and there is no way to establish one on the
device level as the interrupt using module is agnostic to the fact
that the interrupt is provided by a module rather than by some builtin
interrupt controller.
To prevent removal of the interrupt providing module, we can track the
owner of the interrupt descriptor, which also provides the relevant
irq chip functions in the irq descriptor.
request/setup_irq() can now acquire a refcount on the owner module to
prevent unloading. free_irq() drops the refcount.
Signed-off-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Link: http://lkml.kernel.org/r/20110711101731.GA13804@Chamillionaire.breakpoint.cc
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If no primary handler is specified then a default one is assigned
which always returns IRQ_WAKE_THREAD. This handler requires the
IRQF_ONESHOT flag on LEVEL / EIO typed irqs because the source of
interrupt is not disabled. Since it is required for those users and
there is no difference for others it makes sense to add this flag
unconditionally.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: http://lkml.kernel.org/r/1310070737-18514-1-git-send-email-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
irq_domain_generate_simple() is an easy way to generate an irq translation
domain for simple irq controllers. It assumes a flat 1:1 mapping from
hardware irq number to an offset of the first linux irq number assigned
to the controller
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
This patch adds irq_domain infrastructure for translating from
hardware irq numbers to linux irqs. This is particularly important
for architectures adding device tree support because the current
implementation (excluding PowerPC and SPARC) cannot handle
translation for more than a single interrupt controller. irq_domain
supports device tree translation for any number of interrupt
controllers.
This patch converts x86, Microblaze, ARM and MIPS to use irq_domain
for device tree irq translation. x86 is untested beyond compiling it,
irq_domain is enabled for MIPS and Microblaze, but the old behaviour is
preserved until the core code is modified to actually register an
irq_domain yet. On ARM it works and is required for much of the new
ARM device tree board support.
PowerPC has /not/ been converted to use this new infrastructure. It
is still missing some features before it can replace the virq
infrastructure already in powerpc (see documentation on
irq_domain_map/unmap for details). Followup patches will add the
missing pieces and migrate PowerPC to use irq_domain.
SPARC has its own method of managing interrupts from the device tree
and is unaffected by this change.
Acked-by: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6: (54 commits)
tpm_nsc: Fix bug when loading multiple TPM drivers
tpm: Move tpm_tis_reenable_interrupts out of CONFIG_PNP block
tpm: Fix compilation warning when CONFIG_PNP is not defined
TOMOYO: Update kernel-doc.
tpm: Fix a typo
tpm_tis: Probing function for Intel iTPM bug
tpm_tis: Fix the probing for interrupts
tpm_tis: Delay ACPI S3 suspend while the TPM is busy
tpm_tis: Re-enable interrupts upon (S3) resume
tpm: Fix display of data in pubek sysfs entry
tpm_tis: Add timeouts sysfs entry
tpm: Adjust interface timeouts if they are too small
tpm: Use interface timeouts returned from the TPM
tpm_tis: Introduce durations sysfs entry
tpm: Adjust the durations if they are too small
tpm: Use durations returned from TPM
TOMOYO: Enable conditional ACL.
TOMOYO: Allow using argv[]/envp[] of execve() as conditions.
TOMOYO: Allow using executable's realpath and symlink's target as conditions.
TOMOYO: Allow using owner/group etc. of file objects as conditions.
...
Fix up trivial conflict in security/tomoyo/realpath.c
sys_ssetmask(), sys_rt_sigsuspend() and compat_sys_rt_sigsuspend()
change ->blocked directly. This is not correct, see the changelog in
e6fa16ab "signal: sigprocmask() should do retarget_shared_pending()"
Change them to use set_current_blocked().
Another change is that now we are doing ->saved_sigmask = ->blocked
lockless, it doesn't make any sense to do this under ->siglock.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Matt Fleming <matt.fleming@linux.intel.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This allows us to move duplicated code in <asm/atomic.h>
(atomic_inc_not_zero() for now) to <linux/atomic.h>
Signed-off-by: Arun Sharma <asharma@fb.com>
Reviewed-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a kernel BUG or oops occurs, ChromeOS intends to panic and
immediately reboot, with stacktrace and other messages preserved in RAM
across reboot.
But the longer we delay, the more likely the user is to poweroff and
lose the info.
panic_timeout (seconds before rebooting) is set by panic= boot option or
sysctl or /proc/sys/kernel/panic; but 0 means wait forever, so at
present we have to delay at least 1 second.
Let a negative number mean reboot immediately (with the small cosmetic
benefit of suppressing that newline-less "Rebooting in %d seconds.."
message).
Signed-off-by: Hugh Dickins <hughd@chromium.org>
Signed-off-by: Mandeep Singh Baines <msb@chromium.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Olaf Hering <olaf@aepfle.de>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@suse.de>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Selecting GCOV for UML causing configuration mismatch:
warning: (GCOV_KERNEL) selects CONSTRUCTORS which has unmet direct dependencies (!UML)
Constructors are not needed for UML.
Signed-off-by: Vitaliy Ivanov <vitalivanov@gmail.com>
Cc: Peter Oberparleiter <oberpar@linux.vnet.ibm.com>
Acked-by: Richard Weinberger <richard@nod.at>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add support for the shm_rmid_forced sysctl. If set to 1, all shared
memory objects in current ipc namespace will be automatically forced to
use IPC_RMID.
The POSIX way of handling shmem allows one to create shm objects and
call shmdt(), leaving shm object associated with no process, thus
consuming memory not counted via rlimits.
With shm_rmid_forced=1 the shared memory object is counted at least for
one process, so OOM killer may effectively kill the fat process holding
the shared memory.
It obviously breaks POSIX - some programs relying on the feature would
stop working. So set shm_rmid_forced=1 only if you're sure nobody uses
"orphaned" memory. Use shm_rmid_forced=0 by default for compatability
reasons.
The feature was previously impemented in -ow as a configure option.
[akpm@linux-foundation.org: fix documentation, per Randy]
[akpm@linux-foundation.org: fix warning]
[akpm@linux-foundation.org: readability/conventionality tweaks]
[akpm@linux-foundation.org: fix shm_rmid_forced/shm_forced_rmid confusion, use standard comment layout]
Signed-off-by: Vasiliy Kulikov <segoon@openwall.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: "Serge E. Hallyn" <serge.hallyn@canonical.com>
Cc: Daniel Lezcano <daniel.lezcano@free.fr>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Solar Designer <solar@openwall.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Daniel Rebelo de Oliveira <psykon@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
[ This patch has already been accepted as commit 0ac0c0d0f8 but later
reverted (commit 35926ff5fb) because it itroduced arch specific
__node_random which was defined only for x86 code so it broke other
archs. This is a followup without any arch specific code. Other than
that there are no functional changes.]
Some workloads that create a large number of small files tend to assign
too many pages to node 0 (multi-node systems). Part of the reason is
that the rotor (in cpuset_mem_spread_node()) used to assign nodes starts
at node 0 for newly created tasks.
This patch changes the rotor to be initialized to a random node number
of the cpuset.
[akpm@linux-foundation.org: fix layout]
[Lee.Schermerhorn@hp.com: Define stub numa_random() for !NUMA configuration]
[mhocko@suse.cz: Make it arch independent]
[akpm@linux-foundation.org: fix CONFIG_NUMA=y, MAX_NUMNODES>1 build]
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Paul Menage <menage@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Robin Holt <holt@sgi.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jack Steiner <steiner@sgi.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Paul Menage <menage@google.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Robin Holt <holt@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit 7485d0d375 (futexes: Remove rw
parameter from get_futex_key()) in 2.6.33 fixed two problems: First, It
prevented a loop when encountering a ZERO_PAGE. Second, it fixed RW
MAP_PRIVATE futex operations by forcing the COW to occur by
unconditionally performing a write access get_user_pages_fast() to get
the page. The commit also introduced a user-mode regression in that it
broke futex operations on read-only memory maps. For example, this
breaks workloads that have one or more reader processes doing a
FUTEX_WAIT on a futex within a read only shared file mapping, and a
writer processes that has a writable mapping issuing the FUTEX_WAKE.
This fixes the regression for valid futex operations on RO mappings by
trying a RO get_user_pages_fast() when the RW get_user_pages_fast()
fails. This change makes it necessary to also check for invalid use
cases, such as anonymous RO mappings (which can never change) and the
ZERO_PAGE which the commit referenced above was written to address.
This patch does restore the original behavior with RO MAP_PRIVATE
mappings, which have inherent user-mode usage problems and don't really
make sense. With this patch performing a FUTEX_WAIT within a RO
MAP_PRIVATE mapping will be successfully woken provided another process
updates the region of the underlying mapped file. However, the mmap()
man page states that for a MAP_PRIVATE mapping:
It is unspecified whether changes made to the file after
the mmap() call are visible in the mapped region.
So user-mode users attempting to use futex operations on RO MAP_PRIVATE
mappings are depending on unspecified behavior. Additionally a
RO MAP_PRIVATE mapping could fail to wake up in the following case.
Thread-A: call futex(FUTEX_WAIT, memory-region-A).
get_futex_key() return inode based key.
sleep on the key
Thread-B: call mprotect(PROT_READ|PROT_WRITE, memory-region-A)
Thread-B: write memory-region-A.
COW happen. This process's memory-region-A become related
to new COWed private (ie PageAnon=1) page.
Thread-B: call futex(FUETX_WAKE, memory-region-A).
get_futex_key() return mm based key.
IOW, we fail to wake up Thread-A.
Once again doing something like this is just silly and users who do
something like this get what they deserve.
While RO MAP_PRIVATE mappings are nonsensical, checking for a private
mapping requires walking the vmas and was deemed too costly to avoid a
userspace hang.
This Patch is based on Peter Zijlstra's initial patch with modifications to
only allow RO mappings for futex operations that need VERIFY_READ access.
Reported-by: David Oliver <david@rgmadvisors.com>
Signed-off-by: Shawn Bohrer <sbohrer@rgmadvisors.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Darren Hart <dvhart@linux.intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: peterz@infradead.org
Cc: eric.dumazet@gmail.com
Cc: zvonler@rgmadvisors.com
Cc: hughd@google.com
Link: http://lkml.kernel.org/r/1309450892-30676-1-git-send-email-sbohrer@rgmadvisors.com
Cc: stable@kernel.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* Merge akpm patch series: (122 commits)
drivers/connector/cn_proc.c: remove unused local
Documentation/SubmitChecklist: add RCU debug config options
reiserfs: use hweight_long()
reiserfs: use proper little-endian bitops
pnpacpi: register disabled resources
drivers/rtc/rtc-tegra.c: properly initialize spinlock
drivers/rtc/rtc-twl.c: check return value of twl_rtc_write_u8() in twl_rtc_set_time()
drivers/rtc: add support for Qualcomm PMIC8xxx RTC
drivers/rtc/rtc-s3c.c: support clock gating
drivers/rtc/rtc-mpc5121.c: add support for RTC on MPC5200
init: skip calibration delay if previously done
misc/eeprom: add eeprom access driver for digsy_mtc board
misc/eeprom: add driver for microwire 93xx46 EEPROMs
checkpatch.pl: update $logFunctions
checkpatch: make utf-8 test --strict
checkpatch.pl: add ability to ignore various messages
checkpatch: add a "prefer __aligned" check
checkpatch: validate signature styles and To: and Cc: lines
checkpatch: add __rcu as a sparse modifier
checkpatch: suggest using min_t or max_t
...
Did this as a merge because of (trivial) conflicts in
- Documentation/feature-removal-schedule.txt
- arch/xtensa/include/asm/uaccess.h
that were just easier to fix up in the merge than in the patch series.
If CONFIG_IKCONFIG=m but CONFIG_IKCONFIG_PROC=n we get a module that has
no MODULE_LICENSE definition. Move the MODULE_*() definitions outside the
CONFIG_IKCONFIG_PROC #ifdef to prevent this configuration from tainting
the kernel.
Signed-off-by: Stephen Boyd <bebarino@gmail.com>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is not necessary to share the same notifier.h.
This patch already moves register_reboot_notifier() and
unregister_reboot_notifier() from kernel/notifier.c to kernel/sys.c.
[amwang@redhat.com: make allyesconfig succeed on ppc64]
Signed-off-by: WANG Cong <amwang@redhat.com>
Cc: David Miller <davem@davemloft.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Greg KH <greg@kroah.com>
Signed-off-by: WANG Cong <amwang@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
devres uses the pointer value as key after it's freed, which is safe but
triggers spurious use-after-free warnings on some static analysis tools.
Rearrange code to avoid such warnings.
Signed-off-by: Maxin B. John <maxin.john@gmail.com>
Reviewed-by: Rolf Eike Beer <eike-kernel@sf-tec.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I haven't reproduced it myself but the fail scenario is that on such
machines (notably ARM and some embedded powerpc), if you manage to hit
that futex path on a writable page whose dirty bit has gone from the PTE,
you'll livelock inside the kernel from what I can tell.
It will go in a loop of trying the atomic access, failing, trying gup to
"fix it up", getting succcess from gup, go back to the atomic access,
failing again because dirty wasn't fixed etc...
So I think you essentially hang in the kernel.
The scenario is probably rare'ish because affected architecture are
embedded and tend to not swap much (if at all) so we probably rarely hit
the case where dirty is missing or young is missing, but I think Shan has
a piece of SW that can reliably reproduce it using a shared writable
mapping & fork or something like that.
On archs who use SW tracking of dirty & young, a page without dirty is
effectively mapped read-only and a page without young unaccessible in the
PTE.
Additionally, some architectures might lazily flush the TLB when relaxing
write protection (by doing only a local flush), and expect a fault to
invalidate the stale entry if it's still present on another processor.
The futex code assumes that if the "in_atomic()" access -EFAULT's, it can
"fix it up" by causing get_user_pages() which would then be equivalent to
taking the fault.
However that isn't the case. get_user_pages() will not call
handle_mm_fault() in the case where the PTE seems to have the right
permissions, regardless of the dirty and young state. It will eventually
update those bits ... in the struct page, but not in the PTE.
Additionally, it will not handle the lazy TLB flushing that can be
required by some architectures in the fault case.
Basically, gup is the wrong interface for the job. The patch provides a
more appropriate one which boils down to just calling handle_mm_fault()
since what we are trying to do is simulate a real page fault.
The futex code currently attempts to write to user memory within a
pagefault disabled section, and if that fails, tries to fix it up using
get_user_pages().
This doesn't work on archs where the dirty and young bits are maintained
by software, since they will gate access permission in the TLB, and will
not be updated by gup().
In addition, there's an expectation on some archs that a spurious write
fault triggers a local TLB flush, and that is missing from the picture as
well.
I decided that adding those "features" to gup() would be too much for this
already too complex function, and instead added a new simpler
fixup_user_fault() which is essentially a wrapper around handle_mm_fault()
which the futex code can call.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: fix some nits Darren saw, fiddle comment layout]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reported-by: Shan Hai <haishan.bai@gmail.com>
Tested-by: Shan Hai <haishan.bai@gmail.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Darren Hart <darren.hart@intel.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6:
genksyms: Use same type in loop comparison
kbuild: silence generated makefile message
kernel: prevent unnecessary rebuilding due to config_data.gz
headers_install: fix __packed in exported kernel headers
dtc: regen parser
dtc: migrate parser to implicit rules
kconfig: regen parser
kconfig: migrate parser to implicit rules
kconfig/zconf.l: do not ask to generate backup
kconfig: kill no longer needed reference to YYDEBUG
kconfig: constify `kconf_id_lookup'
genksym: regen parser
genksyms: migrate parser to implicit rules
genksyms: drop -Wno-uninitialized from HOSTCFLAGS_parse.tab.o
genksyms: pass hash and lookup functions name and target language though the input file
kbuild: simplify the %_shipped rule
kbuild: add implicit rules for parser generation
kbuild: add `baseprereq'
kbuild: Fix reference to vermagic.h
* 'packaging' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6:
package: Makefile: fix perf target bug
* 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild-2.6:
gitignore: ignore debian build directory
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (43 commits)
fs: Merge split strings
treewide: fix potentially dangerous trailing ';' in #defined values/expressions
uwb: Fix misspelling of neighbourhood in comment
net, netfilter: Remove redundant goto in ebt_ulog_packet
trivial: don't touch files that are removed in the staging tree
lib/vsprintf: replace link to Draft by final RFC number
doc: Kconfig: `to be' -> `be'
doc: Kconfig: Typo: square -> squared
doc: Konfig: Documentation/power/{pm => apm-acpi}.txt
drivers/net: static should be at beginning of declaration
drivers/media: static should be at beginning of declaration
drivers/i2c: static should be at beginning of declaration
XTENSA: static should be at beginning of declaration
SH: static should be at beginning of declaration
MIPS: static should be at beginning of declaration
ARM: static should be at beginning of declaration
rcu: treewide: Do not use rcu_read_lock_held when calling rcu_dereference_check
Update my e-mail address
PCIe ASPM: forcedly -> forcibly
gma500: push through device driver tree
...
Fix up trivial conflicts:
- arch/arm/mach-ep93xx/dma-m2p.c (deleted)
- drivers/gpio/gpio-ep93xx.c (renamed and context nearby)
- drivers/net/r8169.c (just context changes)
* 'for-3.1/core' of git://git.kernel.dk/linux-block: (24 commits)
block: strict rq_affinity
backing-dev: use synchronize_rcu_expedited instead of synchronize_rcu
block: fix patch import error in max_discard_sectors check
block: reorder request_queue to remove 64 bit alignment padding
CFQ: add think time check for group
CFQ: add think time check for service tree
CFQ: move think time check variables to a separate struct
fixlet: Remove fs_excl from struct task.
cfq: Remove special treatment for metadata rqs.
block: document blk_plug list access
block: avoid building too big plug list
compat_ioctl: fix make headers_check regression
block: eliminate potential for infinite loop in blkdev_issue_discard
compat_ioctl: fix warning caused by qemu
block: flush MEDIA_CHANGE from drivers on close(2)
blk-throttle: Make total_nr_queued unsigned
block: Add __attribute__((format(printf...) and fix fallout
fs/partitions/check.c: make local symbols static
block:remove some spare spaces in genhd.c
block:fix the comment error in blkdev.h
...
What was scheduled to be 2.6.41 is now going to be 3.1 .
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/alpine.LNX.2.00.1107250929370.8080@swampdragon.chaosbits.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Userspace wants to manage module parameters with udev rules.
This currently only works for loaded modules, but not for
built-in ones.
To allow access to the built-in modules we need to
re-trigger all module load events that happened before any
userspace was running. We already do the same thing for all
devices, subsystems(buses) and drivers.
This adds the currently missing /sys/module/<name>/uevent files
to all module entries.
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (split & trivial fix)
This simplifies the next patch, where we have an attribute on a
builtin module (ie. module == NULL).
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> (split into 2)
The module loader code allows architectures to hook into the code by
providing a small number of entry points that each arch must implement.
This patch provides __weakly linked generic implementations of these
entry points for architectures that don't need to do anything special.
Signed-off-by: Jonas Bonn <jonas@southpole.se>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
In STANDARD_PARAM_DEF, param_set_* handles the case in which strtolfn
returns -EINVAL but it may return -ERANGE. If it returns -ERANGE,
param_set_* may set uninitialized value to the paramerter. We should handle
both cases.
The one of the cases in which strtolfn() returns -ERANGE is following:
*Type of module parameter is long
*Set the parameter more than LONG_MAX
Signed-off-by: Satoru Moriya <satoru.moriya@hds.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (107 commits)
vfs: use ERR_CAST for err-ptr tossing in lookup_instantiate_filp
isofs: Remove global fs lock
jffs2: fix IN_DELETE_SELF on overwriting rename() killing a directory
fix IN_DELETE_SELF on overwriting rename() on ramfs et.al.
mm/truncate.c: fix build for CONFIG_BLOCK not enabled
fs:update the NOTE of the file_operations structure
Remove dead code in dget_parent()
AFS: Fix silly characters in a comment
switch d_add_ci() to d_splice_alias() in "found negative" case as well
simplify gfs2_lookup()
jfs_lookup(): don't bother with . or ..
get rid of useless dget_parent() in btrfs rename() and link()
get rid of useless dget_parent() in fs/btrfs/ioctl.c
fs: push i_mutex and filemap_write_and_wait down into ->fsync() handlers
drivers: fix up various ->llseek() implementations
fs: handle SEEK_HOLE/SEEK_DATA properly in all fs's that define their own llseek
Ext4: handle SEEK_HOLE/SEEK_DATA generically
Btrfs: implement our own ->llseek
fs: add SEEK_HOLE and SEEK_DATA flags
reiserfs: make reiserfs default to barrier=flush
...
Fix up trivial conflicts in fs/xfs/linux-2.6/xfs_super.c due to the new
shrinker callout for the inode cache, that clashed with the xfs code to
start the periodic workers later.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (24 commits)
sched: Cleanup duplicate local variable in [enqueue|dequeue]_task_fair
sched: Replace use of entity_key()
sched: Separate group-scheduling code more clearly
sched: Reorder root_domain to remove 64 bit alignment padding
sched: Do not attempt to destroy uninitialized rt_bandwidth
sched: Remove unused function cpu_cfs_rq()
sched: Fix (harmless) typo 'CONFG_FAIR_GROUP_SCHED'
sched, cgroup: Optimize load_balance_fair()
sched: Don't update shares twice on on_rq parent
sched: update correct entity's runtime in check_preempt_wakeup()
xtensa: Use generic config PREEMPT definition
h8300: Use generic config PREEMPT definition
m32r: Use generic PREEMPT config
sched: Skip autogroup when looking for all rt sched groups
sched: Simplify mutex_spin_on_owner()
sched: Remove rcu_read_lock() from wake_affine()
sched: Generalize sleep inside spinlock detection
sched: Make sleeping inside spinlock detection working in !CONFIG_PREEMPT
sched: Isolate preempt counting in its own config option
sched: Remove pointless in_atomic() definition check
...
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (123 commits)
perf: Remove the nmi parameter from the oprofile_perf backend
x86, perf: Make copy_from_user_nmi() a library function
perf: Remove perf_event_attr::type check
x86, perf: P4 PMU - Fix typos in comments and style cleanup
perf tools: Make test use the preset debugfs path
perf tools: Add automated tests for events parsing
perf tools: De-opt the parse_events function
perf script: Fix display of IP address for non-callchain path
perf tools: Fix endian conversion reading event attr from file header
perf tools: Add missing 'node' alias to the hw_cache[] array
perf probe: Support adding probes on offline kernel modules
perf probe: Add probed module in front of function
perf probe: Introduce debuginfo to encapsulate dwarf information
perf-probe: Move dwarf library routines to dwarf-aux.{c, h}
perf probe: Remove redundant dwarf functions
perf probe: Move strtailcmp to string.c
perf probe: Rename DIE_FIND_CB_FOUND to DIE_FIND_CB_END
tracing/kprobe: Update symbol reference when loading module
tracing/kprobes: Support module init function probing
kprobes: Return -ENOENT if probe point doesn't exist
...
* 'core-rcu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: Fix wrong check in list_splice_init_rcu()
net,rcu: Convert call_rcu(xt_rateest_free_rcu) to kfree_rcu()
sysctl,rcu: Convert call_rcu(free_head) to kfree
vmalloc,rcu: Convert call_rcu(rcu_free_vb) to kfree_rcu()
vmalloc,rcu: Convert call_rcu(rcu_free_va) to kfree_rcu()
ipc,rcu: Convert call_rcu(ipc_immediate_free) to kfree_rcu()
ipc,rcu: Convert call_rcu(free_un) to kfree_rcu()
security,rcu: Convert call_rcu(sel_netport_free) to kfree_rcu()
security,rcu: Convert call_rcu(sel_netnode_free) to kfree_rcu()
ia64,rcu: Convert call_rcu(sn_irq_info_free) to kfree_rcu()
block,rcu: Convert call_rcu(disk_free_ptbl_rcu_cb) to kfree_rcu()
scsi,rcu: Convert call_rcu(fc_rport_free_rcu) to kfree_rcu()
audit_tree,rcu: Convert call_rcu(__put_tree) to kfree_rcu()
security,rcu: Convert call_rcu(whitelist_item_free) to kfree_rcu()
md,rcu: Convert call_rcu(free_conf) to kfree_rcu()
* 'core-locking-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
lockdep: Fix lockdep_no_validate against IRQ states
mutex: Make mutex_destroy() an inline function
plist: Remove the need to supply locks to plist heads
lockup detector: Fix reference to the non-existent CONFIG_DETECT_SOFTLOCKUP option
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspend-2.6: (51 commits)
PM: Improve error code of pm_notifier_call_chain()
PM: Add "RTC" to PM trace time stamps to avoid confusion
PM / Suspend: Export suspend_set_ops, suspend_valid_only_mem
PM / Suspend: Add .suspend_again() callback to suspend_ops
PM / OPP: Introduce function to free cpufreq table
ARM / shmobile: Return -EBUSY from A4LC power off if A3RV is active
PM / Domains: Take .power_off() error code into account
ARM / shmobile: Use genpd_queue_power_off_work()
ARM / shmobile: Use pm_genpd_poweroff_unused()
PM / Domains: Introduce function to power off all unused PM domains
OMAP: PM: disable idle on suspend for GPIO and UART
OMAP: PM: omap_device: add API to disable idle on suspend
OMAP: PM: omap_device: add system PM methods for PM domain handling
OMAP: PM: omap_device: conditionally use PM domain runtime helpers
PM / Runtime: Add new helper function: pm_runtime_status_suspended()
PM / Domains: Queue up power off work only if it is not pending
PM / Domains: Improve handling of wakeup devices during system suspend
PM / Domains: Do not restore all devices on power off error
PM / Domains: Allow callbacks to execute all runtime PM helpers
PM / Domains: Do not execute device callbacks under locks
...
* 'for-3.1' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
workqueue: separate out drain_workqueue() from destroy_workqueue()
workqueue: remove cancel_rearming_delayed_work[queue]()
* 'ptrace' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg/misc: (39 commits)
ptrace: do_wait(traced_leader_killed_by_mt_exec) can block forever
ptrace: fix ptrace_signal() && STOP_DEQUEUED interaction
connector: add an event for monitoring process tracers
ptrace: dont send SIGSTOP on auto-attach if PT_SEIZED
ptrace: mv send-SIGSTOP from do_fork() to ptrace_init_task()
ptrace_init_task: initialize child->jobctl explicitly
has_stopped_jobs: s/task_is_stopped/SIGNAL_STOP_STOPPED/
ptrace: make former thread ID available via PTRACE_GETEVENTMSG after PTRACE_EVENT_EXEC stop
ptrace: wait_consider_task: s/same_thread_group/ptrace_reparented/
ptrace: kill real_parent_is_ptracer() in in favor of ptrace_reparented()
ptrace: ptrace_reparented() should check same_thread_group()
redefine thread_group_leader() as exit_signal >= 0
do not change dead_task->exit_signal
kill task_detached()
reparent_leader: check EXIT_DEAD instead of task_detached()
make do_notify_parent() __must_check, update the callers
__ptrace_detach: avoid task_detached(), check do_notify_parent()
kill tracehook_notify_death()
make do_notify_parent() return bool
ptrace: s/tracehook_tracer_task()/ptrace_parent()/
...
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1287 commits)
icmp: Fix regression in nexthop resolution during replies.
net: Fix ppc64 BPF JIT dependencies.
acenic: include NET_SKB_PAD headroom to incoming skbs
ixgbe: convert to ndo_fix_features
ixgbe: only enable WoL for magic packet by default
ixgbe: remove ifdef check for non-existent define
ixgbe: Pass staterr instead of re-reading status and error bits from descriptor
ixgbe: Move interrupt related values out of ring and into q_vector
ixgbe: add structure for containing RX/TX rings to q_vector
ixgbe: inline the ixgbe_maybe_stop_tx function
ixgbe: Update ATR to use recorded TX queues instead of CPU for routing
igb: Fix for DH89xxCC near end loopback test
e1000: always call e1000_check_for_link() on e1000_ce4100 MACs.
netxen: add fw version compatibility check
be2net: request native mode each time the card is reset
ipv4: Constrain UFO fragment sizes to multiples of 8 bytes
virtio_net: Fix panic in virtnet_remove
ipv6: make fragment identifications less predictable
ipv6: unshare inetpeers
can: make function can_get_bittiming static
...
No need to define a new "cfs_rq" variable in the "for" block.
Just use the one at the top of the function.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1311297271.3938.1352.camel@minggr.sh.intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Thomas noticed that a lock marked with lockdep_set_novalidate_class()
will still trigger warnings for IRQ inversions. Cure this by skipping
those when marking irq state.
Reported-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-2dp5vmpsxeraqm42kgww6ge2@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
PMU type id can be allocated dynamically, so perf_event_attr::type check
when copying attribute from userspace to kernel is not valid.
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1309421396-17438-4-git-send-email-ming.m.lin@intel.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
"entity_key()" is only used in "__enqueue_entity()" and
its only function is to subtract a tasks vruntime by
its groups minvruntime.
Before this patch a rbtree enqueue-decision is done by
comparing two tasks in the style:
"if (entity_key(cfs_rq, se) < entity_key(cfs_rq, entry))"
which would be
"if (se->vruntime-cfs_rq->min_vruntime < entry->vruntime-cfs_rq->min_vruntime)"
or (if reducing cfs_rq->min_vruntime out)
"if (se->vruntime < entry->vruntime)"
which is
"if (entity_before(se, entry))"
So we do not need "entity_key()".
If "entity_before()" is inline we will also save one subtraction (only one,
because "entity_key(cfs_rq, se)" was cached in "key")
Signed-off-by: Stephan Baerwolf <stephan.baerwolf@tu-ilmenau.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-ns12mnd2h5w8rb9agd8hnsfk@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clean up cfs/rt runqueue initialization by moving group scheduling
related code into the corresponding functions.
Also, keep group scheduling as an add-on, so that things are only done
additionally, i. e. remove the init_*_rq() calls from init_tg_*_entry().
(This removes a redundant initalization during sched_init()).
In case of group scheduling rt_rq->highest_prio.curr is now initialized
twice, but adding another #ifdef seems not worth it.
Signed-off-by: Jan H. Schönherr <schnhrr@cs.tu-berlin.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1310661163-16606-1-git-send-email-schnhrr@cs.tu-berlin.de
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Reorder root_domain to remove 8 bytes of alignment padding on 64 bit
builds, this shrinks the size from 1736 to 1728 bytes, therefore using
one fewer cachelines.
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1310726492.1977.5.camel@castor.rsk
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If a task group is to be created and alloc_fair_sched_group() fails,
then the rt_bandwidth of the corresponding task group is not yet
initialized. The caller, sched_create_group(), starts a clean up
procedure which calls free_rt_sched_group() which unconditionally
destroys the not yet initialized rt_bandwidth.
This crashes or hangs the system in lock_hrtimer_base(): UP systems
dereference a NULL pointer, while SMP systems loop endlessly on a
condition that cannot become true.
This patch simply avoids the destruction of rt_bandwidth when the
initialization code path was not reached.
(This was discovered by accident with a custom kernel modification.)
Signed-off-by: Bianca Lutz <sowilo@cs.tu-berlin.de>
Signed-off-by: Jan Schoenherr <schnhrr@cs.tu-berlin.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1310580816-10861-7-git-send-email-schnhrr@cs.tu-berlin.de
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The last reference to cpu_cfs_rq() was removed with commit 88ec22d3
("sched: Remove the cfs_rq dependency from set_task_cpu()"). Thus,
remove this function, too.
Signed-off-by: Jan Schoenherr <schnhrr@cs.tu-berlin.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1310580816-10861-3-git-send-email-schnhrr@cs.tu-berlin.de
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use for_each_leaf_cfs_rq() instead of list_for_each_entry_rcu(), this
achieves that load_balance_fair() only iterates those task_groups that
actually have tasks on busiest, and that we iterate bottom-up, trying to
move light groups before the heavier ones.
No idea if it will actually work out to be beneficial in practice, does
anybody have a cgroup workload that might show a difference one way or
the other?
[ Also move update_h_load to sched_fair.c, loosing #ifdef-ery ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/1310557009.2586.28.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In dequeue_task_fair() we bail on dequeue when we encounter a parenting entity
with additional weight. However, we perform a double shares update on this
entity as we continue the shares update traversal from this point, despite
dequeue_entity() having already updated its queuing cfs_rq.
Avoid this by starting from the parent when we resume.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110707053059.797714697@google.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
While looking at check_preempt_wakeup() I realized that we are
potentially updating the wrong entity in the fair-group scheduling
case. In this case the current task's cfs_rq may not be the same as
the one used for the comparison between the waking task and the
existing task's vruntime.
This potentially results in us using a stale vruntime in the
pre-emption decision, providing a small false preference for the
previous task. The effects of this are bounded since we always
perform a hierarchal update on the tick.
Signed-off-by: Paul Turner <pjt@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/CAPM31R+2Ke2urUZKao5W92_LupdR4AYEv-EZWiJ3tG=tEes2cw@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simple test-case,
int main(void)
{
int pid, status;
pid = fork();
if (!pid) {
pause();
assert(0);
return 0x23;
}
assert(ptrace(PTRACE_ATTACH, pid, 0,0) == 0);
assert(wait(&status) == pid);
assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
kill(pid, SIGCONT); // <--- also clears STOP_DEQUEUD
assert(ptrace(PTRACE_CONT, pid, 0,0) == 0);
assert(wait(&status) == pid);
assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGCONT);
assert(ptrace(PTRACE_CONT, pid, 0, SIGSTOP) == 0);
assert(wait(&status) == pid);
assert(WIFSTOPPED(status) && WSTOPSIG(status) == SIGSTOP);
kill(pid, SIGKILL);
return 0;
}
Without the patch it hangs. After the patch SIGSTOP "injected" by the
tracer is not ignored and stops the tracee.
Note also that if this test-case uses, say, SIGWINCH instead of SIGCONT,
everything works without the patch. This can't be right, and this is
confusing.
The problem is that SIGSTOP (or any other sig_kernel_stop() signal) has
no effect without JOBCTL_STOP_DEQUEUED. This means it is simply ignored
after PTRACE_CONT unless JOBCTL_STOP_DEQUEUED was set "by accident", say
it wasn't cleared after initial SIGSTOP sent by PTRACE_ATTACH.
At first glance we could change ptrace_signal() to add STOP_DEQUEUED
after return from ptrace_stop(), but this is not right in case when the
tracer does not change the reported SIGSTOP and SIGCONT comes in between.
This is even more wrong with PT_SEIZED, SIGCONT adds JOBCTL_TRAP_NOTIFY
which will be "lost" during the TRAP_STOP | TRAP_NOTIFY report.
So lets add STOP_DEQUEUED _before_ we report the signal. It has no effect
unless sig_kernel_stop() == T after the tracer resumes us, and in the
latter case the pending STOP_DEQUEUED means no SIGCONT in between, we
should stop.
Note also that if SIGCONT was sent, PT_SEIZED tracee will correctly
report PTRACE_EVENT_STOP/SIGTRAP and thus the tracer can notice the fact
SIGSTOP was cancelled.
Also, move the current->ptrace check from ptrace_signal() to its caller,
get_signal_to_deliver(), this looks more natural.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Terribly embarassing. Don't know how I committed this, but its
KERN_WARNING not KERN_WARN.
This fixes the following compile error:
kernel/time/timekeeping.c: In function ‘__timekeeping_inject_sleeptime’:
kernel/time/timekeeping.c:608: error: ‘KERN_WARN’ undeclared (first use in this function)
kernel/time/timekeeping.c:608: error: (Each undeclared identifier is reported only once
kernel/time/timekeeping.c:608: error: for each function it appears in.)
kernel/time/timekeeping.c:608: error: expected ‘)’ before string constant
make[2]: *** [kernel/time/timekeeping.o] Error 1
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The RCU callback free_head just calls kfree(), so we can use kfree_rcu()
instead of call_rcu().
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The rcu callback __put_tree() just calls a kfree(),
so we use kfree_rcu() instead of the call_rcu(__put_tree).
Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric Paris <eparis@redhat.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
The __lock_task_sighand() function calls rcu_read_lock() with interrupts
and preemption enabled, but later calls rcu_read_unlock() with interrupts
disabled. It is therefore possible that this RCU read-side critical
section will be preempted and later RCU priority boosted, which means that
rcu_read_unlock() will call rt_mutex_unlock() in order to deboost itself, but
with interrupts disabled. This results in lockdep splats, so this commit
nests the RCU read-side critical section within the interrupt-disabled
region of code. This prevents the RCU read-side critical section from
being preempted, and thus prevents the attempt to deboost with interrupts
disabled.
It is quite possible that a better long-term fix is to make rt_mutex_unlock()
disable irqs when acquiring the rt_mutex structure's ->wait_lock.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The rcu_read_unlock_special() function relies on in_irq() to exclude
scheduler activity from interrupt level. This fails because exit_irq()
can invoke the scheduler after clearing the preempt_count() bits that
in_irq() uses to determine that it is at interrupt level. This situation
can result in failures as follows:
$task IRQ SoftIRQ
rcu_read_lock()
/* do stuff */
<preempt> |= UNLOCK_BLOCKED
rcu_read_unlock()
--t->rcu_read_lock_nesting
irq_enter();
/* do stuff, don't use RCU */
irq_exit();
sub_preempt_count(IRQ_EXIT_OFFSET);
invoke_softirq()
ttwu();
spin_lock_irq(&pi->lock)
rcu_read_lock();
/* do stuff */
rcu_read_unlock();
rcu_read_unlock_special()
rcu_report_exp_rnp()
ttwu()
spin_lock_irq(&pi->lock) /* deadlock */
rcu_read_unlock_special(t);
Ed can simply trigger this 'easy' because invoke_softirq() immediately
does a ttwu() of ksoftirqd/# instead of doing the in-place softirq stuff
first, but even without that the above happens.
Cure this by also excluding softirqs from the
rcu_read_unlock_special() handler and ensuring the force_irqthreads
ksoftirqd/# wakeup is done from full softirq context.
[ Alternatively, delaying the ->rcu_read_lock_nesting decrement
until after the special handling would make the thing more robust
in the face of interrupts as well. And there is a separate patch
for that. ]
Cc: Thomas Gleixner <tglx@linutronix.de>
Reported-and-tested-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Ensure scheduler_ipi() calls irq_{enter,exit} when it does some actual
work. Traditionally we never did any actual work from the resched IPI
and all magic happened in the return from interrupt path.
Now that we do do some work, we need to ensure irq_{enter,exit} are
called so that we don't confuse things.
This affects things like timekeeping, NO_HZ and RCU, basically
everything with a hook in irq_enter/exit.
Explicit examples of things going wrong are:
sched_clock_cpu() -- has a callback when leaving NO_HZ state to take
a new reading from GTOD and TSC. Without this
callback, time is stuck in the past.
RCU -- needs in_irq() to work in order to avoid some nasty deadlocks
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The addition of RCU read-side critical sections within runqueue and
priority-inheritance lock critical sections introduced some deadlock
cycles, for example, involving interrupts from __rcu_read_unlock()
where the interrupt handlers call wake_up(). This situation can cause
the instance of __rcu_read_unlock() invoked from interrupt to do some
of the processing that would otherwise have been carried out by the
task-level instance of __rcu_read_unlock(). When the interrupt-level
instance of __rcu_read_unlock() is called with a scheduler lock held
from interrupt-entry/exit situations where in_irq() returns false,
deadlock can result.
This commit resolves these deadlocks by using negative values of
the per-task ->rcu_read_lock_nesting counter to indicate that an
instance of __rcu_read_unlock() is in flight, which in turn prevents
instances from interrupt handlers from doing any special processing.
This patch is inspired by Steven Rostedt's earlier patch that similarly
made __rcu_read_unlock() guard against interrupt-mediated recursion
(see https://lkml.org/lkml/2011/7/15/326), but this commit refines
Steven's approach to avoid the need for preemption disabling on the
__rcu_read_unlock() fastpath and to also avoid the need for manipulating
a separate per-CPU variable.
This patch avoids need for preempt_disable() by instead using negative
values of the per-task ->rcu_read_lock_nesting counter. Note that nested
rcu_read_lock()/rcu_read_unlock() pairs are still permitted, but they will
never see ->rcu_read_lock_nesting go to zero, and will therefore never
invoke rcu_read_unlock_special(), thus preventing them from seeing the
RCU_READ_UNLOCK_BLOCKED bit should it be set in ->rcu_read_unlock_special.
This patch also adds a check for ->rcu_read_unlock_special being negative
in rcu_check_callbacks(), thus preventing the RCU_READ_UNLOCK_NEED_QS
bit from being set should a scheduling-clock interrupt occur while
__rcu_read_unlock() is exiting from an outermost RCU read-side critical
section.
Of course, __rcu_read_unlock() can be preempted during the time that
->rcu_read_lock_nesting is negative. This could result in the setting
of the RCU_READ_UNLOCK_BLOCKED bit after __rcu_read_unlock() checks it,
and would also result it this task being queued on the corresponding
rcu_node structure's blkd_tasks list. Therefore, some later RCU read-side
critical section would enter rcu_read_unlock_special() to clean up --
which could result in deadlock if that critical section happened to be in
the scheduler where the runqueue or priority-inheritance locks were held.
This situation is dealt with by making rcu_preempt_note_context_switch()
check for negative ->rcu_read_lock_nesting, thus refraining from
queuing the task (and from setting RCU_READ_UNLOCK_BLOCKED) if we are
already exiting from the outermost RCU read-side critical section (in
other words, we really are no longer actually in that RCU read-side
critical section). In addition, rcu_preempt_note_context_switch()
invokes rcu_read_unlock_special() to carry out the cleanup in this case,
which clears out the ->rcu_read_unlock_special bits and dequeues the task
(if necessary), in turn avoiding needless delay of the current RCU grace
period and needless RCU priority boosting.
It is still illegal to call rcu_read_unlock() while holding a scheduler
lock if the prior RCU read-side critical section has ever had either
preemption or irqs enabled. However, the common use case is legal,
namely where then entire RCU read-side critical section executes with
irqs disabled, for example, when the scheduler lock is held across the
entire lifetime of the RCU read-side critical section.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When creating sched_domains, stop when we've covered the entire
target span instead of continuing to create domains, only to
later find they're redundant and throw them away again.
This avoids single node systems from touching funny NUMA
sched_domain creation code and reduces the risks of the new
SD_OVERLAP code.
Requested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Anton Blanchard <anton@samba.org>
Cc: mahesh@linux.vnet.ibm.com
Cc: benh@kernel.crashing.org
Cc: linuxppc-dev@lists.ozlabs.org
Link: http://lkml.kernel.org/r/1311180177.29152.57.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Allow for sched_domain spans that overlap by giving such domains their
own sched_group list instead of sharing the sched_groups amongst
each-other.
This is needed for machines with more than 16 nodes, because
sched_domain_node_span() will generate a node mask from the
16 nearest nodes without regard if these masks have any overlap.
Currently sched_domains have a sched_group that maps to their child
sched_domain span, and since there is no overlap we share the
sched_group between the sched_domains of the various CPUs. If however
there is overlap, we would need to link the sched_group list in
different ways for each cpu, and hence sharing isn't possible.
In order to solve this, allocate private sched_groups for each CPU's
sched_domain but have the sched_groups share a sched_group_power
structure such that we can uniquely track the power.
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-08bxqw9wis3qti9u5inifh3y@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to prepare for non-unique sched_groups per domain, we need to
carry the cpu_power elsewhere, so put a level of indirection in.
Reported-and-tested-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-qkho2byuhe4482fuknss40ad@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Given some common flag combinations, particularly -Os, gcc will inline
rcu_read_unlock_special() despite its being in an unlikely() clause.
Use noinline to prohibit this misoptimization.
In addition, move the second barrier() in __rcu_read_unlock() so that
it is not on the common-case code path. This will allow the compiler to
generate better code for the common-case path through __rcu_read_unlock().
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
The RCU_BOOST commits for TREE_PREEMPT_RCU introduced an other-task
write to a new RCU_READ_UNLOCK_BOOSTED bit in the task_struct structure's
->rcu_read_unlock_special field, but, as noted by Steven Rostedt, without
correctly synchronizing all accesses to ->rcu_read_unlock_special.
This could result in bits in ->rcu_read_unlock_special being spuriously
set and cleared due to conflicting accesses, which in turn could result
in deadlocks between the rcu_node structure's ->lock and the scheduler's
rq and pi locks. These deadlocks would result from RCU incorrectly
believing that the just-ended RCU read-side critical section had been
preempted and/or boosted. If that RCU read-side critical section was
executed with either rq or pi locks held, RCU's ensuing (incorrect)
calls to the scheduler would cause the scheduler to attempt to once
again acquire the rq and pi locks, resulting in deadlock. More complex
deadlock cycles are also possible, involving multiple rq and pi locks
as well as locks from multiple rcu_node structures.
This commit fixes synchronization by creating ->rcu_boosted field in
task_struct that is accessed and modified only when holding the ->lock
in the rcu_node structure on which the task is queued (on that rcu_node
structure's ->blkd_tasks list). This results in tasks accessing only
their own current->rcu_read_unlock_special fields, making unsynchronized
access once again legal, and keeping the rcu_read_unlock() fastpath free
of atomic instructions and memory barriers.
The reason that the rcu_read_unlock() fastpath does not need to access
the new current->rcu_boosted field is that this new field cannot
be non-zero unless the RCU_READ_UNLOCK_BLOCKED bit is set in the
current->rcu_read_unlock_special field. Therefore, rcu_read_unlock()
need only test current->rcu_read_unlock_special: if that is zero, then
current->rcu_boosted must also be zero.
This bug does not affect TINY_PREEMPT_RCU because this implementation
of RCU accesses current->rcu_read_unlock_special with irqs disabled,
thus preventing races on the !SMP systems that TINY_PREEMPT_RCU runs on.
Maybe-reported-by: Dave Jones <davej@redhat.com>
Maybe-reported-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
PREEMPT_RCU read-side critical sections blocking an expedited grace
period invoke rcu_report_exp_rnp(). When the last such critical section
has completed, rcu_report_exp_rnp() invokes the scheduler to wake up the
task that invoked synchronize_rcu_expedited() -- needlessly holding the
root rcu_node structure's lock while doing so, thus needlessly providing
a way for RCU and the scheduler to deadlock.
This commit therefore releases the root rcu_node structure's lock before
calling wake_up().
Reported-by: Ed Tomlinson <edt@aei.ca>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
When IKCONFIG is built-in make oldconfig will cause the kernel to be
relinked even if .config didn't change. This happens because of a
config_data.gz dependency on .config. This patch changes the if_changed
to a filechk so that config_data.h is only rebuilt when the contents
have actually changed.
Signed-off-by: Peter Foley <pefoley2@verizon.net>
Signed-off-by: Michal Marek <mmarek@suse.cz>
This change adds a procfs connector event, which is emitted on every
successful process tracer attach or detach.
If some process connects to other one, kernelspace connector reports
process id and thread group id of both these involved processes. On
disconnection null process id is returned.
Such an event allows to create a simple automated userspace mechanism
to be aware about processes connecting to others, therefore predefined
process policies can be applied to them if needed.
Note, a detach signal is emitted only in case, if a tracer process
explicitly executes PTRACE_DETACH request. In other cases like tracee
or tracer exit detach event from proc connector is not reported.
Signed-off-by: Vladimir Zapolskiy <vzapolskiy@gmail.com>
Acked-by: Evgeniy Polyakov <zbr@ioremap.net>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
If the new child is traced, do_fork() adds the pending SIGSTOP.
It assumes that either it is traced because of auto-attach or the
tracer attached later, in both cases sigaddset/set_thread_flag is
correct even if SIGSTOP is already pending.
Now that we have PTRACE_SEIZE this is no longer right in the latter
case. If the tracer does PTRACE_SEIZE after copy_process() makes the
child visible the queued SIGSTOP is wrong.
We could check PT_SEIZED bit and change ptrace_attach() to set both
PT_PTRACED and PT_SEIZED bits simultaneously but see the next patch,
we need to know whether this child was auto-attached or not anyway.
So this patch simply moves this code to ptrace_init_task(), this
way we can never race with ptrace_attach().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
has_stopped_jobs() naively checks task_is_stopped(group_leader). This
was always wrong even without ptrace, group_leader can be dead. And
given that ptrace can change the state to TRACED this is wrong even
in the single-threaded case.
Change the code to check SIGNAL_STOP_STOPPED and simplify the code,
retval + break/continue doesn't make this trivial code more readable.
We could probably add the usual "|| signal->group_stop_count" check
but I don't think this makes sense, the task can start the group-stop
right after the check anyway.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
* pm-domains: (33 commits)
ARM / shmobile: Return -EBUSY from A4LC power off if A3RV is active
PM / Domains: Take .power_off() error code into account
ARM / shmobile: Use genpd_queue_power_off_work()
ARM / shmobile: Use pm_genpd_poweroff_unused()
PM / Domains: Introduce function to power off all unused PM domains
PM / Domains: Queue up power off work only if it is not pending
PM / Domains: Improve handling of wakeup devices during system suspend
PM / Domains: Do not restore all devices on power off error
PM / Domains: Allow callbacks to execute all runtime PM helpers
PM / Domains: Do not execute device callbacks under locks
PM / Domains: Make failing pm_genpd_prepare() clean up properly
PM / Domains: Set device state to "active" during system resume
ARM: mach-shmobile: sh7372 A3RV requires A4LC
PM / Domains: Export pm_genpd_poweron() in header
ARM: mach-shmobile: sh7372 late pm domain off
ARM: mach-shmobile: Runtime PM late init callback
ARM: mach-shmobile: sh7372 D4 support
ARM: mach-shmobile: sh7372 A4MP support
ARM: mach-shmobile: sh7372: make sure that fsi is peripheral of spu2
ARM: mach-shmobile: sh7372 A3SG support
...
This enables pm_notifier_call_chain() to get the actual error code
in the callback rather than always assume -EINVAL by converting all
PM notifier calls to return encapsulate error code with
notifier_from_errno().
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Some platforms wish to implement their PM core suspend code as
modules. To do so, these functions need to be exported to modules.
[rjw: Replaced EXPORT_SYMBOL with EXPORT_SYMBOL_GPL]
Reported-by: Jean Pihet <j-pihet@ti.com>
Signed-off-by: Kevin Hilman <khilman@ti.com>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
A system or a device may need to control suspend/wakeup events. It may
want to wakeup the system after a predefined amount of time or at a
predefined event decided while entering suspend for polling or delayed
work. Then, it may want to enter suspend again if its predefined wakeup
condition is the only wakeup reason and there is no outstanding events;
thus, it does not wakeup the userspace unnecessary or unnecessary
devices and keeps suspended as long as possible (saving the power).
Enabling a system to wakeup after a specified time can be easily
achieved by using RTC. However, to enter suspend again immediately
without invoking userland and unrelated devices, we need additional
features in the suspend framework.
Such need comes from:
1. Monitoring a critical device status without interrupts that can
wakeup the system. (in-suspend polling)
An example is ambient temperature monitoring that needs to shut down
the system or a specific device function if it is too hot or cold. The
temperature of a specific device may be needed to be monitored as well;
e.g., a charger monitors battery temperature in order to stop charging
if overheated.
2. Execute critical "delayed work" at suspend.
A driver or a system/board may have a delayed work (or any similar
things) that it wants to execute at the requested time.
For example, some chargers want to check the battery voltage some
time (e.g., 30 seconds) after the battery is fully charged and the
charger has stopped. Then, the charger restarts charging if the voltage
has dropped more than a threshold, which is smaller than "restart-charger"
voltage, which is a threshold to restart charging regardless of the
time passed.
This patch allows to add "suspend_again" callback at struct
platform_suspend_ops and let the "suspend_again" callback return true if
the system is required to enter suspend again after the current instance
of wakeup. Device-wise suspend_again implemented at dev_pm_ops or
syscore is not done because: a) suspend_again feature is usually under
platform-wise decision and controls the behavior of the whole platform
and b) There are very limited devices related to the usage cases of
suspend_again; chargers and temperature sensors are mentioned so far.
With suspend_again callback registered at struct platform_suspend_ops
suspend_ops in kernel/power/suspend.c with suspend_set_ops by the
platform, the suspend framework tries to enter suspend again by
looping suspend_enter() if suspend_again has returned true and there has
been no errors in the suspending sequence or pending wakeups (by
pm_wakeup_pending).
Tested at Exynos4-NURI.
[rjw: Fixed up kerneldoc comment for suspend_enter().]
Signed-off-by: MyungJoo Ham <myungjoo.ham@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Since the address of a module-local variable can only be
solved after the target module is loaded, the symbol
fetch-argument should be updated when loading target
module.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: http://lkml.kernel.org/r/20110627072703.6528.75042.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
To support probing module init functions, kprobe-tracer allows
user to define a probe on non-existed function when it is given
with a module name. This also enables user to set a probe on
a function on a specific module, even if a same name (but different)
function is locally defined in another module.
The module name must be in the front of function name and separated
by a ':'. e.g. btrfs:btrfs_init_sysfs
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Link: http://lkml.kernel.org/r/20110627072656.6528.89970.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Return -ENOENT if probe point doesn't exist, but still returns
-EINVAL if both of kprobe->addr and kprobe->symbol_name are
specified or both are not specified.
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Link: http://lkml.kernel.org/r/20110627072650.6528.67329.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
* 'rcu/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-2.6-rcu:
rcu: Prevent RCU callbacks from executing before scheduler initialized
Commit 3fe1698b7f ("sched: Deal with non-atomic min_vruntime reads
on 32bit") forgot to initialize min_vruntime_copy which could lead to
an infinite while loop in task_waking_fair() under some circumstances
(early boot, lucky timing).
[ This bug was also reported by others that blamed it on the RCU
initialization problems ]
Reported-and-tested-by: Bruno Wolff III <bruno@wolff.to>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Enabling function tracer to trace all functions, then load a module and
then disable function tracing will cause ftrace to fail.
This can also happen by enabling function tracing on the command line:
ftrace=function
and during boot up, modules are loaded, then you disable function tracing
with 'echo nop > current_tracer' you will trigger a bug in ftrace that
will shut itself down.
The reason is, the new ftrace code keeps ref counts of all ftrace_ops that
are registered for tracing. When one or more ftrace_ops are registered,
all the records that represent the functions that the ftrace_ops will
trace have a ref count incremented. If this ref count is not zero,
when the code modification runs, that function will be enabled for tracing.
If the ref count is zero, that function will be disabled from tracing.
To make sure the accounting was working, FTRACE_WARN_ON()s were added
to updating of the ref counts.
If the ref count hits its max (> 2^30 ftrace_ops added), or if
the ref count goes below zero, a FTRACE_WARN_ON() is triggered which
disables all modification of code.
Since it is common for ftrace_ops to trace all functions in the kernel,
instead of creating > 20,000 hash items for the ftrace_ops, the hash
count is just set to zero, and it represents that the ftrace_ops is
to trace all functions. This is where the issues arrise.
If you enable function tracing to trace all functions, and then add
a module, the modules function records do not get the ref count updated.
When the function tracer is disabled, all function records ref counts
are subtracted. Since the modules never had their ref counts incremented,
they go below zero and the FTRACE_WARN_ON() is triggered.
The solution to this is rather simple. When modules are loaded, and
their functions are added to the the ftrace pool, look to see if any
ftrace_ops are registered that trace all functions. And for those,
update the ref count for the module function records.
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Rename probe_* to trace_probe_* for avoiding namespace
confliction. This also fixes improper names of find_probe_event()
and cleanup_all_probes() to find_trace_probe() and
release_all_trace_probes() respectively.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20110627072636.6528.60374.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Instead of hw_nmi_watchdog_set_attr() weak function
and appropriate x86_pmu::hw_watchdog_set_attr() call
we introduce even alias mechanism which allow us
to drop this routines completely and isolate quirks
of Netburst architecture inside P4 PMU code only.
The main idea remains the same though -- to allow
nmi-watchdog and perf top run simultaneously.
Note the aliasing mechanism applies to generic
PERF_COUNT_HW_CPU_CYCLES event only because arbitrary
event (say passed as RAW initially) might have some
additional bits set inside ESCR register changing
the behaviour of event and we can't guarantee anymore
that alias event will give the same result.
P.S. Thanks a huge to Don and Steven for for testing
and early review.
Acked-by: Don Zickus <dzickus@redhat.com>
Tested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Ingo Molnar <mingo@elte.hu>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
CC: Stephane Eranian <eranian@google.com>
CC: Lin Ming <ming.m.lin@intel.com>
CC: Arnaldo Carvalho de Melo <acme@redhat.com>
CC: Frederic Weisbecker <fweisbec@gmail.com>
Link: http://lkml.kernel.org/r/20110708201712.GS23657@sun
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently the stack trace per event in ftace is only 8 frames.
This can be quite limiting and sometimes useless. Especially when
the "ignore frames" is wrong and we also use up stack frames for
the event processing itself.
Change this to be dynamic by adding a percpu buffer that we can
write a large stack frame into and then copy into the ring buffer.
For interrupts and NMIs that come in while another event is being
process, will only get to use the 8 frame stack. That should be enough
as the task that it interrupted will have the full stack frame anyway.
Requested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch makes update_rq_clock() aware of steal time.
The mechanism of operation is not different from irq_time,
and follows the same principles. This lives in a CONFIG
option itself, and can be compiled out independently of
the rest of steal time reporting. The effect of disabling it
is that the scheduler will still report steal time (that cannot be
disabled), but won't use this information for cpu power adjustments.
Everytime update_rq_clock_task() is invoked, we query information
about how much time was stolen since last call, and feed it into
sched_rt_avg_update().
Although steal time reporting in account_process_tick() keeps
track of the last time we read the steal clock, in prev_steal_time,
this patch do it independently using another field,
prev_steal_time_rq. This is because otherwise, information about time
accounted in update_process_tick() would never reach us in update_rq_clock().
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
This patch accounts steal time time in account_process_tick.
If one or more tick is considered stolen in the current
accounting cycle, user/system accounting is skipped. Idle is fine,
since the hypervisor does not report steal time if the guest
is halted.
Accounting steal time from the core scheduler give us the
advantage of direct acess to the runqueue data. In a later
opportunity, it can be used to tweak cpu power and make
the scheduler aware of the time it lost.
[avi: <asm/paravirt.h> doesn't exist on many archs]
Signed-off-by: Glauber Costa <glommer@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
To implement steal time, we need the hypervisor to pass the guest
information about how much time was spent running other processes
outside the VM, while the vcpu had meaningful work to do - halt
time does not count.
This information is acquired through the run_delay field of
delayacct/schedstats infrastructure, that counts time spent in a
runqueue but not running.
Steal time is a per-cpu information, so the traditional MSR-based
infrastructure is used. A new msr, KVM_MSR_STEAL_TIME, holds the
memory area address containing information about steal time
This patch contains the hypervisor part of the steal time infrasructure,
and can be backported independently of the guest portion.
[avi, yongjie: export delayacct_on, to avoid build failures in some configs]
Signed-off-by: Glauber Costa <glommer@redhat.com>
Tested-by: Eric B Munson <emunson@mgebm.net>
CC: Rik van Riel <riel@redhat.com>
CC: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
CC: Peter Zijlstra <peterz@infradead.org>
CC: Anthony Liguori <aliguori@us.ibm.com>
Signed-off-by: Yongjie Ren <yongjie.ren@intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
Archs that do not implement CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST, will
fail the dynamic ftrace selftest.
The function tracer has a quick 'off' variable that will prevent
the call back functions from being called. This variable is called
function_trace_stop. In x86, this is implemented directly in the mcount
assembly, but for other archs, an intermediate function is used called
ftrace_test_stop_func().
In dynamic ftrace, the function pointer variable ftrace_trace_function is
used to update the caller code in the mcount caller. But for archs that
do not have CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST set, it only calls
ftrace_test_stop_func() instead, which in turn calls __ftrace_trace_function.
When more than one ftrace_ops is registered, the function it calls is
ftrace_ops_list_func(), which will iterate over all registered ftrace_ops
and call the callbacks that have their hash matching.
The issue happens when two ftrace_ops are registered for different functions
and one is then unregistered. The __ftrace_trace_function is then pointed
to the remaining ftrace_ops callback function directly. This mean it will
be called for all functions that were registered to trace by both ftrace_ops
that were registered.
This is not an issue for archs with CONFIG_HAVE_FUNCTION_TRACE_MCOUNT_TEST,
because the update of ftrace_trace_function doesn't happen until after all
functions have been updated, and then the mcount caller is updated. But
for those archs that do use the ftrace_test_stop_func(), the update is
immediate.
The dynamic selftest fails because it hits this situation, and the
ftrace_ops that it registers fails to only trace what it was suppose to
and instead traces all other functions.
The solution is to delay the setting of __ftrace_trace_function until
after all the functions have been updated according to the registered
ftrace_ops. Also, function_trace_stop is set during the update to prevent
function tracing from calling code that is caused by the function tracer
itself.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently, if set_ftrace_filter() is called when the ftrace_ops is
active, the function filters will not be updated. They will only be updated
when tracing is disabled and re-enabled.
Update the functions immediately during set_ftrace_filter().
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Whenever the hash of the ftrace_ops is updated, the record counts
must be balance. This requires disabling the records that are set
in the original hash, and then enabling the records that are set
in the updated hash.
Moving the update into ftrace_hash_move() removes the bug where the
hash was updated but the records were not, which results in ftrace
triggering a warning and disabling itself because the ftrace_ops filter
is updated while the ftrace_ops was registered, and then the failure
happens when the ftrace_ops is unregistered.
The current code will not trigger this bug, but new code will.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Under some rare but real combinations of configuration parameters, RCU
callbacks are posted during early boot that use kernel facilities that
are not yet initialized. Therefore, when these callbacks are invoked,
hard hangs and crashes ensue. This commit therefore prevents RCU
callbacks from being invoked until after the scheduler is fully up and
running, as in after multiple tasks have been spawned.
It might well turn out that a better approach is to identify the specific
RCU callbacks that are causing this problem, but that discussion will
wait until such time as someone really needs an RCU callback to be invoked
(as opposed to merely registered) during early boot.
Reported-by: julie Sullivan <kernelmail.jms@gmail.com>
Reported-by: RKK <kulkarni.ravi4@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: julie Sullivan <kernelmail.jms@gmail.com>
Tested-by: RKK <kulkarni.ravi4@gmail.com>
KVM has an ioctl to define which signal mask should be used while running
inside VCPU_RUN. At least for big endian systems, this mask is different
on 32-bit and 64-bit systems (though the size is identical).
Add a compat wrapper that converts the mask to whatever the kernel accepts,
allowing 32-bit kvm user space to set signal masks.
This patch fixes qemu with --enable-io-thread on ppc64 hosts when running
32-bit user land.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
fs_excl is a poor man's priority inheritance for filesystems to hint to
the block layer that an operation is important. It was never clearly
specified, not widely adopted, and will not prevent starvation in many
cases (like across cgroups).
fs_excl was introduced with the time sliced CFQ IO scheduler, to
indicate when a process held FS exclusive resources and thus needed
a boost.
It doesn't cover all file systems, and it was never fully complete.
Lets kill it.
Signed-off-by: Justin TerAvest <teravest@google.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Since ca5ecddf (rcu: define __rcu address space modifier for sparse)
rcu_dereference_check use rcu_read_lock_held as a part of condition
automatically so callers do not have to do that as well.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
This was legacy code brought over from the RT tree and
is no longer necessary.
Signed-off-by: Dima Zavin <dima@android.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Daniel Walker <dwalker@codeaurora.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/1310084879-10351-2-git-send-email-dima@android.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When I mounted an NFS directory, it caused several modules to be loaded. At the
time I was running the preemptirqsoff tracer, and it showed the following
output:
# tracer: preemptirqsoff
#
# preemptirqsoff latency trace v1.1.5 on 2.6.33.9-rt30-mrg-test
# --------------------------------------------------------------------
# latency: 1177 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
# -----------------
# | task: modprobe-19370 (uid:0 nice:0 policy:0 rt_prio:0)
# -----------------
# => started at: ftrace_module_notify
# => ended at: ftrace_module_notify
#
#
# _------=> CPU#
# / _-----=> irqs-off
# | / _----=> need-resched
# || / _---=> hardirq/softirq
# ||| / _--=> preempt-depth
# |||| /_--=> lock-depth
# |||||/ delay
# cmd pid |||||| time | caller
# \ / |||||| \ | /
modprobe-19370 3d.... 0us!: ftrace_process_locs <-ftrace_module_notify
modprobe-19370 3d.... 1176us : ftrace_process_locs <-ftrace_module_notify
modprobe-19370 3d.... 1178us : trace_hardirqs_on <-ftrace_module_notify
modprobe-19370 3d.... 1178us : <stack trace>
=> ftrace_process_locs
=> ftrace_module_notify
=> notifier_call_chain
=> __blocking_notifier_call_chain
=> blocking_notifier_call_chain
=> sys_init_module
=> system_call_fastpath
That's over 1ms that interrupts are disabled on a Real-Time kernel!
Looking at the cause (being the ftrace author helped), I found that the
interrupts are disabled before the code modification of mcounts into nops. The
interrupts only need to be disabled on start up around this code, not when
modules are being loaded.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
If a function is set to be traced by the set_graph_function, but the
option funcgraph-irqs is zero, and the traced function happens to be
called from a interrupt, it will not be traced.
The point of funcgraph-irqs is to not trace interrupts when we are
preempted by an irq, not to not trace functions we want to trace that
happen to be *in* a irq.
Luckily the current->trace_recursion element is perfect to add a flag
to help us be able to trace functions within an interrupt even when
we are not tracing interrupts that preempt the trace.
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This fixes a regression introduced by e59347a "arm: orion:
Use generic irq chip".
Depending on the device, interrupts acknowledgement is done by setting
or by clearing a dedicated register. Replace irq_gc_ack() with some
{set,clr}_bit variants allows to handle both cases.
Note that this patch affects the following SoCs: Davinci, Samsung and
Orion. Except for this last, the change is minor: irq_gc_ack() is just
renamed into irq_gc_ack_set_bit().
For the Orion SoCs, the edge GPIO interrupts support is currently
broken. irq_gc_ack() try to acknowledge a such interrupt by setting
the corresponding cause register bit. The Orion GPIO device expect the
opposite. To fix this issue, the irq_gc_ack_clr_bit() variant is used.
Tested on Network Space v2.
Reported-by: Joey Oravec <joravec@drewtech.com>
Signed-off-by: Simon Guinot <sguinot@lacie.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
The "enable" file for the event system can be removed when a module
is unloaded and the event system only has events from that module.
As the event system nr_events count goes to zero, it may be freed
if its ref_count is also set to zero.
Like the "filter" file, the "enable" file may be opened by a task and
referenced later, after a module has been unloaded and the events for
that event system have been removed.
Although the "filter" file referenced the event system structure,
the "enable" file only references a pointer to the event system
name. Since the name is freed when the event system is removed,
it is possible that an access to the "enable" file may reference
a freed pointer.
Update the "enable" file to use the subsystem_open() routine that
the "filter" file uses, to keep a reference to the event system
structure while the "enable" file is opened.
Cc: <stable@kernel.org>
Reported-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The event system is freed when its nr_events is set to zero. This happens
when a module created an event system and then later the module is
removed. Modules may share systems, so the system is allocated when
it is created and freed when the modules are unloaded and all the
events under the system are removed (nr_events set to zero).
The problem arises when a task opened the "filter" file for the
system. If the module is unloaded and it removed the last event for
that system, the system structure is freed. If the task that opened
the filter file accesses the "filter" file after the system has
been freed, the system will access an invalid pointer.
By adding a ref_count, and using it to keep track of what
is using the event system, we can free it after all users
are finished with the event system.
Cc: <stable@kernel.org>
Reported-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
There is a bug in free_unnecessary_pages() that causes it to
attempt to free too many pages in some cases, which triggers the
BUG_ON() in memory_bm_clear_bit() for copy_bm. Namely, if
count_data_pages() is initially greater than alloc_normal, we get
to_free_normal equal to 0 and "save" greater from 0. In that case,
if the sum of "save" and count_highmem_pages() is greater than
alloc_highmem, we subtract a positive number from to_free_normal.
Hence, since to_free_normal was 0 before the subtraction and is
an unsigned int, the result is converted to a huge positive number
that is used as the number of pages to free.
Fix this bug by checking if to_free_normal is actually greater
than or equal to the number we're going to subtract from it.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reported-and-tested-by: Matthew Garrett <mjg@redhat.com>
Cc: stable@kernel.org
Provides the ability to resize a resource that is already allocated.
This functionality is put in place to support reallocation needs of
pci resources.
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Acked-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The common clocks management code in drivers/base/power/clock_ops.c
is going to be used during system-wide power transitions as well as
for runtime PM, so it shouldn't depend on CONFIG_PM_RUNTIME.
However, the suspend/resume functions provided by it for
CONFIG_PM_RUNTIME unset, to be used during system-wide power
transitions, should not behave in the same way as their counterparts
defined for CONFIG_PM_RUNTIME set, because in that case the clocks
are managed differently at run time.
The names of the functions still contain the word "runtime" after
this change, but that is going to be modified by a separate patch
later.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Reviewed-by: Kevin Hilman <khilman@ti.com>
Introduce common headers, helper functions and callbacks allowing
platforms to use simple generic power domains for runtime power
management.
Introduce struct generic_pm_domain to be used for representing
power domains that each contain a number of devices and may be
parent domains or subdomains with respect to other power domains.
Among other things, this structure includes callbacks to be
provided by platforms for performing specific tasks related to
power management (i.e. ->stop_device() may disable a device's
clocks, while ->start_device() may enable them, ->power_off() is
supposed to remove power from the entire power domain
and ->power_on() is supposed to restore it).
Introduce functions that can be used as power domain runtime PM
callbacks, pm_genpd_runtime_suspend() and pm_genpd_runtime_resume(),
as well as helper functions for the initialization of a power
domain represented by a struct generic_power_domain object,
adding a device to or removing a device from it and adding or
removing subdomains.
Introduce configuration option CONFIG_PM_GENERIC_DOMAINS to be
selected by the platforms that want to use the new code.
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Greg Kroah-Hartman <gregkh@suse.de>
Reviewed-by: Kevin Hilman <khilman@ti.com>
KVM needs one-shot samples, since a PMC programmed to -X will fire after X
events and then again after 2^40 events (i.e. variable period).
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1309362157-6596-4-git-send-email-avi@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The perf_event overflow handler does not receive any caller-derived
argument, so many callers need to resort to looking up the perf_event
in their local data structure. This is ugly and doesn't scale if a
single callback services many perf_events.
Fix by adding a context parameter to perf_event_create_kernel_counter()
(and derived hardware breakpoints APIs) and storing it in the perf_event.
The field can be accessed from the callback as event->overflow_handler_context.
All callers are updated.
Signed-off-by: Avi Kivity <avi@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1309362157-6596-2-git-send-email-avi@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since only samples call perf_output_sample() its much saner (and more
correct) to put the sample logic in there than in the
perf_output_begin()/perf_output_end() pair.
Saves a useless argument, reduces conditionals and shrinks
struct perf_output_handle, win!
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/n/tip-2crpvsx3cqu67q3zqjbnlpsc@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The nmi parameter indicated if we could do wakeups from the current
context, if not, we would set some state and self-IPI and let the
resulting interrupt do the wakeup.
For the various event classes:
- hardware: nmi=0; PMI is in fact an NMI or we run irq_work_run from
the PMI-tail (ARM etc.)
- tracepoint: nmi=0; since tracepoint could be from NMI context.
- software: nmi=[0,1]; some, like the schedule thing cannot
perform wakeups, and hence need 0.
As one can see, there is very little nmi=1 usage, and the down-side of
not using it is that on some platforms some software events can have a
jiffy delay in wakeup (when arch_irq_work_raise isn't implemented).
The up-side however is that we can remove the nmi parameter and save a
bunch of conditionals in fast paths.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Link: http://lkml.kernel.org/n/tip-agjev8eu666tvknpb3iaj0fg@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Due to restriction and specifics of Netburst PMU we need a separated
event for NMI watchdog. In particular every Netburst event
consumes not just a counter and a config register, but also an
additional ESCR register.
Since ESCR registers are grouped upon counters (i.e. if ESCR is occupied
for some event there is no room for another event to enter until its
released) we need to pick up the "least" used ESCR (or the most available
one) for nmi-watchdog purposes -- so MSR_P4_CRU_ESCR2/3 was chosen.
With this patch nmi-watchdog and perf top should be able to run simultaneously.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
CC: Lin Ming <ming.m.lin@intel.com>
CC: Arnaldo Carvalho de Melo <acme@redhat.com>
CC: Frederic Weisbecker <fweisbec@gmail.com>
Tested-and-reviewed-by: Don Zickus <dzickus@redhat.com>
Tested-and-reviewed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20110623124918.GC13050@sun
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The event tracing infrastructure exposes two timers which should be updated
each time the value of the counter is updated. Currently, these counters are
only updated when userspace calls read() on the fd associated with an event.
This means that counters which are read via the mmap'd page exclusively never
have their timers updated. This patch adds ensures that the timers are updated
each time the values in the mmap'd page are updated.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1308932786-5111-1-git-send-email-emunson@mgebm.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Take the timer calculation from perf_output_read and move it to a helper
function for any place that needs timer values but cannot take the ctx->lock.
Signed-off-by: Eric B Munson <emunson@mgebm.net>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1308861279-15216-2-git-send-email-emunson@mgebm.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since 2.6.36 (specifically commit d57e34fdd6 ("perf: Simplify the
ring-buffer logic: make perf_buffer_alloc() do everything needed"),
the perf_buffer_init_code() has been mis-setting the buffer watermark
if perf_event_attr.wakeup_events has a non-zero value.
This is because perf_event_attr.wakeup_events is a union with
perf_event_attr.wakeup_watermark.
This commit re-enables the check for perf_event_attr.watermark being
set before continuing with setting a non-default watermark.
This bug is most noticable when you are trying to use PERF_IOC_REFRESH
with a value larger than one and perf_event_attr.wakeup_events is set to
one. In this case the buffer watermark will be set to 1 and you will
get extraneous POLL_IN overflows rather than POLL_HUP as expected.
[ avoid using attr.wakeup_events when attr.watermark is set ]
Signed-off-by: Vince Weaver <vweaver1@eecs.utk.edu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/alpine.DEB.2.00.1106011506390.5384@cl320.eecs.utk.edu
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since commit ec514c48 ("sched: Fix rt_rq runtime leakage bug")
'cat /proc/sched_debug' will print data of root_task_group.rt_rq
multiple times.
This is because autogroup does not have its own rt group, instead
rt group of autogroup is linked to root_task_group.
So skip it when we are looking for all rt sched groups, and it
will also save some noop operation against root_task_group when
__disable_runtime()/__enable_runtime().
-v2: Based on Cheng Xu's idea which uses less code.
Signed-off-by: Yong Zhang <yong.zhang0@gmail.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Cheng Xu <chengxu@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/BANLkTi=87P3RoTF_UEtamNfc_XGxQXE__Q@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
It does not make sense to rcu_read_lock/unlock() in every loop
iteration while spinning on the mutex.
Move the rcu protection outside the loop. Also simplify the
return path to always check for lock->owner == NULL which
meets the requirements of both owner changed and need_resched()
caused loop exits.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/alpine.LFD.2.02.1106101458350.11814@ionos
Signed-off-by: Ingo Molnar <mingo@elte.hu>
wake_affine() is only called from one path: select_task_rq_fair(),
which already has the RCU read lock held.
Signed-off-by: Nikunj A. Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/20110607101251.777.34547.stgit@IBM-009124035060.in.ibm.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit c8b28116 ("sched: Increase SCHED_LOAD_SCALE resolution")
intended to have no user-visible effect, but allows setting
cpu.shares to < MIN_SHARES, which the user then sees.
Signed-off-by: Mike Galbraith <efault@gmx.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nikhil Rao <ncrao@google.com>
Link: http://lkml.kernel.org/r/1307192600.8618.3.camel@marge.simson.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In this revision the conversion of secid to SELinux context and adding it
to the audit log is moved from xt_AUDIT.c to audit.c with the aid of a
separate helper function - audit_log_secctx - which does both the conversion
and logging of SELinux context, thus also preventing internal secid number
being leaked to userspace. If conversion is not successful an error is raised.
With the introduction of this helper function the work done in xt_AUDIT.c is
much more simplified. It also opens the possibility of this helper function
being used by other modules (including auditd itself), if desired. With this
addition, typical (raw auditd) output after applying the patch would be:
type=NETFILTER_PKT msg=audit(1305852240.082:31012): action=0 hook=1 len=52 inif=? outif=eth0 saddr=10.1.1.7 daddr=10.1.2.1 ipid=16312 proto=6 sport=56150 dport=22 obj=system_u:object_r:ssh_client_packet_t:s0
type=NETFILTER_PKT msg=audit(1306772064.079:56): action=0 hook=3 len=48 inif=eth0 outif=? smac=00:05:5d:7c:27:0b dmac=00:02:b3:0a:7f:81 macproto=0x0800 saddr=10.1.2.1 daddr=10.1.1.7 ipid=462 proto=6 sport=22 dport=3561 obj=system_u:object_r:ssh_server_packet_t:s0
Acked-by: Eric Paris <eparis@redhat.com>
Signed-off-by: Mr Dash Four <mr.dash.four@googlemail.com>
Signed-off-by: Patrick McHardy <kaber@trash.net>
The jump labels entries for modules do not stop at __stop__jump_table,
but after mod->jump_entries + mod_num_jump_entries.
By checking the wrong end point, module trace events never get enabled.
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Jason Baron <jbaron@redhat.com>
Tested-by: Avi Kivity <avi@redhat.com>
Tested-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/4E00038B.2060404@cn.fujitsu.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Currently a single process may register exit handlers unlimited times.
It may lead to a bloated listeners chain and very slow process
terminations.
Eg after 10KK sent TASKSTATS_CMD_ATTR_REGISTER_CPUMASKs ~300 Mb of
kernel memory is stolen for the handlers chain and "time id" shows 2-7
seconds instead of normal 0.003. It makes it possible to exhaust all
kernel memory and to eat much of CPU time by triggerring numerous exits
on a single CPU.
The patch limits the number of times a single process may register
itself on a single CPU to one.
One little issue is kept unfixed - as taskstats_exit() is called before
exit_files() in do_exit(), the orphaned listener entry (if it was not
explicitly deregistered) is kept until the next someone's exit() and
implicit deregistration in send_cpu_listeners(). So, if a process
registered itself as a listener exits and the next spawned process gets
the same pid, it would inherit taskstats attributes.
Signed-off-by: Vasiliy Kulikov <segooon@gmail.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MTRR rendezvous sequence is not implemened using stop_machine() before, as this
gets called both from the process context aswell as the cpu online paths
(where the cpu has not come online and the interrupts are disabled etc).
Now that we have a new stop_machine_from_inactive_cpu() API, use it for
rendezvous during mtrr init of a logical processor that is coming online.
For the rest (runtime MTRR modification, system boot, resume paths), use
stop_machine() to implement the rendezvous sequence. This will consolidate and
cleanup the code.
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/20110623182057.076997177@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Currently, mtrr wants stop_machine functionality while a CPU is being
brought up. As stop_machine() requires the calling CPU to be active,
mtrr implements its own stop_machine using stop_one_cpu() on each
online CPU. This doesn't only unnecessarily duplicate complex logic
but also introduces a possibility of deadlock when it races against
the generic stop_machine().
This patch implements stop_machine_from_inactive_cpu() to serve such
use cases. Its functionality is basically the same as stop_machine();
however, it should be called from a CPU which isn't active and doesn't
depend on working scheduling on the calling CPU.
This is achieved by using busy loops for synchronization and
open-coding stop_cpus queuing and waiting with direct invocation of
fn() for local CPU inbetween.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110623182056.982526827@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Refactor the queuing part of the stop cpus work from __stop_cpus() into
queue_stop_cpus_work().
The reorganization is to help future improvements to stop_machine()
and doesn't introduce any behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/20110623182056.897818337@sbsiddha-MOBL3.sc.intel.com
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
MTRR rendezvous sequence using stop_one_cpu_nowait() can potentially
happen in parallel with another system wide rendezvous using
stop_machine(). This can lead to deadlock (The order in which
works are queued can be different on different cpu's. Some cpu's
will be running the first rendezvous handler and others will be running
the second rendezvous handler. Each set waiting for the other set to join
for the system wide rendezvous, leading to a deadlock).
MTRR rendezvous sequence is not implemented using stop_machine() as this
gets called both from the process context aswell as the cpu online paths
(where the cpu has not come online and the interrupts are disabled etc).
stop_machine() works with only online cpus.
For now, take the stop_machine mutex in the MTRR rendezvous sequence that
gets called from an online cpu (here we are in the process context
and can potentially sleep while taking the mutex). And the MTRR rendezvous
that gets triggered during cpu online doesn't need to take this stop_machine
lock (as the stop_machine() already ensures that there is no cpu hotplug
going on in parallel by doing get_online_cpus())
TBD: Pursue a cleaner solution of extending the stop_machine()
infrastructure to handle the case where the calling cpu is
still not online and use this for MTRR rendezvous sequence.
fixes: https://bugzilla.novell.com/show_bug.cgi?id=672008
Reported-by: Vadim Kotelnikov <vadimuzzz@inbox.ru>
Signed-off-by: Suresh Siddha <suresh.b.siddha@intel.com>
Link: http://lkml.kernel.org/r/20110623182056.807230326@sbsiddha-MOBL3.sc.intel.com
Cc: stable@kernel.org # 2.6.35+, backport a week or two after this gets more testing in mainline
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
wait_consider_task() checks same_thread_group(parent, real_parent),
this is the open-coded ptrace_reparented().
__ptrace_detach() remains the only function which has to check this by
hand, although we could reorganize the code to delay __ptrace_unlink.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Kill real_parent_is_ptracer() and update the callers to use
ptrace_reparented(), after the previous patch they do the same.
Remove the unnecessary ->ptrace != 0 check in get_signal_to_deliver(),
if ptrace_reparented() == T then the task must be ptraced.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
__ptrace_detach() and do_notify_parent() set task->exit_signal = -1
to mark the task dead. This is no longer needed, nobody checks
exit_signal to detect the EXIT_DEAD task.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Upadate the last user of task_detached(), wait_task_zombie(), to
use thread_group_leader() and kill task_detached().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change reparent_leader() to check ->exit_state instead of ->exit_signal,
this matches the similar EXIT_DEAD check in wait_consider_task() and
allows us to cleanup the do_notify_parent/task_detached logic.
task_detached() was really needed during reparenting before 9cd80bbb
"do_wait() optimization: do not place sub-threads on ->children list"
to filter out the sub-threads. After this change task_detached(p) can
only be true if p is the dead group_leader and its parent ignores
SIGCHLD, in this case the caller of do_notify_parent() is going to
reap this task and it should set EXIT_DEAD.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Change other callers of do_notify_parent() to check the value it
returns, this makes the subsequent task_detached() unnecessary.
Mark do_notify_parent() as __must_check.
Use thread_group_leader() instead of !task_detached() to check
if we need to notify the real parent in wait_task_zombie().
Remove the stale comment in release_task(). "just for sanity" is
no longer true, we have to set EXIT_DEAD to avoid the races with
do_wait().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
__ptrace_detach() relies on the current obscure behaviour of
do_notify_parent(tsk) which changes tsk->exit_signal if this child
should be silently reaped. That is why we check task_detached(), it
is true if the task is sub-thread, or it is the group_leader but
its exit_signal was changed by do_notify_parent().
This is confusing, change the code to rely on !thread_group_leader()
or the value returned by do_notify_parent().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Kill tracehook_notify_death(), reimplement the logic in its caller,
exit_notify().
Also, change the exec_id's check to use thread_group_leader() instead
of task_detached(), this is more clear. This logic only applies to
the exiting leader, a sub-thread must never change its exit_signal.
Note: when the traced group leader exits the exit_signal-or-SIGCHLD
logic looks really strange:
- we notify the tracer even if !thread_group_empty() but
do_wait(WEXITED) can't work until all threads exit
- if the tracer is real_parent, it is not clear why can't
we use ->exit_signal event if !thread_group_empty()
-v2: do not try to fix the 2nd oddity to avoid the subtle behavior
change mixed with reorganization, suggested by Tejun.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
- change do_notify_parent() to return a boolean, true if the task should
be reaped because its parent ignores SIGCHLD.
- update the only caller which checks the returned value, exit_notify().
This temporary uglifies exit_notify() even more, will be cleanuped by
the next change.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
The sleeping inside spinlock detection is actually used
for more general sleeping inside atomic sections
debugging: preemption disabled, rcu read side critical
sections, interrupts, interrupt disabled, etc...
Change the name of the config and its help section to
reflect its more general role.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Ingo Molnar <mingo@elte.hu>
At this point, tracehooks aren't useful to mainline kernel and mostly
just add an extra layer of obfuscation. Although they have comments,
without actual in-kernel users, it is difficult to tell what are their
assumptions and they're actually trying to achieve. To mainline
kernel, they just aren't worth keeping around.
This patch kills the following clone and exec related tracehooks.
tracehook_prepare_clone()
tracehook_finish_clone()
tracehook_report_clone()
tracehook_report_clone_complete()
tracehook_unsafe_exec()
The changes are mostly trivial - logic is moved to the caller and
comments are merged and adjusted appropriately.
The only exception is in check_unsafe_exec() where LSM_UNSAFE_PTRACE*
are OR'd to bprm->unsafe instead of setting it, which produces the
same result as the field is always zero on entry. It also tests
p->ptrace instead of (p->ptrace & PT_PTRACED) for consistency, which
also gives the same result.
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
At this point, tracehooks aren't useful to mainline kernel and mostly
just add an extra layer of obfuscation. Although they have comments,
without actual in-kernel users, it is difficult to tell what are their
assumptions and they're actually trying to achieve. To mainline
kernel, they just aren't worth keeping around.
This patch kills the following trivial tracehooks.
* Ones testing whether task is ptraced. Replace with ->ptrace test.
tracehook_expect_breakpoints()
tracehook_consider_ignored_signal()
tracehook_consider_fatal_signal()
* ptrace_event() wrappers. Call directly.
tracehook_report_exec()
tracehook_report_exit()
tracehook_report_vfork_done()
* ptrace_release_task() wrapper. Call directly.
tracehook_finish_release_task()
* noop
tracehook_prepare_release_task()
tracehook_report_death()
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
task_ptrace(task) simply dereferences task->ptrace and isn't even used
consistently only adding confusion. Kill it and directly access
->ptrace instead.
This doesn't introduce any behavior change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Commit:
1efc5da3cf56: [PATCH] order of lockdep off/on in vprintk() should be changed
explains the reason for having raw_local_irq_*() and lockdep_off()
in printk(). Instead of working around the broken recursion detection
of interrupt state tracking, fix it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: efault@gmx.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20110621153806.185242734@chello.nl
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix up the fallout from commit 0b5e1c5255 ("printk: Release
console_sem after logbuf_lock").
The reason for unlocking the console_sem under the logbuf_lock
is that a concurrent printk() might fill up the buffer but fail
to acquire the console sem, resulting in a missed write to the
console until a subsequent console_sem acquire/release cycle.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: efault@gmx.de
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/1308734409.1022.14.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Because the read_persistent_clock interface is usually backed by
only a second granular interface, each time we read from the persistent
clock for suspend/resume, we introduce a half second (on average) of error.
In order to avoid this error accumulating as the system is suspended
over and over, this patch measures the time delta between the persistent
clock and the system CLOCK_REALTIME.
If the delta is less then 2 seconds from the last suspend, we compensate
by using the previous time delta (keeping it close). If it is larger
then 2 seconds, we assume the clock was set or has been changed, so we
do no correction and update the delta.
Note: If NTP is running, ths could seem to "fight" with the NTP corrected
time, where as if the system time was off by 1 second, and NTP slewed the
value in, a suspend/resume cycle could undo this correction, by trying to
restore the previous offset from the persistent clock. However, without
this patch, since each read could cause almost a full second worth of
error, its possible to get almost 2 seconds of error just from the
suspend/resume cycle alone, so this about equal to any offset added by
the compensation.
Further on systems that suspend/resume frequently, this should keep time
closer then NTP could compensate for if the errors were allowed to
accumulate.
Credits to Arve Hjønnevåg for suggesting this solution.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Arve suggested making sure we catch possible negative sleep time
intervals that could be passed into timekeeping_inject_sleeptime.
CC: Arve Hjønnevåg <arve@android.com>
CC: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Toralf Förster and Richard Weinberger noted that if there is
no RTC device, the alarm timers core prints out an annoying
"ALARM timers will not wake from suspend" message.
This warning has been removed in a previous patch, however
the issue still remains: The original idea was to support
alarm timers even if there was no rtc device, as long as the
system didn't go into suspend.
However, after further consideration, communicating to the application
that alarmtimers are not fully functional seems like the better
solution.
So this patch makes it so we return -ENOTSUPP to any posix _ALARM
clockid calls if there is no backing RTC device on the system.
Further this changes the behavior where when there is no rtc device
we will check for one on clock_getres, clock_gettime, timer_create,
and timer_nsleep instead of on suspend.
CC: Toralf Förster <toralf.foerster@gmx.de>
CC: Richard Weinberger <richard@nod.at
CC: Peter Zijlstra <peterz@infradead.org>
CC: Thomas Gleixner <tglx@linutronix.de>
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Reported by: Richard Weinberger <richard@nod.at>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The alarmtimers code currently picks a rtc device to use at
late init time. However, if your rtc driver is loaded as a module,
it may be registered after the alarmtimers late init code, leaving
the alarmtimers nonfunctional.
This patch moves the the rtcdevice selection to when we actually try
to use it, allowing us to make use of rtc modules that may have been
loaded at any point since bootup.
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Meelis Roos <mroos@ut.ee>
Reported-by: Meelis Roos <mroos@ut.ee>
Signed-off-by: John Stultz <john.stultz@linaro.org>
When opening /dev/snapshot device, snapshot_open() creates memory
bitmaps which are freed in snapshot_release(). But if any of the
callbacks called by pm_notifier_call_chain() returns NOTIFY_BAD, open()
fails, snapshot_release() is never called and bitmaps are not freed.
Next attempt to open /dev/snapshot then triggers BUG_ON() check in
create_basic_memory_bitmaps(). This happens e.g. when vmwatchdog module
is active on s390x.
Signed-off-by: Michal Kubecek <mkubecek@suse.cz>
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@kernel.org
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
tools/perf: Fix static build of perf tool
tracing: Fix regression in printk_formats file
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
generic-ipi: Fix kexec boot crash by initializing call_single_queue before enabling interrupts
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
clocksource: Make watchdog robust vs. interruption
timerfd: Fix wakeup of processes when timer is cancelled on clock change
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, MAINTAINERS: Add x86 MCE people
x86, efi: Do not reserve boot services regions within reserved areas
* 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: Move RCU_BOOST #ifdefs to header file
rcu: use softirq instead of kthreads except when RCU_BOOST=y
rcu: Use softirq to address performance regression
rcu: Simplify curing of load woes
____call_usermodehelper() now erases any credentials set by the
subprocess_inf::init() function. The problem is that commit
17f60a7da1 ("capabilites: allow the application of capability limits
to usermode helpers") creates and commits new credentials with
prepare_kernel_cred() after the call to the init() function. This wipes
all keyrings after umh_keys_init() is called.
The best way to deal with this is to put the init() call just prior to
the commit_creds() call, and pass the cred pointer to init(). That
means that umh_keys_init() and suchlike can modify the credentials
_before_ they are published and potentially in use by the rest of the
system.
This prevents request_key() from working as it is prevented from passing
the session keyring it set up with the authorisation token to
/sbin/request-key, and so the latter can't assume the authority to
instantiate the key. This causes the in-kernel DNS resolver to fail
with ENOKEY unconditionally.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Paris <eparis@redhat.com>
Tested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a problem that kdump(2nd kernel) sometimes hangs up due
to a pending IPI from 1st kernel. Kernel panic occurs because IPI
comes before call_single_queue is initialized.
To fix the crash, rename init_call_single_data() to call_function_init()
and call it in start_kernel() so that call_single_queue can be
initialized before enabling interrupts.
The details of the crash are:
(1) 2nd kernel boots up
(2) A pending IPI from 1st kernel comes when irqs are first enabled
in start_kernel().
(3) Kernel tries to handle the interrupt, but call_single_queue
is not initialized yet at this point. As a result, in the
generic_smp_call_function_single_interrupt(), NULL pointer
dereference occurs when list_replace_init() tries to access
&q->list.next.
Therefore this patch changes the name of init_call_single_data()
to call_function_init() and calls it before local_irq_enable()
in start_kernel().
Signed-off-by: Takao Indoh <indou.takao@jp.fujitsu.com>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Milton Miller <miltonm@bga.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: kexec@lists.infradead.org
Link: http://lkml.kernel.org/r/D6CBEE2F420741indou.takao@jp.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The commit "use softirq instead of kthreads except when RCU_BOOST=y"
just applied #ifdef in place. This commit is a cleanup that moves
the newly #ifdef'ed code to the header file kernel/rcutree_plugin.h.
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
The previous patch implemented async notification for ptrace but it
only worked while trace is running. This patch introduces
PTRACE_LISTEN which is suggested by Oleg Nestrov.
It's allowed iff tracee is in STOP trap and puts tracee into
quasi-running state - tracee never really runs but wait(2) and
ptrace(2) consider it to be running. While ptracer is listening,
tracee is allowed to re-enter STOP to notify an async event.
Listening state is cleared on the first notification. Ptracer can
also clear it by issuing INTERRUPT - tracee will re-trap into STOP
with listening state cleared.
This allows ptracer to monitor group stop state without running tracee
- use INTERRUPT to put tracee into STOP trap, issue LISTEN and then
wait(2) to wait for the next group stop event. When it happens,
PTRACE_GETSIGINFO provides information to determine the current state.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_LISTEN 0x4208
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
if (si.si_signo != SIGTRAP)
ptrace(PTRACE_LISTEN, tracee, NULL, NULL);
else
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
This is identical to the program to test TRAP_NOTIFY except that
tracee is PTRACE_LISTEN'd instead of PTRACE_CONT'd when group stopped.
This allows ptracer to monitor when group stop ends without running
tracee.
# ./test-listen
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
-v2: Moved JOBCTL_LISTENING check in wait_task_stopped() into
task_stopped_code() as suggested by Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently there's no way for ptracer to find out whether group stop
finished other than polling with INTERRUPT - GETSIGINFO - CONT
sequence. This patch implements group stop notification for ptracer
using STOP traps.
When group stop state of a seized tracee changes, JOBCTL_TRAP_NOTIFY
is set, which schedules a STOP trap which is sticky - it isn't cleared
by other traps and at least one STOP trap will happen eventually.
STOP trap is synchronization point for event notification and the
tracer can determine the current group stop state by looking at the
signal number portion of exit code (si_status from waitid(2) or
si_code from PTRACE_GETSIGINFO).
Notifications are generated both on start and end of group stops but,
because group stop participation always happens before STOP trap, this
doesn't cause an extra trap while tracee is participating in group
stop. The symmetry will be useful later.
Note that this notification works iff tracee is not trapped.
Currently there is no way to be notified of group stop state changes
while tracee is trapped. This will be addressed by a later patch.
An example program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts1s = { .tv_sec = 1 };
int main(int argc, char **argv)
{
pid_t tracee, tracer;
int i;
tracee = fork();
if (!tracee)
while (1)
pause();
tracer = fork();
if (!tracer) {
siginfo_t si;
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
repeat:
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_GETSIGINFO, tracee, NULL, &si);
if (!si.si_code) {
printf("tracer: SIG %d\n", si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL,
(void *)(unsigned long)si.si_signo);
goto repeat;
}
printf("tracer: stopped=%d signo=%d\n",
si.si_signo != SIGTRAP, si.si_signo);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
goto repeat;
}
for (i = 0; i < 3; i++) {
nanosleep(&ts1s, NULL);
printf("mother: SIGSTOP\n");
kill(tracee, SIGSTOP);
nanosleep(&ts1s, NULL);
printf("mother: SIGCONT\n");
kill(tracee, SIGCONT);
}
nanosleep(&ts1s, NULL);
kill(tracer, SIGKILL);
kill(tracee, SIGKILL);
return 0;
}
In the above program, tracer keeps tracee running and gets
notification of each group stop state changes.
# ./test-notify
tracer: stopped=0 signo=5
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
mother: SIGSTOP
tracer: SIG 19
tracer: stopped=1 signo=19
mother: SIGCONT
tracer: stopped=0 signo=5
tracer: SIG 18
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Currently, there's no way to trap a running ptracee short of sending a
signal which has various side effects. This patch implements
PTRACE_INTERRUPT which traps ptracee without any signal or job control
related side effect.
The implementation is almost trivial. It uses the group stop trap -
SIGTRAP | PTRACE_EVENT_STOP << 8. A new trap flag
JOBCTL_TRAP_INTERRUPT is added, which is set on PTRACE_INTERRUPT and
cleared when any trap happens. As INTERRUPT should be useable
regardless of the current state of tracee, task_is_traced() test in
ptrace_check_attach() is skipped for INTERRUPT.
PTRACE_INTERRUPT is available iff tracee is attached with
PTRACE_SEIZE.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_INTERRUPT 0x4207
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts100ms = { .tv_nsec = 100000000 };
static const struct timespec ts1s = { .tv_sec = 1 };
static const struct timespec ts3s = { .tv_sec = 3 };
int main(int argc, char **argv)
{
pid_t tracee;
tracee = fork();
if (tracee == 0) {
nanosleep(&ts100ms, NULL);
while (1) {
printf("tracee: alive pid=%d\n", getpid());
nanosleep(&ts1s, NULL);
}
}
if (argc > 1)
kill(tracee, SIGSTOP);
nanosleep(&ts100ms, NULL);
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
if (argc > 1) {
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
}
nanosleep(&ts3s, NULL);
printf("tracer: INTERRUPT and DETACH\n");
ptrace(PTRACE_INTERRUPT, tracee, NULL, NULL);
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_DETACH, tracee, NULL, NULL);
nanosleep(&ts3s, NULL);
printf("tracer: exiting\n");
kill(tracee, SIGKILL);
return 0;
}
When called without argument, tracee is seized from running state,
interrupted and then detached back to running state.
# ./test-interrupt
tracee: alive pid=4546
tracee: alive pid=4546
tracee: alive pid=4546
tracer: INTERRUPT and DETACH
tracee: alive pid=4546
tracee: alive pid=4546
tracee: alive pid=4546
tracer: exiting
When called with argument, tracee is seized from stopped state,
continued, interrupted and then detached back to stopped state.
# ./test-interrupt 1
tracee: alive pid=4548
tracee: alive pid=4548
tracee: alive pid=4548
tracer: INTERRUPT and DETACH
tracer: exiting
Before PTRACE_INTERRUPT, once the tracee was running, there was no way
to trap tracee and do PTRACE_DETACH without causing side effect.
-v2: Updated to use task_set_jobctl_pending() so that it doesn't end
up scheduling TRAP_STOP if child is dying which may make the
child unkillable. Spotted by Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
PTRACE_ATTACH implicitly issues SIGSTOP on attach which has side
effects on tracee signal and job control states. This patch
implements a new ptrace request PTRACE_SEIZE which attaches a tracee
without trapping it or affecting its signal and job control states.
The usage is the same with PTRACE_ATTACH but it takes PTRACE_SEIZE_*
flags in @data. Currently, the only defined flag is
PTRACE_SEIZE_DEVEL which is a temporary flag to enable PTRACE_SEIZE.
PTRACE_SEIZE will change ptrace behaviors outside of attach itself.
The changes will be implemented gradually and the DEVEL flag is to
prevent programs which expect full SEIZE behavior from using it before
all the behavior modifications are complete while allowing unit
testing. The flag will be removed once SEIZE behaviors are completely
implemented.
* PTRACE_SEIZE, unlike ATTACH, doesn't force tracee to trap. After
attaching tracee continues to run unless a trap condition occurs.
* PTRACE_SEIZE doesn't affect signal or group stop state.
* If PTRACE_SEIZE'd, group stop uses PTRACE_EVENT_STOP trap which uses
exit_code of (signr | PTRACE_EVENT_STOP << 8) where signr is one of
the stopping signals if group stop is in effect or SIGTRAP
otherwise, and returns usual trap siginfo on PTRACE_GETSIGINFO
instead of NULL.
Seizing sets PT_SEIZED in ->ptrace of the tracee. This flag will be
used to determine whether new SEIZE behaviors should be enabled.
Test program follows.
#define PTRACE_SEIZE 0x4206
#define PTRACE_SEIZE_DEVEL 0x80000000
static const struct timespec ts100ms = { .tv_nsec = 100000000 };
static const struct timespec ts1s = { .tv_sec = 1 };
static const struct timespec ts3s = { .tv_sec = 3 };
int main(int argc, char **argv)
{
pid_t tracee;
tracee = fork();
if (tracee == 0) {
nanosleep(&ts100ms, NULL);
while (1) {
printf("tracee: alive\n");
nanosleep(&ts1s, NULL);
}
}
if (argc > 1)
kill(tracee, SIGSTOP);
nanosleep(&ts100ms, NULL);
ptrace(PTRACE_SEIZE, tracee, NULL,
(void *)(unsigned long)PTRACE_SEIZE_DEVEL);
if (argc > 1) {
waitid(P_PID, tracee, NULL, WSTOPPED);
ptrace(PTRACE_CONT, tracee, NULL, NULL);
}
nanosleep(&ts3s, NULL);
printf("tracer: exiting\n");
return 0;
}
When the above program is called w/o argument, tracee is seized while
running and remains running. When tracer exits, tracee continues to
run and print out messages.
# ./test-seize-simple
tracee: alive
tracee: alive
tracee: alive
tracer: exiting
tracee: alive
tracee: alive
When called with an argument, tracee is seized from stopped state and
continued, and returns to stopped state when tracer exits.
# ./test-seize
tracee: alive
tracee: alive
tracee: alive
tracer: exiting
# ps -el|grep test-seize
1 T 0 4720 1 0 80 0 - 941 signal ttyS0 00:00:00 test-seize
-v2: SEIZE doesn't schedule TRAP_STOP and leaves tracee running as Jan
suggested.
-v3: PTRACE_EVENT_STOP traps now report group stop state by signr. If
group stop is in effect the stop signal number is returned as
part of exit_code; otherwise, SIGTRAP. This was suggested by
Denys and Oleg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jan Kratochvil <jan.kratochvil@redhat.com>
Cc: Denys Vlasenko <vda.linux@googlemail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
do_signal_stop() implemented both normal group stop and trap for group
stop while ptraced. This approach has been enough but scheduled
changes require trap mechanism which can be used in more generic
manner and using group stop trap for generic trap site simplifies both
userland visible interface and implementation.
This patch adds a new jobctl flag - JOBCTL_TRAP_STOP. When set, it
triggers a trap site, which behaves like group stop trap, in
get_signal_to_deliver() after checking for pending signals. While
ptraced, do_signal_stop() doesn't stop itself. It initiates group
stop if requested and schedules JOBCTL_TRAP_STOP and returns. The
caller - get_signal_to_deliver() - is responsible for checking whether
TRAP_STOP is pending afterwards and handling it.
ptrace_attach() is updated to use JOBCTL_TRAP_STOP instead of
JOBCTL_STOP_PENDING and __ptrace_unlink() to clear all pending trap
bits and TRAPPING so that TRAP_STOP and future trap bits don't linger
after detach.
While at it, add proper function comment to do_signal_stop() and make
it return bool.
-v2: __ptrace_unlink() updated to clear JOBCTL_TRAP_MASK and TRAPPING
instead of JOBCTL_PENDING_MASK. This avoids accidentally
clearing JOBCTL_STOP_CONSUME. Spotted by Oleg.
-v3: do_signal_stop() updated to return %false without dropping
siglock while ptraced and TRAP_STOP check moved inside for(;;)
loop after group stop participation. This avoids unnecessary
relocking and also will help avoiding unnecessary traps by
consuming group stop before handling pending traps.
-v4: Jobctl trap handling moved into a separate function -
do_jobctl_trap().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
The clocksource watchdog code is interruptible and it has been
observed that this can trigger false positives which disable the TSC.
The reason is that an interrupt storm or a long running interrupt
handler between the read of the watchdog source and the read of the
TSC brings the two far enough apart that the delta is larger than the
unstable treshold. Move both reads into a short interrupt disabled
region to avoid that.
Reported-and-tested-by: Vernon Mauery <vernux@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@kernel.org
This patch #ifdefs RCU kthreads out of the kernel unless RCU_BOOST=y,
thus eliminating context-switch overhead if RCU priority boosting has
not been configured.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
sched: Check if lowest_mask is initialized in find_lowest_rq()
sched: Fix need_resched() when checking peempt
CONFIG_CONSTRUCTORS controls support for running constructor functions at
kernel init time. According to commit b99b87f70c ("kernel:
constructor support"), gcov (CONFIG_GCOV_KERNEL) needs this. However,
CONFIG_CONSTRUCTORS currently defaults to y, with no option to disable it,
and CONFIG_GCOV_KERNEL depends on it. Instead, default it to n and have
CONFIG_GCOV_KERNEL select it, so that the normal case of
CONFIG_GCOV_KERNEL=n will result in CONFIG_CONSTRUCTORS=n.
Observed in the short list of =y values in a minimal kernel configuration.
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Acked-by: Peter Oberparleiter <peter.oberparleiter@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following crash was reported:
> Call Trace:
> [<ffffffff81139792>] mem_cgroup_from_task+0x15/0x17
> [<ffffffff8113a75a>] __mem_cgroup_try_charge+0x148/0x4b4
> [<ffffffff810493f3>] ? need_resched+0x23/0x2d
> [<ffffffff814cbf43>] ? preempt_schedule+0x46/0x4f
> [<ffffffff8113afe8>] mem_cgroup_charge_common+0x9a/0xce
> [<ffffffff8113b6d1>] mem_cgroup_newpage_charge+0x5d/0x5f
> [<ffffffff81134024>] khugepaged+0x5da/0xfaf
> [<ffffffff81078ea0>] ? __init_waitqueue_head+0x4b/0x4b
> [<ffffffff81133a4a>] ? add_mm_counter.constprop.5+0x13/0x13
> [<ffffffff81078625>] kthread+0xa8/0xb0
> [<ffffffff814d13e8>] ? sub_preempt_count+0xa1/0xb4
> [<ffffffff814d5664>] kernel_thread_helper+0x4/0x10
> [<ffffffff814ce858>] ? retint_restore_args+0x13/0x13
> [<ffffffff8107857d>] ? __init_kthread_worker+0x5a/0x5a
What happens is that khugepaged tries to charge a huge page against an mm
whose last possible owner has already exited, and the memory controller
crashes when the stale mm->owner is used to look up the cgroup to charge.
mm->owner has never been set to NULL with the last owner going away, but
nobody cared until khugepaged came along.
Even then it wasn't a problem because the final mmput() on an mm was
forced to acquire and release mmap_sem in write-mode, preventing an
exiting owner to go away while the mmap_sem was held, and until "692e0b3
mm: thp: optimize memcg charge in khugepaged", the memory cgroup charge
was protected by mmap_sem in read-mode.
Instead of going back to relying on the mmap_sem to enforce lifetime of a
task, this patch ensures that mm->owner is properly set to NULL when the
last possible owner is exiting, which the memory controller can handle
just fine.
[akpm@linux-foundation.org: tweak comments]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Hugh Dickins <hughd@google.com>
Reported-by: Dave Jones <davej@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On system boot up, the lowest_mask is initialized with an
early_initcall(). But RT tasks may wake up on other
early_initcall() callers before the lowest_mask is initialized,
causing a system crash.
Commit "d72bce0e67 rcu: Cure load woes" was the first commit
to wake up RT tasks in early init. Before this commit this bug
should not happen.
Reported-by: Andrew Theurer <habanero@linux.vnet.ibm.com>
Tested-by: Andrew Theurer <habanero@linux.vnet.ibm.com>
Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20110614223657.824872966@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The RT preempt check tests the wrong task if NEED_RESCHED is
set. It currently checks the local CPU task. It is supposed to
check the task that is running on the runqueue we are about to
wake another task on.
Signed-off-by: Hillf Danton <dhillf@gmail.com>
Reviewed-by: Yong Zhang <yong.zhang0@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20110614223657.450239027@goodmis.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix to support kernel stack trace correctly on kprobe-tracer.
Since the execution path of kprobe-based dynamic events is different
from other tracepoint-based events, normal ftrace_trace_stack() doesn't
work correctly. To fix that, this introduces ftrace_trace_stack_regs()
which traces stack via pt_regs instead of current stack register.
e.g.
# echo p schedule+4 > /sys/kernel/debug/tracing/kprobe_events
# echo 1 > /sys/kernel/debug/tracing/options/stacktrace
# echo 1 > /sys/kernel/debug/tracing/events/kprobes/enable
# head -n 20 /sys/kernel/debug/tracing/trace
bash-2968 [000] 10297.050245: p_schedule_4: (schedule+0x4/0x4ca)
bash-2968 [000] 10297.050247: <stack trace>
=> schedule_timeout
=> n_tty_read
=> tty_read
=> vfs_read
=> sys_read
=> system_call_fastpath
kworker/0:1-2940 [000] 10297.050265: p_schedule_4: (schedule+0x4/0x4ca)
kworker/0:1-2940 [000] 10297.050266: <stack trace>
=> worker_thread
=> kthread
=> kernel_thread_helper
sshd-1132 [000] 10297.050365: p_schedule_4: (schedule+0x4/0x4ca)
sshd-1132 [000] 10297.050365: <stack trace>
=> sysret_careful
Note: Even with this fix, the first entry will be skipped
if the probe is put on the function entry area before
the frame pointer is set up (usually, that is 4 bytes
(push %bp; mov %sp %bp) on x86), because stack unwinder
depends on the frame pointer.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: yrl.pp-manager.tt@hitachi.com
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Namhyung Kim <namhyung@gmail.com>
Link: http://lkml.kernel.org/r/20110608070934.17777.17116.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add weak symbol of save_stack_trace_regs() as same as
save_stack_trace_tsk() since that is not implemented
except x86 yet.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: yrl.pp-manager.tt@hitachi.com
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Namhyung Kim <namhyung@gmail.com>
Link: http://lkml.kernel.org/r/20110608070927.17777.37895.stgit@fedora15
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The tracing ring buffer is allocated from kernel memory. While
allocating a large chunk of memory, OOM might happen which destabilizes
the system. Thus random processes might get killed during the
allocation.
This patch adds __GFP_NORETRY flag to the ring buffer allocation calls
to make it fail more gracefully if the system will not be able to
complete the allocation request.
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: David Sharp <dhsharp@google.com>
Link: http://lkml.kernel.org/r/1307491302-9236-1-git-send-email-vnagarnaik@google.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This patch replaces the code for getting an unsigned long from a
userspace buffer by a simple call to kstroul_from_user.
This makes it easier to read and less error prone.
Signed-off-by: Peter Huewe <peterhuewe@gmx.de>
Link: http://lkml.kernel.org/r/1307476707-14762-1-git-send-email-peterhuewe@gmx.de
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The function_graph tracer does not follow global context-info option.
Adding TRACE_ITER_CONTEXT_INFO trace_flags check to enable it.
With following commands:
# echo function_graph > ./current_tracer
# echo 0 > options/context-info
# cat trace
This is what it looked like before:
# tracer: function_graph
#
# TIME CPU DURATION FUNCTION CALLS
# | | | | | | | |
1) 0.079 us | } /* __vma_link_rb */
1) 0.056 us | copy_page_range();
1) | security_vm_enough_memory() {
...
This is what it looks like now:
# tracer: function_graph
#
} /* update_ts_time_stats */
timekeeping_max_deferment();
...
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-6-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The header display of function tracer does not follow
the context-info option, so field names are displayed even
if this option is off.
Added check for TRACE_ITER_CONTEXT_INFO trace_flags.
With following commands:
# echo function > ./current_tracer
# echo 0 > options/context-info
# cat trace
This is what it looked like before:
# tracer: function
#
# TASK-PID CPU# TIMESTAMP FUNCTION
# | | | | |
add_preempt_count <-schedule
rcu_note_context_switch <-schedule
...
This is what it looks like now:
# tracer: function
#
_raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
...
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-4-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Functions print_graph_overhead() and print_graph_duration() displays
data for one field - DURATION.
I merged them into single function print_graph_duration(),
and added a way to display the empty parts of the field.
This way the print_graph_irq() function can use this column to display
the IRQ signs if needed and the DURATION field details stays inside
the print_graph_duration() function.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-3-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The display of absolute time and duration fields is based on the
latency field. This was added during the irqsoff/wakeup tracers
graph support changes.
It's causing confusion in what fields will be displayed for the
function_graph tracer itself. So I'm removing this depency, and
adding absolute time and duration fields to the preemptirqsoff
preemptoff irqsoff wakeup tracers.
With following commands:
# echo function_graph > ./current_tracer
# cat trace
This is what it looked like before:
# tracer: function_graph
#
# TIME CPU DURATION FUNCTION CALLS
# | | | | | | | |
0) 0.068 us | } /* page_add_file_rmap */
0) | _raw_spin_unlock() {
...
This is what it looks like now:
# tracer: function_graph
#
# CPU DURATION FUNCTION CALLS
# | | | | | | |
0) 0.068 us | } /* add_preempt_count */
0) 0.993 us | } /* vfsmount_lock_local_lock */
...
For preemptirqsoff preemptoff irqsoff wakeup tracers,
this is what it looked like before:
SNIP
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| / _-=> lock-depth
# |||| /
# CPU TASK/PID ||||| DURATION FUNCTION CALLS
# | | | ||||| | | | | | |
1) <idle>-0 | d..1 0.000 us | acpi_idle_enter_simple();
...
This is what it looks like now:
SNIP
#
# _-----=> irqs-off
# / _----=> need-resched
# | / _---=> hardirq/softirq
# || / _--=> preempt-depth
# ||| /
# TIME CPU TASK/PID |||| DURATION FUNCTION CALLS
# | | | | |||| | | | | | |
19.847735 | 1) <idle>-0 | d..1 0.000 us | acpi_idle_enter_simple();
...
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1307113131-10045-2-git-send-email-jolsa@redhat.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Added <linux/atomic.h>,<linux/ktime.h> and Removed <asm/atomic.h>.
Added KERN_DEBUG to printk() functions.
Acked-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Paul McQuade <tungstentide@gmail.com>
Link: http://lkml.kernel.org/r/4DE596B4.7030904@gmail.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Add a trace option to disable tracing on free. When this option is
set, a write into the free_buffer file will not only shrink the
ring buffer down to zero, but it will also disable tracing.
Cc: Vaibhav Nagarnaik <vnagarnaik@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
The proc file entry buffer_size_kb is used to set the size of tracing
buffer. The memory to expand the buffer size is kernel memory. Consider
a use case where tracing is handled by a user space utility, which acts
as a gate keeper for tracing requests. In an OOM condition, tracing is
considered a low priority task and if the utility gets killed the ring
buffer memory cannot be released back to the kernel.
This patch adds a proc file called "free_buffer" whose purpose is to
stop tracing and free up the ring buffer when it is closed.
The user space process can then set the desired size in buffer_size_kb
file and open the fd to the "free_buffer" file. Under OOM condition, if
the process gets killed, the kernel closes the file descriptor. The
release handler stops the tracing and releases the kernel memory
automatically.
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: David Sharp <dhsharp@google.com>
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Link: http://lkml.kernel.org/r/1308012717-11148-1-git-send-email-vnagarnaik@google.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Fix kernel-doc warnings in signal.c:
Warning(kernel/signal.c:2374): No description found for parameter 'nset'
Warning(kernel/signal.c:2374): Excess function parameter 'set' description in 'sys_rt_sigprocmask'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The tracing ring buffer is a group of per-cpu ring buffers where
allocation and logging is done on a per-cpu basis. The events that are
generated on a particular CPU are logged in the corresponding buffer.
This is to provide wait-free writes between CPUs and good NUMA node
locality while accessing the ring buffer.
However, the allocation routines consider NUMA locality only for buffer
page metadata and not for the actual buffer page. This causes the pages
to be allocated on the NUMA node local to the CPU where the allocation
routine is running at the time.
This patch fixes the problem by using a NUMA node specific allocation
routine so that the pages are allocated from a NUMA node local to the
logging CPU.
I tested with the getuid_microbench from autotest. It is a simple binary
that calls getuid() in a loop and measures the average time for the
syscall to complete. The following command was used to test:
$ getuid_microbench 1000000
Compared the numbers found on kernel with and without this patch and
found that logging latency decreases by 30-50 ns/call.
tracing with non-NUMA allocation - 569 ns/call
tracing with NUMA allocation - 512 ns/call
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: David Sharp <dhsharp@google.com>
Link: http://lkml.kernel.org/r/1304470602-20366-1-git-send-email-vnagarnaik@google.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
In using syscall tracing by concurrent processes, the wakeup() that is
called in the event commit function causes contention on the spin lock
of the waitqueue. I enabled sys_enter_getuid and sys_exit_getuid
tracepoints, and by running getuid_microbench from autotest in parallel
I found that the contention causes exponential latency increase in the
tracing path.
The autotest binary getuid_microbench calls getuid() in a tight loop for
the given number of iterations and measures the average time required to
complete a single invocation of syscall.
The patch schedules a delayed work after 2 ms once an event commit calls
to wake up the trace wait_queue. This removes the delay caused by
contention on spin lock in wakeup() and amortizes the wakeup() calls
scheduled over the 2 ms period.
In the following example, the script enables the sys_enter_getuid and
sys_exit_getuid tracepoints and runs the getuid_microbench in parallel
with the given number of processes. The output clearly shows the latency
increase caused by contentions.
$ ~/getuid.sh 1
1000000 calls in 0.720974253 s (720.974253 ns/call)
$ ~/getuid.sh 2
1000000 calls in 1.166457554 s (1166.457554 ns/call)
1000000 calls in 1.168933765 s (1168.933765 ns/call)
$ ~/getuid.sh 3
1000000 calls in 1.783827516 s (1783.827516 ns/call)
1000000 calls in 1.795553270 s (1795.553270 ns/call)
1000000 calls in 1.796493376 s (1796.493376 ns/call)
$ ~/getuid.sh 4
1000000 calls in 4.483041796 s (4483.041796 ns/call)
1000000 calls in 4.484165388 s (4484.165388 ns/call)
1000000 calls in 4.484850762 s (4484.850762 ns/call)
1000000 calls in 4.485643576 s (4485.643576 ns/call)
$ ~/getuid.sh 5
1000000 calls in 6.497521653 s (6497.521653 ns/call)
1000000 calls in 6.502000236 s (6502.000236 ns/call)
1000000 calls in 6.501709115 s (6501.709115 ns/call)
1000000 calls in 6.502124100 s (6502.124100 ns/call)
1000000 calls in 6.502936358 s (6502.936358 ns/call)
After the patch, the latencies scale better.
1000000 calls in 0.728720455 s (728.720455 ns/call)
1000000 calls in 0.842782857 s (842.782857 ns/call)
1000000 calls in 0.883803135 s (883.803135 ns/call)
1000000 calls in 0.902077764 s (902.077764 ns/call)
1000000 calls in 0.902838202 s (902.838202 ns/call)
1000000 calls in 0.908896885 s (908.896885 ns/call)
1000000 calls in 0.932523515 s (932.523515 ns/call)
1000000 calls in 0.958009672 s (958.009672 ns/call)
1000000 calls in 0.986188020 s (986.188020 ns/call)
1000000 calls in 0.989771102 s (989.771102 ns/call)
1000000 calls in 0.933518391 s (933.518391 ns/call)
1000000 calls in 0.958897947 s (958.897947 ns/call)
1000000 calls in 1.031038897 s (1031.038897 ns/call)
1000000 calls in 1.089516025 s (1089.516025 ns/call)
1000000 calls in 1.141998347 s (1141.998347 ns/call)
Signed-off-by: Vaibhav Nagarnaik <vnagarnaik@google.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Cc: David Sharp <dhsharp@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/1305059241-7629-1-git-send-email-vnagarnaik@google.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Commit a26ac2455ffcf3(rcu: move TREE_RCU from softirq to kthread)
introduced performance regression. In an AIM7 test, this commit degraded
performance by about 40%.
The commit runs rcu callbacks in a kthread instead of softirq. We observed
high rate of context switch which is caused by this. Out test system has
64 CPUs and HZ is 1000, so we saw more than 64k context switch per second
which is caused by RCU's per-CPU kthread. A trace showed that most of
the time the RCU per-CPU kthread doesn't actually handle any callbacks,
but instead just does a very small amount of work handling grace periods.
This means that RCU's per-CPU kthreads are making the scheduler do quite
a bit of work in order to allow a very small amount of RCU-related
processing to be done.
Alex Shi's analysis determined that this slowdown is due to lock
contention within the scheduler. Unfortunately, as Peter Zijlstra points
out, the scheduler's real-time semantics require global action, which
means that this contention is inherent in real-time scheduling. (Yes,
perhaps someone will come up with a workaround -- otherwise, -rt is not
going to do well on large SMP systems -- but this patch will work around
this issue in the meantime. And "the meantime" might well be forever.)
This patch therefore re-introduces softirq processing to RCU, but only
for core RCU work. RCU callbacks are still executed in kthread context,
so that only a small amount of RCU work runs in softirq context in the
common case. This should minimize ksoftirqd execution, allowing us to
skip boosting of ksoftirqd for CONFIG_RCU_BOOST=y kernels.
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Tested-by: "Alex,Shi" <alex.shi@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Make the functions creating the kthreads wake them up. Leverage the
fact that the per-node and boost kthreads can run anywhere, thus
dispensing with the need to wake them up once the incoming CPU has
gone fully online.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Daniel J Blueman <daniel.blueman@gmail.com>
Create a new CONFIG_PREEMPT_COUNT that handles the inc/dec
of preempt count offset independently. So that the offset
can be updated by preempt_disable() and preempt_enable()
even without the need for CONFIG_PREEMPT beeing set.
This prepares to make CONFIG_DEBUG_SPINLOCK_SLEEP working
with !CONFIG_PREEMPT where it currently doesn't detect
code that sleeps inside explicit preemption disabled
sections.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Several fixes as well where the +1 was missing.
Done via coccinelle scripts like:
@@
struct resource *ptr;
@@
- ptr->end - ptr->start + 1
+ resource_size(ptr)
and some grep and typing.
Mostly uncompiled, no cross-compilers.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
In kernel/irq/manage.c::irq_set_irq_wake() we call
irq_get_desc_buslock() which may return NULL, but the code
dereferences the result unconditionally.
irq_set_irq_wake() has lots of callers - I checked a few and I couldn't
find anything that guarantees that they won't call it with some input that
will cause irq_get_desc_buslock() to return NULL, so I think it's a good
thing to test and -EINVAL was the most sane error code in this situation
that I could think of.
Not all callers test the return value of irq_set_irq_wake(), but those
that do take != 0 to mean error as far as I can see, so they should be
fine. I guess those that don't test actually should, but that's a
different issue.
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Link: http://lkml.kernel.org/r/alpine.LNX.2.00.1106092300360.17868@swampdragon.chaosbits.net
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The fix to fix the printk_formats of modules broke the
printk_formats of trace_printks in the kernel.
The update of what to show via the seq_file was only updated
if the passed in fmt was NULL, which happens only on the first
iteration. The result was showing the first format every time
instead of iterating through the available formats.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
We recently found that in some configurations SELinux was blocking the ability
for cgroupfs to be mounted. The reason for this is because cgroupfs creates
files and directories during the get_sb() call and also uses lookup_one_len()
during that same get_sb() call. This is a problem since the security
subsystem cannot initialize the superblock and the inodes in that filesystem
until after the get_sb() call returns. Thus we leave the inodes in
an unitialized state during get_sb(). For the vast majority of filesystems
this is not an issue, but since cgroupfs uses lookup_on_len() it does
search permission checks on the directories in the path it walks. Since the
inode security state is not set up SELinux does these checks as if the inodes
were 'unlabeled.'
Many 'normal' userspace process do not have permission to interact with
unlabeled inodes. The solution presented here is to do the permission checks
of path walk and inode creation as the kernel rather than as the task that
called mount. Since the kernel has permission to read/write/create
unlabeled inodes the get_sb() call will complete successfully and the SELinux
code will be able to initialize the superblock and those inodes created during
the get_sb() call.
This appears to be the same solution used by other filesystems such as devtmpfs
to solve the same issue and should thus have no negative impact on other LSMs
which currently work.
Signed-off-by: Eric Paris <eparis@redhat.com>
Acked-by: Paul Menage <menage@google.com>
Signed-off-by: James Morris <jmorris@namei.org>
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
perf: Fix comments in include/linux/perf_event.h
perf: Comment /proc/sys/kernel/perf_event_paranoid to be part of user ABI
perf python: Fix argument name list of read_on_cpu()
perf evlist: Don't die if sample_{id_all|type} is invalid
perf python: Use exception to propagate errors
perf evlist: Remove dependency on debug routines
perf, cgroups: Fix up for new API
It's really supposed to be defined here. If it's not then
we actually want the build to crash so that we know it,
and not keep it silent.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Revert the commit that removed the disabling of interrupts around
the initial modifying of mcount callers to nops, and update the comment.
The original comment was outdated and stated that the interrupts were
being disabled to prevent kstop machine, which was required with the
old ftrace daemon, but was no longer the case.
What the comment failed to mention was that interrupts needed to be
disabled to keep interrupts from preempting the modifying of the code
and then executing the code that was partially modified.
Revert the commit and update the comment.
Reported-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
With gcc 4.6, the self test kprobe function:
kprobe_trace_selftest_target()
is optimized such that kallsyms does not list it. The kprobes
test uses this function to insert a probe and test it. But
it will fail the test if the function is not listed in kallsyms.
Adding a __used annotation keeps the symbol in the kallsyms table.
Suggested-by: David Daney <ddaney@caviumnetworks.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
A lost Quilt refresh of 2c29ef0fef (perf: Simplify and fix
__perf_install_in_context()) is causing grief and lockups,
reported by Jiri Olsa.
When installing an event in a task context, there's a number of
issues:
- there might not be an existing task context, in which case
we should install the now current context;
- there might already be a context, not the current one, in
which case we should de-schedule the old and install the new;
these cases were dealt with in the lost refresh, however there is one
further case that was found in testing:
- there might already be a context, the current one, in which
case we should still de-schedule, and should take care
to re-install it (note that task_ctx_sched_out() clears
cpuctx->task_ctx).
Reported-by: Jiri Olsa <jolsa@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1307399008.2497.971.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Release console_sem after unlocking the logbuf_lock so that we don't
generate wakeups while holding logbuf_lock. This avoids some lock
inversion troubles once we remove the lockdep_off bits between
logbuf_lock and rq->lock (prints while holding rq->lock vs doing
wakeups while holding logbuf_lock).
There's of course still an actual deadlock where the printk()s under
rq->lock will issue a wakeup from the up() call, but lockdep won't
warn about that since semaphores are not tracked.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/n/tip-j8swthl12u73h4znbvitljzd@git.kernel.org
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Sergey reported a CONFIG_PROVE_RCU warning in push_rt_task where
set_task_cpu() was called with both relevant rq->locks held, which
should be sufficient for running tasks since holding its rq->lock
will serialize against sched_move_task().
Update the comments and fix the task_group() lockdep test.
Reported-and-tested-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/1307115427.2353.3456.camel@twins
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The main lock_is_held() user is lockdep_assert_held(), avoid false
assertions in lockdep_off() sections by unconditionally reporting the
lock is taken.
[ the reason this is important is a lockdep_assert_held() in ttwu()
which triggers a warning under lockdep_off() as in printk() which
can trigger another wakeup and lock up due to spinlock
recursion, as reported and heroically debugged by Arne Jansen ]
Reported-and-tested-by: Arne Jansen <lists@die-jansens.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: <stable@kernel.org>
Link: http://lkml.kernel.org/r/1307398759.2497.966.camel@laptop
Signed-off-by: Ingo Molnar <mingo@elte.hu>
kernel/trace/ftrace.c: In function 'ftrace_regex_write.clone.15':
kernel/trace/ftrace.c:2743:6: warning: 'ret' may be used uninitialized in this
function
Signed-off-by: GuoWen Li <guowen.li.linux@gmail.com>
Link: http://lkml.kernel.org/r/201106011918.47939.guowen.li.linux@gmail.com
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
Remove the following three noop tracehooks in signals.c.
* tracehook_force_sigpending()
* tracehook_get_signal()
* tracehook_finish_jctl()
The code area is about to be updated and these hooks don't do anything
other than obfuscating the logic.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
ptracer->signal->wait_chldexit was used to wait for TRAPPING; however,
->wait_chldexit was already complicated with waker-side filtering
without adding TRAPPING wait on top of it. Also, it unnecessarily
made TRAPPING clearing depend on the current ptrace relationship - if
the ptracee is detached, wakeup is lost.
There is no reason to use signal->wait_chldexit here. We're just
waiting for JOBCTL_TRAPPING bit to clear and given the relatively
infrequent use of ptrace, bit_waitqueue can serve it perfectly.
This patch makes JOBCTL_TRAPPING wait use bit_waitqueue instead of
signal->wait_chldexit.
-v2: Use JOBCTL_*_BIT macros instead of ilog2() as suggested by Linus.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
task->jobctl currently hosts JOBCTL_STOP_PENDING and will host TRAP
pending bits too. Setting pending conditions on a dying task may make
the task unkillable. Currently, each setting site is responsible for
checking for the condition but with to-be-added job control traps this
becomes too fragile.
This patch adds task_set_jobctl_pending() which should be used when
setting task->jobctl bits to schedule a stop or trap. The function
performs the followings to ease setting pending bits.
* Sanity checks.
* If fatal signal is pending or PF_EXITING is set, no bit is set.
* STOP_SIGMASK is automatically cleared if new value is being set.
do_signal_stop() and ptrace_attach() are updated to use
task_set_jobctl_pending() instead of setting STOP_PENDING explicitly.
The surrounding structures around setting are changed to fit
task_set_jobctl_pending() better but there should be no userland
visible behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
JOBCTL_TRAPPING indicates that ptracer is waiting for tracee to
(re)transit into TRACED. task_clear_jobctl_pending() must be called
when either tracee enters TRACED or the transition is cancelled for
some reason. The former is achieved by explicitly calling
task_clear_jobctl_pending() in ptrace_stop() and the latter by calling
it at the end of do_signal_stop().
Calling task_clear_jobctl_trapping() at the end of do_signal_stop()
limits the scope TRAPPING can be used and is fragile in that seemingly
unrelated changes to tracee's control flow can lead to stuck TRAPPING.
We already have task_clear_jobctl_pending() calls on those cancelling
events to clear JOBCTL_STOP_PENDING. Cancellations can be handled by
making those call sites use JOBCTL_PENDING_MASK instead and updating
task_clear_jobctl_pending() such that task_clear_jobctl_trapping() is
called automatically if no stop/trap is pending.
This patch makes the above changes and removes the fallback
task_clear_jobctl_trapping() call from do_signal_stop().
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
This patch introduces JOBCTL_PENDING_MASK and replaces
task_clear_jobctl_stop_pending() with task_clear_jobctl_pending()
which takes an extra @mask argument.
JOBCTL_PENDING_MASK is currently equal to JOBCTL_STOP_PENDING but
future patches will add more bits. recalc_sigpending_tsk() is updated
to use JOBCTL_PENDING_MASK instead.
task_clear_jobctl_pending() takes @mask which in subset of
JOBCTL_PENDING_MASK and clears the relevant jobctl bits. If
JOBCTL_STOP_PENDING is set, other STOP bits are cleared together. All
task_clear_jobctl_stop_pending() users are updated to call
task_clear_jobctl_pending() with JOBCTL_STOP_PENDING which is
functionally identical to task_clear_jobctl_stop_pending().
This patch doesn't cause any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
In ptrace_stop(), after arch hook is done, the task state and jobctl
bits are updated while holding siglock. The ordering requirement
there is that TASK_TRACED is set before JOBCTL_TRAPPING is cleared to
prevent ptracer waiting on TRAPPING doesn't end up waking up TRACED is
actually set and sees TASK_RUNNING in wait(2).
Move set_current_state(TASK_TRACED) to the top of the block and
reorganize comments. This makes the ordering more obvious
(TASK_TRACED before other updates) and helps future updates to group
stop participation.
This patch doesn't cause any functional change.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
PTRACE_INTERRUPT is going to be added which should also skip
task_is_traced() check in ptrace_check_attach(). Rename @kill to
@ignore_state and make it bool. Add function comment while at it.
This patch doesn't introduce any behavior difference.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
signal->group_stop currently hosts mostly group stop related flags;
however, it's gonna be used for wider purposes and the GROUP_STOP_
flag prefix becomes confusing. Rename signal->group_stop to
signal->jobctl and rename all GROUP_STOP_* flags to JOBCTL_*.
Bit position macros JOBCTL_*_BIT are defined and JOBCTL_* flags are
defined in terms of them to allow using bitops later.
While at it, reassign JOBCTL_TRAPPING to bit 22 to better accomodate
future additions.
This doesn't cause any functional change.
-v2: JOBCTL_*_BIT macros added as suggested by Linus.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Remove local variable wait_trap which determines whether to wait for
!TRAPPING or not and simply wait for it if attach was successful.
-v2: Oleg pointed out wait should happen iff attach was successful.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>