There maybe an overflow in memblock_overlaps_region() if it is called with
base and size such that
base + size > PHYS_ADDR_MAX
Make sure that memblock_overlaps_region() caps the size to prevent such
overflow and remove now duplicated call to memblock_cap_size() from
memblock_is_region_reserved().
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
When CONFIG_SPARSEMEM=y the ranges of the memory map that are freed are not
aligned to the pageblock boundaries which breaks assumptions about
homogeneity of the memory map throughout core mm code.
Make sure that the freed memory map is always aligned on pageblock
boundaries regardless of the memory model selection.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
The code that frees unused memory map uses rounds start and end of the
holes that are freed to MAX_ORDER_NR_PAGES to preserve continuity of the
memory map for MAX_ORDER regions.
Lots of core memory management functionality relies on homogeneity of the
memory map within each pageblock which size may differ from MAX_ORDER in
certain configurations.
Although currently, for the architectures that use free_unused_memmap(),
pageblock_order and MAX_ORDER are equivalent, it is cleaner to have common
notation thought mm code.
Replace MAX_ORDER_NR_PAGES with pageblock_nr_pages and update the comments
to make it more clear why the alignment to pageblock boundaries is
required.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Merge misc updates from Andrew Morton:
"191 patches.
Subsystems affected by this patch series: kthread, ia64, scripts,
ntfs, squashfs, ocfs2, kernel/watchdog, and mm (gup, pagealloc, slab,
slub, kmemleak, dax, debug, pagecache, gup, swap, memcg, pagemap,
mprotect, bootmem, dma, tracing, vmalloc, kasan, initialization,
pagealloc, and memory-failure)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (191 commits)
mm,hwpoison: make get_hwpoison_page() call get_any_page()
mm,hwpoison: send SIGBUS with error virutal address
mm/page_alloc: split pcp->high across all online CPUs for cpuless nodes
mm/page_alloc: allow high-order pages to be stored on the per-cpu lists
mm: replace CONFIG_FLAT_NODE_MEM_MAP with CONFIG_FLATMEM
mm: replace CONFIG_NEED_MULTIPLE_NODES with CONFIG_NUMA
docs: remove description of DISCONTIGMEM
arch, mm: remove stale mentions of DISCONIGMEM
mm: remove CONFIG_DISCONTIGMEM
m68k: remove support for DISCONTIGMEM
arc: remove support for DISCONTIGMEM
arc: update comment about HIGHMEM implementation
alpha: remove DISCONTIGMEM and NUMA
mm/page_alloc: move free_the_page
mm/page_alloc: fix counting of managed_pages
mm/page_alloc: improve memmap_pages dbg msg
mm: drop SECTION_SHIFT in code comments
mm/page_alloc: introduce vm.percpu_pagelist_high_fraction
mm/page_alloc: limit the number of pages on PCP lists when reclaim is active
mm/page_alloc: scale the number of pages that are batch freed
...
__get_hwpoison_page() could fail to grab refcount by some race condition,
so it's helpful if we can handle it by retrying. We already have retry
logic, so make get_hwpoison_page() call get_any_page() when called from
memory_failure().
As a result, get_hwpoison_page() can return negative values (i.e. error
code), so some callers are also changed to handle error cases.
soft_offline_page() does nothing for -EBUSY because that's enough and
users in userspace can easily handle it. unpoison_memory() is also
unchanged because it's broken and need thorough fixes (will be done
later).
Link: https://lkml.kernel.org/r/20210603233632.2964832-3-nao.horiguchi@gmail.com
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now an action required MCE in already hwpoisoned address surely sends a
SIGBUS to current process, but the SIGBUS doesn't convey error virtual
address. That's not optimal for hwpoison-aware applications.
To fix the issue, make memory_failure() call kill_accessing_process(),
that does pagetable walk to find the error virtual address. It could find
multiple virtual addresses for the same error page, and it seems hard to
tell which virtual address is correct one. But that's rare and sending
incorrect virtual address could be better than no address. So let's
report the first found virtual address for now.
[naoya.horiguchi@nec.com: fix walk_page_range() return]
Link: https://lkml.kernel.org/r/20210603051055.GA244241@hori.linux.bs1.fc.nec.co.jp
Link: https://lkml.kernel.org/r/20210521030156.2612074-4-nao.horiguchi@gmail.com
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Aili Yao <yaoaili@kingsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jue Wang <juew@google.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Hansen reported the following about Feng Tang's tests on a machine
with persistent memory onlined as a DRAM-like device.
Feng Tang tossed these on a "Cascade Lake" system with 96 threads and
~512G of persistent memory and 128G of DRAM. The PMEM is in "volatile
use" mode and being managed via the buddy just like the normal RAM.
The PMEM zones are big ones:
present 65011712 = 248 G
high 134595 = 525 M
The PMEM nodes, of course, don't have any CPUs in them.
With your series, the pcp->high value per-cpu is 69584 pages or about
270MB per CPU. Scaled up by the 96 CPU threads, that's ~26GB of
worst-case memory in the pcps per zone, or roughly 10% of the size of
the zone.
This should not cause a problem as such although it could trigger reclaim
due to pages being stored on per-cpu lists for CPUs remote to a node. It
is not possible to treat cpuless nodes exactly the same as normal nodes
but the worst-case scenario can be mitigated by splitting pcp->high across
all online CPUs for cpuless memory nodes.
Link: https://lkml.kernel.org/r/20210616110743.GK30378@techsingularity.net
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: "Tang, Feng" <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-cpu page allocator (PCP) only stores order-0 pages. This means
that all THP and "cheap" high-order allocations including SLUB contends on
the zone->lock. This patch extends the PCP allocator to store THP and
"cheap" high-order pages. Note that struct per_cpu_pages increases in
size to 256 bytes (4 cache lines) on x86-64.
Note that this is not necessarily a universal performance win because of
how it is implemented. High-order pages can cause pcp->high to be
exceeded prematurely for lower-orders so for example, a large number of
THP pages being freed could release order-0 pages from the PCP lists.
Hence, much depends on the allocation/free pattern as observed by a single
CPU to determine if caching helps or hurts a particular workload.
That said, basic performance testing passed. The following is a netperf
UDP_STREAM test which hits the relevant patches as some of the network
allocations are high-order.
netperf-udp
5.13.0-rc2 5.13.0-rc2
mm-pcpburst-v3r4 mm-pcphighorder-v1r7
Hmean send-64 261.46 ( 0.00%) 266.30 * 1.85%*
Hmean send-128 516.35 ( 0.00%) 536.78 * 3.96%*
Hmean send-256 1014.13 ( 0.00%) 1034.63 * 2.02%*
Hmean send-1024 3907.65 ( 0.00%) 4046.11 * 3.54%*
Hmean send-2048 7492.93 ( 0.00%) 7754.85 * 3.50%*
Hmean send-3312 11410.04 ( 0.00%) 11772.32 * 3.18%*
Hmean send-4096 13521.95 ( 0.00%) 13912.34 * 2.89%*
Hmean send-8192 21660.50 ( 0.00%) 22730.72 * 4.94%*
Hmean send-16384 31902.32 ( 0.00%) 32637.50 * 2.30%*
Functionally, a patch like this is necessary to make bulk allocation of
high-order pages work with similar performance to order-0 bulk
allocations. The bulk allocator is not updated in this series as it would
have to be determined by bulk allocation users how they want to track the
order of pages allocated with the bulk allocator.
Link: https://lkml.kernel.org/r/20210611135753.GC30378@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After removal of the DISCONTIGMEM memory model the FLAT_NODE_MEM_MAP
configuration option is equivalent to FLATMEM.
Drop CONFIG_FLAT_NODE_MEM_MAP and use CONFIG_FLATMEM instead.
Link: https://lkml.kernel.org/r/20210608091316.3622-10-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After removal of DISCINTIGMEM the NEED_MULTIPLE_NODES and NUMA
configuration options are equivalent.
Drop CONFIG_NEED_MULTIPLE_NODES and use CONFIG_NUMA instead.
Done with
$ sed -i 's/CONFIG_NEED_MULTIPLE_NODES/CONFIG_NUMA/' \
$(git grep -wl CONFIG_NEED_MULTIPLE_NODES)
$ sed -i 's/NEED_MULTIPLE_NODES/NUMA/' \
$(git grep -wl NEED_MULTIPLE_NODES)
with manual tweaks afterwards.
[rppt@linux.ibm.com: fix arm boot crash]
Link: https://lkml.kernel.org/r/YMj9vHhHOiCVN4BF@linux.ibm.com
Link: https://lkml.kernel.org/r/20210608091316.3622-9-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no architectures that support DISCONTIGMEM left.
Remove the configuration option and the dead code it was guarding in the
generic memory management code.
Link: https://lkml.kernel.org/r/20210608091316.3622-6-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Allow high order pages to be stored on PCP", v2.
The per-cpu page allocator (PCP) only handles order-0 pages. With the
series "Use local_lock for pcp protection and reduce stat overhead" and
"Calculate pcp->high based on zone sizes and active CPUs", it's now
feasible to store high-order pages on PCP lists.
This small series allows PCP to store "cheap" orders where cheap is
determined by PAGE_ALLOC_COSTLY_ORDER and THP-sized allocations.
This patch (of 2):
In the next page, free_compount_page is going to use the common helper
free_the_page. This patch moves the definition to ease review. No
functional change.
Link: https://lkml.kernel.org/r/20210603142220.10851-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210603142220.10851-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit f63661566f ("mm/page_alloc.c: clear out zone->lowmem_reserve[] if
the zone is empty") clears out zone->lowmem_reserve[] if zone is empty.
But when zone is not empty and sysctl_lowmem_reserve_ratio[i] is set to
zero, zone_managed_pages(zone) is not counted in the managed_pages either.
This is inconsistent with the description of lowmem_reserve, so fix it.
Link: https://lkml.kernel.org/r/20210527125707.3760259-1-liushixin2@huawei.com
Fixes: f63661566f ("mm/page_alloc.c: clear out zone->lowmem_reserve[] if the zone is empty")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reported-by: yangerkun <yangerkun@huawei.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This introduces a new sysctl vm.percpu_pagelist_high_fraction. It is
similar to the old vm.percpu_pagelist_fraction. The old sysctl increased
both pcp->batch and pcp->high with the higher pcp->high potentially
reducing zone->lock contention. However, the higher pcp->batch value also
potentially increased allocation latency while the PCP was refilled. This
sysctl only adjusts pcp->high so that zone->lock contention is potentially
reduced but allocation latency during a PCP refill remains the same.
# grep -E "high:|batch" /proc/zoneinfo | tail -2
high: 649
batch: 63
# sysctl vm.percpu_pagelist_high_fraction=8
# grep -E "high:|batch" /proc/zoneinfo | tail -2
high: 35071
batch: 63
# sysctl vm.percpu_pagelist_high_fraction=64
high: 4383
batch: 63
# sysctl vm.percpu_pagelist_high_fraction=0
high: 649
batch: 63
[mgorman@techsingularity.net: fix documentation]
Link: https://lkml.kernel.org/r/20210528151010.GQ30378@techsingularity.net
Link: https://lkml.kernel.org/r/20210525080119.5455-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When kswapd is active then direct reclaim is potentially active. In
either case, it is possible that a zone would be balanced if pages were
not trapped on PCP lists. Instead of draining remote pages, simply limit
the size of the PCP lists while kswapd is active.
Link: https://lkml.kernel.org/r/20210525080119.5455-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a task is freeing a large number of order-0 pages, it may acquire the
zone->lock multiple times freeing pages in batches. This may
unnecessarily contend on the zone lock when freeing very large number of
pages. This patch adapts the size of the batch based on the recent
pattern to scale the batch size for subsequent frees.
As the machines I used were not large enough to test this are not large
enough to illustrate a problem, a debugging patch shows patterns like the
following (slightly editted for clarity)
Baseline vanilla kernel
time-unmap-14426 [...] free_pcppages_bulk: free 63 count 378 high 378
time-unmap-14426 [...] free_pcppages_bulk: free 63 count 378 high 378
time-unmap-14426 [...] free_pcppages_bulk: free 63 count 378 high 378
time-unmap-14426 [...] free_pcppages_bulk: free 63 count 378 high 378
time-unmap-14426 [...] free_pcppages_bulk: free 63 count 378 high 378
With patches
time-unmap-7724 [...] free_pcppages_bulk: free 126 count 814 high 814
time-unmap-7724 [...] free_pcppages_bulk: free 252 count 814 high 814
time-unmap-7724 [...] free_pcppages_bulk: free 504 count 814 high 814
time-unmap-7724 [...] free_pcppages_bulk: free 751 count 814 high 814
time-unmap-7724 [...] free_pcppages_bulk: free 751 count 814 high 814
Link: https://lkml.kernel.org/r/20210525080119.5455-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The PCP high watermark is based on the number of online CPUs so the
watermarks must be adjusted during CPU hotplug. At the time of
hot-remove, the number of online CPUs is already adjusted but during
hot-add, a delta needs to be applied to update PCP to the correct value.
After this patch is applied, the high watermarks are adjusted correctly.
# grep high: /proc/zoneinfo | tail -1
high: 649
# echo 0 > /sys/devices/system/cpu/cpu4/online
# grep high: /proc/zoneinfo | tail -1
high: 664
# echo 1 > /sys/devices/system/cpu/cpu4/online
# grep high: /proc/zoneinfo | tail -1
high: 649
Link: https://lkml.kernel.org/r/20210525080119.5455-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pcp high watermark is based on the batch size but there is no
relationship between them other than it is convenient to use early in
boot.
This patch takes the first step and bases pcp->high on the zone low
watermark split across the number of CPUs local to a zone while the batch
size remains the same to avoid increasing allocation latencies. The
intent behind the default pcp->high is "set the number of PCP pages such
that if they are all full that background reclaim is not started
prematurely".
Note that in this patch the pcp->high values are adjusted after memory
hotplug events, min_free_kbytes adjustments and watermark scale factor
adjustments but not CPU hotplug events which is handled later in the
series.
On a test KVM instance;
Before grep -E "high:|batch" /proc/zoneinfo | tail -2
high: 378
batch: 63
After grep -E "high:|batch" /proc/zoneinfo | tail -2
high: 649
batch: 63
[mgorman@techsingularity.net: fix __setup_per_zone_wmarks for parallel memory
hotplug]
Link: https://lkml.kernel.org/r/20210528105925.GN30378@techsingularity.net
Link: https://lkml.kernel.org/r/20210525080119.5455-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Calculate pcp->high based on zone sizes and active CPUs", v2.
The per-cpu page allocator (PCP) is meant to reduce contention on the zone
lock but the sizing of batch and high is archaic and neither takes the
zone size into account or the number of CPUs local to a zone. With larger
zones and more CPUs per node, the contention is getting worse.
Furthermore, the fact that vm.percpu_pagelist_fraction adjusts both batch
and high values means that the sysctl can reduce zone lock contention but
also increase allocation latencies.
This series disassociates pcp->high from pcp->batch and then scales
pcp->high based on the size of the local zone with limited impact to
reclaim and accounting for active CPUs but leaves pcp->batch static. It
also adapts the number of pages that can be on the pcp list based on
recent freeing patterns.
The motivation is partially to adjust to larger memory sizes but is also
driven by the fact that large batches of page freeing via release_pages()
often shows zone contention as a major part of the problem. Another is a
bug report based on an older kernel where a multi-terabyte process can
takes several minutes to exit. A workaround was to use
vm.percpu_pagelist_fraction to increase the pcp->high value but testing
indicated that a production workload could not use the same values because
of an increase in allocation latencies. Unfortunately, I cannot reproduce
this test case myself as the multi-terabyte machines are in active use but
it should alleviate the problem.
The series aims to address both and partially acts as a pre-requisite.
pcp only works with order-0 which is useless for SLUB (when using high
orders) and THP (unconditionally). To store high-order pages on PCP, the
pcp->high values need to be increased first.
This patch (of 6):
The vm.percpu_pagelist_fraction is used to increase the batch and high
limits for the per-cpu page allocator (PCP). The intent behind the sysctl
is to reduce zone lock acquisition when allocating/freeing pages but it
has a problem. While it can decrease contention, it can also increase
latency on the allocation side due to unreasonably large batch sizes.
This leads to games where an administrator adjusts
percpu_pagelist_fraction on the fly to work around contention and
allocation latency problems.
This series aims to alleviate the problems with zone lock contention while
avoiding the allocation-side latency problems. For the purposes of
review, it's easier to remove this sysctl now and reintroduce a similar
sysctl later in the series that deals only with pcp->high.
Link: https://lkml.kernel.org/r/20210525080119.5455-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210525080119.5455-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_contig_dump_pages() aims for helping debugging page migration
failure by elevated page refcount compared to expected_count. (for the
detail, please look at migrate_page_move_mapping)
However, -ENOMEM is just the case that system is under memory pressure
state, not relevant with page refcount at all. Thus, the dumping page
list is not helpful for the debugging point of view.
Link: https://lkml.kernel.org/r/YKa2Wyo9xqIErpfa@google.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: John Dias <joaodias@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
VM events do not need explicit protection by disabling IRQs so update the
counter with IRQs enabled in __free_pages_ok.
Link: https://lkml.kernel.org/r/20210512095458.30632-10-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Historically when freeing pages, free_one_page() assumed that callers had
IRQs disabled and the zone->lock could be acquired with spin_lock(). This
confuses the scope of what local_lock_irq is protecting and what
zone->lock is protecting in free_unref_page_list in particular.
This patch uses spin_lock_irqsave() for the zone->lock in free_one_page()
instead of relying on callers to have disabled IRQs.
free_unref_page_commit() is changed to only deal with PCP pages protected
by the local lock. free_unref_page_list() then first frees isolated pages
to the buddy lists with free_one_page() and frees the rest of the pages to
the PCP via free_unref_page_commit(). The end result is that
free_one_page() is no longer depending on side-effects of local_lock to be
correct.
Note that this may incur a performance penalty while memory hot-remove is
running but that is not a common operation.
[lkp@intel.com: Ensure CMA pages get addded to correct pcp list]
Link: https://lkml.kernel.org/r/20210512095458.30632-9-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__free_pages_ok() disables IRQs before calling a common helper
free_one_page() that acquires the zone lock. This is not safe according
to Documentation/locking/locktypes.rst and in this context, IRQ disabling
is not protecting a per_cpu_pages structure either or a local_lock would
be used.
This patch explicitly acquires the lock with spin_lock_irqsave instead of
relying on a helper. This removes the last instance of local_irq_save()
in page_alloc.c.
Link: https://lkml.kernel.org/r/20210512095458.30632-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
IRQs are left disabled for the zone and node VM event counters. This is
unnecessary as the affected counters are allowed to race for preemmption
and IRQs.
This patch reduces the scope of IRQs being disabled via
local_[lock|unlock]_irq on !PREEMPT_RT kernels. One
__mod_zone_freepage_state is still called with IRQs disabled. While this
could be moved out, it's not free on all architectures as some require
IRQs to be disabled for mod_zone_page_state on !PREEMPT_RT kernels.
Link: https://lkml.kernel.org/r/20210512095458.30632-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the zone_statistics are simple counters that do not require
special protection, the bulk allocator accounting updates can be batch
updated without adding too much complexity with protected RMW updates or
using xchg.
Link: https://lkml.kernel.org/r/20210512095458.30632-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__count_numa_event is small enough to be treated similarly to
__count_vm_event so inline it.
Link: https://lkml.kernel.org/r/20210512095458.30632-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NUMA statistics are maintained on the zone level for hits, misses, foreign
etc but nothing relies on them being perfectly accurate for functional
correctness. The counters are used by userspace to get a general overview
of a workloads NUMA behaviour but the page allocator incurs a high cost to
maintain perfect accuracy similar to what is required for a vmstat like
NR_FREE_PAGES. There even is a sysctl vm.numa_stat to allow userspace to
turn off the collection of NUMA statistics like NUMA_HIT.
This patch converts NUMA_HIT and friends to be NUMA events with similar
accuracy to VM events. There is a possibility that slight errors will be
introduced but the overall trend as seen by userspace will be similar.
The counters are no longer updated from vmstat_refresh context as it is
unnecessary overhead for counters that may never be read by userspace.
Note that counters could be maintained at the node level to save space but
it would have a user-visible impact due to /proc/zoneinfo.
[lkp@intel.com: Fix misplaced closing brace for !CONFIG_NUMA]
Link: https://lkml.kernel.org/r/20210512095458.30632-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a lack of clarity of what exactly
local_irq_save/local_irq_restore protects in page_alloc.c . It conflates
the protection of per-cpu page allocation structures with per-cpu vmstat
deltas.
This patch protects the PCP structure using local_lock which for most
configurations is identical to IRQ enabling/disabling. The scope of the
lock is still wider than it should be but this is decreased later.
It is possible for the local_lock to be embedded safely within struct
per_cpu_pages but it adds complexity to free_unref_page_list.
[akpm@linux-foundation.org: coding style fixes]
[mgorman@techsingularity.net: work around a pahole limitation with zero-sized struct pagesets]
Link: https://lkml.kernel.org/r/20210526080741.GW30378@techsingularity.net
[lkp@intel.com: Make pagesets static]
Link: https://lkml.kernel.org/r/20210512095458.30632-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The PCP (per-cpu page allocator in page_alloc.c) shares locking
requirements with vmstat and the zone lock which is inconvenient and
causes some issues. For example, the PCP list and vmstat share the same
per-cpu space meaning that it's possible that vmstat updates dirty cache
lines holding per-cpu lists across CPUs unless padding is used. Second,
PREEMPT_RT does not want to disable IRQs for too long in the page
allocator.
This series splits the locking requirements and uses locks types more
suitable for PREEMPT_RT, reduces the time when special locking is required
for stats and reduces the time when IRQs need to be disabled on
!PREEMPT_RT kernels.
Why local_lock? PREEMPT_RT considers the following sequence to be unsafe
as documented in Documentation/locking/locktypes.rst
local_irq_disable();
spin_lock(&lock);
The pcp allocator has this sequence for rmqueue_pcplist (local_irq_save)
-> __rmqueue_pcplist -> rmqueue_bulk (spin_lock). While it's possible to
separate this out, it generally means there are points where we enable
IRQs and reenable them again immediately. To prevent a migration and the
per-cpu pointer going stale, migrate_disable is also needed. That is a
custom lock that is similar, but worse, than local_lock. Furthermore, on
PREEMPT_RT, it's undesirable to leave IRQs disabled for too long. By
converting to local_lock which disables migration on PREEMPT_RT, the
locking requirements can be separated and start moving the protections for
PCP, stats and the zone lock to PREEMPT_RT-safe equivalent locking. As a
bonus, local_lock also means that PROVE_LOCKING does something useful.
After that, it's obvious that zone_statistics incurs too much overhead and
leaves IRQs disabled for longer than necessary on !PREEMPT_RT kernels.
zone_statistics uses perfectly accurate counters requiring IRQs be
disabled for parallel RMW sequences when inaccurate ones like vm_events
would do. The series makes the NUMA statistics (NUMA_HIT and friends)
inaccurate counters that then require no special protection on
!PREEMPT_RT.
The bulk page allocator can then do stat updates in bulk with IRQs enabled
which should improve the efficiency. Technically, this could have been
done without the local_lock and vmstat conversion work and the order
simply reflects the timing of when different series were implemented.
Finally, there are places where we conflate IRQs being disabled for the
PCP with the IRQ-safe zone spinlock. The remainder of the series reduces
the scope of what is protected by disabled IRQs on !PREEMPT_RT kernels.
By the end of the series, page_alloc.c does not call local_irq_save so the
locking scope is a bit clearer. The one exception is that modifying
NR_FREE_PAGES still happens in places where it's known the IRQs are
disabled as it's harmless for PREEMPT_RT and would be expensive to split
the locking there.
No performance data is included because despite the overhead of the stats,
it's within the noise for most workloads on !PREEMPT_RT. However, Jesper
Dangaard Brouer ran a page allocation microbenchmark on a E5-1650 v4 @
3.60GHz CPU on the first version of this series. Focusing on the array
variant of the bulk page allocator reveals the following.
(CPU: Intel(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz)
ARRAY variant: time_bulk_page_alloc_free_array: step=bulk size
Baseline Patched
1 56.383 54.225 (+3.83%)
2 40.047 35.492 (+11.38%)
3 37.339 32.643 (+12.58%)
4 35.578 30.992 (+12.89%)
8 33.592 29.606 (+11.87%)
16 32.362 28.532 (+11.85%)
32 31.476 27.728 (+11.91%)
64 30.633 27.252 (+11.04%)
128 30.596 27.090 (+11.46%)
While this is a positive outcome, the series is more likely to be
interesting to the RT people in terms of getting parts of the PREEMPT_RT
tree into mainline.
This patch (of 9):
The per-cpu page allocator lists and the per-cpu vmstat deltas are stored
in the same struct per_cpu_pages even though vmstats have no direct impact
on the per-cpu page lists. This is inconsistent because the vmstats for a
node are stored on a dedicated structure. The bigger issue is that the
per_cpu_pages structure is not cache-aligned and stat updates either cache
conflict with adjacent per-cpu lists incurring a runtime cost or padding
is required incurring a memory cost.
This patch splits the per-cpu pagelists and the vmstat deltas into
separate structures. It's mostly a mechanical conversion but some
variable renaming is done to clearly distinguish the per-cpu pages
structure (pcp) from the vmstats (pzstats).
Superficially, this appears to increase the size of the per_cpu_pages
structure but the movement of expire fills a structure hole so there is no
impact overall.
[mgorman@techsingularity.net: make it W=1 cleaner]
Link: https://lkml.kernel.org/r/20210514144622.GA3735@techsingularity.net
[mgorman@techsingularity.net: make it W=1 even cleaner]
Link: https://lkml.kernel.org/r/20210516140705.GB3735@techsingularity.net
[lkp@intel.com: check struct per_cpu_zonestat has a non-zero size]
[vbabka@suse.cz: Init zone->per_cpu_zonestats properly]
Link: https://lkml.kernel.org/r/20210512095458.30632-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210512095458.30632-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Having such debug messages in the dmesg log may confuse users. Therefore
restrict debug output to cases where DEBUG is defined or dynamic debugging
is enabled for the respective code piece.
Link: https://lkml.kernel.org/r/976adb93-3041-ce63-48fc-55a6096a51c1@gmail.com
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The struct page is not modified by these routines, so it can be marked
const.
Link: https://lkml.kernel.org/r/20210416231531.2521383-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the PagePoisoned test into dump_page(). Skip the hex print for
poisoned pages -- we know they're full of ffffffff. Move the reason
printing from __dump_page() to dump_page().
Link: https://lkml.kernel.org/r/20210416231531.2521383-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A customer experienced a low-memory situation and decided to issue a
SIGKILL (i.e. a fatal signal). Instead of promptly terminating as one
would expect, the aforementioned task remained unresponsive.
Further investigation indicated that the task was "stuck" in the
reclaim/compaction retry loop. Now, it does not make sense to retry
compaction when a fatal signal is pending.
In the context of try_to_compact_pages(), indeed COMPACT_SKIPPED can be
returned; albeit, not every zone, on the zone list, would be considered in
the case a fatal signal is found to be pending. Yet, in
should_compact_retry(), given the last known compaction result, each zone,
on the zone list, can be considered/or checked (see
compaction_zonelist_suitable()). For example, if a zone was found to
succeed, then reclaim/compaction would be tried again (notwithstanding the
above).
This patch ensures that compaction is not needlessly retried irrespective
of the last known compaction result e.g. if it was skipped, in the
unlikely case a fatal signal is found pending. So, OOM is at least
attempted.
Link: https://lkml.kernel.org/r/20210520142901.3371299-1-atomlin@redhat.com
Signed-off-by: Aaron Tomlin <atomlin@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Constify struct page arguments".
While working on various solutions to the 32-bit struct page size
regression, one of the problems I found was the networking stack expects
to be able to pass const struct page pointers around, and the mm doesn't
provide a lot of const-friendly functions to call. The root tangle of
problems is that a lot of functions call VM_BUG_ON_PAGE(), which calls
dump_page(), which calls a lot of functions which don't take a const
struct page (but could be const).
This patch (of 6):
The only caller of __dump_page() now opencodes dump_page(), so remove it
as an externally visible symbol.
Link: https://lkml.kernel.org/r/20210416231531.2521383-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20210416231531.2521383-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memory corruption identification support for hardware tag-based mode.
We store one old free pointer tag and free backtrace instead of five
because hardware tag-based kasan only has 16 different tags.
If we store as many stacks as SW tag-based kasan does(5 stacks), there is
high probability to find the same tag in the stacks when out-of-bound
issues happened and we will mistake out-of-bound issue for use-after-free.
Link: https://lkml.kernel.org/r/20210626100931.22794-4-Kuan-Ying.Lee@mediatek.com
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Suggested-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1. Move kasan_get_free_track() and kasan_set_free_info() into tags.c
and combine these two functions for SW_TAGS and HW_TAGS kasan mode.
2. Move kasan_get_bug_type() to report_tags.c and make this function
compatible for SW_TAGS and HW_TAGS kasan mode.
Link: https://lkml.kernel.org/r/20210626100931.22794-3-Kuan-Ying.Lee@mediatek.com
Signed-off-by: Kuan-Ying Lee <Kuan-Ying.Lee@mediatek.com>
Suggested-by: Marco Elver <elver@google.com>
Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: Nicholas Tang <nicholas.tang@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
powerpc has a variable number of PTRS_PER_*, set at runtime based on the
MMU that the kernel is booted under.
This means the PTRS_PER_* are no longer constants, and therefore breaks
the build. Switch to using MAX_PTRS_PER_*, which are constant.
Link: https://lkml.kernel.org/r/20210624034050.511391-5-dja@axtens.net
Signed-off-by: Daniel Axtens <dja@axtens.net>
Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Suggested-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow architectures to define a kasan_arch_is_ready() hook that bails out
of any function that's about to touch the shadow unless the arch says that
it is ready for the memory to be accessed. This is fairly uninvasive and
should have a negligible performance penalty.
This will only work in outline mode, so an arch must specify
ARCH_DISABLE_KASAN_INLINE if it requires this.
Link: https://lkml.kernel.org/r/20210624034050.511391-3-dja@axtens.net
Signed-off-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Marco Elver <elver@google.com>
Suggested-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the contents of KASAN reports are printed with pr_err(), so use a
consistent logging level to print the memory access stacks.
Link: https://lkml.kernel.org/r/20210506105405.3535023-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Prasad Sodagudi <psodagud@quicinc.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: he, bo <bo.he@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Yanmin Zhang <yanmin_zhang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently for order-0 pages we use a bulk-page allocator to get set of
pages. From the other hand not allocating all pages is something that
might occur. In that case we should fallbak to the single-page allocator
trying to get missing pages, because it is more permissive(direct reclaim,
etc).
Introduce a vm_area_alloc_pages() function where the described logic is
implemented.
Link: https://lkml.kernel.org/r/20210521130718.GA17882@pc638.lan
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A checkpatch.pl script complains on splitting a text across lines. It is
because if a user wants to find an entire string he or she will not
succeeded.
<snip>
WARNING: quoted string split across lines
+ "vmalloc size %lu allocation failure: "
+ "page order %u allocation failed",
total: 0 errors, 1 warnings, 10 lines checked
<snip>
Link: https://lkml.kernel.org/r/20210521204359.19943-1-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a memory allocation for array of pages are not succeed emit a warning
message as a first step and then perform the further cleanup.
The reason it should be done in a right order is the clean up function
which is free_vm_area() can potentially also follow its error paths what
can lead to confusion what was broken first.
Link: https://lkml.kernel.org/r/20210516202056.2120-4-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently there has been introduced a page bulk allocator for users which
need to get number of pages per one call request.
For order-0 pages switch to an alloc_pages_bulk_array_node() instead of
alloc_pages_node(), the reason is the former is not capable of allocating
set of pages, thus a one call is per one page.
Second, according to my tests the bulk allocator uses less cycles even for
scenarios when only one page is requested. Running the "perf" on same
test case shows below difference:
<default>
- 45.18% __vmalloc_node
- __vmalloc_node_range
- 35.60% __alloc_pages
- get_page_from_freelist
3.36% __list_del_entry_valid
3.00% check_preemption_disabled
1.42% prep_new_page
<default>
<patch>
- 31.00% __vmalloc_node
- __vmalloc_node_range
- 14.48% __alloc_pages_bulk
3.22% __list_del_entry_valid
- 0.83% __alloc_pages
get_page_from_freelist
<patch>
The "test_vmalloc.sh" also shows performance improvements:
fix_size_alloc_test_4MB loops: 1000000 avg: 89105095 usec
fix_size_alloc_test loops: 1000000 avg: 513672 usec
full_fit_alloc_test loops: 1000000 avg: 748900 usec
long_busy_list_alloc_test loops: 1000000 avg: 8043038 usec
random_size_alloc_test loops: 1000000 avg: 4028582 usec
fix_align_alloc_test loops: 1000000 avg: 1457671 usec
fix_size_alloc_test_4MB loops: 1000000 avg: 62083711 usec
fix_size_alloc_test loops: 1000000 avg: 449207 usec
full_fit_alloc_test loops: 1000000 avg: 735985 usec
long_busy_list_alloc_test loops: 1000000 avg: 5176052 usec
random_size_alloc_test loops: 1000000 avg: 2589252 usec
fix_align_alloc_test loops: 1000000 avg: 1365009 usec
For example 4MB allocations illustrates ~30% gain, all the
rest is also better.
Link: https://lkml.kernel.org/r/20210516202056.2120-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use DEVICE_ATTR_RO() helper instead of plain DEVICE_ATTR(), which makes
the code a bit shorter and easier to read.
Link: https://lkml.kernel.org/r/20210524112852.34716-1-yuehaibing@huawei.com
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma_lookup() finds the vma of a specific address with a cleaner interface
and is more readable.
Link: https://lkml.kernel.org/r/20210521174745.2219620-23-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use vma_lookup() to find the VMA at a specific address. As vma_lookup()
will return NULL if the address is not within any VMA, the start address
no longer needs to be validated.
Link: https://lkml.kernel.org/r/20210521174745.2219620-22-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use vma_lookup() to find the VMA at a specific address. As vma_lookup()
will return NULL if the address is not within any VMA, the start address
no longer needs to be validated.
Link: https://lkml.kernel.org/r/20210521174745.2219620-21-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use vma_lookup() to find the VMA at a specific address. As vma_lookup()
will return NULL if the address is not within any VMA, the start address
no longer needs to be validated.
Link: https://lkml.kernel.org/r/20210521174745.2219620-20-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use vma_lookup() to find the VMA at a specific address. As vma_lookup()
will return NULL if the address is not within any VMA, the start address
no longer needs to be validated.
Link: https://lkml.kernel.org/r/20210521174745.2219620-19-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the return value in comment of finish_mkwrite_fault().
Link: https://lkml.kernel.org/r/20210513093931.15234-1-liu.xiang@zlingsmart.com
Signed-off-by: Liu Xiang <liu.xiang@zlingsmart.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using find_vma_intersection() avoids the need for a temporary variable and
makes the code cleaner.
Link: https://lkml.kernel.org/r/20210511014328.2902782-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both __do_munmap() and exit_mmap() unlock a range of VMAs using almost
identical code blocks. Replace both blocks by a static inline function.
[akpm@linux-foundation.org: tweak code layout]
Link: https://lkml.kernel.org/r/20210510211021.2797427-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Logic of find_vma_intersection() is repeated in __do_munmap().
Also, prev is assigned a value before checking vma->vm_start >= end which
might end up on a return statement making that assignment useless.
Calling find_vma_intersection() checks that condition and returns NULL if
no vma is found, hence only the !vma check is needed in __do_munmap().
Link: https://lkml.kernel.org/r/20210409162129.18313-1-gmjuareztello@gmail.com
Signed-off-by: Gonzalo Matias Juarez Tello <gmjuareztello@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's also remove masking off MAP_EXECUTABLE from ksys_mmap_pgoff(): the
last in-tree occurrence of MAP_EXECUTABLE is now in LEGACY_MAP_MASK, which
accepts the flag e.g., for MAP_SHARED_VALIDATE; however, the flag is
ignored throughout the kernel now.
Add a comment to LEGACY_MAP_MASK stating that MAP_EXECUTABLE is ignored.
Link: https://lkml.kernel.org/r/20210421093453.6904-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Kevin Brodsky <Kevin.Brodsky@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code only associates with the existing blkcg when aio is used
to access the backing file. This patch covers all types of i/o to the
backing file and also associates the memcg so if the backing file is on
tmpfs, memory is charged appropriately.
This patch also exports cgroup_get_e_css and int_active_memcg so it can be
used by the loop module.
Link: https://lkml.kernel.org/r/20210610173944.1203706-4-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Jens Axboe <axboe@kernel.dk>
Cc: Chris Down <chris@chrisdown.name>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ming Lei <ming.lei@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
set_active_memcg() worked for kernel allocations but was silently ignored
for user pages.
This patch establishes a precedence order for who gets charged:
1. If there is a memcg associated with the page already, that memcg is
charged. This happens during swapin.
2. If an explicit mm is passed, mm->memcg is charged. This happens
during page faults, which can be triggered in remote VMs (eg gup).
3. Otherwise consult the current process context. If there is an
active_memcg, use that. Otherwise, current->mm->memcg.
Previously, if a NULL mm was passed to mem_cgroup_charge (case 3) it would
always charge the root cgroup. Now it looks up the active_memcg first
(falling back to charging the root cgroup if not set).
Link: https://lkml.kernel.org/r/20210610173944.1203706-3-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Chris Down <chris@chrisdown.name>
Acked-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The noinline_for_stack is introduced by commit 666356297e ("vmscan: set
up pagevec as late as possible in shrink_inactive_list()"), its purpose is
to delay the allocation of pagevec as late as possible to save stack
memory. But the commit 2bcf887963 ("mm: take pagevecs off reclaim
stack") replace pagevecs by lists of pages_to_free. So we do not need
noinline_for_stack, just remove it (let the compiler decide whether to
inline).
Link: https://lkml.kernel.org/r/20210417043538.9793-9-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The css_set_lock is used to guard the list of inherited objcgs. So there
is no need to uncharge kernel memory under css_set_lock. Just move it out
of the lock.
Link: https://lkml.kernel.org/r/20210417043538.9793-8-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The obj_cgroup_release() and memcg_reparent_objcgs() are serialized by the
css_set_lock. We do not need to care about objcg->memcg being released in
the process of obj_cgroup_release(). So there is no need to pin memcg
before releasing objcg. Remove those pinning logic to simplfy the code.
There are only two places that modifies the objcg->memcg. One is the
initialization to objcg->memcg in the memcg_online_kmem(), another is
objcgs reparenting in the memcg_reparent_objcgs(). It is also impossible
for the two to run in parallel. So xchg() is unnecessary and it is enough
to use WRITE_ONCE().
Link: https://lkml.kernel.org/r/20210417043538.9793-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lruvec_holds_page_lru_lock() doesn't check anything about locking and is
used to check whether the page belongs to the lruvec. So rename it to
page_matches_lruvec().
Link: https://lkml.kernel.org/r/20210417043538.9793-6-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All the callers of mem_cgroup_page_lruvec() just pass page_pgdat(page) as
the 2nd parameter to it (except isolate_migratepages_block()). But for
isolate_migratepages_block(), the page_pgdat(page) is also equal to the
local variable of @pgdat. So mem_cgroup_page_lruvec() do not need the
pgdat parameter. Just remove it to simplify the code.
Link: https://lkml.kernel.org/r/20210417043538.9793-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When mm is NULL, we do not need to hold rcu lock and call css_tryget for
the root memcg. And we also do not need to check !mm in every loop of
while. So bail out early when !mm.
Link: https://lkml.kernel.org/r/20210417043538.9793-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "memcontrol code cleanup and simplification", v3.
This patch (of 8):
The pages aren't accounted at the root level, so do not charge the page to
the root memcg in page replacement. Although we do not display the value
(mem_cgroup_usage) so there shouldn't be any actual problem, but there is
a WARN_ON_ONCE in the page_counter_cancel(). Who knows if it will
trigger? So it is better to fix it.
Link: https://lkml.kernel.org/r/20210417043538.9793-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210417043538.9793-2-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The below scenario can cause the page counters of the root_mem_cgroup to
be out of balance.
CPU0: CPU1:
objcg = get_obj_cgroup_from_current()
obj_cgroup_charge_pages(objcg)
memcg_reparent_objcgs()
// reparent to root_mem_cgroup
WRITE_ONCE(iter->memcg, parent)
// memcg == root_mem_cgroup
memcg = get_mem_cgroup_from_objcg(objcg)
// do not charge to the root_mem_cgroup
try_charge(memcg)
obj_cgroup_uncharge_pages(objcg)
memcg = get_mem_cgroup_from_objcg(objcg)
// uncharge from the root_mem_cgroup
refill_stock(memcg)
drain_stock(memcg)
page_counter_uncharge(&memcg->memory)
get_obj_cgroup_from_current() never returns a root_mem_cgroup's objcg, so
we never explicitly charge the root_mem_cgroup. And it's not going to
change. It's all about a race when we got an obj_cgroup pointing at some
non-root memcg, but before we were able to charge it, the cgroup was gone,
objcg was reparented to the root and so we're skipping the charging. Then
we store the objcg pointer and later use to uncharge the root_mem_cgroup.
This can cause the page counter to be less than the actual value.
Although we do not display the value (mem_cgroup_usage) so there shouldn't
be any actual problem, but there is a WARN_ON_ONCE in the
page_counter_cancel(). Who knows if it will trigger? So it is better to
fix it.
Link: https://lkml.kernel.org/r/20210425075410.19255-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The KMALLOC_NORMAL (kmalloc-<n>) caches are for unaccounted objects only
when CONFIG_MEMCG_KMEM is enabled. To make sure that this condition
remains true, we will have to prevent KMALOC_NORMAL caches to merge with
other kmem caches. This is now done by setting its refcount to -1 right
after its creation.
Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Suggested-by: Roman Gushchin <guro@fb.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are currently two problems in the way the objcg pointer array
(memcg_data) in the page structure is being allocated and freed.
On its allocation, it is possible that the allocated objcg pointer
array comes from the same slab that requires memory accounting. If this
happens, the slab will never become empty again as there is at least
one object left (the obj_cgroup array) in the slab.
When it is freed, the objcg pointer array object may be the last one
in its slab and hence causes kfree() to be called again. With the
right workload, the slab cache may be set up in a way that allows the
recursive kfree() calling loop to nest deep enough to cause a kernel
stack overflow and panic the system.
One way to solve this problem is to split the kmalloc-<n> caches
(KMALLOC_NORMAL) into two separate sets - a new set of kmalloc-<n>
(KMALLOC_NORMAL) caches for unaccounted objects only and a new set of
kmalloc-cg-<n> (KMALLOC_CGROUP) caches for accounted objects only. All
the other caches can still allow a mix of accounted and unaccounted
objects.
With this change, all the objcg pointer array objects will come from
KMALLOC_NORMAL caches which won't have their objcg pointer arrays. So
both the recursive kfree() problem and non-freeable slab problem are
gone.
Since both the KMALLOC_NORMAL and KMALLOC_CGROUP caches no longer have
mixed accounted and unaccounted objects, this will slightly reduce the
number of objcg pointer arrays that need to be allocated and save a bit
of memory. On the other hand, creating a new set of kmalloc caches does
have the effect of reducing cache utilization. So it is properly a wash.
The new KMALLOC_CGROUP is added between KMALLOC_NORMAL and
KMALLOC_RECLAIM so that the first for loop in create_kmalloc_caches()
will include the newly added caches without change.
[vbabka@suse.cz: don't create kmalloc-cg caches with cgroup.memory=nokmem]
Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
[akpm@linux-foundation.org: un-fat-finger v5 delta creation]
[longman@redhat.com: disable cache merging for KMALLOC_NORMAL caches]
Link: https://lkml.kernel.org/r/20210505200610.13943-4-longman@redhat.com
Link: https://lkml.kernel.org/r/20210512145107.6208-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210505200610.13943-3-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
[longman@redhat.com: fix for CONFIG_ZONE_DMA=n]
Suggested-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcg/slab: Fix objcg pointer array handling problem", v4.
Since the merging of the new slab memory controller in v5.9, the page
structure stores a pointer to objcg pointer array for slab pages. When
the slab has no used objects, it can be freed in free_slab() which will
call kfree() to free the objcg pointer array in
memcg_alloc_page_obj_cgroups(). If it happens that the objcg pointer
array is the last used object in its slab, that slab may then be freed
which may caused kfree() to be called again.
With the right workload, the slab cache may be set up in a way that allows
the recursive kfree() calling loop to nest deep enough to cause a kernel
stack overflow and panic the system. In fact, we have a reproducer that
can cause kernel stack overflow on a s390 system involving kmalloc-rcl-256
and kmalloc-rcl-128 slabs with the following kfree() loop recursively
called 74 times:
[ 285.520739] [<000000000ec432fc>] kfree+0x4bc/0x560 [ 285.520740]
[<000000000ec43466>] __free_slab+0xc6/0x228 [ 285.520741]
[<000000000ec41fc2>] __slab_free+0x3c2/0x3e0 [ 285.520742]
[<000000000ec432fc>] kfree+0x4bc/0x560 : While investigating this issue, I
also found an issue on the allocation side. If the objcg pointer array
happen to come from the same slab or a circular dependency linkage is
formed with multiple slabs, those affected slabs can never be freed again.
This patch series addresses these two issues by introducing a new set of
kmalloc-cg-<n> caches split from kmalloc-<n> caches. The new set will
only contain non-reclaimable and non-dma objects that are accounted in
memory cgroups whereas the old set are now for unaccounted objects only.
By making this split, all the objcg pointer arrays will come from the
kmalloc-<n> caches, but those caches will never hold any objcg pointer
array. As a result, deeply nested kfree() call and the unfreeable slab
problems are now gone.
This patch (of 4):
Since the merging of the new slab memory controller in v5.9, the page
structure may store a pointer to obj_cgroup pointer array for slab pages.
Currently, only the __GFP_ACCOUNT bit is masked off. However, the array
is not readily reclaimable and doesn't need to come from the DMA buffer.
So those GFP bits should be masked off as well.
Do the flag bit clearing at memcg_alloc_page_obj_cgroups() to make sure
that it is consistently applied no matter where it is called.
Link: https://lkml.kernel.org/r/20210505200610.13943-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210505200610.13943-2-longman@redhat.com
Fixes: 286e04b8ed ("mm: memcg/slab: allocate obj_cgroups for non-root slab pages")
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most kmem_cache_alloc() calls are from user context. With instrumentation
enabled, the measured amount of kmem_cache_alloc() calls from non-task
context was about 0.01% of the total.
The irq disable/enable sequence used in this case to access content from
object stock is slow. To optimize for user context access, there are now
two sets of object stocks (in the new obj_stock structure) for task
context and interrupt context access respectively.
The task context object stock can be accessed after disabling preemption
which is cheap in non-preempt kernel. The interrupt context object stock
can only be accessed after disabling interrupt. User context code can
access interrupt object stock, but not vice versa.
The downside of this change is that there are more data stored in local
object stocks and not reflected in the charge counter and the vmstat
arrays. However, this is a small price to pay for better performance.
[longman@redhat.com: fix potential uninitialized variable warning]
Link: https://lkml.kernel.org/r/20210526193602.8742-1-longman@redhat.com
[akpm@linux-foundation.org: coding style fixes]
Link: https://lkml.kernel.org/r/20210506150007.16288-5-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Roman Gushchin <guro@fb.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two issues with the current refill_obj_stock() code. First of
all, when nr_bytes reaches over PAGE_SIZE, it calls drain_obj_stock() to
atomically flush out remaining bytes to obj_cgroup, clear cached_objcg and
do a obj_cgroup_put(). It is likely that the same obj_cgroup will be used
again which leads to another call to drain_obj_stock() and
obj_cgroup_get() as well as atomically retrieve the available byte from
obj_cgroup. That is costly. Instead, we should just uncharge the excess
pages, reduce the stock bytes and be done with it. The drain_obj_stock()
function should only be called when obj_cgroup changes.
Secondly, when charging an object of size not less than a page in
obj_cgroup_charge(), it is possible that the remaining bytes to be
refilled to the stock will overflow a page and cause refill_obj_stock() to
uncharge 1 page. To avoid the additional uncharge in this case, a new
allow_uncharge flag is added to refill_obj_stock() which will be set to
false when called from obj_cgroup_charge() so that an uncharge_pages()
call won't be issued right after a charge_pages() call unless the objcg
changes.
A multithreaded kmalloc+kfree microbenchmark on a 2-socket 48-core
96-thread x86-64 system with 96 testing threads were run. Before this
patch, the total number of kilo kmalloc+kfree operations done for a 4k
large object by all the testing threads per second were 4,304 kops/s
(cgroup v1) and 8,478 kops/s (cgroup v2). After applying this patch, the
number were 4,731 (cgroup v1) and 418,142 (cgroup v2) respectively. This
represents a performance improvement of 1.10X (cgroup v1) and 49.3X
(cgroup v2).
Link: https://lkml.kernel.org/r/20210506150007.16288-4-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the new slab memory controller with per object byte charging,
charging and vmstat data update happen only when new slab pages are
allocated or freed. Now they are done with every kmem_cache_alloc() and
kmem_cache_free(). This causes additional overhead for workloads that
generate a lot of alloc and free calls.
The memcg_stock_pcp is used to cache byte charge for a specific obj_cgroup
to reduce that overhead. To further reducing it, this patch makes the
vmstat data cached in the memcg_stock_pcp structure as well until it
accumulates a page size worth of update or when other cached data change.
Caching the vmstat data in the per-cpu stock eliminates two writes to
non-hot cachelines for memcg specific as well as memcg-lruvecs specific
vmstat data by a write to a hot local stock cacheline.
On a 2-socket Cascade Lake server with instrumentation enabled and this
patch applied, it was found that about 20% (634400 out of 3243830) of the
time when mod_objcg_state() is called leads to an actual call to
__mod_objcg_state() after initial boot. When doing parallel kernel build,
the figure was about 17% (24329265 out of 142512465). So caching the
vmstat data reduces the number of calls to __mod_objcg_state() by more
than 80%.
Link: https://lkml.kernel.org/r/20210506150007.16288-3-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/memcg: Reduce kmemcache memory accounting overhead", v6.
With the recent introduction of the new slab memory controller, we
eliminate the need for having separate kmemcaches for each memory cgroup
and reduce overall kernel memory usage. However, we also add additional
memory accounting overhead to each call of kmem_cache_alloc() and
kmem_cache_free().
For workloads that require a lot of kmemcache allocations and
de-allocations, they may experience performance regression as illustrated
in [1] and [2].
A simple kernel module that performs repeated loop of 100,000,000
kmem_cache_alloc() and kmem_cache_free() of either a small 32-byte object
or a big 4k object at module init time with a batch size of 4 (4 kmalloc's
followed by 4 kfree's) is used for benchmarking. The benchmarking tool
was run on a kernel based on linux-next-20210419. The test was run on a
CascadeLake server with turbo-boosting disable to reduce run-to-run
variation.
The small object test exercises mainly the object stock charging and
vmstat update code paths. The large object test also exercises the
refill_obj_stock() and __memcg_kmem_charge()/__memcg_kmem_uncharge() code
paths.
With memory accounting disabled, the run time was 3.130s with both small
object big object tests.
With memory accounting enabled, both cgroup v1 and v2 showed similar
results in the small object test. The performance results of the large
object test, however, differed between cgroup v1 and v2.
The execution times with the application of various patches in the
patchset were:
Applied patches Run time Accounting overhead %age 1 %age 2
--------------- -------- ------------------- ------ ------
Small 32-byte object:
None 11.634s 8.504s 100.0% 271.7%
1-2 9.425s 6.295s 74.0% 201.1%
1-3 9.708s 6.578s 77.4% 210.2%
1-4 8.062s 4.932s 58.0% 157.6%
Large 4k object (v2):
None 22.107s 18.977s 100.0% 606.3%
1-2 20.960s 17.830s 94.0% 569.6%
1-3 14.238s 11.108s 58.5% 354.9%
1-4 11.329s 8.199s 43.2% 261.9%
Large 4k object (v1):
None 36.807s 33.677s 100.0% 1075.9%
1-2 36.648s 33.518s 99.5% 1070.9%
1-3 22.345s 19.215s 57.1% 613.9%
1-4 18.662s 15.532s 46.1% 496.2%
N.B. %age 1 = overhead/unpatched overhead
%age 2 = overhead/accounting disabled time
Patch 2 (vmstat data stock caching) helps in both the small object test
and the large v2 object test. It doesn't help much in v1 big object test.
Patch 3 (refill_obj_stock improvement) does help the small object test
but offer significant performance improvement for the large object test
(both v1 and v2).
Patch 4 (eliminating irq disable/enable) helps in all test cases.
To test for the extreme case, a multi-threaded kmalloc/kfree
microbenchmark was run on the 2-socket 48-core 96-thread system with
96 testing threads in the same memcg doing kmalloc+kfree of a 4k object
with accounting enabled for 10s. The total number of kmalloc+kfree done
in kilo operations per second (kops/s) were as follows:
Applied patches v1 kops/s v1 change v2 kops/s v2 change
--------------- --------- --------- --------- ---------
None 3,520 1.00X 6,242 1.00X
1-2 4,304 1.22X 8,478 1.36X
1-3 4,731 1.34X 418,142 66.99X
1-4 4,587 1.30X 438,838 70.30X
With memory accounting disabled, the kmalloc/kfree rate was 1,481,291
kop/s. This test shows how significant the memory accouting overhead
can be in some extreme situations.
For this multithreaded test, the improvement from patch 2 mainly
comes from the conditional atomic xchg of objcg->nr_charged_bytes in
mod_objcg_state(). By using an unconditional xchg, the operation rates
were similar to the unpatched kernel.
Patch 3 elminates the single highly contended cacheline of
objcg->nr_charged_bytes for cgroup v2 leading to a huge performance
improvement. Cgroup v1, however, still has another highly contended
cacheline in the shared page counter &memcg->kmem. So the improvement
is only modest.
Patch 4 helps in cgroup v2, but performs worse in cgroup v1 as
eliminating the irq_disable/irq_enable overhead seems to aggravate the
cacheline contention.
[1] https://lore.kernel.org/linux-mm/20210408193948.vfktg3azh2wrt56t@gabell/T/#u
[2] https://lore.kernel.org/lkml/20210114025151.GA22932@xsang-OptiPlex-9020/
This patch (of 4):
mod_objcg_state() is moved from mm/slab.h to mm/memcontrol.c so that
further optimization can be done to it in later patches without exposing
unnecessary details to other mm components.
Link: https://lkml.kernel.org/r/20210506150007.16288-1-longman@redhat.com
Link: https://lkml.kernel.org/r/20210506150007.16288-2-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Chris Down <chris@chrisdown.name>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To check whether all pages and shadow entries in swap cache has been
removed before swap cache is freed.
Link: https://lkml.kernel.org/r/20210608005121.511140-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With commit 09854ba94c ("mm: do_wp_page() simplification"), after COW,
the idle swap cache page (neither the page nor the corresponding swap
entry is mapped by any process) will be left in the LRU list, even if it's
in the active list or the head of the inactive list. So, the page
reclaimer may take quite some overhead to reclaim these actually unused
pages.
To help the page reclaiming, in this patch, after COW, the idle swap cache
page will be tried to be freed. To avoid to introduce much overhead to
the hot COW code path,
a) there's almost zero overhead for non-swap case via checking
PageSwapCache() firstly.
b) the page lock is acquired via trylock only.
To test the patch, we used pmbench memory accessing benchmark with
working-set larger than available memory on a 2-socket Intel server with a
NVMe SSD as swap device. Test results shows that the pmbench score
increases up to 23.8% with the decreased size of swap cache and swapin
throughput.
Link: https://lkml.kernel.org/r/20210601053143.1380078-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org> [use free_swap_cache()]
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before commit c10d38cc8d ("mm, swap: bounds check swap_info array
accesses to avoid NULL derefs"), the typical code to reference the
swap_info[] is as follows,
type = swp_type(swp_entry);
if (type >= nr_swapfiles)
/* handle invalid swp_entry */;
p = swap_info[type];
/* access fields of *p. OOPS! p may be NULL! */
Because the ordering isn't guaranteed, it's possible that swap_info[type]
is read before "nr_swapfiles". And that may result in NULL pointer
dereference.
So after commit c10d38cc8d, the code becomes,
struct swap_info_struct *swap_type_to_swap_info(int type)
{
if (type >= READ_ONCE(nr_swapfiles))
return NULL;
smp_rmb();
return READ_ONCE(swap_info[type]);
}
/* users */
type = swp_type(swp_entry);
p = swap_type_to_swap_info(type);
if (!p)
/* handle invalid swp_entry */;
/* dereference p */
Where the value of swap_info[type] (that is, "p") is checked to be
non-zero before being dereferenced. So, the NULL deferencing becomes
impossible even if "nr_swapfiles" is read after swap_info[type].
Therefore, the "smp_rmb()" becomes unnecessary.
And, we don't even need to read "nr_swapfiles" here. Because the non-zero
checking for "p" is sufficient. We just need to make sure we will not
access out of the boundary of the array. With the change, nr_swapfiles
will only be accessed with swap_lock held, except in
swapcache_free_entries(). Where the absolute correctness of the value
isn't needed, as described in the comments.
We still need to guarantee swap_info[type] is read before being
dereferenced. That can be satisfied via the data dependency ordering
enforced by READ_ONCE(swap_info[type]). This needs to be paired with
proper write barriers. So smp_store_release() is used in
alloc_swap_info() to guarantee the fields of *swap_info[type] is
initialized before swap_info[type] itself being written. Note that the
fields of *swap_info[type] is initialized to be 0 via kvzalloc() firstly.
The assignment and deferencing of swap_info[type] is like
rcu_assign_pointer() and rcu_dereference().
Link: https://lkml.kernel.org/r/20210520073301.1676294-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Paul McKenney <paulmck@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
deactivate_swap_slots_cache() and reactivate_swap_slots_cache() are only
called below their implementations. So these forward declarations are
meaningless and should be removed.
Link: https://lkml.kernel.org/r/20210520134022.1370406-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I was investigating the swap code, I found the below possible race
window:
CPU 1 CPU 2
----- -----
shmem_swapin
swap_cluster_readahead
if (likely(si->flags & (SWP_BLKDEV | SWP_FS_OPS))) {
swapoff
..
si->swap_file = NULL;
..
struct inode *inode = si->swap_file->f_mapping->host;[oops!]
Close this race window by using get/put_swap_device() to guard against
concurrent swapoff.
Link: https://lkml.kernel.org/r/20210426123316.806267-5-linmiaohe@huawei.com
Fixes: 8fd2e0b505 ("mm: swap: check if swap backing device is congested or not")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The non_swap_entry() was used for working with VMA based swap readahead
via commit ec560175c0 ("mm, swap: VMA based swap readahead"). At that
time, the non_swap_entry() checking is necessary because the function is
called before checking that in do_swap_page(). Then it's moved to
swap_ra_info() since commit eaf649ebc3 ("mm: swap: clean up swap
readahead"). After that, the non_swap_entry() checking is unnecessary,
because swap_ra_info() is called after non_swap_entry() has been checked
already. The resulting code is confusing as the non_swap_entry() check
looks racy now because while we released the pte lock, somebody else might
have faulted in this pte. So we should check whether it's swap pte first
to guard against such race or swap_type will be unexpected. But the race
isn't important because it will not cause problem. We would have enough
checking when we really operate the PTE entries later. So we remove the
non_swap_entry() check here to avoid confusion.
Link: https://lkml.kernel.org/r/20210426123316.806267-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I was investigating the swap code, I found the below possible race
window:
CPU 1 CPU 2
----- -----
do_swap_page
if (data_race(si->flags & SWP_SYNCHRONOUS_IO)
swap_readpage
if (data_race(sis->flags & SWP_FS_OPS)) {
swapoff
..
p->swap_file = NULL;
..
struct file *swap_file = sis->swap_file;
struct address_space *mapping = swap_file->f_mapping;[oops!]
Note that for the pages that are swapped in through swap cache, this isn't
an issue. Because the page is locked, and the swap entry will be marked
with SWAP_HAS_CACHE, so swapoff() can not proceed until the page has been
unlocked.
Fix this race by using get/put_swap_device() to guard against concurrent
swapoff.
Link: https://lkml.kernel.org/r/20210426123316.806267-3-linmiaohe@huawei.com
Fixes: 0bcac06f27 ("mm,swap: skip swapcache for swapin of synchronous device")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "close various race windows for swap", v6.
When I was investigating the swap code, I found some possible race
windows. This series aims to fix all these races. But using current
get/put_swap_device() to guard against concurrent swapoff for
swap_readpage() looks terrible because swap_readpage() may take really
long time. And to reduce the performance overhead on the hot-path as much
as possible, it appears we can use the percpu_ref to close this race
window(as suggested by Huang, Ying). The patch 1 adds percpu_ref support
for swap and most of the remaining patches try to use this to close
various race windows. More details can be found in the respective
changelogs.
This patch (of 4):
Using current get/put_swap_device() to guard against concurrent swapoff
for some swap ops, e.g. swap_readpage(), looks terrible because they
might take really long time. This patch adds the percpu_ref support to
serialize against concurrent swapoff(as suggested by Huang, Ying). Also
we remove the SWP_VALID flag because it's used together with RCU solution.
Link: https://lkml.kernel.org/r/20210426123316.806267-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210426123316.806267-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Alex Shi <alexs@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pagewalk ignores hugepd entries and walk down the tables as if it was
traditionnal entries, leading to crazy result.
Add walk_hugepd_range() and use it to walk hugepage tables.
Link: https://lkml.kernel.org/r/38d04410700c8d02f28ba37e020b62c55d6f3d2c.1624597695.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Steven Price <steven.price@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Daniel Axtens <dja@axtens.net>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
has_pinned 32bit can be packed in the MMF_HAS_PINNED bit as a noop
cleanup.
Any atomic_inc/dec to the mm cacheline shared by all threads in pin-fast
would reintroduce a loss of SMP scalability to pin-fast, so there's no
future potential usefulness to keep an atomic in the mm for this.
set_bit(MMF_HAS_PINNED) will be theoretically a bit slower than WRITE_ONCE
(atomic_set is equivalent to WRITE_ONCE), but the set_bit (just like
atomic_set after this commit) has to be still issued only once per "mm",
so the difference between the two will be lost in the noise.
will-it-scale "mmap2" shows no change in performance with enterprise
config as expected.
will-it-scale "pin_fast" retains the > 4000% SMP scalability performance
improvement against upstream as expected.
This is a noop as far as overall performance and SMP scalability are
concerned.
[peterx@redhat.com: pack has_pinned in MMF_HAS_PINNED]
Link: https://lkml.kernel.org/r/YJqWESqyxa8OZA+2@t490s
[akpm@linux-foundation.org: coding style fixes]
[peterx@redhat.com: fix build for task_mmu.c, introduce mm_set_has_pinned_flag, fix comments]
Link: https://lkml.kernel.org/r/20210507150553.208763-4-peterx@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
has_pinned cannot be written by each pin-fast or it won't scale in SMP.
This isn't "false sharing" strictly speaking (it's more like "true
non-sharing"), but it creates the same SMP scalability bottleneck of
"false sharing".
To verify the improvement, below test is done on 40 cpus host with
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz (must be with
CONFIG_GUP_TEST=y):
$ sudo chrt -f 1 ./gup_test -a -m 512 -j 40
Where we can get (average value for 40 threads):
Old kernel: 477729.97 (+- 3.79%)
New kernel: 89144.65 (+-11.76%)
On a similar condition with 256 cpus, this commits increases the SMP
scalability of pin_user_pages_fast() executed by different threads of the
same process by more than 4000%.
[peterx@redhat.com: rewrite commit message, add parentheses against "(A & B)"]
Link: https://lkml.kernel.org/r/20210507150553.208763-3-peterx@redhat.com
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Kirill Shutemov <kirill@shutemov.name>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use __set_page_dirty_no_writeback() instead. This will set the dirty bit
on the page, which will be used to avoid calling set_page_dirty() in the
future. It will have no effect on actually writing the page back, as the
pages are not on any LRU lists.
[akpm@linux-foundation.org: export __set_page_dirty_no_writeback() to modules]
Link: https://lkml.kernel.org/r/20210615162342.1669332-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is fundamentally the same code, so just call it instead of
duplicating it.
Link: https://lkml.kernel.org/r/20210615162342.1669332-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Further set_page_dirty cleanups".
Prompted by Christoph's recent patches, here are some more patches to
improve the state of set_page_dirty(). They're all from the folio tree,
so they've been tested to a certain extent.
This patch (of 6):
Nothing in __set_page_dirty() is specific to buffer_head, so move it to
mm/page-writeback.c. That removes the only caller of
account_page_dirtied() outside of page-writeback.c, so make it static.
Link: https://lkml.kernel.org/r/20210615162342.1669332-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20210615162342.1669332-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the CONFIG_BLOCK default to __set_page_dirty_buffers and just wire
that method up for the missing instances.
[hch@lst.de: ecryptfs: add a ->set_page_dirty cludge]
Link: https://lkml.kernel.org/r/20210624125250.536369-1-hch@lst.de
Link: https://lkml.kernel.org/r/20210614061512.3966143-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tyler Hicks <code@tyhicks.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Asynchronously try to release dying cgwbs by switching attached inodes to
the nearest living ancestor wb. It helps to get rid of per-cgroup
writeback structures themselves and of pinned memory and block cgroups,
which are significantly larger structures (mostly due to large per-cpu
statistics data). This prevents memory waste and helps to avoid different
scalability problems caused by large piles of dying cgroups.
Reuse the existing mechanism of inode switching used for foreign inode
detection. To speed things up batch up to 115 inode switching in a single
operation (the maximum number is selected so that the resulting struct
inode_switch_wbs_context can fit into 1024 bytes). Because every
switching consists of two steps divided by an RCU grace period, it would
be too slow without batching. Please note that the whole batch counts as
a single operation (when increasing/decreasing isw_nr_in_flight). This
allows to keep umounting working (flush the switching queue), however
prevents cleanups from consuming the whole switching quota and effectively
blocking the frn switching.
A cgwb cleanup operation can fail due to different reasons (e.g. not
enough memory, the cgwb has an in-flight/pending io, an attached inode in
a wrong state, etc). In this case the next scheduled cleanup will make a
new attempt. An attempt is made each time a new cgwb is offlined (in
other words a memcg and/or a blkcg is deleted by a user). In the future
an additional attempt scheduled by a timer can be implemented.
[guro@fb.com: replace open-coded "115" with arithmetic]
Link: https://lkml.kernel.org/r/YMEcSBcq/VXMiPPO@carbon.dhcp.thefacebook.com
[guro@fb.com: add smp_mb() to inode_prepare_wbs_switch()]
Link: https://lkml.kernel.org/r/YMFa+guFw7OFjf3X@carbon.dhcp.thefacebook.com
[willy@infradead.org: fix documentation]
Link: https://lkml.kernel.org/r/20210615200242.1716568-2-willy@infradead.org
Link: https://lkml.kernel.org/r/20210608230225.2078447-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Zhou <dennis@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently there is no way to iterate over inodes attached to a specific
cgwb structure. It limits the ability to efficiently reclaim the
writeback structure itself and associated memory and block cgroup
structures without scanning all inodes belonging to a sb, which can be
prohibitively expensive.
While dirty/in-active-writeback an inode belongs to one of the
bdi_writeback's io lists: b_dirty, b_io, b_more_io and b_dirty_time. Once
cleaned up, it's removed from all io lists. So the inode->i_io_list can
be reused to maintain the list of inodes, attached to a bdi_writeback
structure.
This patch introduces a new wb->b_attached list, which contains all inodes
which were dirty at least once and are attached to the given cgwb. Inodes
attached to the root bdi_writeback structures are never placed on such
list. The following patch will use this list to try to release cgwbs
structures more efficiently.
Link: https://lkml.kernel.org/r/20210608230225.2078447-6-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Suggested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Dennis Zhou <dennis@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As account_page_dirtied() was always protected by xa_lock_irqsave(), so
using __this_cpu_inc() is better.
Link: https://lkml.kernel.org/r/20210512144742.4764-1-wuchi.zero@gmail.com
Signed-off-by: Chi Wu <wuchi.zero@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Howard Cochran <hcochran@kernelspring.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As the value of pos_ratio_polynom() clamp between 0 and 2LL <<
RATELIMIT_CALC_SHIFT, the global control line should be consistent with
it.
Link: https://lkml.kernel.org/r/20210511103606.3732-1-wuchi.zero@gmail.com
Signed-off-by: Chi Wu <wuchi.zero@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@fb.com>
Cc: Howard Cochran <hcochran@kernelspring.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix performance when BDI's share of ratio is 0.
The issue is similar to commit 74d3694433 ("writeback: Fix
performance regression in wb_over_bg_thresh()").
Balance_dirty_pages and the writeback worker will also disagree on
whether writeback when a BDI uses BDI_CAP_STRICTLIMIT and BDI's share
of the thresh ratio is zero.
For example, A thread on cpu0 writes 32 pages and then
balance_dirty_pages, it will wake up background writeback and pauses
because wb_dirty > wb->wb_thresh = 0 (share of thresh ratio is zero).
A thread may runs on cpu0 again because scheduler prefers pre_cpu.
Then writeback worker may runs on other cpus(1,2..) which causes the
value of wb_stat(wb, WB_RECLAIMABLE) in wb_over_bg_thresh is 0 and does
not writeback and returns.
Thus, balance_dirty_pages keeps looping, sleeping and then waking up the
worker who will do nothing. It remains stuck in this state until the
writeback worker hit the right dirty cpu or the dirty pages expire.
The fix that we should get the wb_stat_sum radically when thresh is low.
Link: https://lkml.kernel.org/r/20210428225046.16301-1-wuchi.zero@gmail.com
Signed-off-by: Chi Wu <wuchi.zero@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Jens Axboe <axboe@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The get_writeback_state() has gone since 2006, kill related comments.
Link: https://lkml.kernel.org/r/20210508125026.56600-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page reporting order (threshold) is sticky to @pageblock_order by
default. The page reporting can never be triggered because the freeing
page can't come up with a free area like that huge. The situation becomes
worse when the system memory becomes heavily fragmented.
For example, the following configurations are used on ARM64 when 64KB base
page size is enabled. In this specific case, the page reporting won't be
triggered until the freeing page comes up with a 512MB free area. That's
hard to be met, especially when the system memory becomes heavily
fragmented.
PAGE_SIZE: 64KB
HPAGE_SIZE: 512MB
pageblock_order: 13 (512MB)
MAX_ORDER: 14
This allows the drivers to specify the page reporting order when the page
reporting device is registered. It falls back to @pageblock_order if it's
not specified by the driver. The existing users (hv_balloon and
virtio_balloon) don't specify it and @pageblock_order is still taken as
their page reporting order. So this shouldn't introduce any functional
changes.
Link: https://lkml.kernel.org/r/20210625014710.42954-4-gshan@redhat.com
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The macro PAGE_REPORTING_MIN_ORDER is defined as the page reporting
threshold. It can't be adjusted at runtime.
This introduces a variable (@page_reporting_order) to replace the marcro
(PAGE_REPORTING_MIN_ORDER). MAX_ORDER is assigned to it initially,
meaning the page reporting is disabled. It will be specified by driver if
valid one is provided. Otherwise, it will fall back to @pageblock_order.
It's also exported so that the page reporting order can be adjusted at
runtime.
Link: https://lkml.kernel.org/r/20210625014710.42954-3-gshan@redhat.com
Signed-off-by: Gavin Shan <gshan@redhat.com>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/page_reporting: Make page reporting work on arm64 with 64KB page size", v4.
The page reporting threshold is currently equal to @pageblock_order, which
is 13 and 512MB on arm64 with 64KB base page size selected. The page
reporting won't be triggered if the freeing page can't come up with a free
area like that huge. The condition is hard to be met, especially when the
system memory becomes fragmented.
This series intends to solve the issue by having page reporting threshold
as 5 (2MB) on arm64 with 64KB base page size. The patches are organized
as:
PATCH[1/4] Fix some coding style in __page_reporting_request().
PATCH[2/4] Represents page reporting order with variable so that it can
be exported as module parameter.
PATCH[3/4] Allows the device driver (e.g. virtio_balloon) to specify
the page reporting order when the device info is registered.
PATCH[4/4] Specifies the page reporting order to 5, corresponding to
2MB in size on ARM64 when 64KB base page size is used.
This patch (of 4):
The lines of comments would be starting with one, instead two space. This
corrects the style.
Link: https://lkml.kernel.org/r/20210625014710.42954-1-gshan@redhat.com
Link: https://lkml.kernel.org/r/20210625014710.42954-2-gshan@redhat.com
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Alexander Duyck <alexanderduyck@fb.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mmap_lock will explicitly disable/enable preemption upon manipulating its
local CPU variables. This is to be expected, but in this case, it doesn't
play well with PREEMPT_RT. The preemption disabled code section also
takes a spin-lock. Spin-locks in RT systems will try to schedule, which
is exactly what we're trying to avoid.
To mitigate this, convert the explicit preemption handling to local_locks.
Which are RT aware, and will disable migration instead of preemption when
PREEMPT_RT=y.
The faulty call trace looks like the following:
__mmap_lock_do_trace_*()
preempt_disable()
get_mm_memcg_path()
cgroup_path()
kernfs_path_from_node()
spin_lock_irqsave() /* Scheduling while atomic! */
Link: https://lkml.kernel.org/r/20210604163506.2103900-1-nsaenzju@redhat.com
Fixes: 2b5067a814 ("mm: mmap_lock: add tracepoints around lock acquisition ")
Signed-off-by: Nicolas Saenz Julienne <nsaenzju@redhat.com>
Tested-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On certain platforms, THP support could not just be validated via the
build option CONFIG_TRANSPARENT_HUGEPAGE. Instead
has_transparent_hugepage() also needs to be called upon to verify THP
runtime support. Otherwise the debug test will just run into unusable THP
helpers like in the case of a 4K hash config on powerpc platform [1].
This just moves all pfn_pmd() and pfn_pud() after THP runtime validation
with has_transparent_hugepage() which prevents the mentioned problem.
[1] https://bugzilla.kernel.org/show_bug.cgi?id=213069
Link: https://lkml.kernel.org/r/1621397588-19211-1-git-send-email-anshuman.khandual@arm.com
Fixes: 787d563b86 ("mm/debug_vm_pgtable: fix kernel crash by checking for THP support")
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit contains 3 modifications:
1. Convert the type of jiffies_scan_wait to "unsigned long".
2. Use READ/WRITE_ONCE() for accessing "jiffies_scan_wait".
3. Fix the possible wrong memory scanning period. If you set a large
memory scanning period like blow, then the "secs" variable will be
non-zero, however the value of "jiffies_scan_wait" will be zero.
echo "scan=0x10000000" > /sys/kernel/debug/kmemleak
It is because the type of the msecs_to_jiffies()'s parameter is "unsigned
int", and the "secs * 1000" is larger than its max value. This in turn
leads a unexpected jiffies_scan_wait, maybe zero. We corret it by
replacing kstrtoul() with kstrtouint(), and check the msecs to prevent it
larger than UINT_MAX.
Link: https://lkml.kernel.org/r/20210613174022.23044-1-yanfei.xu@windriver.com
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running the kernel with panic_on_taint, the usual slub debug error
messages are not being printed when object corruption happens. That's
because we panic in add_taint(), which is called before printing the
additional information. This is a bit unfortunate as the error messages
are actually very useful, especially before a panic. Let's fix this by
moving add_taint() after the errors are printed on the console.
Link: https://lkml.kernel.org/r/1623860738-146761-1-git-send-email-quic_c_gdjako@quicinc.com
Signed-off-by: Georgi Djakov <quic_c_gdjako@quicinc.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_calls and free_calls implementation in sysfs have two issues, one is
PAGE_SIZE limitation of sysfs and other is it does not adhere to "one
value per file" rule.
To overcome this issues, move the alloc_calls and free_calls
implementation to debugfs.
Debugfs cache will be created if SLAB_STORE_USER flag is set.
Rename the alloc_calls/free_calls to alloc_traces/free_traces, to be
inline with what it does.
[faiyazm@codeaurora.org: fix the leak of alloc/free traces debugfs interface]
Link: https://lkml.kernel.org/r/1624248060-30286-1-git-send-email-faiyazm@codeaurora.org
Link: https://lkml.kernel.org/r/1623438200-19361-1-git-send-email-faiyazm@codeaurora.org
Signed-off-by: Faiyaz Mohammed <faiyazm@codeaurora.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Obscuring the pointers that slub shows when debugging makes for some
confusing slub debug messages:
Padding overwritten. 0x0000000079f0674a-0x000000000d4dce17
Those addresses are hashed for kernel security reasons. If we're trying
to be secure with slub_debug on the commandline we have some big problems
given that we dump whole chunks of kernel memory to the kernel logs.
Let's force on the no_hash_pointers commandline flag when slub_debug is on
the commandline. This makes slub debug messages more meaningful and if by
chance a kernel address is in some slub debug object dump we will have a
better chance of figuring out what went wrong.
Note that we don't use %px in the slub code because we want to reduce the
number of places that %px is used in the kernel. This also nicely prints
a big fat warning at kernel boot if slub_debug is on the commandline so
that we know that this kernel shouldn't be used on production systems.
[akpm@linux-foundation.org: fix build with CONFIG_SLUB_DEBUG=n]
Link: https://lkml.kernel.org/r/20210601182202.3011020-5-swboyd@chromium.org
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Petr Mladek <pmladek@suse.com>
Cc: Joe Perches <joe@perches.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ideally, slab_fix() would be marked with __printf and the format here
would not use \n as that's emitted by the slab_fix(). Make these changes.
Link: https://lkml.kernel.org/r/20210601182202.3011020-4-swboyd@chromium.org
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The message argument isn't used here. Let's pass the string to the printk
message so that the developer can figure out what's happening, instead of
guessing that a redzone is being restored, etc.
Link: https://lkml.kernel.org/r/20210601182202.3011020-3-swboyd@chromium.org
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joe Perches <joe@perches.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Petch series "slub: Print non-hashed pointers in slub debugging", v3.
I was doing some debugging recently and noticed that my pointers were
being hashed while slub_debug was on the kernel commandline. Let's force
on the no hash pointer option when slub_debug is on the kernel commandline
so that the prints are more meaningful.
The first two patches are something else I noticed while looking at the
code. The message argument is never used so the debugging messages are
not as clear as they could be and the slub_debug=- behavior seems to be
busted. Then there's a printf fixup from Joe and the final patch is the
one that force disables pointer hashing.
This patch (of 4):
Passing slub_debug=- on the kernel commandline is supposed to disable slub
debugging. This is especially useful with CONFIG_SLUB_DEBUG_ON where the
default is to have slub debugging enabled in the build. Due to some code
reorganization this behavior was dropped, but the code to make it work
mostly stuck around. Restore the previous behavior by disabling the
static key when we parse the commandline and see that we're trying to
disable slub debugging.
Link: https://lkml.kernel.org/r/20210601182202.3011020-1-swboyd@chromium.org
Link: https://lkml.kernel.org/r/20210601182202.3011020-2-swboyd@chromium.org
Fixes: ca0cab65ea ("mm, slub: introduce static key for slub_debug()")
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joe Perches <joe@perches.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently when size is not supported by kmalloc_index, compiler will
generate a run-time BUG() while compile-time error is also possible, and
better. So change BUG to BUILD_BUG_ON_MSG to make compile-time check
possible.
Also remove code that allocates more than 32MB because current
implementation supports only up to 32MB.
[42.hyeyoo@gmail.com: fix support for clang 10]
Link: https://lkml.kernel.org/r/20210518181247.GA10062@hyeyoo
[vbabka@suse.cz: fix false-positive assert in kernel/bpf/local_storage.c]
Link: https://lkml.kernel.org/r/bea97388-01df-8eac-091b-a3c89b4a4a09@suse.czLink: https://lkml.kernel.org/r/20210511173448.GA54466@hyeyoo
[elver@google.com: kfence fix]
Link: https://lkml.kernel.org/r/20210512195227.245000695c9014242e9a00e5@linux-foundation.org
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Marco Elver <elver@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function resiliency_test() is hidden behind #ifdef SLUB_RESILIENCY_TEST
that is not part of Kconfig, so nobody runs it.
This function is replaced with KUnit test for SLUB added by the previous
patch "selftests: add a KUnit test for SLUB debugging functionality".
Link: https://lkml.kernel.org/r/20210511150734.3492-3-glittao@gmail.com
Signed-off-by: Oliver Glitta <glittao@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Oliver Glitta <glittao@gmail.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Daniel Latypov <dlatypov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLUB has resiliency_test() function which is hidden behind #ifdef
SLUB_RESILIENCY_TEST that is not part of Kconfig, so nobody runs it.
KUnit should be a proper replacement for it.
Try changing byte in redzone after allocation and changing pointer to next
free node, first byte, 50th byte and redzone byte. Check if validation
finds errors.
There are several differences from the original resiliency test: Tests
create own caches with known state instead of corrupting shared kmalloc
caches.
The corruption of freepointer uses correct offset, the original resiliency
test got broken with freepointer changes.
Scratch changing random byte test, because it does not have meaning in
this form where we need deterministic results.
Add new option CONFIG_SLUB_KUNIT_TEST in Kconfig. Tests next_pointer,
first_word and clobber_50th_byte do not run with KASAN option on. Because
the test deliberately modifies non-allocated objects.
Use kunit_resource to count errors in cache and silence bug reports.
Count error whenever slab_bug() or slab_fix() is called or when the count
of pages is wrong.
[glittao@gmail.com: remove unused function test_exit(), from SLUB KUnit test]
Link: https://lkml.kernel.org/r/20210512140656.12083-1-glittao@gmail.com
[akpm@linux-foundation.org: export kasan_enable/disable_current to modules]
Link: https://lkml.kernel.org/r/20210511150734.3492-2-glittao@gmail.com
Signed-off-by: Oliver Glitta <glittao@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Daniel Latypov <dlatypov@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is better to use __func__ to trace function name.
Link: https://lkml.kernel.org/r/31fdbad5c45cd1e26be9ff37be321b8586b80fee.1624355507.git.gumingtao@xiaomi.com
Signed-off-by: gumingtao <gumingtao@xiaomi.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dave Jones reported the following
This made it into 5.13 final, and completely breaks NFSD for me
(Serving tcp v3 mounts). Existing mounts on clients hang, as do
new mounts from new clients. Rebooting the server back to rc7
everything recovers.
The commit b3b64ebd38 ("mm/page_alloc: do bulk array bounds check after
checking populated elements") returns the wrong value if the array is
already populated which is interpreted as an allocation failure. Dave
reported this fixes his problem and it also passed a test running dbench
over NFS.
Link: https://lkml.kernel.org/r/20210628150219.GC3840@techsingularity.net
Fixes: b3b64ebd38 ("mm/page_alloc: do bulk array bounds check after checking populated elements")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Dave Jones <davej@codemonkey.org.uk>
Tested-by: Dave Jones <davej@codemonkey.org.uk>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [5.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On systems with memory nodes sorted in descending order, for instance Dell
Precision WorkStation T5500, the struct pages for higher PFNs and
respectively lower nodes, could be overwritten by the initialization of
struct pages corresponding to the holes in the memory sections.
For example for the below memory layout
[ 0.245624] Early memory node ranges
[ 0.248496] node 1: [mem 0x0000000000001000-0x0000000000090fff]
[ 0.251376] node 1: [mem 0x0000000000100000-0x00000000dbdf8fff]
[ 0.254256] node 1: [mem 0x0000000100000000-0x0000001423ffffff]
[ 0.257144] node 0: [mem 0x0000001424000000-0x0000002023ffffff]
the range 0x1424000000 - 0x1428000000 in the beginning of node 0 starts in
the middle of a section and will be considered as a hole during the
initialization of the last section in node 1.
The wrong initialization of the memory map causes panic on boot when
CONFIG_DEBUG_VM is enabled.
Reorder loop order of the memory map initialization so that the outer loop
will always iterate over populated memory regions in the ascending order
and the inner loop will select the zone corresponding to the PFN range.
This way initialization of the struct pages for the memory holes will be
always done for the ranges that are actually not populated.
[akpm@linux-foundation.org: coding style fixes]
Link: https://lkml.kernel.org/r/YNXlMqBbL+tBG7yq@kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213073
Link: https://lkml.kernel.org/r/20210624062305.10940-1-rppt@kernel.org
Fixes: 0740a50b9b ("mm/page_alloc.c: refactor initialization of struct page for holes in memory layout")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Boris Petkov <bp@alien8.de>
Cc: Robert Shteynfeld <robert.shteynfeld@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
try_grab_compound_head() is used to grab a reference to a page from
get_user_pages_fast(), which is only protected against concurrent freeing
of page tables (via local_irq_save()), but not against concurrent TLB
flushes, freeing of data pages, or splitting of compound pages.
Because no reference is held to the page when try_grab_compound_head() is
called, the page may have been freed and reallocated by the time its
refcount has been elevated; therefore, once we're holding a stable
reference to the page, the caller re-checks whether the PTE still points
to the same page (with the same access rights).
The problem is that try_grab_compound_head() has to grab a reference on
the head page; but between the time we look up what the head page is and
the time we actually grab a reference on the head page, the compound page
may have been split up (either explicitly through split_huge_page() or by
freeing the compound page to the buddy allocator and then allocating its
individual order-0 pages). If that happens, get_user_pages_fast() may end
up returning the right page but lifting the refcount on a now-unrelated
page, leading to use-after-free of pages.
To fix it: Re-check whether the pages still belong together after lifting
the refcount on the head page. Move anything else that checks
compound_head(page) below the refcount increment.
This can't actually happen on bare-metal x86 (because there, disabling
IRQs locks out remote TLB flushes), but it can happen on virtualized x86
(e.g. under KVM) and probably also on arm64. The race window is pretty
narrow, and constantly allocating and shattering hugepages isn't exactly
fast; for now I've only managed to reproduce this in an x86 KVM guest with
an artificially widened timing window (by adding a loop that repeatedly
calls `inl(0x3f8 + 5)` in `try_get_compound_head()` to force VM exits, so
that PV TLB flushes are used instead of IPIs).
As requested on the list, also replace the existing VM_BUG_ON_PAGE() with
a warning and bailout. Since the existing code only performed the BUG_ON
check on DEBUG_VM kernels, ensure that the new code also only performs the
check under that configuration - I don't want to mix two logically
separate changes together too much. The macro VM_WARN_ON_ONCE_PAGE()
doesn't return a value on !DEBUG_VM, so wrap the whole check in an #ifdef
block. An alternative would be to change the VM_WARN_ON_ONCE_PAGE()
definition for !DEBUG_VM such that it always returns false, but since that
would differ from the behavior of the normal WARN macros, it might be too
confusing for readers.
Link: https://lkml.kernel.org/r/20210615012014.1100672-1-jannh@google.com
Fixes: 7aef4172c7 ("mm: handle PTE-mapped tail pages in gerneric fast gup implementaiton")
Signed-off-by: Jann Horn <jannh@google.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jan Kara <jack@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull user namespace rlimit handling update from Eric Biederman:
"This is the work mainly by Alexey Gladkov to limit rlimits to the
rlimits of the user that created a user namespace, and to allow users
to have stricter limits on the resources created within a user
namespace."
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
cred: add missing return error code when set_cred_ucounts() failed
ucounts: Silence warning in dec_rlimit_ucounts
ucounts: Set ucount_max to the largest positive value the type can hold
kselftests: Add test to check for rlimit changes in different user namespaces
Reimplement RLIMIT_MEMLOCK on top of ucounts
Reimplement RLIMIT_SIGPENDING on top of ucounts
Reimplement RLIMIT_MSGQUEUE on top of ucounts
Reimplement RLIMIT_NPROC on top of ucounts
Use atomic_t for ucounts reference counting
Add a reference to ucounts for each cred
Increase size of ucounts to atomic_long_t
- Optimise SVE switching for CPUs with 128-bit implementations.
- Fix output format from SVE selftest.
- Add support for versions v1.2 and 1.3 of the SMC calling convention.
- Allow Pointer Authentication to be configured independently for
kernel and userspace.
- PMU driver cleanups for managing IRQ affinity and exposing event
attributes via sysfs.
- KASAN optimisations for both hardware tagging (MTE) and out-of-line
software tagging implementations.
- Relax frame record alignment requirements to facilitate 8-byte
alignment with KASAN and Clang.
- Cleanup of page-table definitions and removal of unused memory types.
- Reduction of ARCH_DMA_MINALIGN back to 64 bytes.
- Refactoring of our instruction decoding routines and addition of some
missing encodings.
- Move entry code moved into C and hardened against harmful compiler
instrumentation.
- Update booting requirements for the FEAT_HCX feature, added to v8.7
of the architecture.
- Fix resume from idle when pNMI is being used.
- Additional CPU sanity checks for MTE and preparatory changes for
systems where not all of the CPUs support 32-bit EL0.
- Update our kernel string routines to the latest Cortex Strings
implementation.
- Big cleanup of our cache maintenance routines, which were confusingly
named and inconsistent in their implementations.
- Tweak linker flags so that GDB can understand vmlinux when using RELR
relocations.
- Boot path cleanups to enable early initialisation of per-cpu
operations needed by KCSAN.
- Non-critical fixes and miscellaneous cleanup.
-----BEGIN PGP SIGNATURE-----
iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAmDUh1YQHHdpbGxAa2Vy
bmVsLm9yZwAKCRC3rHDchMFjNDaUCAC+2Jy2Yopd94uBPYajGybM0rqCUgE7b5n1
A7UzmQ6fia2hwqCPmxGG+sRabovwN7C1bKrUCc03RIbErIa7wum1edeyqmF/Aw44
DUDY1MAOSZaFmX8L62QCvxG1hfdLPtGmHMd1hdXvxYK7PCaigEFnzbLRWTtgE+Ok
JhdvNfsoeITJObHnvYPF3rV3NAbyYni9aNJ5AC/qb3dlf6XigEraXaMj29XHKfwc
+vmn+25oqFkLHyFeguqIoK+vUQAy/8TjFfjX83eN3LZknNhDJgWS1Iq1Nm+Vxt62
RvDUUecWJjAooCWgmil6pt0enI+q6E8LcX3A3cWWrM6psbxnYzkU
=I6KS
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"There's a reasonable amount here and the juicy details are all below.
It's worth noting that the MTE/KASAN changes strayed outside of our
usual directories due to core mm changes and some associated changes
to some other architectures; Andrew asked for us to carry these [1]
rather that take them via the -mm tree.
Summary:
- Optimise SVE switching for CPUs with 128-bit implementations.
- Fix output format from SVE selftest.
- Add support for versions v1.2 and 1.3 of the SMC calling
convention.
- Allow Pointer Authentication to be configured independently for
kernel and userspace.
- PMU driver cleanups for managing IRQ affinity and exposing event
attributes via sysfs.
- KASAN optimisations for both hardware tagging (MTE) and out-of-line
software tagging implementations.
- Relax frame record alignment requirements to facilitate 8-byte
alignment with KASAN and Clang.
- Cleanup of page-table definitions and removal of unused memory
types.
- Reduction of ARCH_DMA_MINALIGN back to 64 bytes.
- Refactoring of our instruction decoding routines and addition of
some missing encodings.
- Move entry code moved into C and hardened against harmful compiler
instrumentation.
- Update booting requirements for the FEAT_HCX feature, added to v8.7
of the architecture.
- Fix resume from idle when pNMI is being used.
- Additional CPU sanity checks for MTE and preparatory changes for
systems where not all of the CPUs support 32-bit EL0.
- Update our kernel string routines to the latest Cortex Strings
implementation.
- Big cleanup of our cache maintenance routines, which were
confusingly named and inconsistent in their implementations.
- Tweak linker flags so that GDB can understand vmlinux when using
RELR relocations.
- Boot path cleanups to enable early initialisation of per-cpu
operations needed by KCSAN.
- Non-critical fixes and miscellaneous cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (150 commits)
arm64: tlb: fix the TTL value of tlb_get_level
arm64: Restrict undef hook for cpufeature registers
arm64/mm: Rename ARM64_SWAPPER_USES_SECTION_MAPS
arm64: insn: avoid circular include dependency
arm64: smp: Bump debugging information print down to KERN_DEBUG
drivers/perf: fix the missed ida_simple_remove() in ddr_perf_probe()
perf/arm-cmn: Fix invalid pointer when access dtc object sharing the same IRQ number
arm64: suspend: Use cpuidle context helpers in cpu_suspend()
PSCI: Use cpuidle context helpers in psci_cpu_suspend_enter()
arm64: Convert cpu_do_idle() to using cpuidle context helpers
arm64: Add cpuidle context save/restore helpers
arm64: head: fix code comments in set_cpu_boot_mode_flag
arm64: mm: drop unused __pa(__idmap_text_start)
arm64: mm: fix the count comments in compute_indices
arm64/mm: Fix ttbr0 values stored in struct thread_info for software-pan
arm64: mm: Pass original fault address to handle_mm_fault()
arm64/mm: Drop SECTION_[SHIFT|SIZE|MASK]
arm64/mm: Use CONT_PMD_SHIFT for ARM64_MEMSTART_SHIFT
arm64/mm: Drop SWAPPER_INIT_MAP_SIZE
arm64: Conditionally configure PTR_AUTH key of the kernel.
...
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow
the flexible utilization of SMT siblings, without exposing
untrusted domains to information leaks & side channels, plus
to ensure more deterministic computing performance on SMT
systems used by heterogenous workloads.
There's new prctls to set core scheduling groups, which
allows more flexible management of workloads that can share
siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve
'memcache'-like workloads.
- "Age" (decay) average idle time, to better track & improve workloads
such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked
via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable
it at runtime if tooling needs it. Use static keys and
other optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcPoRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1g3yw//WfhIqy7Psa9d/MBMjQDRGbTuO4+w22Dj
vmWFU44Q4KJxQHWeIgUlrK+dzvYWvNmflUs2CUUOiDVzxFTHMIyBtL4qCBUbx4Ns
vKAcB9wsWZge2o3WzZqpProRhdoRaSKw8egUr2q7rACVBkckY7eGP/OjWxXU8BdA
b7D0LPWwuIBFfN4pFYeCDLn32Dqr9s6Chyj+ZecabdG7EE6Gu+f1diVcxy7JE/mc
4WWL0D1RqdgpGrBEuMJIxPYekdrZiuy4jtEbztz5gbTBteN1cj3BLfqn0Pc/e6rO
Vyuc5mXCAmzRVi18z6g6bsVl+IA/nrbErENB2OHOhOYtqiZxqGTd4GPWZszMyY17
5AsEO5+5pcaBsy4gyp09qURggBu9zhJnMVmOI3rIHZkmkhwzc6uUJlyhDCTiFWOz
3ZF3LjbZEyCKodMD8qMHbs3axIBpIfZqjzkvSKyFnvfXEGVytVse7NUuWtQ36u92
GnURxVeYY1TDVXvE1Y8owNKMxknKQ6YRlypP7Dtbeo/qG6hShp0xmS7qDLDi0ybZ
ZlK+bDECiVoDf3nvJo+8v5M82IJ3CBt4UYldeRJsa1YCK/FsbK8tp91fkEfnXVue
+U6LPX0AmMpXacR5HaZfb3uBIKRw/QMdP/7RFtBPhpV6jqCrEmuqHnpPQiEVtxwO
UmG7bt94Trk=
=3VDr
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler udpates from Ingo Molnar:
- Changes to core scheduling facilities:
- Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
coordinated scheduling across SMT siblings. This is a much
requested feature for cloud computing platforms, to allow the
flexible utilization of SMT siblings, without exposing untrusted
domains to information leaks & side channels, plus to ensure more
deterministic computing performance on SMT systems used by
heterogenous workloads.
There are new prctls to set core scheduling groups, which allows
more flexible management of workloads that can share siblings.
- Fix task->state access anti-patterns that may result in missed
wakeups and rename it to ->__state in the process to catch new
abuses.
- Load-balancing changes:
- Tweak newidle_balance for fair-sched, to improve 'memcache'-like
workloads.
- "Age" (decay) average idle time, to better track & improve
workloads such as 'tbench'.
- Fix & improve energy-aware (EAS) balancing logic & metrics.
- Fix & improve the uclamp metrics.
- Fix task migration (taskset) corner case on !CONFIG_CPUSET.
- Fix RT and deadline utilization tracking across policy changes
- Introduce a "burstable" CFS controller via cgroups, which allows
bursty CPU-bound workloads to borrow a bit against their future
quota to improve overall latencies & batching. Can be tweaked via
/sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
- Rework assymetric topology/capacity detection & handling.
- Scheduler statistics & tooling:
- Disable delayacct by default, but add a sysctl to enable it at
runtime if tooling needs it. Use static keys and other
optimizations to make it more palatable.
- Use sched_clock() in delayacct, instead of ktime_get_ns().
- Misc cleanups and fixes.
* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
sched/doc: Update the CPU capacity asymmetry bits
sched/topology: Rework CPU capacity asymmetry detection
sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
psi: Fix race between psi_trigger_create/destroy
sched/fair: Introduce the burstable CFS controller
sched/uclamp: Fix uclamp_tg_restrict()
sched/rt: Fix Deadline utilization tracking during policy change
sched/rt: Fix RT utilization tracking during policy change
sched: Change task_struct::state
sched,arch: Remove unused TASK_STATE offsets
sched,timer: Use __set_current_state()
sched: Add get_current_state()
sched,perf,kvm: Fix preemption condition
sched: Introduce task_is_running()
sched: Unbreak wakeups
sched/fair: Age the average idle time
sched/cpufreq: Consider reduced CPU capacity in energy calculation
sched/fair: Take thermal pressure into account while estimating energy
thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
sched/fair: Return early from update_tg_cfs_load() if delta == 0
...
Dave Jones reported the following
This made it into 5.13 final, and completely breaks NFSD for me
(Serving tcp v3 mounts). Existing mounts on clients hang, as do
new mounts from new clients. Rebooting the server back to rc7
everything recovers.
The commit b3b64ebd38 ("mm/page_alloc: do bulk array bounds check after
checking populated elements") returns the wrong value if the array is
already populated which is interpreted as an allocation failure. Dave
reported this fixes his problem and it also passed a test running dbench
over NFS.
Fixes: b3b64ebd38 ("mm/page_alloc: do bulk array bounds check after checking populated elements")
Reported-and-tested-by: Dave Jones <davej@codemonkey.org.uk>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: <stable@vger.kernel.org> [5.13+]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Dan Carpenter reported the following
The patch 0f87d9d30f21: "mm/page_alloc: add an array-based interface
to the bulk page allocator" from Apr 29, 2021, leads to the following
static checker warning:
mm/page_alloc.c:5338 __alloc_pages_bulk()
warn: potentially one past the end of array 'page_array[nr_populated]'
The problem can occur if an array is passed in that is fully populated.
That potentially ends up allocating a single page and storing it past
the end of the array. This patch returns 0 if the array is fully
populated.
Link: https://lkml.kernel.org/r/20210618125102.GU30378@techsingularity.net
Fixes: 0f87d9d30f ("mm/page_alloc: add an array-based interface to the bulk page allocator")
Signed-off-by: Mel Gorman <mgorman@techsinguliarity.net>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the event that somebody would call this with an already fully
populated page_array, the last loop iteration would do an access beyond
the end of page_array.
It's of course extremely unlikely that would ever be done, but this
triggers my internal static analyzer. Also, if it really is not
supposed to be invoked this way (i.e., with no NULL entries in
page_array), the nr_populated<nr_pages check could simply be removed
instead.
Link: https://lkml.kernel.org/r/20210507064504.1712559-1-linux@rasmusvillemoes.dk
Fixes: 0f87d9d30f ("mm/page_alloc: add an array-based interface to the bulk page allocator")
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently me_huge_page() temporary unlocks page to perform some actions
then locks it again later. My testcase (which calls hard-offline on
some tail page in a hugetlb, then accesses the address of the hugetlb
range) showed that page allocation code detects this page lock on buddy
page and printed out "BUG: Bad page state" message.
check_new_page_bad() does not consider a page with __PG_HWPOISON as bad
page, so this flag works as kind of filter, but this filtering doesn't
work in this case because the "bad page" is not the actual hwpoisoned
page. So stop locking page again. Actions to be taken depend on the
page type of the error, so page unlocking should be done in ->action()
callbacks. So let's make it assumed and change all existing callbacks
that way.
Link: https://lkml.kernel.org/r/20210609072029.74645-1-nao.horiguchi@gmail.com
Fixes: commit 78bb920344 ("mm: hwpoison: dissolve in-use hugepage in unrecoverable memory error")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory_failure() is called with MF_ACTION_REQUIRED on the page that
has already been hwpoisoned, memory_failure() could fail to send SIGBUS
to the affected process, which results in infinite loop of MCEs.
Currently memory_failure() returns 0 if it's called for already
hwpoisoned page, then the caller, kill_me_maybe(), could return without
sending SIGBUS to current process. An action required MCE is raised
when the current process accesses to the broken memory, so no SIGBUS
means that the current process continues to run and access to the error
page again soon, so running into MCE loop.
This issue can arise for example in the following scenarios:
- Two or more threads access to the poisoned page concurrently. If
local MCE is enabled, MCE handler independently handles the MCE
events. So there's a race among MCE events, and the second or latter
threads fall into the situation in question.
- If there was a precedent memory error event and memory_failure() for
the event failed to unmap the error page for some reason, the
subsequent memory access to the error page triggers the MCE loop
situation.
To fix the issue, make memory_failure() return an error code when the
error page has already been hwpoisoned. This allows memory error
handler to control how it sends signals to userspace. And make sure
that any process touching a hwpoisoned page should get a SIGBUS even in
"already hwpoisoned" path of memory_failure() as is done in page fault
path.
Link: https://lkml.kernel.org/r/20210521030156.2612074-3-nao.horiguchi@gmail.com
Signed-off-by: Aili Yao <yaoaili@kingsoft.com>
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jue Wang <juew@google.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm,hwpoison: fix sending SIGBUS for Action Required MCE", v5.
I wrote this patchset to materialize what I think is the current
allowable solution mentioned by the previous discussion [1]. I simply
borrowed Tony's mutex patch and Aili's return code patch, then I queued
another one to find error virtual address in the best effort manner. I
know that this is not a perfect solution, but should work for some
typical case.
[1]: https://lore.kernel.org/linux-mm/20210331192540.2141052f@alex-virtual-machine/
This patch (of 2):
There can be races when multiple CPUs consume poison from the same page.
The first into memory_failure() atomically sets the HWPoison page flag
and begins hunting for tasks that map this page. Eventually it
invalidates those mappings and may send a SIGBUS to the affected tasks.
But while all that work is going on, other CPUs see a "success" return
code from memory_failure() and so they believe the error has been
handled and continue executing.
Fix by wrapping most of the internal parts of memory_failure() in a
mutex.
[akpm@linux-foundation.org: make mf_mutex local to memory_failure()]
Link: https://lkml.kernel.org/r/20210521030156.2612074-1-nao.horiguchi@gmail.com
Link: https://lkml.kernel.org/r/20210521030156.2612074-2-nao.horiguchi@gmail.com
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Aili Yao <yaoaili@kingsoft.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jue Wang <juew@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If more than one futex is placed on a shmem huge page, it can happen
that waking the second wakes the first instead, and leaves the second
waiting: the key's shared.pgoff is wrong.
When 3.11 commit 13d60f4b6a ("futex: Take hugepages into account when
generating futex_key"), the only shared huge pages came from hugetlbfs,
and the code added to deal with its exceptional page->index was put into
hugetlb source. Then that was missed when 4.8 added shmem huge pages.
page_to_pgoff() is what others use for this nowadays: except that, as
currently written, it gives the right answer on hugetlbfs head, but
nonsense on hugetlbfs tails. Fix that by calling hugetlbfs-specific
hugetlb_basepage_index() on PageHuge tails as well as on head.
Yes, it's unconventional to declare hugetlb_basepage_index() there in
pagemap.h, rather than in hugetlb.h; but I do not expect anything but
page_to_pgoff() ever to need it.
[akpm@linux-foundation.org: give hugetlb_basepage_index() prototype the correct scope]
Link: https://lkml.kernel.org/r/b17d946b-d09-326e-b42a-52884c36df32@google.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Reported-by: Neel Natu <neelnatu@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Zhang Yi <wetpzy@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Darren Hart <dvhart@infradead.org>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In commit 121e6f3258 ("mm/vmalloc: hugepage vmalloc mappings"),
__vmalloc_node_range was changed such that __get_vm_area_node was no
longer called with the requested/real size of the vmalloc allocation,
but rather with a rounded-up size.
This means that __get_vm_area_node called kasan_unpoision_vmalloc() with
a rounded up size rather than the real size. This led to it allowing
access to too much memory and so missing vmalloc OOBs and failing the
kasan kunit tests.
Pass the real size and the desired shift into __get_vm_area_node. This
allows it to round up the size for the underlying allocators while still
unpoisioning the correct quantity of shadow memory.
Adjust the other call-sites to pass in PAGE_SHIFT for the shift value.
Link: https://lkml.kernel.org/r/20210617081330.98629-1-dja@axtens.net
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213335
Fixes: 121e6f3258 ("mm/vmalloc: hugepage vmalloc mappings")
Signed-off-by: Daniel Axtens <dja@axtens.net>
Tested-by: David Gow <davidgow@google.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: add vmalloc_no_huge and use it", v4.
Add vmalloc_no_huge() and export it, so modules can allocate memory with
small pages.
Use the newly added vmalloc_no_huge() in KVM on s390 to get around a
hardware limitation.
This patch (of 2):
Commit 121e6f3258 ("mm/vmalloc: hugepage vmalloc mappings") added
support for hugepage vmalloc mappings, it also added the flag
VM_NO_HUGE_VMAP for __vmalloc_node_range to request the allocation to be
performed with 0-order non-huge pages.
This flag is not accessible when calling vmalloc, the only option is to
call directly __vmalloc_node_range, which is not exported.
This means that a module can't vmalloc memory with small pages.
Case in point: KVM on s390x needs to vmalloc a large area, and it needs
to be mapped with non-huge pages, because of a hardware limitation.
This patch adds the function vmalloc_no_huge, which works like vmalloc,
but it is guaranteed to always back the mapping using small pages. This
new function is exported, therefore it is usable by modules.
[akpm@linux-foundation.org: whitespace fixes, per Christoph]
Link: https://lkml.kernel.org/r/20210614132357.10202-1-imbrenda@linux.ibm.com
Link: https://lkml.kernel.org/r/20210614132357.10202-2-imbrenda@linux.ibm.com
Fixes: 121e6f3258 ("mm/vmalloc: hugepage vmalloc mappings")
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Aha! Shouldn't that quick scan over pte_none()s make sure that it holds
ptlock in the PVMW_SYNC case? That too might have been responsible for
BUGs or WARNs in split_huge_page_to_list() or its unmap_page(), though
I've never seen any.
Link: https://lkml.kernel.org/r/1bdf384c-8137-a149-2a1e-475a4791c3c@google.com
Link: https://lore.kernel.org/linux-mm/20210412180659.B9E3.409509F4@e16-tech.com/
Fixes: ace71a19ce ("mm: introduce page_vma_mapped_walk()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Wang Yugui <wangyugui@e16-tech.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Running certain tests with a DEBUG_VM kernel would crash within hours,
on the total_mapcount BUG() in split_huge_page_to_list(), while trying
to free up some memory by punching a hole in a shmem huge page: split's
try_to_unmap() was unable to find all the mappings of the page (which,
on a !DEBUG_VM kernel, would then keep the huge page pinned in memory).
Crash dumps showed two tail pages of a shmem huge page remained mapped
by pte: ptes in a non-huge-aligned vma of a gVisor process, at the end
of a long unmapped range; and no page table had yet been allocated for
the head of the huge page to be mapped into.
Although designed to handle these odd misaligned huge-page-mapped-by-pte
cases, page_vma_mapped_walk() falls short by returning false prematurely
when !pmd_present or !pud_present or !p4d_present or !pgd_present: there
are cases when a huge page may span the boundary, with ptes present in
the next.
Restructure page_vma_mapped_walk() as a loop to continue in these cases,
while keeping its layout much as before. Add a step_forward() helper to
advance pvmw->address across those boundaries: originally I tried to use
mm's standard p?d_addr_end() macros, but hit the same crash 512 times
less often: because of the way redundant levels are folded together, but
folded differently in different configurations, it was just too
difficult to use them correctly; and step_forward() is simpler anyway.
Link: https://lkml.kernel.org/r/fedb8632-1798-de42-f39e-873551d5bc81@google.com
Fixes: ace71a19ce ("mm: introduce page_vma_mapped_walk()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_vma_mapped_walk() cleanup: get THP's vma_address_end() at the
start, rather than later at next_pte.
It's a little unnecessary overhead on the first call, but makes for a
simpler loop in the following commit.
Link: https://lkml.kernel.org/r/4542b34d-862f-7cb4-bb22-e0df6ce830a2@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_vma_mapped_walk() cleanup: add a label this_pte, matching next_pte,
and use "goto this_pte", in place of the "while (1)" loop at the end.
Link: https://lkml.kernel.org/r/a52b234a-851-3616-2525-f42736e8934@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_vma_mapped_walk() cleanup: add a level of indentation to much of
the body, making no functional change in this commit, but reducing the
later diff when this is all converted to a loop.
[hughd@google.com: : page_vma_mapped_walk(): add a level of indentation fix]
Link: https://lkml.kernel.org/r/7f817555-3ce1-c785-e438-87d8efdcaf26@google.com
Link: https://lkml.kernel.org/r/efde211-f3e2-fe54-977-ef481419e7f3@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_vma_mapped_walk() cleanup: adjust the test for crossing page table
boundary - I believe pvmw->address is always page-aligned, but nothing
else here assumed that; and remember to reset pvmw->pte to NULL after
unmapping the page table, though I never saw any bug from that.
Link: https://lkml.kernel.org/r/799b3f9c-2a9e-dfef-5d89-26e9f76fd97@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_vma_mapped_walk() cleanup: rearrange the !pmd_present() block to
follow the same "return not_found, return not_found, return true"
pattern as the block above it (note: returning not_found there is never
premature, since existence or prior existence of huge pmd guarantees
good alignment).
Link: https://lkml.kernel.org/r/378c8650-1488-2edf-9647-32a53cf2e21@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_vma_mapped_walk() cleanup: re-evaluate pmde after taking lock, then
use it in subsequent tests, instead of repeatedly dereferencing pointer.
Link: https://lkml.kernel.org/r/53fbc9d-891e-46b2-cb4b-468c3b19238e@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_vma_mapped_walk() cleanup: get the hugetlbfs PageHuge case out of
the way at the start, so no need to worry about it later.
Link: https://lkml.kernel.org/r/e31a483c-6d73-a6bb-26c5-43c3b880a2@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: page_vma_mapped_walk() cleanup and THP fixes".
I've marked all of these for stable: many are merely cleanups, but I
think they are much better before the main fix than after.
This patch (of 11):
page_vma_mapped_walk() cleanup: sometimes the local copy of pvwm->page
was used, sometimes pvmw->page itself: use the local copy "page"
throughout.
Link: https://lkml.kernel.org/r/589b358c-febc-c88e-d4c2-7834b37fa7bf@google.com
Link: https://lkml.kernel.org/r/88e67645-f467-c279-bf5e-af4b5c6b13eb@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KASAN optimisations for the hardware tagging (MTE) implementation.
* for-next/mte:
kasan: disable freed user page poisoning with HW tags
arm64: mte: handle tags zeroing at page allocation time
kasan: use separate (un)poison implementation for integrated init
mm: arch: remove indirection level in alloc_zeroed_user_highpage_movable()
kasan: speed up mte_set_mem_tag_range
Replace a bunch of 'p->state == TASK_RUNNING' with a new helper:
task_is_running(p).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210611082838.222401495@infradead.org
pcpu_balance_workfn() unconditionally calls pcpu_balance_free(),
pcpu_reclaim_populated(), pcpu_balance_populated() and
pcpu_balance_free() again.
Each call to pcpu_balance_free() and pcpu_reclaim_populated() will
cause at least one acquisition of the pcpu_lock. So even if the
balancing was scheduled because of a failed atomic allocation,
pcpu_lock will be acquired at least 4 times. This obviously
increases the contention on the pcpu_lock.
To optimize the scheme let's grab the pcpu_lock on the upper level
(in pcpu_balance_workfn()) and keep it generally locked for the whole
duration of the scheduled work, but release conditionally to perform
any slow operations like chunk (de)population and creation of new
chunks.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
I see a "virt_to_phys used for non-linear address" warning from
check_usemap_section_nr() on arm64 platforms.
In current implementation of NODE_DATA, if CONFIG_NEED_MULTIPLE_NODES=y,
pglist_data is dynamically allocated and assigned to node_data[].
For example, in arch/arm64/include/asm/mmzone.h:
extern struct pglist_data *node_data[];
#define NODE_DATA(nid) (node_data[(nid)])
If CONFIG_NEED_MULTIPLE_NODES=n, pglist_data is defined as a global
variable named "contig_page_data".
For example, in include/linux/mmzone.h:
extern struct pglist_data contig_page_data;
#define NODE_DATA(nid) (&contig_page_data)
If CONFIG_DEBUG_VIRTUAL is not enabled, __pa() can handle both
dynamically allocated linear addresses and symbol addresses. However,
if (CONFIG_DEBUG_VIRTUAL=y && CONFIG_NEED_MULTIPLE_NODES=n) we can see
the "virt_to_phys used for non-linear address" warning because that
&contig_page_data is not a linear address on arm64.
Warning message:
virt_to_phys used for non-linear address: (contig_page_data+0x0/0x1c00)
WARNING: CPU: 0 PID: 0 at arch/arm64/mm/physaddr.c:15 __virt_to_phys+0x58/0x68
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Tainted: G W 5.13.0-rc1-00074-g1140ab592e2e #3
Hardware name: linux,dummy-virt (DT)
pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO BTYPE=--)
Call trace:
__virt_to_phys+0x58/0x68
check_usemap_section_nr+0x50/0xfc
sparse_init_nid+0x1ac/0x28c
sparse_init+0x1c4/0x1e0
bootmem_init+0x60/0x90
setup_arch+0x184/0x1f0
start_kernel+0x78/0x488
To fix it, create a small function to handle both translation.
Link: https://lkml.kernel.org/r/1623058729-27264-1-git-send-email-miles.chen@mediatek.com
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Kazu <k-hagio-ab@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When debugging the bug reported by Wang Yugui [1], try_to_unmap() may
fail, but the first VM_BUG_ON_PAGE() just checks page_mapcount() however
it may miss the failure when head page is unmapped but other subpage is
mapped. Then the second DEBUG_VM BUG() that check total mapcount would
catch it. This may incur some confusion.
As this is not a fatal issue, so consolidate the two DEBUG_VM checks
into one VM_WARN_ON_ONCE_PAGE().
[1] https://lore.kernel.org/linux-mm/20210412180659.B9E3.409509F4@e16-tech.com/
Link: https://lkml.kernel.org/r/d0f0db68-98b8-ebfb-16dc-f29df24cf012@google.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a race between THP unmapping and truncation, when truncate sees
pmd_none() and skips the entry, after munmap's zap_huge_pmd() cleared
it, but before its page_remove_rmap() gets to decrement
compound_mapcount: generating false "BUG: Bad page cache" reports that
the page is still mapped when deleted. This commit fixes that, but not
in the way I hoped.
The first attempt used try_to_unmap(page, TTU_SYNC|TTU_IGNORE_MLOCK)
instead of unmap_mapping_range() in truncate_cleanup_page(): it has
often been an annoyance that we usually call unmap_mapping_range() with
no pages locked, but there apply it to a single locked page.
try_to_unmap() looks more suitable for a single locked page.
However, try_to_unmap_one() contains a VM_BUG_ON_PAGE(!pvmw.pte,page):
it is used to insert THP migration entries, but not used to unmap THPs.
Copy zap_huge_pmd() and add THP handling now? Perhaps, but their TLB
needs are different, I'm too ignorant of the DAX cases, and couldn't
decide how far to go for anon+swap. Set that aside.
The second attempt took a different tack: make no change in truncate.c,
but modify zap_huge_pmd() to insert an invalidated huge pmd instead of
clearing it initially, then pmd_clear() between page_remove_rmap() and
unlocking at the end. Nice. But powerpc blows that approach out of the
water, with its serialize_against_pte_lookup(), and interesting pgtable
usage. It would need serious help to get working on powerpc (with a
minor optimization issue on s390 too). Set that aside.
Just add an "if (page_mapped(page)) synchronize_rcu();" or other such
delay, after unmapping in truncate_cleanup_page()? Perhaps, but though
that's likely to reduce or eliminate the number of incidents, it would
give less assurance of whether we had identified the problem correctly.
This successful iteration introduces "unmap_mapping_page(page)" instead
of try_to_unmap(), and goes the usual unmap_mapping_range_tree() route,
with an addition to details. Then zap_pmd_range() watches for this
case, and does spin_unlock(pmd_lock) if so - just like
page_vma_mapped_walk() now does in the PVMW_SYNC case. Not pretty, but
safe.
Note that unmap_mapping_page() is doing a VM_BUG_ON(!PageLocked) to
assert its interface; but currently that's only used to make sure that
page->mapping is stable, and zap_pmd_range() doesn't care if the page is
locked or not. Along these lines, in invalidate_inode_pages2_range()
move the initial unmap_mapping_range() out from under page lock, before
then calling unmap_mapping_page() under page lock if still mapped.
Link: https://lkml.kernel.org/r/a2a4a148-cdd8-942c-4ef8-51b77f643dbe@google.com
Fixes: fc127da085 ("truncate: handle file thp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Anon THP tails were already supported, but memory-failure may need to
use page_address_in_vma() on file THP tails, which its page->mapping
check did not permit: fix it.
hughd adds: no current usage is known to hit the issue, but this does
fix a subtle trap in a general helper: best fixed in stable sooner than
later.
Link: https://lkml.kernel.org/r/a0d9b53-bf5d-8bab-ac5-759dc61819c1@google.com
Fixes: 800d8c63b2 ("shmem: add huge pages support")
Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Running certain tests with a DEBUG_VM kernel would crash within hours,
on the total_mapcount BUG() in split_huge_page_to_list(), while trying
to free up some memory by punching a hole in a shmem huge page: split's
try_to_unmap() was unable to find all the mappings of the page (which,
on a !DEBUG_VM kernel, would then keep the huge page pinned in memory).
When that BUG() was changed to a WARN(), it would later crash on the
VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma) in
mm/internal.h:vma_address(), used by rmap_walk_file() for
try_to_unmap().
vma_address() is usually correct, but there's a wraparound case when the
vm_start address is unusually low, but vm_pgoff not so low:
vma_address() chooses max(start, vma->vm_start), but that decides on the
wrong address, because start has become almost ULONG_MAX.
Rewrite vma_address() to be more careful about vm_pgoff; move the
VM_BUG_ON_VMA() out of it, returning -EFAULT for errors, so that it can
be safely used from page_mapped_in_vma() and page_address_in_vma() too.
Add vma_address_end() to apply similar care to end address calculation,
in page_vma_mapped_walk() and page_mkclean_one() and try_to_unmap_one();
though it raises a question of whether callers would do better to supply
pvmw->end to page_vma_mapped_walk() - I chose not, for a smaller patch.
An irritation is that their apparent generality breaks down on KSM
pages, which cannot be located by the page->index that page_to_pgoff()
uses: as commit 4b0ece6fa0 ("mm: migrate: fix remove_migration_pte()
for ksm pages") once discovered. I dithered over the best thing to do
about that, and have ended up with a VM_BUG_ON_PAGE(PageKsm) in both
vma_address() and vma_address_end(); though the only place in danger of
using it on them was try_to_unmap_one().
Sidenote: vma_address() and vma_address_end() now use compound_nr() on a
head page, instead of thp_size(): to make the right calculation on a
hugetlbfs page, whether or not THPs are configured. try_to_unmap() is
used on hugetlbfs pages, but perhaps the wrong calculation never
mattered.
Link: https://lkml.kernel.org/r/caf1c1a3-7cfb-7f8f-1beb-ba816e932825@google.com
Fixes: a8fa41ad2f ("mm, rmap: check all VMAs that PTE-mapped THP can be part of")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Stressing huge tmpfs often crashed on unmap_page()'s VM_BUG_ON_PAGE
(!unmap_success): with dump_page() showing mapcount:1, but then its raw
struct page output showing _mapcount ffffffff i.e. mapcount 0.
And even if that particular VM_BUG_ON_PAGE(!unmap_success) is removed,
it is immediately followed by a VM_BUG_ON_PAGE(compound_mapcount(head)),
and further down an IS_ENABLED(CONFIG_DEBUG_VM) total_mapcount BUG():
all indicative of some mapcount difficulty in development here perhaps.
But the !CONFIG_DEBUG_VM path handles the failures correctly and
silently.
I believe the problem is that once a racing unmap has cleared pte or
pmd, try_to_unmap_one() may skip taking the page table lock, and emerge
from try_to_unmap() before the racing task has reached decrementing
mapcount.
Instead of abandoning the unsafe VM_BUG_ON_PAGE(), and the ones that
follow, use PVMW_SYNC in try_to_unmap_one() in this case: adding
TTU_SYNC to the options, and passing that from unmap_page().
When CONFIG_DEBUG_VM, or for non-debug too? Consensus is to do the same
for both: the slight overhead added should rarely matter, except perhaps
if splitting sparsely-populated multiply-mapped shmem. Once confident
that bugs are fixed, TTU_SYNC here can be removed, and the race
tolerated.
Link: https://lkml.kernel.org/r/c1e95853-8bcd-d8fd-55fa-e7f2488e78f@google.com
Fixes: fec89c109f ("thp: rewrite freeze_page()/unfreeze_page() with generic rmap walkers")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most callers of is_huge_zero_pmd() supply a pmd already verified
present; but a few (notably zap_huge_pmd()) do not - it might be a pmd
migration entry, in which the pfn is encoded differently from a present
pmd: which might pass the is_huge_zero_pmd() test (though not on x86,
since L1TF forced us to protect against that); or perhaps even crash in
pmd_page() applied to a swap-like entry.
Make it safe by adding pmd_present() check into is_huge_zero_pmd()
itself; and make it quicker by saving huge_zero_pfn, so that
is_huge_zero_pmd() will not need to do that pmd_page() lookup each time.
__split_huge_pmd_locked() checked pmd_trans_huge() before: that worked,
but is unnecessary now that is_huge_zero_pmd() checks present.
Link: https://lkml.kernel.org/r/21ea9ca-a1f5-8b90-5e88-95fb1c49bbfa@google.com
Fixes: e71769ae52 ("mm: enable thp migration for shmem thp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jue Wang <juew@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Xu <peterx@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/thp: fix THP splitting unmap BUGs and related", v10.
Here is v2 batch of long-standing THP bug fixes that I had not got
around to sending before, but prompted now by Wang Yugui's report
https://lore.kernel.org/linux-mm/20210412180659.B9E3.409509F4@e16-tech.com/
Wang Yugui has tested a rollup of these fixes applied to 5.10.39, and
they have done no harm, but have *not* fixed that issue: something more
is needed and I have no idea of what.
This patch (of 7):
Stressing huge tmpfs page migration racing hole punch often crashed on
the VM_BUG_ON(!pmd_present) in pmdp_huge_clear_flush(), with DEBUG_VM=y
kernel; or shortly afterwards, on a bad dereference in
__split_huge_pmd_locked() when DEBUG_VM=n. They forgot to allow for pmd
migration entries in the non-anonymous case.
Full disclosure: those particular experiments were on a kernel with more
relaxed mmap_lock and i_mmap_rwsem locking, and were not repeated on the
vanilla kernel: it is conceivable that stricter locking happens to avoid
those cases, or makes them less likely; but __split_huge_pmd_locked()
already allowed for pmd migration entries when handling anonymous THPs,
so this commit brings the shmem and file THP handling into line.
And while there: use old_pmd rather than _pmd, as in the following
blocks; and make it clearer to the eye that the !vma_is_anonymous()
block is self-contained, making an early return after accounting for
unmapping.
Link: https://lkml.kernel.org/r/af88612-1473-2eaa-903-8d1a448b26@google.com
Link: https://lkml.kernel.org/r/dd221a99-efb3-cd1d-6256-7e646af29314@google.com
Fixes: e71769ae52 ("mm: enable thp migration for shmem thp")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Wang Yugui <wangyugui@e16-tech.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Jue Wang <juew@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We notice that hung task happens in a corner but practical scenario when
CONFIG_PREEMPT_NONE is enabled, as follows.
Process 0 Process 1 Process 2..Inf
split_huge_page_to_list
unmap_page
split_huge_pmd_address
__migration_entry_wait(head)
__migration_entry_wait(tail)
remap_page (roll back)
remove_migration_ptes
rmap_walk_anon
cond_resched
Where __migration_entry_wait(tail) is occurred in kernel space, e.g.,
copy_to_user in fstat, which will immediately fault again without
rescheduling, and thus occupy the cpu fully.
When there are too many processes performing __migration_entry_wait on
tail page, remap_page will never be done after cond_resched.
This makes __migration_entry_wait operate on the compound head page,
thus waits for remap_page to complete, whether the THP is split
successfully or roll back.
Note that put_and_wait_on_page_locked helps to drop the page reference
acquired with get_page_unless_zero, as soon as the page is on the wait
queue, before actually waiting. So splitting the THP is only prevented
for a brief interval.
Link: https://lkml.kernel.org/r/b9836c1dd522e903891760af9f0c86a2cce987eb.1623144009.git.xuyu@linux.alibaba.com
Fixes: ba98828088 ("thp: add option to setup migration entries during PMD split")
Suggested-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Gang Deng <gavin.dg@linux.alibaba.com>
Signed-off-by: Xu Yu <xuyu@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fixes build with CONFIG_SLAB_FREELIST_HARDENED=y.
Hopefully. But it's the right thing to do anwyay.
Fixes: 1ad53d9fa3 ("slub: improve bit diffusion for freelist ptr obfuscation")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=213417
Reported-by: <vannguye@cisco.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Our syzkaller trigger the "BUG_ON(!list_empty(&inode->i_wb_list))" in
clear_inode:
kernel BUG at fs/inode.c:519!
Internal error: Oops - BUG: 0 [#1] SMP
Modules linked in:
Process syz-executor.0 (pid: 249, stack limit = 0x00000000a12409d7)
CPU: 1 PID: 249 Comm: syz-executor.0 Not tainted 4.19.95
Hardware name: linux,dummy-virt (DT)
pstate: 80000005 (Nzcv daif -PAN -UAO)
pc : clear_inode+0x280/0x2a8
lr : clear_inode+0x280/0x2a8
Call trace:
clear_inode+0x280/0x2a8
ext4_clear_inode+0x38/0xe8
ext4_free_inode+0x130/0xc68
ext4_evict_inode+0xb20/0xcb8
evict+0x1a8/0x3c0
iput+0x344/0x460
do_unlinkat+0x260/0x410
__arm64_sys_unlinkat+0x6c/0xc0
el0_svc_common+0xdc/0x3b0
el0_svc_handler+0xf8/0x160
el0_svc+0x10/0x218
Kernel panic - not syncing: Fatal exception
A crash dump of this problem show that someone called __munlock_pagevec
to clear page LRU without lock_page: do_mmap -> mmap_region -> do_munmap
-> munlock_vma_pages_range -> __munlock_pagevec.
As a result memory_failure will call identify_page_state without
wait_on_page_writeback. And after truncate_error_page clear the mapping
of this page. end_page_writeback won't call sb_clear_inode_writeback to
clear inode->i_wb_list. That will trigger BUG_ON in clear_inode!
Fix it by checking PageWriteback too to help determine should we skip
wait_on_page_writeback.
Link: https://lkml.kernel.org/r/20210604084705.3729204-1-yangerkun@huawei.com
Fixes: 0bc1f8b068 ("hwpoison: fix the handling path of the victimized page frame that belong to non-LRU")
Signed-off-by: yangerkun <yangerkun@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Yu Kuai <yukuai3@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The routine restore_reserve_on_error is called to restore reservation
information when an error occurs after page allocation. The routine
alloc_huge_page modifies the mapping reserve map and potentially the
reserve count during allocation. If code calling alloc_huge_page
encounters an error after allocation and needs to free the page, the
reservation information needs to be adjusted.
Currently, restore_reserve_on_error only takes action on pages for which
the reserve count was adjusted(HPageRestoreReserve flag). There is
nothing wrong with these adjustments. However, alloc_huge_page ALWAYS
modifies the reserve map during allocation even if the reserve count is
not adjusted. This can cause issues as observed during development of
this patch [1].
One specific series of operations causing an issue is:
- Create a shared hugetlb mapping
Reservations for all pages created by default
- Fault in a page in the mapping
Reservation exists so reservation count is decremented
- Punch a hole in the file/mapping at index previously faulted
Reservation and any associated pages will be removed
- Allocate a page to fill the hole
No reservation entry, so reserve count unmodified
Reservation entry added to map by alloc_huge_page
- Error after allocation and before instantiating the page
Reservation entry remains in map
- Allocate a page to fill the hole
Reservation entry exists, so decrement reservation count
This will cause a reservation count underflow as the reservation count
was decremented twice for the same index.
A user would observe a very large number for HugePages_Rsvd in
/proc/meminfo. This would also likely cause subsequent allocations of
hugetlb pages to fail as it would 'appear' that all pages are reserved.
This sequence of operations is unlikely to happen, however they were
easily reproduced and observed using hacked up code as described in [1].
Address the issue by having the routine restore_reserve_on_error take
action on pages where HPageRestoreReserve is not set. In this case, we
need to remove any reserve map entry created by alloc_huge_page. A new
helper routine vma_del_reservation assists with this operation.
There are three callers of alloc_huge_page which do not currently call
restore_reserve_on error before freeing a page on error paths. Add
those missing calls.
[1] https://lore.kernel.org/linux-mm/20210528005029.88088-1-almasrymina@google.com/
Link: https://lkml.kernel.org/r/20210607204510.22617-1-mike.kravetz@oracle.com
Fixes: 96b96a96dd ("mm/hugetlb: fix huge page reservation leak in private mapping error paths"
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mina Almasry <almasrymina@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It turns out that SLUB redzoning ("slub_debug=Z") checks from
s->object_size rather than from s->inuse (which is normally bumped to
make room for the freelist pointer), so a cache created with an object
size less than 24 would have the freelist pointer written beyond
s->object_size, causing the redzone to be corrupted by the freelist
pointer. This was very visible with "slub_debug=ZF":
BUG test (Tainted: G B ): Right Redzone overwritten
-----------------------------------------------------------------------------
INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb
INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200
INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): 00 00 00 00 00 f6 f4 a5 ........
Redzone (____ptrval____): 40 1d e8 1a aa @....
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
Adjust the offset to stay within s->object_size.
(Note that no caches of in this size range are known to exist in the
kernel currently.)
Link: https://lkml.kernel.org/r/20210608183955.280836-4-keescook@chromium.org
Link: https://lore.kernel.org/linux-mm/20200807160627.GA1420741@elver.google.com/
Link: https://lore.kernel.org/lkml/0f7dd7b2-7496-5e2d-9488-2ec9f8e90441@suse.cz/Fixes: 89b83f282d (slub: avoid redzone when choosing freepointer location)
Link: https://lore.kernel.org/lkml/CANpmjNOwZ5VpKQn+SYWovTkFB4VsT-RPwyENBmaK0dLcpqStkA@mail.gmail.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Marco Elver <elver@google.com>
Reported-by: "Lin, Zhenpeng" <zplin@psu.edu>
Tested-by: Marco Elver <elver@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The redzone area for SLUB exists between s->object_size and s->inuse
(which is at least the word-aligned object_size). If a cache were
created with an object_size smaller than sizeof(void *), the in-object
stored freelist pointer would overwrite the redzone (e.g. with boot
param "slub_debug=ZF"):
BUG test (Tainted: G B ): Right Redzone overwritten
-----------------------------------------------------------------------------
INFO: 0xffff957ead1c05de-0xffff957ead1c05df @offset=1502. First byte 0x1a instead of 0xbb
INFO: Slab 0xffffef3950b47000 objects=170 used=170 fp=0x0000000000000000 flags=0x8000000000000200
INFO: Object 0xffff957ead1c05d8 @offset=1496 fp=0xffff957ead1c0620
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): f6 f4 a5 40 1d e8 ...@..
Redzone (____ptrval____): 1a aa ..
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
Store the freelist pointer out of line when object_size is smaller than
sizeof(void *) and redzoning is enabled.
Additionally remove the "smaller than sizeof(void *)" check under
CONFIG_DEBUG_VM in kmem_cache_sanity_check() as it is now redundant:
SLAB and SLOB both handle small sizes.
(Note that no caches within this size range are known to exist in the
kernel currently.)
Link: https://lkml.kernel.org/r/20210608183955.280836-3-keescook@chromium.org
Fixes: 81819f0fc8 ("SLUB core")
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Lin, Zhenpeng" <zplin@psu.edu>
Cc: Marco Elver <elver@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Actually fix freelist pointer vs redzoning", v4.
This fixes redzoning vs the freelist pointer (both for middle-position
and very small caches). Both are "theoretical" fixes, in that I see no
evidence of such small-sized caches actually be used in the kernel, but
that's no reason to let the bugs continue to exist, especially since
people doing local development keep tripping over it. :)
This patch (of 3):
Instead of repeating "Redzone" and "Poison", clarify which sides of
those zones got tripped. Additionally fix column alignment in the
trailer.
Before:
BUG test (Tainted: G B ): Redzone overwritten
...
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): f6 f4 a5 40 1d e8 ...@..
Redzone (____ptrval____): 1a aa ..
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
After:
BUG test (Tainted: G B ): Right Redzone overwritten
...
Redzone (____ptrval____): bb bb bb bb bb bb bb bb ........
Object (____ptrval____): f6 f4 a5 40 1d e8 ...@..
Redzone (____ptrval____): 1a aa ..
Padding (____ptrval____): 00 00 00 00 00 00 00 00 ........
The earlier commits that slowly resulted in the "Before" reporting were:
d86bd1bece ("mm/slub: support left redzone")
ffc79d2880 ("slub: use print_hex_dump")
2492268472 ("SLUB: change error reporting format to follow lockdep loosely")
Link: https://lkml.kernel.org/r/20210608183955.280836-1-keescook@chromium.org
Link: https://lkml.kernel.org/r/20210608183955.280836-2-keescook@chromium.org
Link: https://lore.kernel.org/lkml/cfdb11d7-fb8e-e578-c939-f7f5fb69a6bd@suse.cz/
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Marco Elver <elver@google.com>
Cc: "Lin, Zhenpeng" <zplin@psu.edu>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I found it by pure code review, that pte_same_as_swp() of unuse_vma()
didn't take uffd-wp bit into account when comparing ptes.
pte_same_as_swp() returning false negative could cause failure to
swapoff swap ptes that was wr-protected by userfaultfd.
Link: https://lkml.kernel.org/r/20210603180546.9083-1-peterx@redhat.com
Fixes: f45ec5ff16 ("userfaultfd: wp: support swap and page migration")
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [5.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When hugetlb page fault (under overcommitting situation) and
memory_failure() race, VM_BUG_ON_PAGE() is triggered by the following
race:
CPU0: CPU1:
gather_surplus_pages()
page = alloc_surplus_huge_page()
memory_failure_hugetlb()
get_hwpoison_page(page)
__get_hwpoison_page(page)
get_page_unless_zero(page)
zero = put_page_testzero(page)
VM_BUG_ON_PAGE(!zero, page)
enqueue_huge_page(h, page)
put_page(page)
__get_hwpoison_page() only checks the page refcount before taking an
additional one for memory error handling, which is not enough because
there's a time window where compound pages have non-zero refcount during
hugetlb page initialization.
So make __get_hwpoison_page() check page status a bit more for hugetlb
pages with get_hwpoison_huge_page(). Checking hugetlb-specific flags
under hugetlb_lock makes sure that the hugetlb page is not transitive.
It's notable that another new function, HWPoisonHandlable(), is helpful
to prevent a race against other transitive page states (like a generic
compound page just before PageHuge becomes true).
Link: https://lkml.kernel.org/r/20210603233632.2964832-2-nao.horiguchi@gmail.com
Fixes: ead07f6a86 ("mm/memory-failure: introduce get_hwpoison_page() for consistent refcount handling")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org> [5.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tom reported this finding from clang 10's static analysis [1].
Due to the way the code is written, it will always see a successful loop
iteration. Instead of setting an initial value, check that it was set
instead with BUG_ON() because 0 units per allocation is bogus.
[1] https://lore.kernel.org/lkml/20210515180817.1751084-1-trix@redhat.com/
Reported-by: Tom Rix <trix@redhat.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Replacement is called copy_page_from_iter_atomic(); unlike the old primitive the
callers do *not* need to do iov_iter_advance() after it. In case when they end
up consuming less than they'd been given they need to do iov_iter_revert() on
everything they had not consumed. That, however, needs to be done only on slow
paths.
All in-tree callers converted. And that kills the last user of iterate_all_kinds()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The current implementation of the memcg accounting of the percpu
memory is based on the idea of having two separate sets of chunks for
accounted and non-accounted memory. This approach has an advantage
of not wasting any extra memory for memcg data for non-accounted
chunks, however it complicates the code and leads to a higher chunks
number due to a lower chunk utilization.
Instead of having two chunk types it's possible to declare all* chunks
memcg-aware unless the kernel memory accounting is disabled globally
by a boot option. The size of objcg_array is usually small in
comparison to chunks themselves (it obviously depends on the number of
CPUs), so even if some chunk will have no accounted allocations, the
memory waste isn't significant and will likely be compensated by
a higher chunk utilization. Also, with time more and more percpu
allocations will likely become accounted.
* The first chunk is initialized before the memory cgroup subsystem,
so we don't know for sure whether we need to allocate obj_cgroups.
Because it's small, let's make it free for use. Then we don't need
to allocate obj_cgroups for it.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Introduce a new mem_cgroup_kmem_disabled() helper, similar to
mem_cgroup_disabled(), to check whether the kernel memory accounting
is off. A user could disable it using a boot option to eliminate
some associated costs.
The helper can be used outside of memcontrol.c to dynamically disable
the kmem-related code. The returned value is stable after the kernel
initialization is finished.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
cgroup_memory_nosocket, cgroup_memory_nokmem and cgroup_memory_noswap
are initialized during the kernel initialization and never change
their value afterwards.
cgroup_memory_nosocket, cgroup_memory_nokmem are written only from
cgroup_memory(), which is marked as __init.
cgroup_memory_noswap is written from setup_swap_account() and
mem_cgroup_swap_init(), both are marked as __init.
Mark all three variables as __ro_after_init.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
The userfaultfd hugetlb tests cause a resv_huge_pages underflow. This
happens when hugetlb_mcopy_atomic_pte() is called with !is_continue on
an index for which we already have a page in the cache. When this
happens, we allocate a second page, double consuming the reservation,
and then fail to insert the page into the cache and return -EEXIST.
To fix this, we first check if there is a page in the cache which
already consumed the reservation, and return -EEXIST immediately if so.
There is still a rare condition where we fail to copy the page contents
AND race with a call for hugetlb_no_page() for this index and again we
will underflow resv_huge_pages. That is fixed in a more complicated
patch not targeted for -stable.
Test:
Hacked the code locally such that resv_huge_pages underflows produce a
warning, then:
./tools/testing/selftests/vm/userfaultfd hugetlb_shared 10
2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success
./tools/testing/selftests/vm/userfaultfd hugetlb 10
2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success
Both tests succeed and produce no warnings. After the test runs number
of free/resv hugepages is correct.
[mike.kravetz@oracle.com: changelog fixes]
Link: https://lkml.kernel.org/r/20210528004649.85298-1-almasrymina@google.com
Fixes: 8fb5debc5f ("userfaultfd: hugetlbfs: add hugetlb_mcopy_atomic_pte for userfaultfd support")
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix gcc W=1 warning:
mm/kasan/init.c:228: warning: Function parameter or member 'shadow_start' not described in 'kasan_populate_early_shadow'
mm/kasan/init.c:228: warning: Function parameter or member 'shadow_end' not described in 'kasan_populate_early_shadow'
Link: https://lkml.kernel.org/r/20210603140700.3045298-1-yukuai3@huawei.com
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Acked-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When memory_failure() or soft_offline_page() is called on a tail page of
some hugetlb page, "BUG: unable to handle page fault" error can be
triggered.
remove_hugetlb_page() dereferences page->lru, so it's assumed that the
page points to a head page, but one of the caller,
dissolve_free_huge_page(), provides remove_hugetlb_page() with 'page'
which could be a tail page. So pass 'head' to it, instead.
Link: https://lkml.kernel.org/r/20210526235257.2769473-1-nao.horiguchi@gmail.com
Fixes: 6eb4e88a6d ("hugetlb: create remove_hugetlb_page() to separate functionality")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently we found that there is a lot MemFree left in /proc/meminfo
after do a lot of pages soft offline, it's not quite correct.
Before Oscar's rework of soft offline for free pages [1], if we soft
offline free pages, these pages are left in buddy with HWPoison flag,
and NR_FREE_PAGES is not updated immediately. So the difference between
NR_FREE_PAGES and real number of available free pages is also even big
at the beginning.
However, with the workload running, when we catch HWPoison page in any
alloc functions subsequently, we will remove it from buddy, meanwhile
update the NR_FREE_PAGES and try again, so the NR_FREE_PAGES will get
more and more closer to the real number of available free pages.
(regardless of unpoison_memory())
Now, for offline free pages, after a successful call
take_page_off_buddy(), the page is no longer belong to buddy allocator,
and will not be used any more, but we missed accounting NR_FREE_PAGES in
this situation, and there is no chance to be updated later.
Do update in take_page_off_buddy() like rmqueue() does, but avoid double
counting if some one already set_migratetype_isolate() on the page.
[1]: commit 06be6ff3d2 ("mm,hwpoison: rework soft offline for free pages")
Link: https://lkml.kernel.org/r/20210526075247.11130-1-dinghui@sangfor.com.cn
Fixes: 06be6ff3d2 ("mm,hwpoison: rework soft offline for free pages")
Signed-off-by: Ding Hui <dinghui@sangfor.com.cn>
Suggested-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In pmd/pud_advanced_tests(), the vaddr is aligned up to the next pmd/pud
entry, and so it does not match the given pmdp/pudp and (aligned down)
pfn any more.
For s390, this results in memory corruption, because the IDTE
instruction used e.g. in xxx_get_and_clear() will take the vaddr for
some calculations, in combination with the given pmdp. It will then end
up with a wrong table origin, ending on ...ff8, and some of those
wrongly set low-order bits will also select a wrong pagetable level for
the index addition. IDTE could therefore invalidate (or 0x20) something
outside of the page tables, depending on the wrongly picked index, which
in turn depends on the random vaddr.
As result, we sometimes see "BUG task_struct (Not tainted): Padding
overwritten" on s390, where one 0x5a padding value got overwritten with
0x7a.
Fix this by aligning down, similar to how the pmd/pud_aligned pfns are
calculated.
Link: https://lkml.kernel.org/r/20210525130043.186290-2-gerald.schaefer@linux.ibm.com
Fixes: a5c3b9ffb0 ("mm/debug_vm_pgtable: add tests validating advanced arch page table helpers")
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: <stable@vger.kernel.org> [5.9+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since wait_event() uses TASK_UNINTERRUPTIBLE by default, waiting for an
allocation counts towards load. However, for KFENCE, this does not make
any sense, since there is no busy work we're awaiting.
Instead, use TASK_IDLE via wait_event_idle() to not count towards load.
BugLink: https://bugzilla.suse.com/show_bug.cgi?id=1185565
Link: https://lkml.kernel.org/r/20210521083209.3740269-1-elver@google.com
Fixes: 407f1d8c1b ("kfence: await for allocation using wait_event")
Signed-off-by: Marco Elver <elver@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Hillf Danton <hdanton@sina.com>
Cc: <stable@vger.kernel.org> [5.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit f685a533a7.
The MIPS cache flush logic needs to know whether the mapping was already
established to decide how to flush caches. This is done by checking the
valid bit in the PTE. The commit above breaks this logic by setting the
valid in the PTE in new mappings, which causes kernel crashes.
Link: https://lkml.kernel.org/r/20210526094335.92948-1-tsbogend@alpha.franken.de
Fixes: f685a533a7 ("MIPS: make userspace mapping young by default")
Reported-by: Zhou Yanjie <zhouyanjie@wanyeetech.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Huang Pei <huangpei@loongson.cn>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Poisoning freed pages protects against kernel use-after-free. The
likelihood of such a bug involving kernel pages is significantly higher
than that for user pages. At the same time, poisoning freed pages can
impose a significant performance cost, which cannot always be justified
for user pages given the lower probability of finding a bug. Therefore,
disable freed user page poisoning when using HW tags. We identify
"user" pages via the flag set GFP_HIGHUSER_MOVABLE, which indicates
a strong likelihood of not being directly accessible to the kernel.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://linux-review.googlesource.com/id/I716846e2de8ef179f44e835770df7e6307be96c9
Link: https://lore.kernel.org/r/20210602235230.3928842-5-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently, on an anonymous page fault, the kernel allocates a zeroed
page and maps it in user space. If the mapping is tagged (PROT_MTE),
set_pte_at() additionally clears the tags. It is, however, more
efficient to clear the tags at the same time as zeroing the data on
allocation. To avoid clearing the tags on any page (which may not be
mapped as tagged), only do this if the vma flags contain VM_MTE. This
requires introducing a new GFP flag that is used to determine whether
to clear the tags.
The DC GZVA instruction with a 0 top byte (and 0 tag) requires
top-byte-ignore. Set the TCR_EL1.{TBI1,TBID1} bits irrespective of
whether KASAN_HW is enabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://linux-review.googlesource.com/id/Id46dc94e30fe11474f7e54f5d65e7658dbdddb26
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210602235230.3928842-4-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently with integrated init page_alloc.c needs to know whether
kasan_alloc_pages() will zero initialize memory, but this will start
becoming more complicated once we start adding tag initialization
support for user pages. To avoid page_alloc.c needing to know more
details of what integrated init will do, move the unpoisoning logic
for integrated init into the HW tags implementation. Currently the
logic is identical but it will diverge in subsequent patches.
For symmetry do the same for poisoning although this logic will
be unaffected by subsequent patches.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://linux-review.googlesource.com/id/I2c550234c6c4a893c48c18ff0c6ce658c7c67056
Link: https://lore.kernel.org/r/20210602235230.3928842-3-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
if we run into a short copy and ->write_end() refuses to advance at all,
use the amount we'd managed to copy for the next iteration to handle.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
By using outlined checks we can achieve a significant code size
improvement by moving the tag-based ASAN checks into separate
functions. Unlike the existing CONFIG_KASAN_OUTLINE mode these
functions have a custom calling convention that preserves most
registers and is specialized to the register containing the address
and the type of access, and as a result we can eliminate the code
size and performance overhead of a standard calling convention such
as AAPCS for these functions.
This change depends on a separate series of changes to Clang [1] to
support outlined checks in the kernel, although the change works fine
without them (we just don't get outlined checks). This is because the
flag -mllvm -hwasan-inline-all-checks=0 has no effect until the Clang
changes land. The flag was introduced in the Clang 9.0 timeframe as
part of the support for outlined checks in userspace and because our
minimum Clang version is 10.0 we can pass it unconditionally.
Outlined checks require a new runtime function with a custom calling
convention. Add this function to arch/arm64/lib.
I measured the code size of defconfig + tag-based KASAN, as well
as boot time (i.e. time to init launch) on a DragonBoard 845c with
an Android arm64 GKI kernel. The results are below:
code size boot time
CONFIG_KASAN_INLINE=y before 92824064 6.18s
CONFIG_KASAN_INLINE=y after 38822400 6.65s
CONFIG_KASAN_OUTLINE=y 39215616 11.48s
We can see straight away that specialized outlined checks beat the
existing CONFIG_KASAN_OUTLINE=y on both code size and boot time
for tag-based ASAN.
As for the comparison between CONFIG_KASAN_INLINE=y before and after
we saw similar performance numbers in userspace [2] and decided
that since the performance overhead is minimal compared to the
overhead of tag-based ASAN itself as well as compared to the code
size improvements we would just replace the inlined checks with the
specialized outlined checks without the option to select between them,
and that is what I have implemented in this patch.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://linux-review.googlesource.com/id/I1a30036c70ab3c3ee78d75ed9b87ef7cdc3fdb76
Link: [1] https://reviews.llvm.org/D90426
Link: [2] https://reviews.llvm.org/D56954
Link: https://lore.kernel.org/r/20210526174927.2477847-3-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
We have already delete block_dump feature in mark_inode_dirty() because
it can be replaced by tracepoints, now we also remove the part in
submit_bio() for the same reason. The part of block dump feature in
submit_bio() dump the write process, write region and sectors on the
target disk into kernel message. it can be replaced by
block_bio_queue tracepoint in submit_bio_checks(), so we do not need
block_dump anymore, remove the whole block_dump feature.
Signed-off-by: zhangyi (F) <yi.zhang@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20210313030146.2882027-3-yi.zhang@huawei.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In commit d6995da311 ("hugetlb: use page.private for hugetlb specific
page flags") the use of PagePrivate to indicate a reservation count
should be restored at free time was changed to the hugetlb specific flag
HPageRestoreReserve. Changes to a userfaultfd error path as well as a
VM_BUG_ON() in remove_inode_hugepages() were overlooked.
Users could see incorrect hugetlb reserve counts if they experience an
error with a UFFDIO_COPY operation. Specifically, this would be the
result of an unlikely copy_huge_page_from_user error. There is not an
increased chance of hitting the VM_BUG_ON.
Link: https://lkml.kernel.org/r/20210521233952.236434-1-mike.kravetz@oracle.com
Fixes: d6995da311 ("hugetlb: use page.private for hugetlb specific page flags")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Mina Almasry <almasry.mina@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_DEBUG_PAGEALLOC enabled, the kernel should also untag the
object pointer, as done in get_freepointer().
Failing to do so reportedly leads to SLUB freelist corruptions that
manifest as boot-time crashes.
Link: https://lkml.kernel.org/r/20210514072228.534418-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Elliot Berman <eberman@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While reviewing [1] I came across commit d3378e86d1 ("mm/gup: check
page posion status for coredump.") and noticed that this patch is broken
in two ways. First it doesn't really prevent hwpoison pages from being
dumped because hwpoison pages can be marked asynchornously at any time
after the check. Secondly, and more importantly, the patch introduces a
ref count leak because get_dump_page takes a reference on the page which
is not released.
It also seems that the patch was merged incorrectly because there were
follow up changes not included as well as discussions on how to address
the underlying problem [2]
Therefore revert the original patch.
Link: http://lkml.kernel.org/r/20210429122519.15183-4-david@redhat.com [1]
Link: http://lkml.kernel.org/r/57ac524c-b49a-99ec-c1e4-ef5027bfb61b@redhat.com [2]
Link: https://lkml.kernel.org/r/20210505135407.31590-1-mhocko@kernel.org
Fixes: d3378e86d1 ("mm/gup: check page posion status for coredump.")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Aili Yao <yaoaili@kingsoft.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
clang sometimes decides not to inline shuffle_zone(), but it calls a
__meminit function. Without the extra __meminit annotation we get this
warning:
WARNING: modpost: vmlinux.o(.text+0x2a86d4): Section mismatch in reference from the function shuffle_zone() to the function .meminit.text:__shuffle_zone()
The function shuffle_zone() references
the function __meminit __shuffle_zone().
This is often because shuffle_zone lacks a __meminit
annotation or the annotation of __shuffle_zone is wrong.
shuffle_free_memory() did not show the same problem in my tests, but it
could happen in theory as well, so mark both as __meminit.
Link: https://lkml.kernel.org/r/20210514135952.2928094-1-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
iomap_max_page_shift is expected to contain a page shift, so it can't be a
'bool', has to be an 'unsigned int'
And fix the default values: P4D_SHIFT is when huge iomap is allowed.
However, on some architectures (eg: powerpc book3s/64), P4D_SHIFT is not a
constant so it can't be used to initialise a static variable. So,
initialise iomap_max_page_shift with a maximum shift supported by the
architecture, it is gated by P4D_SHIFT in vmap_try_huge_p4d() anyway.
Link: https://lkml.kernel.org/r/ad2d366015794a9f21320dcbdd0a8eb98979e9df.1620898113.git.christophe.leroy@csgroup.eu
Fixes: bbc180a5ad ("mm: HUGE_VMAP arch support cleanup")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 3e96b6a2e9. General
Protection Fault in rmap_walk_ksm() under memory pressure:
remove_rmap_item_from_tree() needs to take page lock, of course.
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2105092253500.1127@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Consider the following sequence of events:
1. Userspace issues a UFFD ioctl, which ends up calling into
shmem_mfill_atomic_pte(). We successfully account the blocks, we
shmem_alloc_page(), but then the copy_from_user() fails. We return
-ENOENT. We don't release the page we allocated.
2. Our caller detects this error code, tries the copy_from_user() after
dropping the mmap_lock, and retries, calling back into
shmem_mfill_atomic_pte().
3. Meanwhile, let's say another process filled up the tmpfs being used.
4. So shmem_mfill_atomic_pte() fails to account blocks this time, and
immediately returns - without releasing the page.
This triggers a BUG_ON in our caller, which asserts that the page
should always be consumed, unless -ENOENT is returned.
To fix this, detect if we have such a "dangling" page when accounting
fails, and if so, release it before returning.
Link: https://lkml.kernel.org/r/20210428230858.348400-1-axelrasmussen@google.com
Fixes: cb658a453b ("userfaultfd: shmem: avoid leaking blocks and used blocks in UFFDIO_COPY")
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reported-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paul E. McKenney reported [1] that commit 1f0723a4c0 ("mm, slub: enable
slub_debug static key when creating cache with explicit debug flags")
results in the lockdep complaint:
======================================================
WARNING: possible circular locking dependency detected
5.12.0+ #15 Not tainted
------------------------------------------------------
rcu_torture_sta/109 is trying to acquire lock:
ffffffff96063cd0 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_enable+0x9/0x20
but task is already holding lock:
ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (slab_mutex){+.+.}-{3:3}:
lock_acquire+0xb9/0x3a0
__mutex_lock+0x8d/0x920
slub_cpu_dead+0x15/0xf0
cpuhp_invoke_callback+0x17a/0x7c0
cpuhp_invoke_callback_range+0x3b/0x80
_cpu_down+0xdf/0x2a0
cpu_down+0x2c/0x50
device_offline+0x82/0xb0
remove_cpu+0x1a/0x30
torture_offline+0x80/0x140
torture_onoff+0x147/0x260
kthread+0x10a/0x140
ret_from_fork+0x22/0x30
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
check_prev_add+0x8f/0xbf0
__lock_acquire+0x13f0/0x1d80
lock_acquire+0xb9/0x3a0
cpus_read_lock+0x21/0xa0
static_key_enable+0x9/0x20
__kmem_cache_create+0x38d/0x430
kmem_cache_create_usercopy+0x146/0x250
kmem_cache_create+0xd/0x10
rcu_torture_stats+0x79/0x280
kthread+0x10a/0x140
ret_from_fork+0x22/0x30
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(slab_mutex);
lock(cpu_hotplug_lock);
lock(slab_mutex);
lock(cpu_hotplug_lock);
*** DEADLOCK ***
1 lock held by rcu_torture_sta/109:
#0: ffffffff96173c28 (slab_mutex){+.+.}-{3:3}, at: kmem_cache_create_usercopy+0x2d/0x250
stack backtrace:
CPU: 3 PID: 109 Comm: rcu_torture_sta Not tainted 5.12.0+ #15
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
dump_stack+0x6d/0x89
check_noncircular+0xfe/0x110
? lock_is_held_type+0x98/0x110
check_prev_add+0x8f/0xbf0
__lock_acquire+0x13f0/0x1d80
lock_acquire+0xb9/0x3a0
? static_key_enable+0x9/0x20
? mark_held_locks+0x49/0x70
cpus_read_lock+0x21/0xa0
? static_key_enable+0x9/0x20
static_key_enable+0x9/0x20
__kmem_cache_create+0x38d/0x430
kmem_cache_create_usercopy+0x146/0x250
? rcu_torture_stats_print+0xd0/0xd0
kmem_cache_create+0xd/0x10
rcu_torture_stats+0x79/0x280
? rcu_torture_stats_print+0xd0/0xd0
kthread+0x10a/0x140
? kthread_park+0x80/0x80
ret_from_fork+0x22/0x30
This is because there's one order of locking from the hotplug callbacks:
lock(cpu_hotplug_lock); // from hotplug machinery itself
lock(slab_mutex); // in e.g. slab_mem_going_offline_callback()
And commit 1f0723a4c0 made the reverse sequence possible:
lock(slab_mutex); // in kmem_cache_create_usercopy()
lock(cpu_hotplug_lock); // kmem_cache_open() -> static_key_enable()
The simplest fix is to move static_key_enable() to a place before slab_mutex is
taken. That means kmem_cache_create_usercopy() in mm/slab_common.c which is not
ideal for SLUB-specific code, but the #ifdef CONFIG_SLUB_DEBUG makes it
at least self-contained and obvious.
[1] https://lore.kernel.org/lkml/20210502171827.GA3670492@paulmck-ThinkPad-P17-Gen-1/
Link: https://lkml.kernel.org/r/20210504120019.26791-1-vbabka@suse.cz
Fixes: 1f0723a4c0 ("mm, slub: enable slub_debug static key when creating cache with explicit debug flags")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When rework early cow of pinned hugetlb pages, we moved huge_ptep_get()
upper but overlooked a side effect that the huge_ptep_get() will fetch the
pte after wr-protection. After moving it upwards, we need explicit
wr-protect of child pte or we will keep the write bit set in the child
process, which could cause data corrution where the child can write to the
original page directly.
This issue can also be exposed by "memfd_test hugetlbfs" kselftest.
Link: https://lkml.kernel.org/r/20210503234356.9097-3-peterx@redhat.com
Fixes: 4eae4efa2c ("hugetlb: do early cow when page pinned on src mm")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/hugetlb: Fix issues on file sealing and fork", v2.
Hugh reported issue with F_SEAL_FUTURE_WRITE not applied correctly to
hugetlbfs, which I can easily verify using the memfd_test program, which
seems that the program is hardly run with hugetlbfs pages (as by default
shmem).
Meanwhile I found another probably even more severe issue on that hugetlb
fork won't wr-protect child cow pages, so child can potentially write to
parent private pages. Patch 2 addresses that.
After this series applied, "memfd_test hugetlbfs" should start to pass.
This patch (of 2):
F_SEAL_FUTURE_WRITE is missing for hugetlb starting from the first day.
There is a test program for that and it fails constantly.
$ ./memfd_test hugetlbfs
memfd-hugetlb: CREATE
memfd-hugetlb: BASIC
memfd-hugetlb: SEAL-WRITE
memfd-hugetlb: SEAL-FUTURE-WRITE
mmap() didn't fail as expected
Aborted (core dumped)
I think it's probably because no one is really running the hugetlbfs test.
Fix it by checking FUTURE_WRITE also in hugetlbfs_file_mmap() as what we
do in shmem_mmap(). Generalize a helper for that.
Link: https://lkml.kernel.org/r/20210503234356.9097-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210503234356.9097-2-peterx@redhat.com
Fixes: ab3948f58f ("mm/memfd: add an F_SEAL_FUTURE_WRITE seal to memfd")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The sparse tool complains as follows:
mm/percpu.c:138:5: warning:
symbol 'pcpu_free_slot' was not declared. Should it be static?
This symbol is not used outside of percpu.c, so marks it static.
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
succed -> succeed in mm/hugetlb.c
wil -> will in mm/mempolicy.c
wit -> with in mm/page_alloc.c
Retruns -> Returns in mm/page_vma_mapped.c
confict -> conflict in mm/secretmem.c
No functionality changed.
Link: https://lkml.kernel.org/r/20210408140027.60623-1-lujialin4@huawei.com
Signed-off-by: Lu Jialin <lujialin4@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is a spelling mistake in a comment. Fix it.
Link: https://lkml.kernel.org/r/20210317094158.5762-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The last user (/dev/kmem) is gone. Let's drop it.
Link: https://lkml.kernel.org/r/20210324102351.6932-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: huang ying <huang.ying.caritas@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "drivers/char: remove /dev/kmem for good".
Exploring /dev/kmem and /dev/mem in the context of memory hot(un)plug and
memory ballooning, I started questioning the existence of /dev/kmem.
Comparing it with the /proc/kcore implementation, it does not seem to be
able to deal with things like
a) Pages unmapped from the direct mapping (e.g., to be used by secretmem)
-> kern_addr_valid(). virt_addr_valid() is not sufficient.
b) Special cases like gart aperture memory that is not to be touched
-> mem_pfn_is_ram()
Unless I am missing something, it's at least broken in some cases and might
fault/crash the machine.
Looks like its existence has been questioned before in 2005 and 2010 [1],
after ~11 additional years, it might make sense to revive the discussion.
CONFIG_DEVKMEM is only enabled in a single defconfig (on purpose or by
mistake?). All distributions disable it: in Ubuntu it has been disabled
for more than 10 years, in Debian since 2.6.31, in Fedora at least
starting with FC3, in RHEL starting with RHEL4, in SUSE starting from
15sp2, and OpenSUSE has it disabled as well.
1) /dev/kmem was popular for rootkits [2] before it got disabled
basically everywhere. Ubuntu documents [3] "There is no modern user of
/dev/kmem any more beyond attackers using it to load kernel rootkits.".
RHEL documents in a BZ [5] "it served no practical purpose other than to
serve as a potential security problem or to enable binary module drivers
to access structures/functions they shouldn't be touching"
2) /proc/kcore is a decent interface to have a controlled way to read
kernel memory for debugging puposes. (will need some extensions to
deal with memory offlining/unplug, memory ballooning, and poisoned
pages, though)
3) It might be useful for corner case debugging [1]. KDB/KGDB might be a
better fit, especially, to write random memory; harder to shoot
yourself into the foot.
4) "Kernel Memory Editor" [4] hasn't seen any updates since 2000 and seems
to be incompatible with 64bit [1]. For educational purposes,
/proc/kcore might be used to monitor value updates -- or older
kernels can be used.
5) It's broken on arm64, and therefore, completely disabled there.
Looks like it's essentially unused and has been replaced by better
suited interfaces for individual tasks (/proc/kcore, KDB/KGDB). Let's
just remove it.
[1] https://lwn.net/Articles/147901/
[2] https://www.linuxjournal.com/article/10505
[3] https://wiki.ubuntu.com/Security/Features#A.2Fdev.2Fkmem_disabled
[4] https://sourceforge.net/projects/kme/
[5] https://bugzilla.redhat.com/show_bug.cgi?id=154796
Link: https://lkml.kernel.org/r/20210324102351.6932-1-david@redhat.com
Link: https://lkml.kernel.org/r/20210324102351.6932-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Alexander A. Klimov" <grandmaster@al2klimov.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Andrew Lunn <andrew@lunn.ch>
Cc: Andrey Zhizhikin <andrey.zhizhikin@leica-geosystems.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Chris Zankel <chris@zankel.net>
Cc: Corentin Labbe <clabbe@baylibre.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Gregory Clement <gregory.clement@bootlin.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hillf Danton <hdanton@sina.com>
Cc: huang ying <huang.ying.caritas@gmail.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: James Troup <james.troup@canonical.com>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kairui Song <kasong@redhat.com>
Cc: Krzysztof Kozlowski <krzk@kernel.org>
Cc: Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
Cc: Liviu Dudau <liviu.dudau@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mikulas Patocka <mpatocka@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Niklas Schnelle <schnelle@linux.ibm.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: openrisc@lists.librecores.org
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: "Pavel Machek (CIP)" <pavel@denx.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Pierre Morel <pmorel@linux.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rich Felker <dalias@libc.org>
Cc: Robert Richter <rric@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
Cc: sparclinux@vger.kernel.org
Cc: Stafford Horne <shorne@gmail.com>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Theodore Dubois <tblodt@icloud.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: William Cohen <wcohen@redhat.com>
Cc: Xiaoming Ni <nixiaoming@huawei.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I was implementing a latency analyzer tool by using task->delays
and other things, I found an issue in delayacct. The issue is it should
clear the target's flag instead of current's in delayacct_blkio_end().
When I git blame delayacct, I found there're some similar issues we have
fixed in delayacct_blkio_end().
- Commit c96f5471ce ("delayacct: Account blkio completion on the
correct task") fixed the issue that it should account blkio
completion on the target task instead of current.
- Commit b512719f77 ("delayacct: fix crash in delayacct_blkio_end()
after delayacct init failure") fixed the issue that it should check
target task's delays instead of current task'.
It seems that delayacct_blkio_{begin, end} are error prone.
So I introduce a new paratmeter - the target task 'p' - to these
helpers. After that change, the callsite will specifilly set the right
task, which should make it less error prone.
Link: https://lkml.kernel.org/r/20210414083720.24083-1-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Josh Snyder <joshs@netflix.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use the power-efficient work queue, to avoid the pathological case where
we keep pinning ourselves on the same possibly idle CPU on systems that
want to be power-efficient (https://lwn.net/Articles/731052/).
Link: https://lkml.kernel.org/r/20210421105132.3965998-4-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The allocation wait timeout was initially added because of warnings due to
CONFIG_DETECT_HUNG_TASK=y [1]. While the 1 sec timeout is sufficient to
resolve the warnings (given the hung task timeout must be 1 sec or larger)
it may cause unnecessary wake-ups if the system is idle:
https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com
Fix it by computing the timeout duration in terms of the current
sysctl_hung_task_timeout_secs value.
Link: https://lkml.kernel.org/r/20210421105132.3965998-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kfence: optimize timer scheduling", v2.
We have observed that mostly-idle systems with KFENCE enabled wake up
otherwise idle CPUs, preventing such to enter a lower power state.
Debugging revealed that KFENCE spends too much active time in
toggle_allocation_gate().
While the first version of KFENCE was using all the right bits to be
scheduling optimal, and thus power efficient, by simply using wait_event()
+ wake_up(), that code was unfortunately removed.
As KFENCE was exposed to various different configs and tests, the
scheduling optimal code slowly disappeared. First because of hung task
warnings, and finally because of deadlocks when an allocation is made by
timer code with debug objects enabled. Clearly, the "fixes" were not too
friendly for devices that want to be power efficient.
Therefore, let's try a little harder to fix the hung task and deadlock
problems that we have with wait_event() + wake_up(), while remaining as
scheduling friendly and power efficient as possible.
Crucially, we need to defer the wake_up() to an irq_work, avoiding any
potential for deadlock.
The result with this series is that on the devices where we observed a
power regression, power usage returns back to baseline levels.
This patch (of 3):
On mostly-idle systems, we have observed that toggle_allocation_gate() is
a cause of frequent wake-ups, preventing an otherwise idle CPU to go into
a lower power state.
A late change in KFENCE's development, due to a potential deadlock [1],
required changing the scheduling-friendly wait_event_timeout() and
wake_up() to an open-coded wait-loop using schedule_timeout(). [1]
https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com
To avoid unnecessary wake-ups, switch to using wait_event_timeout().
Unfortunately, we still cannot use a version with direct wake_up() in
__kfence_alloc() due to the same potential for deadlock as in [1].
Instead, add a level of indirection via an irq_work that is scheduled if
we determine that the kfence_timer requires a wake_up().
Link: https://lkml.kernel.org/r/20210421105132.3965998-1-elver@google.com
Link: https://lkml.kernel.org/r/20210421105132.3965998-2-elver@google.com
Fixes: 0ce20dd840 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hdanton@sina.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After an out-of-bounds accesses, zero the guard page before re-protecting
in kfence_guarded_free(). On one hand this helps make the failure mode of
subsequent out-of-bounds accesses more deterministic, but could also
prevent certain information leaks.
Link: https://lkml.kernel.org/r/20210312121653.348518-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
'linux/compat.h' included in 'process_vm_access.c' is duplicated.
Link: https://lkml.kernel.org/r/20210306132122.220431-1-zhang.yunkai@zte.com.cn
Signed-off-by: Zhang Yunkai <zhang.yunkai@zte.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Delete/add some blank lines and some blank spaces
Link: https://lkml.kernel.org/r/20210311095015.14277-1-songqiang@uniontech.com
Signed-off-by: songqiang <songqiang@uniontech.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It can be optimized at compile time.
Link: https://lkml.kernel.org/r/1616727798-9110-1-git-send-email-zhouchuangao@vivo.com
Signed-off-by: zhouchuangao <zhouchuangao@vivo.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
strlcpy is marked as deprecated in Documentation/process/deprecated.rst,
and there is no functional difference when the caller expects truncation
(when not checking the return value). strscpy is relatively better as
it also avoids scanning the whole source string.
Link: https://lkml.kernel.org/r/1614227981-20367-1-git-send-email-daizhiyuan@phytium.com.cn
Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Self stored memmap leads to a sparse memory situation which is
unsuitable for workloads that requires large contiguous memory chunks,
so make this an opt-in which needs to be explicitly enabled.
To control this, let memory_hotplug have its own memory space, as
suggested by David, so we can add memory_hotplug.memmap_on_memory
parameter.
Link: https://lkml.kernel.org/r/20210421102701.25051-7-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Physical memory hotadd has to allocate a memmap (struct page array) for
the newly added memory section. Currently, alloc_pages_node() is used
for those allocations.
This has some disadvantages:
a) an existing memory is consumed for that purpose
(eg: ~2MB per 128MB memory section on x86_64)
This can even lead to extreme cases where system goes OOM because
the physically hotplugged memory depletes the available memory before
it is onlined.
b) if the whole node is movable then we have off-node struct pages
which has performance drawbacks.
c) It might be there are no PMD_ALIGNED chunks so memmap array gets
populated with base pages.
This can be improved when CONFIG_SPARSEMEM_VMEMMAP is enabled.
Vmemap page tables can map arbitrary memory. That means that we can
reserve a part of the physically hotadded memory to back vmemmap page
tables. This implementation uses the beginning of the hotplugged memory
for that purpose.
There are some non-obviously things to consider though.
Vmemmap pages are allocated/freed during the memory hotplug events
(add_memory_resource(), try_remove_memory()) when the memory is
added/removed. This means that the reserved physical range is not
online although it is used. The most obvious side effect is that
pfn_to_online_page() returns NULL for those pfns. The current design
expects that this should be OK as the hotplugged memory is considered a
garbage until it is onlined. For example hibernation wouldn't save the
content of those vmmemmaps into the image so it wouldn't be restored on
resume but this should be OK as there no real content to recover anyway
while metadata is reachable from other data structures (e.g. vmemmap
page tables).
The reserved space is therefore (de)initialized during the {on,off}line
events (mhp_{de}init_memmap_on_memory). That is done by extracting page
allocator independent initialization from the regular onlining path.
The primary reason to handle the reserved space outside of
{on,off}line_pages is to make each initialization specific to the
purpose rather than special case them in a single function.
As per above, the functions that are introduced are:
- mhp_init_memmap_on_memory:
Initializes vmemmap pages by calling move_pfn_range_to_zone(), calls
kasan_add_zero_shadow(), and onlines as many sections as vmemmap pages
fully span.
- mhp_deinit_memmap_on_memory:
Offlines as many sections as vmemmap pages fully span, removes the
range from zhe zone by remove_pfn_range_from_zone(), and calls
kasan_remove_zero_shadow() for the range.
The new function memory_block_online() calls mhp_init_memmap_on_memory()
before doing the actual online_pages(). Should online_pages() fail, we
clean up by calling mhp_deinit_memmap_on_memory(). Adjusting of
present_pages is done at the end once we know that online_pages()
succedeed.
On offline, memory_block_offline() needs to unaccount vmemmap pages from
present_pages() before calling offline_pages(). This is necessary because
offline_pages() tears down some structures based on the fact whether the
node or the zone become empty. If offline_pages() fails, we account back
vmemmap pages. If it succeeds, we call mhp_deinit_memmap_on_memory().
Hot-remove:
We need to be careful when removing memory, as adding and
removing memory needs to be done with the same granularity.
To check that this assumption is not violated, we check the
memory range we want to remove and if a) any memory block has
vmemmap pages and b) the range spans more than a single memory
block, we scream out loud and refuse to proceed.
If all is good and the range was using memmap on memory (aka vmemmap pages),
we construct an altmap structure so free_hugepage_table does the right
thing and calls vmem_altmap_free instead of free_pagetable.
Link: https://lkml.kernel.org/r/20210421102701.25051-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's have a single place (inspired by adjust_managed_page_count())
where we adjust present pages.
In contrast to adjust_managed_page_count(), only memory onlining or
offlining is allowed to modify the number of present pages.
Link: https://lkml.kernel.org/r/20210421102701.25051-4-osalvador@suse.de
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We want {online,offline}_pages to operate on whole memblocks, but
memmap_on_memory will poke pageblock_nr_pages aligned holes in the
beginning, which is a special case we want to allow. Relax the check to
account for that case.
Link: https://lkml.kernel.org/r/20210421102701.25051-3-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
zone_pcp_reset allegedly protects against a race with drain_pages using
local_irq_save but this is bogus. local_irq_save only operates on the
local CPU. If memory hotplug is running on CPU A and drain_pages is
running on CPU B, disabling IRQs on CPU A does not affect CPU B and
offers no protection.
This patch deletes IRQ disable/enable on the grounds that IRQs protect
nothing and assumes the existing hotplug paths guarantees the PCP cannot
be used after zone_pcp_enable(). That should be the case already
because all the pages have been freed and there is no page to put on the
PCP lists.
Link: https://lkml.kernel.org/r/20210412090346.GQ3697@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pages are pinned they can be faulted in userland and migrated, and
they can be faulted right in kernel without migration.
In either case, the pinned pages must end-up being pinnable (not
movable).
Add a new test to gup_test, to help verify that the gup/pup
(get_user_pages() / pin_user_pages()) behavior with respect to pinnable
and movable pages is reasonable and correct. Specifically, provide a
way to:
1) Verify that only "pinnable" pages are pinned. This is checked
automatically for you.
2) Verify that gup/pup performance is reasonable. This requires
comparing benchmarks between doing gup/pup on pages that have been
pre-faulted in from user space, vs. doing gup/pup on pages that are
not faulted in until gup/pup time (via FOLL_TOUCH). This decision is
controlled with the new -z command line option.
Link: https://lkml.kernel.org/r/20210215161349.246722-15-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In gup_test both gup_flags and test_flags use the same flags field.
This is broken.
Farther, in the actual gup_test.c all the passed gup_flags are erased
and unconditionally replaced with FOLL_WRITE.
Which means that test_flags are ignored, and code like this always
performs pin dump test:
155 if (gup->flags & GUP_TEST_FLAG_DUMP_PAGES_USE_PIN)
156 nr = pin_user_pages(addr, nr, gup->flags,
157 pages + i, NULL);
158 else
159 nr = get_user_pages(addr, nr, gup->flags,
160 pages + i, NULL);
161 break;
Add a new test_flags field, to allow raw gup_flags to work. Add a new
subcommand for DUMP_USER_PAGES_TEST to specify that pin test should be
performed.
Remove unconditional overwriting of gup_flags via FOLL_WRITE. But,
preserve the previous behaviour where FOLL_WRITE was the default flag,
and add a new option "-W" to unset FOLL_WRITE.
Rename flags with gup_flags.
With the fix, dump works like this:
root@virtme:/# gup_test -c
---- page #0, starting from user virt addr: 0x7f8acb9e4000
page:00000000d3d2ee27 refcount:2 mapcount:1 mapping:0000000000000000
index:0x0 pfn:0x100bcf
anon flags: 0x300000000080016(referenced|uptodate|lru|swapbacked)
raw: 0300000000080016 ffffd0e204021608 ffffd0e208df2e88 ffff8ea04243ec61
raw: 0000000000000000 0000000000000000 0000000200000000 0000000000000000
page dumped because: gup_test: dump_pages() test
DUMP_USER_PAGES_TEST: done
root@virtme:/# gup_test -c -p
---- page #0, starting from user virt addr: 0x7fd19701b000
page:00000000baed3c7d refcount:1025 mapcount:1 mapping:0000000000000000
index:0x0 pfn:0x108008
anon flags: 0x300000000080014(uptodate|lru|swapbacked)
raw: 0300000000080014 ffffd0e204200188 ffffd0e205e09088 ffff8ea04243ee71
raw: 0000000000000000 0000000000000000 0000040100000000 0000000000000000
page dumped because: gup_test: dump_pages() test
DUMP_USER_PAGES_TEST: done
Refcount shows the difference between pin vs no-pin case.
Also change type of nr from int to long, as it counts number of pages.
Link: https://lkml.kernel.org/r/20210215161349.246722-14-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pages are longterm pinned, we must migrated them out of movable zone.
The function that migrates them has a hidden loop with goto. The loop is
to retry on isolation failures, and after successful migration.
Make this code better by moving this loop to the caller.
Link: https://lkml.kernel.org/r/20210215161349.246722-13-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __get_user_pages_locked() i counts number of pages which should be
long, as long is used in all other places to contain number of pages, and
32-bit becomes increasingly small for handling page count proportional
values.
Link: https://lkml.kernel.org/r/20210215161349.246722-12-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should not pin pages in ZONE_MOVABLE. Currently, we do not pin only
movable CMA pages. Generalize the function that migrates CMA pages to
migrate all movable pages. Use is_pinnable_page() to check which pages
need to be migrated
Link: https://lkml.kernel.org/r/20210215161349.246722-10-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PF_MEMALLOC_PIN is only honored for CMA pages, extend this flag to work
for any allocations from ZONE_MOVABLE by removing __GFP_MOVABLE from
gfp_mask when this flag is passed in the current context.
Add is_pinnable_page() to return true if page is in a pinnable page. A
pinnable page is not in ZONE_MOVABLE and not of MIGRATE_CMA type.
Link: https://lkml.kernel.org/r/20210215161349.246722-8-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Function current_gfp_context() is called after fast path. However, soon
we will add more constraints which will also limit zones based on
context. Move this call into fast path, and apply the correct
constraints for all allocations.
Also update .reclaim_idx based on value returned by
current_gfp_context() because it soon will modify the allowed zones.
Note:
With this patch we will do one extra current->flags load during fast path,
but we already load current->flags in fast-path:
__alloc_pages()
prepare_alloc_pages()
current_alloc_flags(gfp_mask, *alloc_flags);
Later, when we add the zone constrain logic to current_gfp_context() we
will be able to remove current->flags load from current_alloc_flags, and
therefore return fast-path to the current performance level.
Link: https://lkml.kernel.org/r/20210215161349.246722-7-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PF_MEMALLOC_NOCMA is used ot guarantee that the allocator will not
return pages that might belong to CMA region. This is currently used
for long term gup to make sure that such pins are not going to be done
on any CMA pages.
When PF_MEMALLOC_NOCMA has been introduced we haven't realized that it
is focusing on CMA pages too much and that there is larger class of
pages that need the same treatment. MOVABLE zone cannot contain any
long term pins as well so it makes sense to reuse and redefine this flag
for that usecase as well. Rename the flag to PF_MEMALLOC_PIN which
defines an allocation context which can only get pages suitable for
long-term pins.
Also rename: memalloc_nocma_save()/memalloc_nocma_restore to
memalloc_pin_save()/memalloc_pin_restore() and make the new functions
common.
[rppt@linux.ibm.com: fix renaming of PF_MEMALLOC_NOCMA to PF_MEMALLOC_PIN]
Link: https://lkml.kernel.org/r/20210331163816.11517-1-rppt@kernel.org
Link: https://lkml.kernel.org/r/20210215161349.246722-6-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is still possible that we pin movable CMA pages if there are
isolation errors and cma_page_list stays empty when we check again.
Check for isolation errors, and return success only when there are no
isolation errors, and cma_page_list is empty after checking.
Because isolation errors are transient, we retry indefinitely.
Link: https://lkml.kernel.org/r/20210215161349.246722-5-pasha.tatashin@soleen.com
Fixes: 9a4e9f3b2d ("mm: update get_user_pages_longterm to migrate pages allocated from CMA region")
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When migration failure occurs, we still pin pages, which means that we
may pin CMA movable pages which should never be the case.
Instead return an error without pinning pages when migration failure
happens.
No need to retry migrating, because migrate_pages() already retries 10
times.
Link: https://lkml.kernel.org/r/20210215161349.246722-4-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When pages are isolated in check_and_migrate_movable_pages() we skip
compound number of pages at a time. However, as Jason noted, it is not
necessary correct that pages[i] corresponds to the pages that we
skipped. This is because it is possible that the addresses in this
range had split_huge_pmd()/split_huge_pud(), and these functions do not
update the compound page metadata.
The problem can be reproduced if something like this occurs:
1. User faulted huge pages.
2. split_huge_pmd() was called for some reason
3. User has unmapped some sub-pages in the range
4. User tries to longterm pin the addresses.
The resulting pages[i] might end-up having pages which are not compound
size page aligned.
Link: https://lkml.kernel.org/r/20210215161349.246722-3-pasha.tatashin@soleen.com
Fixes: aa712399c1 ("mm/gup: speed up check_and_migrate_cma_pages() on huge page")
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reported-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "prohibit pinning pages in ZONE_MOVABLE", v11.
When page is pinned it cannot be moved and its physical address stays
the same until pages is unpinned.
This is useful functionality to allows userland to implementation DMA
access. For example, it is used by vfio in vfio_pin_pages().
However, this functionality breaks memory hotplug/hotremove assumptions
that pages in ZONE_MOVABLE can always be migrated.
This patch series fixes this issue by forcing new allocations during
page pinning to omit ZONE_MOVABLE, and also to migrate any existing
pages from ZONE_MOVABLE during pinning.
It uses the same scheme logic that is currently used by CMA, and extends
the functionality for all allocations.
For more information read the discussion [1] about this problem.
[1] https://lore.kernel.org/lkml/CA+CK2bBffHBxjmb9jmSKacm0fJMinyt3Nhk8Nx6iudcQSj80_w@mail.gmail.com
This patch (of 14):
In order not to fragment CMA the pinned pages are migrated. However, they
are migrated to ZONE_MOVABLE, which also should not have pinned pages.
Remove __GFP_MOVABLE, so pages can be migrated to zones where pinning is
allowed.
Link: https://lkml.kernel.org/r/20210215161349.246722-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20210215161349.246722-2-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Rientjes <rientjes@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Simplify the code by using a temporary and reduce the object size by
using a single call to pr_cont(). Reverse a test and unindent a block
too.
$ size mm/util.o* (defconfig x86-64)
text data bss dec hex filename
7419 372 40 7831 1e97 mm/util.o.new
7477 372 40 7889 1ed1 mm/util.o.old
Link: https://lkml.kernel.org/r/a6e105886338f68afd35f7a13d73bcf06b0cc732.camel@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: some config cleanups", v2.
This series contains config cleanup patches which reduces code
duplication across platforms and also improves maintainability. There
is no functional change intended with this series.
This patch (of 6):
ARCH_HAS_CACHE_LINE_SIZE config has duplicate definitions on platforms
that subscribe it. Instead, just make it a generic option which can be
selected on applicable platforms. This change reduces code duplication
and makes it cleaner.
Link: https://lkml.kernel.org/r/1617259448-22529-1-git-send-email-anshuman.khandual@arm.com
Link: https://lkml.kernel.org/r/1617259448-22529-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Vineet Gupta <vgupta@synopsys.com> [arc]
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Palmer Dabbelt <palmerdabbelt@google.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since this call uses MAP_FIXED, do_mmap() will munlock the necessary
range. There is also an error in the loop test expression which will
evaluate as false and the loop body has never execute.
Link: https://lkml.kernel.org/r/20210223235010.2296915-1-Liam.Howlett@Oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help with debugging the sluggishness caused by TLB miss/reload, we
introduce monotonic hugepage [direct mapped] split event counts since
system state: SYSTEM_RUNNING to be displayed as part of /proc/vmstat in
x86 servers
The lifetime split event information will be displayed at the bottom of
/proc/vmstat
....
swap_ra 0
swap_ra_hit 0
direct_map_level2_splits 94
direct_map_level3_splits 4
nr_unstable 0
....
One of the many lasting sources of direct hugepage splits is kernel
tracing (kprobes, tracepoints).
Note that the kernel's code segment [512 MB] points to the same physical
addresses that have been already mapped in the kernel's direct mapping
range.
Source : Documentation/x86/x86_64/mm.rst
When we enable kernel tracing, the kernel has to modify
attributes/permissions of the text segment hugepages that are direct
mapped causing them to split.
Kernel's direct mapped hugepages do not coalesce back after split and
remain in place for the remainder of the lifetime.
An instance of direct page splits when we turn on dynamic kernel tracing
....
cat /proc/vmstat | grep -i direct_map_level
direct_map_level2_splits 784
direct_map_level3_splits 12
bpftrace -e 'tracepoint:raw_syscalls:sys_enter { @ [pid, comm] =
count(); }'
cat /proc/vmstat | grep -i
direct_map_level
direct_map_level2_splits 789
direct_map_level3_splits 12
....
Link: https://lkml.kernel.org/r/20210218235744.1040634-1-saravanand@fb.com
Signed-off-by: Saravanan D <saravanand@fb.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All of the VM NUMA stats are event counts, incremented never
decremented: it is not very useful for vmstat_refresh() to check them
throughout their first aeon, then warn on them throughout their next.
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2102251514110.13363@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmstat_refresh() can occasionally catch nr_zone_write_pending and
nr_writeback when they are transiently negative. The reason is partly
that the interrupt which decrements them in test_clear_page_writeback()
can come in before __test_set_page_writeback() got to increment them;
but transient negatives are still seen even when that is prevented, and
I am not yet certain why (but see Roman's note below). Those stats are
not buggy, they have never been seen to drift away from 0 permanently:
so just avoid the annoyance of showing a warning on them.
Similarly avoid showing a warning on nr_free_cma: CMA users have seen
that one reported negative from /proc/sys/vm/stat_refresh too, but it
does drift away permanently: I believe that's because its incrementation
and decrementation are decided by page migratetype, but the migratetype
of a pageblock is not guaranteed to be constant.
Roman Gushchin points out:
"For performance reasons, vmstat counters are incremented and
decremented using per-cpu batches. vmstat_refresh() flushes the
per-cpu batches on all CPUs, to get values as accurate as possible;
but this method is not atomic, so the resulting value is not always
precise.
As a consequence, for those counters whose actual value is close to 0,
a small negative value may occasionally be reported. If the value is
small and the state is transient, it is not an indication of an error"
Link: https://lore.kernel.org/linux-mm/20200714173747.3315771-1-guro@fb.com/
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2103012158540.7549@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Roman Gushchin <guro@fb.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
EINVAL was good for drawing the refresher's attention to a warning in
dmesg, but became very tiresome when running test suites scripted with
"set -e": an underflow from a bug in one feature would cause unrelated
tests much later to fail, just because their /proc/sys/vm/stat_refresh
touch failed with that error. Stop doing that.
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2102251510410.13363@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In v4.7 commit 52b6f46bc1 ("mm: /proc/sys/vm/stat_refresh to force
vmstat update") introduced vmstat_refresh(), with its vmstat underflow
checking; then in v4.8 commit 75ef718405 ("mm, vmstat: add
infrastructure for per-node vmstats") split NR_VM_NODE_STAT_ITEMS out of
NR_VM_ZONE_STAT_ITEMS without updating vmstat_refresh(): so it has been
missing out much of the vmstat underflow checking ever since.
Reinstate it.
Thanks to Roman Gushchin <guro@fb.com> for tangentially pointing this out.
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2102251502240.13363@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 6514d511db ("ksm: singly-linked rmap_list") was merged,
remove_trailing_rmap_items() doesn't use the 'mm_slot' parameter. So
remove it, and update caller accordingly.
Link: https://lkml.kernel.org/r/20210330121320.1693474-1-cy.fan@huawei.com
Signed-off-by: Chengyang Fan <cy.fan@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When removing rmap_item from stable tree, STABLE_FLAG of rmap_item is
cleared with head reserved. So the following scenario might happen: For
ksm page with rmap_item1:
cmp_and_merge_page
stable_node->head = &migrate_nodes;
remove_rmap_item_from_tree, but head still equal to stable_node;
try_to_merge_with_ksm_page failed;
return;
For the same ksm page with rmap_item2, stable node migration succeed this
time. The stable_node->head does not equal to migrate_nodes now. For ksm
page with rmap_item1 again:
cmp_and_merge_page
stable_node->head != &migrate_nodes && rmap_item->head == stable_node
return;
We would miss the rmap_item for stable_node and might result in failed
rmap_walk_ksm(). Fix this by set rmap_item->head to NULL when rmap_item
is removed from stable tree.
Link: https://lkml.kernel.org/r/20210330140228.45635-5-linmiaohe@huawei.com
Fixes: 4146d2d673 ("ksm: make !merge_across_nodes migration safe")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The macro KSM_FLAG_MASK is used in rmap_walk_ksm() only. So we can
replace ~KSM_FLAG_MASK with PAGE_MASK to remove this dedicated macro and
make code more consistent because PAGE_MASK is used elsewhere in this
file.
Link: https://lkml.kernel.org/r/20210330140228.45635-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's unnecessary to lock the page when get ksm page if we're going to
remove the rmap item as page migration is irrelevant in this case. Use
GET_KSM_PAGE_NOLOCK instead to save some page lock cycles.
Link: https://lkml.kernel.org/r/20210330140228.45635-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Cleanup and fixup for ksm".
This series contains cleanups to remove unnecessary VM_BUG_ON_PAGE and
dedicated macro KSM_FLAG_MASK. Also this fixes potential missing
rmap_item for stable_node which would result in failed rmap_walk_ksm().
More details can be found in the respective changelogs.
This patch (of 4):
The same VM_BUG_ON_PAGE() check is already done in the callee. Remove
these extra caller one to simplify code slightly.
Link: https://lkml.kernel.org/r/20210330140228.45635-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210330140228.45635-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
size_t in cma_alloc is confusing since it makes people think it's byte
count, not pages. Change it to unsigned long[1].
The unsigned int in cma_release is also not right so change it. Since we
have unsigned long in cma_release, free_contig_range should also respect
it.
[1] 67a2e213e7, mm: cma: fix incorrect type conversion for size during dma allocation
Link: https://lore.kernel.org/linux-mm/20210324043434.GP1719932@casper.infradead.org/
Link: https://lkml.kernel.org/r/20210331164018.710560-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There were missing places to add cma instance name. To identify each CMA
instance, let's add the name for every cma trace. This patch also changes
the existing cma_trace_alloc to cma_trace_finish since we have
cma_alloc_start[1].
[1] https://lore.kernel.org/linux-mm/20210324160740.15901-1-georgi.djakov@linaro.org
Link: https://lkml.kernel.org/r/20210330220237.748899-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Liam Mark <lmark@codeaurora.org>
Cc: Georgi Djakov <georgi.djakov@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since CMA is getting used more widely, it's more important to keep
monitoring CMA statistics for system health since it's directly related to
user experience.
This patch introduces sysfs statistics for CMA, in order to provide some
basic monitoring of the CMA allocator.
* the number of CMA page successful allocations
* the number of CMA page allocation failures
These two values allow the user to calcuate the allocation
failure rate for each CMA area.
e.g.)
/sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail]
/sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail]
/sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail]
The cma_stat was intentionally allocated by dynamic allocation
to harmonize with kobject lifetime management.
https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/
Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org
Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Tested-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: John Dias <joaodias@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cma and migrate trace events to enable CMA allocation performance to
be measured via ftrace.
[georgi.djakov@linaro.org: add the CMA instance name to the cma_alloc_start trace event]
Link: https://lkml.kernel.org/r/20210326155414.25006-1-georgi.djakov@linaro.org
Link: https://lkml.kernel.org/r/20210324160740.15901-1-georgi.djakov@linaro.org
Signed-off-by: Liam Mark <lmark@codeaurora.org>
Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we did not reserve extra CMA memory, the log buffer can be easily
filled up by CMA failure warning when the devices calling
dmam_alloc_coherent() to alloc DMA memory. Thus we can use
pr_err_ratelimited() instead to reduce the duplicate CMA warning.
Link: https://lkml.kernel.org/r/ce2251ef49e1727a9a40531d1996660b05462bd2.1615279825.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since CMA is used more widely, it's worth to have CMA allocation
statistics into vmstat. With it, we could know how agressively system
uses cma allocation and how often it fails.
Link: https://lkml.kernel.org/r/20210302183346.3707237-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit c77c5cbafe.
Since commit c77c5cbafe ("mm: migrate: skip shared exec THP for NUMA
balancing"), the NUMA balancing would skip shared exec transhuge page.
But this enhancement is not suitable for transhuge page. Because it's
required that page_mapcount() must be 1 due to no migration pte dance is
done here. On the other hand, the shared exec transhuge page will leave
the migrate_misplaced_page() with pte entry untouched and page locked.
Thus pagefault for NUMA will be triggered again and deadlock occurs when
we start waiting for the page lock held by ourselves.
Yang Shi said:
"Thanks for catching this. By relooking the code I think the other
important reason for removing this is
migrate_misplaced_transhuge_page() actually can't see shared exec
file THP at all since page_lock_anon_vma_read() is called before
and if page is not anonymous page it will just restore the PMD
without migrating anything.
The pages for private mapped file vma may be anonymous pages due to
COW but they can't be THP so it won't trigger THP numa fault at all. I
think this is why no bug was reported. I overlooked this in the first
place."
Link: https://lkml.kernel.org/r/20210325131524.48181-6-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's more recommended to use helper function migrate_vma_collect_skip() to
skip the unexpected case and it also helps remove some duplicated codes.
Move migrate_vma_collect_skip() above migrate_vma_collect_hole() to avoid
compiler warning.
Link: https://lkml.kernel.org/r/20210325131524.48181-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the zone device page does not belong to un-addressable device memory,
the variable entry will be uninitialized and lead to indeterminate pte
entry ultimately. Fix this unexpected case and warn about it.
Link: https://lkml.kernel.org/r/20210325131524.48181-4-linmiaohe@huawei.com
Fixes: df6ad69838 ("mm/device-public-memory: device memory cache coherent with CPU")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's guaranteed that in the 'else' case of the rc == MIGRATEPAGE_SUCCESS
check, rc does not equal to MIGRATEPAGE_SUCCESS. Remove this unnecessary
check.
Link: https://lkml.kernel.org/r/20210325131524.48181-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Cleanup and fixup for mm/migrate.c", v3.
This series contains cleanups to remove unnecessary VM_BUG_ON_PAGE and rc
!= MIGRATEPAGE_SUCCESS check. Also use helper function to remove some
duplicated codes. What's more, this fixes potential deadlock in NUMA
balancing shared exec THP case and so on. More details can be found in
the respective changelogs.
This patch (of 5):
The putback_movable_page() is just called by putback_movable_pages() and
we know the page is locked and both PageMovable() and PageIsolated() is
checked right before calling putback_movable_page(). So we make it static
and remove all the 3 VM_BUG_ON_PAGE().
Link: https://lkml.kernel.org/r/20210325131524.48181-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210325131524.48181-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages containing buffer_heads that are in one of the per-CPU buffer_head
LRU caches will be pinned and thus cannot be migrated. This can prevent
CMA allocations from succeeding, which are often used on platforms with
co-processors (such as a DSP) that can only use physically contiguous
memory. It can also prevent memory hot-unplugging from succeeding,
which involves migrating at least MIN_MEMORY_BLOCK_SIZE bytes of memory,
which ranges from 8 MiB to 1 GiB based on the architecture in use.
Correspondingly, invalidate the BH LRU caches before a migration starts
and stop any buffer_head from being cached in the LRU caches, until
migration has finished.
Link: https://lkml.kernel.org/r/20210319175127.886124-3-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Reported-by: Laura Abbott <labbott@kernel.org>
Tested-by: Oliver Sang <oliver.sang@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: John Dias <joaodias@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, migrate_[prep|finish] is merely a wrapper of
lru_cache_[disable|enable]. There is not much to gain from having
additional abstraction.
Use lru_cache_[disable|enable] instead of migrate_[prep|finish], which
would be more descriptive.
note: migrate_prep_local in compaction.c changed into lru_add_drain to
avoid CPU schedule cost with involving many other CPUs to keep old
behavior.
Link: https://lkml.kernel.org/r/20210319175127.886124-2-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Chris Goldsworthy <cgoldswo@codeaurora.org>
Cc: John Dias <joaodias@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Oliver Sang <oliver.sang@intel.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LRU pagevec holds refcount of pages until the pagevec are drained. It
could prevent migration since the refcount of the page is greater than
the expection in migration logic. To mitigate the issue, callers of
migrate_pages drains LRU pagevec via migrate_prep or lru_add_drain_all
before migrate_pages call.
However, it's not enough because pages coming into pagevec after the
draining call still could stay at the pagevec so it could keep
preventing page migration. Since some callers of migrate_pages have
retrial logic with LRU draining, the page would migrate at next trail
but it is still fragile in that it doesn't close the fundamental race
between upcoming LRU pages into pagvec and migration so the migration
failure could cause contiguous memory allocation failure in the end.
To close the race, this patch disables lru caches(i.e, pagevec) during
ongoing migration until migrate is done.
Since it's really hard to reproduce, I measured how many times
migrate_pages retried with force mode(it is about a fallback to a sync
migration) with below debug code.
int migrate_pages(struct list_head *from, new_page_t get_new_page,
..
..
if (rc && reason == MR_CONTIG_RANGE && pass > 2) {
printk(KERN_ERR, "pfn 0x%lx reason %d", page_to_pfn(page), rc);
dump_page(page, "fail to migrate");
}
The test was repeating android apps launching with cma allocation in
background every five seconds. Total cma allocation count was about 500
during the testing. With this patch, the dump_page count was reduced
from 400 to 30.
The new interface is also useful for memory hotplug which currently
drains lru pcp caches after each migration failure. This is rather
suboptimal as it has to disrupt others running during the operation.
With the new interface the operation happens only once. This is also in
line with pcp allocator cache which are disabled for the offlining as
well.
Link: https://lkml.kernel.org/r/20210319175127.886124-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oliver Sang <oliver.sang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
By definition, COMPACT[STALL|FAIL] events needs to be counted when there
is 'At least in one zone compaction wasn't deferred or skipped from the
direct compaction'. And when compaction is skipped or deferred,
COMPACT_SKIPPED will be returned but it will still go and update these
compaction events which is wrong in the sense that COMPACT[STALL|FAIL]
is counted without even trying the compaction.
Correct this by skipping the counting of these events when
COMPACT_SKIPPED is returned for compaction. This indirectly also avoid
the unnecessary try into the get_page_from_freelist() when compaction is
not even tried.
There is a corner case where compaction is skipped but still count
COMPACTSTALL event, which is that IRQ came and freed the page and the
same is captured in capture_control.
Link: https://lkml.kernel.org/r/1613151184-21213-1-git-send-email-charante@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The sysctl_compact_memory is mostly unused in mm/compaction.c It just
acts as a place holder for sysctl to store .data.
But the .data itself is not needed here.
So we can get ride of this variable completely and make .data as NULL.
This will also eliminate the extern declaration from header file. No
functionality is broken or changed this way.
Link: https://lkml.kernel.org/r/1614852224-14671-1-git-send-email-pintu@codeaurora.org
Signed-off-by: Pintu Kumar <pintu@codeaurora.org>
Signed-off-by: Pintu Agarwal <pintu.ping@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The number of deferred objects might get windup to an absurd number, and
it results in clamp of slab objects. It is undesirable for sustaining
workingset.
So shrink deferred objects proportional to priority and cap nr_deferred
to twice of cache items.
The idea is borrowed from Dave Chinner's patch:
https://lore.kernel.org/linux-xfs/20191031234618.15403-13-david@fromorbit.com/
Tested with kernel build and vfs metadata heavy workload in our
production environment, no regression is spotted so far.
Link: https://lkml.kernel.org/r/20210311190845.9708-14-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now shrinker's nr_deferred is per memcg for memcg aware shrinkers, add
to parent's corresponding nr_deferred when memcg offline.
Link: https://lkml.kernel.org/r/20210311190845.9708-13-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now nr_deferred is available on per memcg level for memcg aware
shrinkers, so don't need allocate shrinker->nr_deferred for such
shrinkers anymore.
The prealloc_memcg_shrinker() would return -ENOSYS if !CONFIG_MEMCG or
memcg is disabled by kernel command line, then shrinker's
SHRINKER_MEMCG_AWARE flag would be cleared. This makes the
implementation of this patch simpler.
Link: https://lkml.kernel.org/r/20210311190845.9708-12-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use per memcg's nr_deferred for memcg aware shrinkers. The shrinker's
nr_deferred will be used in the following cases:
1. Non memcg aware shrinkers
2. !CONFIG_MEMCG
3. memcg is disabled by boot parameter
Link: https://lkml.kernel.org/r/20210311190845.9708-11-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the number of deferred objects are per shrinker, but some
slabs, for example, vfs inode/dentry cache are per memcg, this would
result in poor isolation among memcgs.
The deferred objects typically are generated by __GFP_NOFS allocations,
one memcg with excessive __GFP_NOFS allocations may blow up deferred
objects, then other innocent memcgs may suffer from over shrink,
excessive reclaim latency, etc.
For example, two workloads run in memcgA and memcgB respectively,
workload in B is vfs heavy workload. Workload in A generates excessive
deferred objects, then B's vfs cache might be hit heavily (drop half of
caches) by B's limit reclaim or global reclaim.
We observed this hit in our production environment which was running vfs
heavy workload shown as the below tracing log:
<...>-409454 [016] .... 28286961.747146: mm_shrink_slab_start: super_cache_scan+0x0/0x1a0 ffff9a83046f3458:
nid: 1 objects to shrink 3641681686040 gfp_flags GFP_HIGHUSER_MOVABLE|__GFP_ZERO pgs_scanned 1 lru_pgs 15721
cache items 246404277 delta 31345 total_scan 123202138
<...>-409454 [022] .... 28287105.928018: mm_shrink_slab_end: super_cache_scan+0x0/0x1a0 ffff9a83046f3458:
nid: 1 unused scan count 3641681686040 new scan count 3641798379189 total_scan 602
last shrinker return val 123186855
The vfs cache and page cache ratio was 10:1 on this machine, and half of
caches were dropped. This also resulted in significant amount of page
caches were dropped due to inodes eviction.
Make nr_deferred per memcg for memcg aware shrinkers would solve the
unfairness and bring better isolation.
The following patch will add nr_deferred to parent memcg when memcg
offline. To preserve nr_deferred when reparenting memcgs to root, root
memcg needs shrinker_info allocated too.
When memcg is not enabled (!CONFIG_MEMCG or memcg disabled), the
shrinker's nr_deferred would be used. And non memcg aware shrinkers use
shrinker's nr_deferred all the time.
Link: https://lkml.kernel.org/r/20210311190845.9708-10-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently registered shrinker is indicated by non-NULL
shrinker->nr_deferred. This approach is fine with nr_deferred at the
shrinker level, but the following patches will move MEMCG_AWARE
shrinkers' nr_deferred to memcg level, so their shrinker->nr_deferred
would always be NULL. This would prevent the shrinkers from
unregistering correctly.
Remove SHRINKER_REGISTERING since we could check if shrinker is
registered successfully by the new flag.
Link: https://lkml.kernel.org/r/20210311190845.9708-9-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The shrinker_info is dereferenced in a couple of places via
rcu_dereference_protected with different calling conventions, for
example, using mem_cgroup_nodeinfo helper or dereferencing
memcg->nodeinfo[nid]->shrinker_info. And the later patch will add more
dereference places.
So extract the dereference into a helper to make the code more readable.
No functional change.
[akpm@linux-foundation.org: retain rcu_dereference_protected() in free_shrinker_info(), per Hugh]
Link: https://lkml.kernel.org/r/20210311190845.9708-8-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following patch is going to add nr_deferred into shrinker_map, the
change will make shrinker_map not only include map anymore, so rename it
to "memcg_shrinker_info". And this should make the patch adding
nr_deferred cleaner and readable and make review easier. Also remove the
"memcg_" prefix.
Link: https://lkml.kernel.org/r/20210311190845.9708-7-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using kvfree_rcu() to free the old shrinker_maps instead of call_rcu().
We don't have to define a dedicated callback for call_rcu() anymore.
Link: https://lkml.kernel.org/r/20210311190845.9708-6-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Both memcg_shrinker_map_size and shrinker_nr_max is maintained, but
actually the map size can be calculated via shrinker_nr_max, so it seems
unnecessary to keep both. Remove memcg_shrinker_map_size since
shrinker_nr_max is also used by iterating the bit map.
Link: https://lkml.kernel.org/r/20210311190845.9708-5-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since memcg_shrinker_map_size just can be changed under holding
shrinker_rwsem exclusively, the read side can be protected by holding read
lock, so it sounds superfluous to have a dedicated mutex.
Kirill Tkhai suggested use write lock since:
* We want the assignment to shrinker_maps is visible for shrink_slab_memcg().
* The rcu_dereference_protected() dereferrencing in shrink_slab_memcg(), but
in case of we use READ lock in alloc_shrinker_maps(), the dereferrencing
is not actually protected.
* READ lock makes alloc_shrinker_info() racy against memory allocation fail.
alloc_shrinker_info()->free_shrinker_info() may free memory right after
shrink_slab_memcg() dereferenced it. You may say
shrink_slab_memcg()->mem_cgroup_online() protects us from it? Yes, sure,
but this is not the thing we want to remember in the future, since this
spreads modularity.
And a test with heavy paging workload didn't show write lock makes things worse.
Link: https://lkml.kernel.org/r/20210311190845.9708-4-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The shrinker map management is not purely memcg specific, it is at the
intersection between memory cgroup and shrinkers. It's allocation and
assignment of a structure, and the only memcg bit is the map is being
stored in a memcg structure. So move the shrinker_maps handling code
into vmscan.c for tighter integration with shrinker code, and remove the
"memcg_" prefix. There is no functional change.
Link: https://lkml.kernel.org/r/20210311190845.9708-3-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Make shrinker's nr_deferred memcg aware", v10.
Recently huge amount one-off slab drop was seen on some vfs metadata
heavy workloads, it turned out there were huge amount accumulated
nr_deferred objects seen by the shrinker.
On our production machine, I saw absurd number of nr_deferred shown as
the below tracing result:
<...>-48776 [032] .... 27970562.458916: mm_shrink_slab_start:
super_cache_scan+0x0/0x1a0 ffff9a83046f3458: nid: 0 objects to shrink
2531805877005 gfp_flags GFP_HIGHUSER_MOVABLE pgs_scanned 32 lru_pgs
9300 cache items 1667 delta 11 total_scan 833
There are 2.5 trillion deferred objects on one node, assuming all of them
are dentry (192 bytes per object), so the total size of deferred on one
node is ~480TB. It is definitely ridiculous.
I managed to reproduce this problem with kernel build workload plus
negative dentry generator.
First step, run the below kernel build test script:
NR_CPUS=`cat /proc/cpuinfo | grep -e processor | wc -l`
cd /root/Buildarea/linux-stable
for i in `seq 1500`; do
cgcreate -g memory:kern_build
echo 4G > /sys/fs/cgroup/memory/kern_build/memory.limit_in_bytes
echo 3 > /proc/sys/vm/drop_caches
cgexec -g memory:kern_build make clean > /dev/null 2>&1
cgexec -g memory:kern_build make -j$NR_CPUS > /dev/null 2>&1
cgdelete -g memory:kern_build
done
Then run the below negative dentry generator script:
NR_CPUS=`cat /proc/cpuinfo | grep -e processor | wc -l`
mkdir /sys/fs/cgroup/memory/test
echo $$ > /sys/fs/cgroup/memory/test/tasks
for i in `seq $NR_CPUS`; do
while true; do
FILE=`head /dev/urandom | tr -dc A-Za-z0-9 | head -c 64`
cat $FILE 2>/dev/null
done &
done
Then kswapd will shrink half of dentry cache in just one loop as the below
tracing result showed:
kswapd0-475 [028] .... 305968.252561: mm_shrink_slab_start: super_cache_scan+0x0/0x190 0000000024acf00c: nid: 0 objects to shrink 4994376020 gfp_flags GFP_KERNEL cache items 93689873 delta 45746 total_scan 46844936 priority 12
kswapd0-475 [021] .... 306013.099399: mm_shrink_slab_end: super_cache_scan+0x0/0x190 0000000024acf00c: nid: 0 unused scan count 4994376020 new scan count 4947576838 total_scan 8 last shrinker return val 46844928
There were huge number of deferred objects before the shrinker was called,
the behavior does match the code but it might be not desirable from the
user's stand of point.
The excessive amount of nr_deferred might be accumulated due to various
reasons, for example:
* GFP_NOFS allocation
* Significant times of small amount scan (< scan_batch, 1024 for vfs
metadata)
However the LRUs of slabs are per memcg (memcg-aware shrinkers) but the
deferred objects is per shrinker, this may have some bad effects:
* Poor isolation among memcgs. Some memcgs which happen to have
frequent limit reclaim may get nr_deferred accumulated to a huge number,
then other innocent memcgs may take the fall. In our case the main
workload was hit.
* Unbounded deferred objects. There is no cap for deferred objects, it
can outgrow ridiculously as the tracing result showed.
* Easy to get out of control. Although shrinkers take into account
deferred objects, but it can go out of control easily. One
misconfigured memcg could incur absurd amount of deferred objects in a
period of time.
* Sort of reclaim problems, i.e. over reclaim, long reclaim latency,
etc. There may be hundred GB slab caches for vfe metadata heavy
workload, shrink half of them may take minutes. We observed latency
spike due to the prolonged reclaim.
These issues also have been discussed in
https://lore.kernel.org/linux-mm/20200916185823.5347-1-shy828301@gmail.com/.
The patchset is the outcome of that discussion.
So this patchset makes nr_deferred per-memcg to tackle the problem. It
does:
* Have memcg_shrinker_deferred per memcg per node, just like what
shrinker_map does. Instead it is an atomic_long_t array, each element
represent one shrinker even though the shrinker is not memcg aware, this
simplifies the implementation. For memcg aware shrinkers, the deferred
objects are just accumulated to its own memcg. The shrinkers just see
nr_deferred from its own memcg. Non memcg aware shrinkers still use
global nr_deferred from struct shrinker.
* Once the memcg is offlined, its nr_deferred will be reparented to its
parent along with LRUs.
* The root memcg has memcg_shrinker_deferred array too. It simplifies
the handling of reparenting to root memcg.
* Cap nr_deferred to 2x of the length of lru. The idea is borrowed from
Dave Chinner's series
(https://lore.kernel.org/linux-xfs/20191031234618.15403-1-david@fromorbit.com/)
The downside is each memcg has to allocate extra memory to store the
nr_deferred array. On our production environment, there are typically
around 40 shrinkers, so each memcg needs ~320 bytes. 10K memcgs would
need ~3.2MB memory. It seems fine.
We have been running the patched kernel on some hosts of our fleet (test
and production) for months, it works very well. The monitor data shows
the working set is sustained as expected.
This patch (of 13):
The tracepoint's nid should show what node the shrink happens on, the
start tracepoint uses nid from shrinkctl, but the nid might be set to 0
before end tracepoint if the shrinker is not NUMA aware, so the tracing
log may show the shrink happens on one node but end up on the other node.
It seems confusing. And the following patch will remove using nid
directly in do_shrink_slab(), this patch also helps cleanup the code.
Link: https://lkml.kernel.org/r/20210311190845.9708-1-shy828301@gmail.com
Link: https://lkml.kernel.org/r/20210311190845.9708-2-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RECLAIM_ZONE was assumed to be unused because it was never explicitly
used in the kernel. However, there were a number of places where it was
checked implicitly by checking 'node_reclaim_mode' for a zero value.
These zero checks are not great because it is not obvious what a zero
mode *means* in the code. Replace them with a helper which makes it
more obvious: node_reclaim_enabled().
This helper also provides a handy place to explicitly check the
RECLAIM_ZONE bit itself. Check it explicitly there to make it more
obvious where the bit can affect behavior.
This should have no functional impact.
Link: https://lkml.kernel.org/r/20210219172559.BF589C44@viggo.jf.intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: "Tobin C. Harding" <tobin@kernel.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Daniel Wagner <dwagner@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is currently not obvious that the RECLAIM_* bits are part of the uapi
since they are defined in vmscan.c. Move them to a uapi header to make it
obvious.
This should have no functional impact.
Link: https://lkml.kernel.org/r/20210219172557.08074910@viggo.jf.intel.com
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Ben Widawsky <ben.widawsky@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Daniel Wagner <dwagner@suse.de>
Cc: "Tobin C. Harding" <tobin@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This ioctl is how userspace ought to resolve "minor" userfaults. The
idea is, userspace is notified that a minor fault has occurred. It
might change the contents of the page using its second non-UFFD mapping,
or not. Then, it calls UFFDIO_CONTINUE to tell the kernel "I have
ensured the page contents are correct, carry on setting up the mapping".
Note that it doesn't make much sense to use UFFDIO_{COPY,ZEROPAGE} for
MINOR registered VMAs. ZEROPAGE maps the VMA to the zero page; but in
the minor fault case, we already have some pre-existing underlying page.
Likewise, UFFDIO_COPY isn't useful if we have a second non-UFFD mapping.
We'd just use memcpy() or similar instead.
It turns out hugetlb_mcopy_atomic_pte() already does very close to what
we want, if an existing page is provided via `struct page **pagep`. We
already special-case the behavior a bit for the UFFDIO_ZEROPAGE case, so
just extend that design: add an enum for the three modes of operation,
and make the small adjustments needed for the MCOPY_ATOMIC_CONTINUE
case. (Basically, look up the existing page, and avoid adding the
existing page to the page cache or calling set_page_huge_active() on
it.)
Link: https://lkml.kernel.org/r/20210301222728.176417-5-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Price <steven.price@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For background, mm/userfaultfd.c provides a general mcopy_atomic
implementation. But some types of memory (i.e., hugetlb and shmem) need
a slightly different implementation, so they provide their own helpers
for this. In other words, userfaultfd is the only caller of these
functions.
This patch achieves two things:
1. Don't spend time compiling code which will end up never being
referenced anyway (a small build time optimization).
2. In patches later in this series, we extend the signature of these
helpers with UFFD-specific state (a mode enumeration). Once this
happens, we *have to* either not compile the helpers, or
unconditionally define the UFFD-only state (which seems messier to me).
This includes the declarations in the headers, as otherwise they'd
yield warnings about implicitly defining the type of those arguments.
Link: https://lkml.kernel.org/r/20210301222728.176417-4-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Price <steven.price@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "userfaultfd: add minor fault handling", v9.
Overview
========
This series adds a new userfaultfd feature, UFFD_FEATURE_MINOR_HUGETLBFS.
When enabled (via the UFFDIO_API ioctl), this feature means that any
hugetlbfs VMAs registered with UFFDIO_REGISTER_MODE_MISSING will *also*
get events for "minor" faults. By "minor" fault, I mean the following
situation:
Let there exist two mappings (i.e., VMAs) to the same page(s) (shared
memory). One of the mappings is registered with userfaultfd (in minor
mode), and the other is not. Via the non-UFFD mapping, the underlying
pages have already been allocated & filled with some contents. The UFFD
mapping has not yet been faulted in; when it is touched for the first
time, this results in what I'm calling a "minor" fault. As a concrete
example, when working with hugetlbfs, we have huge_pte_none(), but
find_lock_page() finds an existing page.
We also add a new ioctl to resolve such faults: UFFDIO_CONTINUE. The idea
is, userspace resolves the fault by either a) doing nothing if the
contents are already correct, or b) updating the underlying contents using
the second, non-UFFD mapping (via memcpy/memset or similar, or something
fancier like RDMA, or etc...). In either case, userspace issues
UFFDIO_CONTINUE to tell the kernel "I have ensured the page contents are
correct, carry on setting up the mapping".
Use Case
========
Consider the use case of VM live migration (e.g. under QEMU/KVM):
1. While a VM is still running, we copy the contents of its memory to a
target machine. The pages are populated on the target by writing to the
non-UFFD mapping, using the setup described above. The VM is still running
(and therefore its memory is likely changing), so this may be repeated
several times, until we decide the target is "up to date enough".
2. We pause the VM on the source, and start executing on the target machine.
During this gap, the VM's user(s) will *see* a pause, so it is desirable to
minimize this window.
3. Between the last time any page was copied from the source to the target, and
when the VM was paused, the contents of that page may have changed - and
therefore the copy we have on the target machine is out of date. Although we
can keep track of which pages are out of date, for VMs with large amounts of
memory, it is "slow" to transfer this information to the target machine. We
want to resume execution before such a transfer would complete.
4. So, the guest begins executing on the target machine. The first time it
touches its memory (via the UFFD-registered mapping), userspace wants to
intercept this fault. Userspace checks whether or not the page is up to date,
and if not, copies the updated page from the source machine, via the non-UFFD
mapping. Finally, whether a copy was performed or not, userspace issues a
UFFDIO_CONTINUE ioctl to tell the kernel "I have ensured the page contents
are correct, carry on setting up the mapping".
We don't have to do all of the final updates on-demand. The userfaultfd manager
can, in the background, also copy over updated pages once it receives the map of
which pages are up-to-date or not.
Interaction with Existing APIs
==============================
Because this is a feature, a registered VMA could potentially receive both
missing and minor faults. I spent some time thinking through how the
existing API interacts with the new feature:
UFFDIO_CONTINUE cannot be used to resolve non-minor faults, as it does not
allocate a new page. If UFFDIO_CONTINUE is used on a non-minor fault:
- For non-shared memory or shmem, -EINVAL is returned.
- For hugetlb, -EFAULT is returned.
UFFDIO_COPY and UFFDIO_ZEROPAGE cannot be used to resolve minor faults.
Without modifications, the existing codepath assumes a new page needs to
be allocated. This is okay, since userspace must have a second
non-UFFD-registered mapping anyway, thus there isn't much reason to want
to use these in any case (just memcpy or memset or similar).
- If UFFDIO_COPY is used on a minor fault, -EEXIST is returned.
- If UFFDIO_ZEROPAGE is used on a minor fault, -EEXIST is returned (or -EINVAL
in the case of hugetlb, as UFFDIO_ZEROPAGE is unsupported in any case).
- UFFDIO_WRITEPROTECT simply doesn't work with shared memory, and returns
-ENOENT in that case (regardless of the kind of fault).
Future Work
===========
This series only supports hugetlbfs. I have a second series in flight to
support shmem as well, extending the functionality. This series is more
mature than the shmem support at this point, and the functionality works
fully on hugetlbfs, so this series can be merged first and then shmem
support will follow.
This patch (of 6):
This feature allows userspace to intercept "minor" faults. By "minor"
faults, I mean the following situation:
Let there exist two mappings (i.e., VMAs) to the same page(s). One of the
mappings is registered with userfaultfd (in minor mode), and the other is
not. Via the non-UFFD mapping, the underlying pages have already been
allocated & filled with some contents. The UFFD mapping has not yet been
faulted in; when it is touched for the first time, this results in what
I'm calling a "minor" fault. As a concrete example, when working with
hugetlbfs, we have huge_pte_none(), but find_lock_page() finds an existing
page.
This commit adds the new registration mode, and sets the relevant flag on
the VMAs being registered. In the hugetlb fault path, if we find that we
have huge_pte_none(), but find_lock_page() does indeed find an existing
page, then we have a "minor" fault, and if the VMA has the userfaultfd
registration flag, we call into userfaultfd to handle it.
This is implemented as a new registration mode, instead of an API feature.
This is because the alternative implementation has significant drawbacks
[1].
However, doing it this was requires we allocate a VM_* flag for the new
registration mode. On 32-bit systems, there are no unused bits, so this
feature is only supported on architectures with
CONFIG_ARCH_USES_HIGH_VMA_FLAGS. When attempting to register a VMA in
MINOR mode on 32-bit architectures, we return -EINVAL.
[1] https://lore.kernel.org/patchwork/patch/1380226/
[peterx@redhat.com: fix minor fault page leak]
Link: https://lkml.kernel.org/r/20210322175132.36659-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210301222728.176417-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20210301222728.176417-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pfn_range_valid_contig() bails out when it finds an in-use page or a
hugetlb page, among other things. We can drop the in-use page check since
__alloc_contig_pages can migrate away those pages, and the hugetlb page
check can go too since isolate_migratepages_range is now capable of
dealing with hugetlb pages. Either way, those checks are racy so let the
end function handle it when the time comes.
Link: https://lkml.kernel.org/r/20210419075413.1064-8-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_contig_range() will fail if it finds a HugeTLB page within the
range, without a chance to handle them. Since HugeTLB pages can be
migrated as any LRU or Movable page, it does not make sense to bail out
without trying. Enable the interface to recognize in-use HugeTLB pages so
we can migrate them, and have much better chances to succeed the call.
Link: https://lkml.kernel.org/r/20210419075413.1064-7-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
alloc_contig_range will fail if it ever sees a HugeTLB page within the
range we are trying to allocate, even when that page is free and can be
easily reallocated.
This has proved to be problematic for some users of alloc_contic_range,
e.g: CMA and virtio-mem, where those would fail the call even when those
pages lay in ZONE_MOVABLE and are free.
We can do better by trying to replace such page.
Free hugepages are tricky to handle so as to no userspace application
notices disruption, we need to replace the current free hugepage with a
new one.
In order to do that, a new function called alloc_and_dissolve_huge_page is
introduced. This function will first try to get a new fresh hugepage, and
if it succeeds, it will replace the old one in the free hugepage pool.
The free page replacement is done under hugetlb_lock, so no external users
of hugetlb will notice the change. To allocate the new huge page, we use
alloc_buddy_huge_page(), so we do not have to deal with any counters, and
prep_new_huge_page() is not called. This is valulable because in case we
need to free the new page, we only need to call __free_pages().
Once we know that the page to be replaced is a genuine 0-refcounted huge
page, we remove the old page from the freelist by remove_hugetlb_page().
Then, we can call __prep_new_huge_page() and
__prep_account_new_huge_page() for the new huge page to properly
initialize it and increment the hstate->nr_huge_pages counter (previously
decremented by remove_hugetlb_page()). Once done, the page is enqueued by
enqueue_huge_page() and it is ready to be used.
There is one tricky case when page's refcount is 0 because it is in the
process of being released. A missing PageHugeFreed bit will tell us that
freeing is in flight so we retry after dropping the hugetlb_lock. The
race window should be small and the next retry should make a forward
progress.
E.g:
CPU0 CPU1
free_huge_page() isolate_or_dissolve_huge_page
PageHuge() == T
alloc_and_dissolve_huge_page
alloc_buddy_huge_page()
spin_lock_irq(hugetlb_lock)
// PageHuge() && !PageHugeFreed &&
// !PageCount()
spin_unlock_irq(hugetlb_lock)
spin_lock_irq(hugetlb_lock)
1) update_and_free_page
PageHuge() == F
__free_pages()
2) enqueue_huge_page
SetPageHugeFreed()
spin_unlock_irq(&hugetlb_lock)
spin_lock_irq(hugetlb_lock)
1) PageHuge() == F (freed by case#1 from CPU0)
2) PageHuge() == T
PageHugeFreed() == T
- proceed with replacing the page
In the case above we retry as the window race is quite small and we have
high chances to succeed next time.
With regard to the allocation, we restrict it to the node the page belongs
to with __GFP_THISNODE, meaning we do not fallback on other node's zones.
Note that gigantic hugetlb pages are fenced off since there is a cyclic
dependency between them and alloc_contig_range.
Link: https://lkml.kernel.org/r/20210419075413.1064-6-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, prep_new_huge_page() performs two functions. It sets the
right state for a new hugetlb, and increases the hstate's counters to
account for the new page.
Let us split its functionality into two separate functions, decoupling
the handling of the counters from initializing a hugepage. The outcome
is having __prep_new_huge_page(), which only initializes the page , and
__prep_account_new_huge_page(), which adds the new page to the hstate's
counters.
This allows us to be able to set a hugetlb without having to worry about
the counter/locking. It will prove useful in the next patch.
prep_new_huge_page() still calls both functions.
Link: https://lkml.kernel.org/r/20210419075413.1064-5-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pages allocated via the page allocator or CMA get its private field
cleared by means of post_alloc_hook().
Pages allocated during boot, that is directly from the memblock
allocator, get cleared by paging_init()-> .. ->memmap_init_zone-> ..
->__init_single_page() before any memblock allocation.
Based on this ground, let us remove the clearing of the flag from
prep_new_huge_page() as it is not needed. This was a leftover from
commit 6c03714901 ("hugetlb: convert PageHugeFreed to HPageFreed
flag").
Previously the explicit clearing was necessary because compound
allocations do not get this initialization (see prep_compound_page).
Link: https://lkml.kernel.org/r/20210419075413.1064-4-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, isolate_migratepages_{range,block} and their callers use a pfn
== 0 vs pfn != 0 scheme to let the caller know whether there was any error
during isolation.
This does not work as soon as we need to start reporting different error
codes and make sure we pass them down the chain, so they are properly
interpreted by functions like e.g: alloc_contig_range.
Let us rework isolate_migratepages_{range,block} so we can report error
codes. Since isolate_migratepages_block will stop returning the next pfn
to be scanned, we reuse the cc->migrate_pfn field to keep track of that.
Link: https://lkml.kernel.org/r/20210419075413.1064-3-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Make alloc_contig_range handle Hugetlb pages", v10.
alloc_contig_range lacks the ability to handle HugeTLB pages. This can
be problematic for some users, e.g: CMA and virtio-mem, where those
users will fail the call if alloc_contig_range ever sees a HugeTLB page,
even when those pages lay in ZONE_MOVABLE and are free. That problem
can be easily solved by replacing the page in the free hugepage pool.
In-use HugeTLB are no exception though, as those can be isolated and
migrated as any other LRU or Movable page.
This aims to improve alloc_contig_range->isolate_migratepages_block, so
that HugeTLB pages can be recognized and handled.
Since we also need to start reporting errors down the chain (e.g:
-ENOMEM due to not be able to allocate a new hugetlb page),
isolate_migratepages_{range,block} interfaces need to change to start
reporting error codes instead of the pfn == 0 vs pfn != 0 scheme it is
using right now. From now on, isolate_migratepages_block will not
return the next pfn to be scanned anymore, but -EINTR, -ENOMEM or 0, so
we the next pfn to be scanned will be recorded in cc->migrate_pfn field
(as it is already done in isolate_migratepages_range()).
Below is an insight from David (thanks), where the problem can clearly be
seen:
"Start a VM with 4G. Hotplug 1G via virtio-mem and online it to
ZONE_MOVABLE. Allocate 512 huge pages.
[root@localhost ~]# cat /proc/meminfo
MemTotal: 5061512 kB
MemFree: 3319396 kB
MemAvailable: 3457144 kB
...
HugePages_Total: 512
HugePages_Free: 512
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
The huge pages get partially allocate from ZONE_MOVABLE. Try unplugging
1G via virtio-mem (remember, all ZONE_MOVABLE). Inside the guest:
[ 180.058992] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.060531] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.061972] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.063413] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.064838] alloc_contig_range: [1b8000, 1c0000) PFNs busy
[ 180.065848] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.066794] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.067738] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.068669] alloc_contig_range: [1bfc00, 1c0000) PFNs busy
[ 180.069598] alloc_contig_range: [1bfc00, 1c0000) PFNs busy"
And then with this patchset running:
"Same experiment with ZONE_MOVABLE:
a) Free huge pages: all memory can get unplugged again.
b) Allocated/populated but idle huge pages: all memory can get unplugged
again.
c) Allocated/populated but all 512 huge pages are read/written in a
loop: all memory can get unplugged again, but I get a single
[ 121.192345] alloc_contig_range: [180000, 188000) PFNs busy
Most probably because it happened to try migrating a huge page
while it was busy. As virtio-mem retries on ZONE_MOVABLE a couple of
times, it can deal with this temporary failure.
Last but not least, I did something extreme:
# cat /proc/meminfo
MemTotal: 5061568 kB
MemFree: 186560 kB
MemAvailable: 354524 kB
...
HugePages_Total: 2048
HugePages_Free: 2048
HugePages_Rsvd: 0
HugePages_Surp: 0
Triggering unplug would require to dissolve+alloc - which now fails
when trying to allocate an additional ~512 huge pages (1G).
As expected, I can properly see memory unplug not fully succeeding. +
I get a fairly continuous stream of
[ 226.611584] alloc_contig_range: [19f400, 19f800) PFNs busy
...
But more importantly, the hugepage count remains stable, as configured
by the admin (me):
HugePages_Total: 2048
HugePages_Free: 2048
HugePages_Rsvd: 0
HugePages_Surp: 0"
This patch (of 7):
Currently, __alloc_contig_migrate_range can generate -EINTR, -ENOMEM or
-EBUSY, and report them down the chain. The problem is that when
migrate_pages() reports -ENOMEM, we keep going till we exhaust all the
try-attempts (5 at the moment) instead of bailing out.
migrate_pages() bails out right away on -ENOMEM because it is considered a
fatal error. Do the same here instead of keep going and retrying. Note
that this is not fixing a real issue, just a cosmetic change. Although we
can save some cycles by backing off ealier
Link: https://lkml.kernel.org/r/20210419075413.1064-1-osalvador@suse.de
Link: https://lkml.kernel.org/r/20210419075413.1064-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After making hugetlb lock irq safe and separating some functionality
done under the lock, add some lockdep_assert_held to help verify
locking.
Link: https://lkml.kernel.org/r/20210409205254.242291-9-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit c77c0a8ac4 ("mm/hugetlb: defer freeing of huge pages if in
non-task context") was added to address the issue of free_huge_page being
called from irq context. That commit hands off free_huge_page processing
to a workqueue if !in_task. However, this doesn't cover all the cases as
pointed out by 0day bot lockdep report [1].
: Possible interrupt unsafe locking scenario:
:
: CPU0 CPU1
: ---- ----
: lock(hugetlb_lock);
: local_irq_disable();
: lock(slock-AF_INET);
: lock(hugetlb_lock);
: <Interrupt>
: lock(slock-AF_INET);
Shakeel has later explained that this is very likely TCP TX zerocopy from
hugetlb pages scenario when the networking code drops a last reference to
hugetlb page while having IRQ disabled. Hugetlb freeing path doesn't
disable IRQ while holding hugetlb_lock so a lock dependency chain can lead
to a deadlock.
This commit addresses the issue by doing the following:
- Make hugetlb_lock irq safe. This is mostly a simple process of
changing spin_*lock calls to spin_*lock_irq* calls.
- Make subpool lock irq safe in a similar manner.
- Revert the !in_task check and workqueue handoff.
[1] https://lore.kernel.org/linux-mm/000000000000f1c03b05bc43aadc@google.com/
Link: https://lkml.kernel.org/r/20210409205254.242291-8-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_pool_huge_page was called with hugetlb_lock held. It would remove
a hugetlb page, and then free the corresponding pages to the lower level
allocators such as buddy. free_pool_huge_page was called in a loop to
remove hugetlb pages and these loops could hold the hugetlb_lock for a
considerable time.
Create new routine remove_pool_huge_page to replace free_pool_huge_page.
remove_pool_huge_page will remove the hugetlb page, and it must be
called with the hugetlb_lock held. It will return the removed page and
it is the responsibility of the caller to free the page to the lower
level allocators. The hugetlb_lock is dropped before freeing to these
allocators which results in shorter lock hold times.
Add new helper routine to call update_and_free_page for a list of pages.
Note: Some changes to the routine return_unused_surplus_pages are in
need of explanation. Commit e5bbc8a6c9 ("mm/hugetlb.c: fix
reservation race when freeing surplus pages") modified this routine to
address a race which could occur when dropping the hugetlb_lock in the
loop that removes pool pages. Accounting changes introduced in that
commit were subtle and took some thought to understand. This commit
removes the cond_resched_lock() and the potential race. Therefore,
remove the subtle code and restore the more straight forward accounting
effectively reverting the commit.
Link: https://lkml.kernel.org/r/20210409205254.242291-7-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With the introduction of remove_hugetlb_page(), there is no need for
update_and_free_page to hold the hugetlb lock. Change all callers to
drop the lock before calling.
With additional code modifications, this will allow loops which decrease
the huge page pool to drop the hugetlb_lock with each page to reduce
long hold times.
The ugly unlock/lock cycle in free_pool_huge_page will be removed in a
subsequent patch which restructures free_pool_huge_page.
Link: https://lkml.kernel.org/r/20210409205254.242291-6-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The new remove_hugetlb_page() routine is designed to remove a hugetlb
page from hugetlbfs processing. It will remove the page from the active
or free list, update global counters and set the compound page
destructor to NULL so that PageHuge() will return false for the 'page'.
After this call, the 'page' can be treated as a normal compound page or
a collection of base size pages.
update_and_free_page no longer decrements h->nr_huge_pages{_node} as
this is performed in remove_hugetlb_page. The only functionality
performed by update_and_free_page is to free the base pages to the lower
level allocators.
update_and_free_page is typically called after remove_hugetlb_page.
remove_hugetlb_page is to be called with the hugetlb_lock held.
Creating this routine and separating functionality is in preparation for
restructuring code to reduce lock hold times. This commit should not
introduce any changes to functionality.
Link: https://lkml.kernel.org/r/20210409205254.242291-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The helper routine hstate_next_node_to_alloc accesses and modifies the
hstate variable next_nid_to_alloc. The helper is used by the routines
alloc_pool_huge_page and adjust_pool_surplus. adjust_pool_surplus is
called with hugetlb_lock held. However, alloc_pool_huge_page can not be
called with the hugetlb lock held as it will call the page allocator.
Two instances of alloc_pool_huge_page could be run in parallel or
alloc_pool_huge_page could run in parallel with adjust_pool_surplus
which may result in the variable next_nid_to_alloc becoming invalid for
the caller and pages being allocated on the wrong node.
Both alloc_pool_huge_page and adjust_pool_surplus are only called from
the routine set_max_huge_pages after boot. set_max_huge_pages is only
called as the reusult of a user writing to the proc/sysfs nr_hugepages,
or nr_hugepages_mempolicy file to adjust the number of hugetlb pages.
It makes little sense to allow multiple adjustment to the number of
hugetlb pages in parallel. Add a mutex to the hstate and use it to only
allow one hugetlb page adjustment at a time. This will synchronize
modifications to the next_nid_to_alloc variable.
Link: https://lkml.kernel.org/r/20210409205254.242291-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that cma_release is non-blocking and irq safe, there is no need to
drop hugetlb_lock before calling.
Link: https://lkml.kernel.org/r/20210409205254.242291-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "make hugetlb put_page safe for all calling contexts", v5.
This effort is the result a recent bug report [1]. Syzbot found a
potential deadlock in the hugetlb put_page/free_huge_page_path. WARNING:
SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected Since the
free_huge_page_path already has code to 'hand off' page free requests to a
workqueue, a suggestion was proposed to make the in_irq() detection
accurate by always enabling PREEMPT_COUNT [2]. The outcome of that
discussion was that the hugetlb put_page path (free_huge_page) path should
be properly fixed and safe for all calling contexts.
[1] https://lore.kernel.org/linux-mm/000000000000f1c03b05bc43aadc@google.com/
[2] http://lkml.kernel.org/r/20210311021321.127500-1-mike.kravetz@oracle.com
This patch (of 8):
cma_release is currently a sleepable operatation because the bitmap
manipulation is protected by cma->lock mutex. Hugetlb code which relies
on cma_release for CMA backed (giga) hugetlb pages, however, needs to be
irq safe.
The lock doesn't protect any sleepable operation so it can be changed to a
(irq aware) spin lock. The bitmap processing should be quite fast in
typical case but if cma sizes grow to TB then we will likely need to
replace the lock by a more optimized bitmap implementation.
Link: https://lkml.kernel.org/r/20210409205254.242291-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20210409205254.242291-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A rare out of memory error would prevent removal of the reserve map region
for a page. hugetlb_fix_reserve_counts() handles this rare case to avoid
dangling with incorrect counts. Unfortunately, hugepage_subpool_get_pages
and hugetlb_acct_memory could possibly fail too. We should correctly
handle these cases.
Link: https://lkml.kernel.org/r/20210410072348.20437-5-linmiaohe@huawei.com
Fixes: b5cec28d36 ("hugetlbfs: truncate_hugepages() takes a range of pages")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The resv_map could be NULL since this routine can be called in the evict
inode path for all hugetlbfs inodes and we will have chg = 0 in this case.
But (chg - freed) won't go negative as Mike pointed out:
"If resv_map is NULL, then no hugetlb pages can be allocated/associated
with the file. As a result, remove_inode_hugepages will never find any
huge pages associated with the inode and the passed value 'freed' will
always be zero."
Add a comment clarifying this to make it clear and also avoid confusion.
Link: https://lkml.kernel.org/r/20210410072348.20437-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's guaranteed that the vma is associated with a resv_map, i.e. either
VM_MAYSHARE or HPAGE_RESV_OWNER, when the code reaches here or we would
have returned via !resv check above. So it's unneeded to check whether
HPAGE_RESV_OWNER is set here. Simplify the return code to make it more
clear.
Link: https://lkml.kernel.org/r/20210410072348.20437-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Cleanup and fixup for hugetlb", v2.
This series contains cleanups to remove redundant VM_BUG_ON() and simplify
the return code. Also this handles the error case in
hugetlb_fix_reserve_counts() correctly. More details can be found in the
respective changelogs.
This patch (of 5):
The same VM_BUG_ON() check is already done in the callee. Remove this
extra one to simplify the code slightly.
Link: https://lkml.kernel.org/r/20210410072348.20437-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210410072348.20437-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Feilong Lin <linfeilong@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Further extend <debugfs>/split_huge_pages to accept
"<path>,<pgoff_start>,<pgoff_end>" for file-backed THP split tests since
tmpfs may have file backed by THP that mapped nowhere.
Update selftest program to test file-backed THP split too.
Link: https://lkml.kernel.org/r/20210331235309.332292-2-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Suggested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mika Penttila <mika.penttila@nextfour.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We did not have a direct user interface of splitting the compound page
backing a THP and there is no need unless we want to expose the THP
implementation details to users. Make <debugfs>/split_huge_pages accept a
new command to do that.
By writing "<pid>,<vaddr_start>,<vaddr_end>" to
<debugfs>/split_huge_pages, THPs within the given virtual address range
from the process with the given pid are split. It is used to test
split_huge_page function. In addition, a selftest program is added to
tools/testing/selftests/vm to utilize the interface by splitting
PMD THPs and PTE-mapped THPs.
This does not change the old behavior, i.e., writing 1 to the interface
to split all THPs in the system.
Link: https://lkml.kernel.org/r/20210331235309.332292-1-zi.yan@sent.com
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mika Penttila <mika.penttila@nextfour.com>
Cc: Sandipan Das <sandipan@linux.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We know it must meet the !is_swap_pte() and !pte_none() condition if we
reach here. Since !is_swap_pte() indicates pte_none() or pte_present()
is met, it's guaranteed that pte must be present here.
Link: https://lkml.kernel.org/r/20210325135647.64106-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The out label here is unneeded because it just goes to out_up_write label.
Remove it to make code more concise.
Link: https://lkml.kernel.org/r/20210325135647.64106-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Cleanup for khugepaged".
This series contains cleanups to remove unnecessary out label and
meaningless !pte_present() check. Also use helper function to simplify
the code. More details can be found in the respective changelogs.
This patch (of 3):
We could use helper function range_in_vma() to check whether the desired
range is inside the vma to simplify the code.
Link: https://lkml.kernel.org/r/20210325135647.64106-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210325135647.64106-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
READ_ONCE() is more selective and lightweight. It is more appropriate
that using a READ_ONCE() for the certain variable to prevent the
compiler from reordering.
Link: https://lkml.kernel.org/r/20210323092730.247583-1-yanfei.xu@windriver.com
Signed-off-by: Yanfei Xu <yanfei.xu@windriver.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's more recommended to use helper function migration_entry_to_page()
to get the page via migration entry. We can also enjoy the PageLocked()
check there.
Link: https://lkml.kernel.org/r/20210318122722.13135-7-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Thomas Hellstrm (Intel) <thomas_os@shipmail.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: yuleixzhang <yulei.kernel@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The !PageCompound() check limits the page must be head or tail while
!PageHead() further limits it to page head only. So !PageHead() check is
equivalent here.
Link: https://lkml.kernel.org/r/20210318122722.13135-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Thomas Hellstrm (Intel) <thomas_os@shipmail.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: yuleixzhang <yulei.kernel@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current code that checks if migrating misplaced transhuge page is
needed is pretty hard to follow. Rework it and add a comment to make
its logic more clear and improve readability.
Link: https://lkml.kernel.org/r/20210318122722.13135-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Thomas Hellstrm (Intel) <thomas_os@shipmail.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: yuleixzhang <yulei.kernel@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's guaranteed that huge_zero_page will not be NULL if
huge_zero_refcount is increased successfully.
When READ_ONCE(huge_zero_page) is returned, there must be a
huge_zero_page and it can be replaced with returning
'true' when we do not care about the value of huge_zero_page.
We can thus make it return bool to save READ_ONCE cpu cycles as the
return value is just used to check if huge_zero_page exists.
Link: https://lkml.kernel.org/r/20210318122722.13135-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Thomas Hellstrm (Intel) <thomas_os@shipmail.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: yuleixzhang <yulei.kernel@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Some cleanups for huge_memory", v3.
This series contains cleanups to rework some function logics to make it
more readable, use helper function and so on. More details can be found
in the respective changelogs.
This patch (of 6):
The current implementation of vma_adjust_trans_huge() contains some
duplicated codes. Add helper function to get rid of these codes to make
it more succinct.
Link: https://lkml.kernel.org/r/20210318122722.13135-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210318122722.13135-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Peter Xu <peterx@redhat.com>
Cc: yuleixzhang <yulei.kernel@gmail.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Thomas Hellstrm (Intel) <thomas_os@shipmail.org>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need to use a new local variable ret2 to get the return
value of handle_userfault(). Use ret directly to make code more
succinct.
Link: https://lkml.kernel.org/r/20210210072409.60587-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In writable and !referenced case, the result value should be
SCAN_LACK_REFERENCED_PAGE for trace_mm_collapse_huge_page_isolate()
instead of default 0 (SCAN_FAIL) here.
Link: https://lkml.kernel.org/r/20210306032947.35921-5-linmiaohe@huawei.com
Fixes: 7d2eba0557 ("mm: add tracepoint for scanning pages")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 4d45e75a99 ("mm: remove the now-unnecessary mmget_still_valid()
hack") have made khugepaged_test_exit() suitable for check mm->mm_users
against 0. Use this helper here.
Link: https://lkml.kernel.org/r/20210306032947.35921-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
smp_wmb() is needed to avoid the copy_huge_page writes to become visible
after the set_pmd_at() write here. But we can reuse the smp_wmb() inside
__SetPageUptodate() to remove this redundant one.
Link: https://lkml.kernel.org/r/20210306032947.35921-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Cleanup and fixup for khugepaged", v2.
This series contains cleanups to remove unneeded return value, use
helper function and so on. And there is one fix to correct the wrong
result value for trace_mm_collapse_huge_page_isolate().
This patch (of 4):
The return value of khugepaged_collapse_pte_mapped_thps() is never checked
since it's introduced. We should remove such unneeded return value.
Link: https://lkml.kernel.org/r/20210306032947.35921-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210306032947.35921-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rework the error handling code when alloc_huge_page() failed to remove
some duplicated code and simplify the code slightly.
Link: https://lkml.kernel.org/r/20210308112809.26107-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
!PageHuge(oldhpage) is implicitly checked in page_hstate() above, so we
remove this explicit one.
Link: https://lkml.kernel.org/r/20210308112809.26107-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We should not transfer the per-node surplus state when we do not cross the
node in order to save some cpu cycles
Link: https://lkml.kernel.org/r/20210308112809.26107-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Some cleanups for hugetlb".
This series contains cleanups to remove unnecessary VM_BUG_ON_PAGE, use
helper function and so on. I also collect some previous patches into this
series in case they are forgotten.
This patch (of 5):
We could use pages_per_huge_page to get the number of pages per hugepage,
use get_hstate_idx to calculate hstate index, and use hstate_is_gigantic
to check if a hstate is gigantic to make code more succinct.
Link: https://lkml.kernel.org/r/20210308112809.26107-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20210308112809.26107-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
HUGETLB_PAGE_SIZE_VARIABLE need not be defined for each individual
platform subscribing it. Instead just make it generic.
Link: https://lkml.kernel.org/r/1614914928-22039-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Suggested-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vma_resv_map(vma) checks if a reserve map is associated with the vma.
The routine vma_needs_reservation() will check vma_resv_map(vma) and
return 1 if no reserv map is present. map_chg is set to the return
value of vma_needs_reservation(). Therefore, !vma_resv_map(vma) is
redundant in the expression:
map_chg || avoid_reserve || !vma_resv_map(vma);
Remove the redundant check.
[Thanks Mike Kravetz for reshaping this commit message!]
Link: https://lkml.kernel.org/r/20210301104726.45159-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge pmd sharing for hugetlbfs is racy with userfaultfd-wp because
userfaultfd-wp is always based on pgtable entries, so they cannot be
shared.
Walk the hugetlb range and unshare all such mappings if there is, right
before UFFDIO_REGISTER will succeed and return to userspace.
This will pair with want_pmd_share() in hugetlb code so that huge pmd
sharing is completely disabled for userfaultfd-wp registered range.
Link: https://lkml.kernel.org/r/20210218231206.15524-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Price <steven.price@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Huge pmd sharing could bring problem to userfaultfd. The thing is that
userfaultfd is running its logic based on the special bits on page table
entries, however the huge pmd sharing could potentially share page table
entries for different address ranges. That could cause issues on
either:
- When sharing huge pmd page tables for an uffd write protected range,
the newly mapped huge pmd range will also be write protected
unexpectedly, or,
- When we try to write protect a range of huge pmd shared range, we'll
first do huge_pmd_unshare() in hugetlb_change_protection(), however
that also means the UFFDIO_WRITEPROTECT could be silently skipped for
the shared region, which could lead to data loss.
While at it, a few other things are done altogether:
- Move want_pmd_share() from mm/hugetlb.c into linux/hugetlb.h, because
that's definitely something that arch code would like to use too
- ARM64 currently directly check against
CONFIG_ARCH_WANT_HUGE_PMD_SHARE when trying to share huge pmd. Switch
to the want_pmd_share() helper.
- Move vma_shareable() from huge_pmd_share() into want_pmd_share().
[peterx@redhat.com: fix build with !ARCH_WANT_HUGE_PMD_SHARE]
Link: https://lkml.kernel.org/r/20210310185359.88297-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210218231202.15426-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Tested-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Price <steven.price@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "hugetlb: Disable huge pmd unshare for uffd-wp", v4.
This series tries to disable huge pmd unshare of hugetlbfs backed memory
for uffd-wp. Although uffd-wp of hugetlbfs is still during rfc stage,
the idea of this series may be needed for multiple tasks (Axel's uffd
minor fault series, and Mike's soft dirty series), so I picked it out
from the larger series.
This patch (of 4):
It is a preparation work to be able to behave differently in the per
architecture huge_pte_alloc() according to different VMA attributes.
Pass it deeper into huge_pmd_share() so that we can avoid the find_vma() call.
[peterx@redhat.com: build fix]
Link: https://lkml.kernel.org/r/20210304164653.GB397383@xz-x1Link: https://lkml.kernel.org/r/20210218230633.15028-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20210218230633.15028-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Adam Ruprecht <ruprecht@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Cannon Matthews <cannonmatthews@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chinwen Chang <chinwen.chang@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Dr . David Alan Gilbert" <dgilbert@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michal Koutn" <mkoutny@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oliver Upton <oupton@google.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shawn Anastasio <shawn@anastas.io>
Cc: Steven Price <steven.price@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We no longer need to keep track of how many shadow entries are present in
a mapping. This saves a few writes to the inode and memory barriers.
Link: https://lkml.kernel.org/r/20201026151849.24232-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Remove nrexceptional tracking", v2.
We actually use nrexceptional for very little these days. It's a minor
pain to keep in sync with nrpages, but the pain becomes much bigger with
the THP patches because we don't know how many indices a shadow entry
occupies. It's easier to just remove it than keep it accurate.
Also, we save 8 bytes per inode which is nothing to sneeze at; on my
laptop, it would improve shmem_inode_cache from 22 to 23 objects per
16kB, and inode_cache from 26 to 27 objects. Combined, that saves
a megabyte of memory from a combined usage of 25MB for both caches.
Unfortunately, ext4 doesn't cross a magic boundary, so it doesn't save
any memory for ext4.
This patch (of 4):
Instead of checking the two counters (nrpages and nrexceptional), we can
just check whether i_pages is empty.
Link: https://lkml.kernel.org/r/20201026151849.24232-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20201026151849.24232-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.
Changelog
v11:
* Fix issue found by lkp robot.
v8:
* Fix issues found by lkp-tests project.
v7:
* Keep only ucounts for RLIMIT_MEMLOCK checks instead of struct cred.
v6:
* Fix bug in hugetlb_file_setup() detected by trinity.
Reported-by: kernel test robot <oliver.sang@intel.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/970d50c70c71bfd4496e0e8d2a0a32feebebb350.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
It appears that unmap_mapping_range() actually takes a 'size' as its third
argument rather than a location, the current calling fashion causes
unnecessary amount of unmapping to occur.
Link: https://lkml.kernel.org/r/20210420002821.2749748-1-jane.chu@oracle.com
Fixes: 6100e34b25 ("mm, memory_failure: Teach memory_failure() about dev_pagemap pages")
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On !ARCH_SUPPORTS_DEBUG_PAGEALLOC (like ia64) debug_pagealloc=1 implies
page_poison=on:
if (page_poisoning_enabled() ||
(!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
debug_pagealloc_enabled()))
static_branch_enable(&_page_poisoning_enabled);
page_poison=on needs to override init_on_free=1.
Before the change it did not work as expected for the following case:
- have PAGE_POISONING=y
- have page_poison unset
- have !ARCH_SUPPORTS_DEBUG_PAGEALLOC arch (like ia64)
- have init_on_free=1
- have debug_pagealloc=1
That way we get both keys enabled:
- static_branch_enable(&init_on_free);
- static_branch_enable(&_page_poisoning_enabled);
which leads to poisoned pages returned for __GFP_ZERO pages.
After the change we execute only:
- static_branch_enable(&_page_poisoning_enabled);
and ignore init_on_free=1.
Link: https://lkml.kernel.org/r/20210329222555.3077928-1-slyfox@gentoo.org
Link: https://lkml.org/lkml/2021/3/26/443
Fixes: 8db26a3d47 ("mm, page_poison: use static key more efficiently")
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Looking at perf-report and ASM-code for __alloc_pages_bulk() it is clear
that the code activated is suboptimal. The compiler guesses wrong and
places unlikely code at the beginning. Due to the use of WARN_ON_ONCE()
macro the UD2 asm instruction is added to the code, which confuse the
I-cache prefetcher in the CPU.
[mgorman@techsingularity.net: minor changes and rebasing]
Link: https://lkml.kernel.org/r/20210325114228.27719-5-mgorman@techsingularity.net
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Alexander Lobakin <alobakin@pm.me>
Acked-By: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: David Miller <davem@davemloft.net>
Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The proposed callers for the bulk allocator store pages from the bulk
allocator in an array. This patch adds an array-based interface to the
API to avoid multiple list iterations. The page list interface is
preserved to avoid requiring all users of the bulk API to allocate and
manage enough storage to store the pages.
[akpm@linux-foundation.org: remove now unused local `allocated']
Link: https://lkml.kernel.org/r/20210325114228.27719-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Alexander Lobakin <alobakin@pm.me>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: David Miller <davem@davemloft.net>
Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds a new page allocator interface via alloc_pages_bulk, and
__alloc_pages_bulk_nodemask. A caller requests a number of pages to be
allocated and added to a list.
The API is not guaranteed to return the requested number of pages and
may fail if the preferred allocation zone has limited free memory, the
cpuset changes during the allocation or page debugging decides to fail
an allocation. It's up to the caller to request more pages in batch if
necessary.
Note that this implementation is not very efficient and could be
improved but it would require refactoring. The intent is to make it
available early to determine what semantics are required by different
callers. Once the full semantics are nailed down, it can be refactored.
[mgorman@techsingularity.net: fix alloc_pages_bulk() return type, per Matthew]
Link: https://lkml.kernel.org/r/20210325123713.GQ3697@techsingularity.net
[mgorman@techsingularity.net: fix uninit var warning]
Link: https://lkml.kernel.org/r/20210330114847.GX3697@techsingularity.net
[mgorman@techsingularity.net: fix comment, per Vlastimil]
Link: https://lkml.kernel.org/r/20210412110255.GV3697@techsingularity.net
Link: https://lkml.kernel.org/r/20210325114228.27719-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Alexander Lobakin <alobakin@pm.me>
Tested-by: Colin Ian King <colin.king@canonical.com>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: David Miller <davem@davemloft.net>
Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Introduce a bulk order-0 page allocator with two in-tree users", v6.
This series introduces a bulk order-0 page allocator with sunrpc and the
network page pool being the first users. The implementation is not
efficient as semantics needed to be ironed out first. If no other
semantic changes are needed, it can be made more efficient. Despite that,
this is a performance-related for users that require multiple pages for an
operation without multiple round-trips to the page allocator. Quoting the
last patch for the high-speed networking use-case
Kernel XDP stats CPU pps Delta
Baseline XDP-RX CPU total 3,771,046 n/a
List XDP-RX CPU total 3,940,242 +4.49%
Array XDP-RX CPU total 4,249,224 +12.68%
Via the SUNRPC traces of svc_alloc_arg()
Single page: 25.007 us per call over 532,571 calls
Bulk list: 6.258 us per call over 517,034 calls
Bulk array: 4.590 us per call over 517,442 calls
Both potential users in this series are corner cases (NFS and high-speed
networks) so it is unlikely that most users will see any benefit in the
short term. Other potential other users are batch allocations for page
cache readahead, fault around and SLUB allocations when high-order pages
are unavailable. It's unknown how much benefit would be seen by
converting multiple page allocation calls to a single batch or what
difference it may make to headline performance.
Light testing of my own running dbench over NFS passed. Chuck and Jesper
conducted their own tests and details are included in the changelogs.
Patch 1 renames a variable name that is particularly unpopular
Patch 2 adds a bulk page allocator
Patch 3 adds an array-based version of the bulk allocator
Patches 4-5 adds micro-optimisations to the implementation
Patches 6-7 SUNRPC user
Patches 8-9 Network page_pool user
This patch (of 9):
Review feedback of the bulk allocator twice found problems with "alloced"
being a counter for pages allocated. The naming was based on the API name
"alloc" and was based on the idea that verbal communication about malloc
tends to use the fake word "malloced" instead of the fake word mallocated.
To be consistent, this preparation patch renames alloced to allocated in
rmqueue_bulk so the bulk allocator and per-cpu allocator use similar names
when the bulk allocator is introduced.
Link: https://lkml.kernel.org/r/20210325114228.27719-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20210325114228.27719-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Alexander Lobakin <alobakin@pm.me>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Alexander Duyck <alexander.duyck@gmail.com>
Cc: Ilias Apalodimas <ilias.apalodimas@linaro.org>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The start_pfn and end_pfn are already available in move_freepages_block(),
there is no need to go back and forth between page and pfn in
move_freepages and move_freepages_block, and pfn_valid_within() should
validate pfn first before touching the page.
Link: https://lkml.kernel.org/r/20210323131215.934472-1-liushixin2@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 214496cb18 ("ia64: make SPARSEMEM default and disable
DISCONTIGMEM") removed the last enabler of ARCH_DISCONTIGMEM_DEFAULT,
hence the memory model can no longer default to DISCONTIGMEM_MANUAL.
Link: https://lkml.kernel.org/r/20210312141208.3465520-1-geert@linux-m68k.org
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, debugging CMA allocation failures is quite limited. The most
common source of these failures seems to be page migration which doesn't
provide any useful information on the reason of the failure by itself.
alloc_contig_range can report those failures as it holds a list of
migrate-failed pages.
The information logged by dump_page() has already proven helpful for
debugging allocation issues, like identifying long-term pinnings on
ZONE_MOVABLE or MIGRATE_CMA.
Let's use the dynamic debugging infrastructure, such that we avoid
flooding the logs and creating a lot of noise on frequent
alloc_contig_range() calls. This information is helpful for debugging
only.
There are two ifdefery conditions to support common dyndbg options:
- CONFIG_DYNAMIC_DEBUG_CORE && DYNAMIC_DEBUG_MODULE
It aims for supporting the feature with only specific file with
adding ccflags.
- CONFIG_DYNAMIC_DEBUG
It aims for supporting the feature with system wide globally.
A simple example to enable the feature:
Admin could enable the dump like this(by default, disabled)
echo "func alloc_contig_dump_pages +p" > control
Admin could disable it.
echo "func alloc_contig_dump_pages =_" > control
Detail goes Documentation/admin-guide/dynamic-debug-howto.rst
A concern is utility functions in dump_page use inconsistent
loglevels. In the future, we might want to make the loglevels
used inside dump_page() consistent and eventually rework the way
we log the information here. See [1].
[1] https://lore.kernel.org/linux-mm/YEh4doXvyuRl5BDB@google.com/
Link: https://lkml.kernel.org/r/20210311194042.825152-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: John Dias <joaodias@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Baron <jbaron@akamai.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sphinx interprets the Return section as a list and complains about it.
Turn it into a sentence and move it to the end of the kernel-doc to fit
the kernel-doc style.
Link: https://lkml.kernel.org/r/20210225150642.2582252-8-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current formatting doesn't quite work with kernel-doc.
Link: https://lkml.kernel.org/r/20210225150642.2582252-7-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Document alloc_pages() for both NUMA and non-NUMA cases as kernel-doc
doesn't care.
Link: https://lkml.kernel.org/r/20210225150642.2582252-6-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_NUMA is enabled, alloc_pages() is a wrapper around
alloc_pages_current(). This is pointless, just implement alloc_pages()
directly.
Link: https://lkml.kernel.org/r/20210225150642.2582252-5-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are only two callers of __alloc_pages() so prune the thicket of
alloc_page variants by combining the two functions together. Current
callers of __alloc_pages() simply add an extra 'NULL' parameter and
current callers of __alloc_pages_nodemask() call __alloc_pages() instead.
Link: https://lkml.kernel.org/r/20210225150642.2582252-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Shorten some overly-long lines by renaming this identifier.
Link: https://lkml.kernel.org/r/20210225150642.2582252-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Rationalise __alloc_pages wrappers", v3.
I was poking around the __alloc_pages variants trying to understand why
they each exist, and couldn't really find a good justification for keeping
__alloc_pages and __alloc_pages_nodemask as separate functions. That led
to getting rid of alloc_pages_current() and then I noticed the
documentation was bad, and then I noticed the mempolicy documentation
wasn't included.
Anyway, this is all cleanups & doc fixes.
This patch (of 7):
We have two masks involved -- the nodemask and the gfp mask, so alloc_mask
is an unclear name.
Link: https://lkml.kernel.org/r/20210225150642.2582252-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tidy things up and delete comments stating the obvious with typos or
making no sense.
Link: https://lkml.kernel.org/r/20210303071609.797782-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__alloc_contig_migrate_range already has lru_add_drain_all call via
migrate_prep. It's necessary to move LRU taget pages into LRU list to be
able to isolated. However, lru_add_drain_all call after
__alloc_contig_migrate_range is pointless since it has changed source page
freeing from putback_lru_pages to put_page[1].
This patch removes it.
[1] c6c919eb90, ("mm: use put_page() to free page instead of putback_lru_page()"
Link: https://lkml.kernel.org/r/20210303204512.2863087-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The information that some PFNs are busy is:
a) not helpful for ordinary users: we don't even know *who* called
alloc_contig_range(). This is certainly not worth a pr_info.*().
b) not really helpful for debugging: we don't have any details *why*
these PFNs are busy, and that is what we usually care about.
c) not complete: there are other cases where we fail alloc_contig_range()
using different paths that are not getting recorded.
For example, we reach this path once we succeeded in isolating pageblocks,
but failed to migrate some pages - which can happen easily on ZONE_NORMAL
(i.e., has_unmovable_pages() is racy) but also on ZONE_MOVABLE i.e., we
would have to retry longer to migrate).
For example via virtio-mem when unplugging memory, we can create quite
some noise (especially with ZONE_NORMAL) that is not of interest to users
- it's expected that some allocations may fail as memory is busy.
Let's just drop that pr_info_ratelimit() and rather implement a dynamic
debugging mechanism in the future that can give us a better reason why
alloc_contig_range() failed on specific pages.
Link: https://lkml.kernel.org/r/20210301150945.77012-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_init_print_info() is called in mem_init() on each architecture, and
pass NULL argument, so using void argument and move it into mm_init().
Link: https://lkml.kernel.org/r/20210317015210.33641-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com> [x86]
Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> [powerpc]
Acked-by: David Hildenbrand <david@redhat.com>
Tested-by: Anatoly Pugachev <matorola@gmail.com> [sparc64]
Acked-by: Russell King <rmk+kernel@armlinux.org.uk> [arm]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Guo Ren <guoren@kernel.org>
Cc: Yoshinori Sato <ysato@users.osdn.me>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Why record task_work_add() call stack? Syzbot reports many use-after-free
issues for task_work, see [1]. After seeing the free stack and the
current auxiliary stack, we think they are useless, we don't know where
the work was registered. This work may be the free call stack, so we miss
the root cause and don't solve the use-after-free.
Add the task_work_add() call stack into the KASAN auxiliary stack in order
to improve KASAN reports. It helps programmers solve use-after-free
issues.
[1]: https://groups.google.com/g/syzkaller-bugs/search?q=kasan%20use-after-free%20task_work_run
Link: https://lkml.kernel.org/r/20210316024410.19967-1-walter-zh.wu@mediatek.com
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change uses the previously added memory initialization feature of
HW_TAGS KASAN routines for slab memory when init_on_free is enabled.
With this change, memory initialization memset() is no longer called when
both HW_TAGS KASAN and init_on_free are enabled. Instead, memory is
initialized in KASAN runtime.
For SLUB, the memory initialization memset() is moved into
slab_free_hook() that currently directly follows the initialization loop.
A new argument is added to slab_free_hook() that indicates whether to
initialize the memory or not.
To avoid discrepancies with which memory gets initialized that can be
caused by future changes, both KASAN hook and initialization memset() are
put together and a warning comment is added.
Combining setting allocation tags with memory initialization improves
HW_TAGS KASAN performance when init_on_free is enabled.
Link: https://lkml.kernel.org/r/190fd15c1886654afdec0d19ebebd5ade665b601.1615296150.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change uses the previously added memory initialization feature of
HW_TAGS KASAN routines for slab memory when init_on_alloc is enabled.
With this change, memory initialization memset() is no longer called when
both HW_TAGS KASAN and init_on_alloc are enabled. Instead, memory is
initialized in KASAN runtime.
The memory initialization memset() is moved into slab_post_alloc_hook()
that currently directly follows the initialization loop. A new argument
is added to slab_post_alloc_hook() that indicates whether to initialize
the memory or not.
To avoid discrepancies with which memory gets initialized that can be
caused by future changes, both KASAN hook and initialization memset() are
put together and a warning comment is added.
Combining setting allocation tags with memory initialization improves
HW_TAGS KASAN performance when init_on_alloc is enabled.
Link: https://lkml.kernel.org/r/c1292aeb5d519da221ec74a0684a949b027d7720.1615296150.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change uses the previously added memory initialization feature of
HW_TAGS KASAN routines for page_alloc memory when init_on_alloc/free is
enabled.
With this change, kernel_init_free_pages() is no longer called when both
HW_TAGS KASAN and init_on_alloc/free are enabled. Instead, memory is
initialized in KASAN runtime.
To avoid discrepancies with which memory gets initialized that can be
caused by future changes, both KASAN and kernel_init_free_pages() hooks
are put together and a warning comment is added.
This patch changes the order in which memory initialization and page
poisoning hooks are called. This doesn't lead to any side-effects, as
whenever page poisoning is enabled, memory initialization gets disabled.
Combining setting allocation tags with memory initialization improves
HW_TAGS KASAN performance when init_on_alloc/free is enabled.
[andreyknvl@google.com: fix for "integrate page_alloc init with HW_TAGS"]
Link: https://lkml.kernel.org/r/65b6028dea2e9a6e8e2cb779b5115c09457363fc.1617122211.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/e77f0d5b1b20658ef0b8288625c74c2b3690e725.1615296150.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Sergei Trofimovich <slyfox@gentoo.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This change adds an argument to kasan_poison() and kasan_unpoison() that
allows initializing memory along with setting the tags for HW_TAGS.
Combining setting allocation tags with memory initialization will improve
HW_TAGS KASAN performance when init_on_alloc/free is enabled.
This change doesn't integrate memory initialization with KASAN, this is
done is subsequent patches in this series.
Link: https://lkml.kernel.org/r/3054314039fa64510947e674180d675cab1b4c41.1615296150.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kasan: integrate with init_on_alloc/free", v3.
This patch series integrates HW_TAGS KASAN with init_on_alloc/free by
initializing memory via the same arm64 instruction that sets memory tags.
This is expected to improve HW_TAGS KASAN performance when
init_on_alloc/free is enabled. The exact perfomance numbers are unknown
as MTE-enabled hardware doesn't exist yet.
This patch (of 5):
This change adds an argument to mte_set_mem_tag_range() that allows to
enable memory initialization when settinh the allocation tags. The
implementation uses stzg instruction instead of stg when this argument
indicates to initialize memory.
Combining setting allocation tags with memory initialization will improve
HW_TAGS KASAN performance when init_on_alloc/free is enabled.
This change doesn't integrate memory initialization with KASAN, this is
done is subsequent patches in this series.
Link: https://lkml.kernel.org/r/cover.1615296150.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/d04ae90cc36be3fe246ea8025e5085495681c3d7.1615296150.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During boot, all non-reserved memblock memory is exposed to page_alloc via
memblock_free_pages->__free_pages_core(). This results in
kasan_free_pages() being called, which poisons that memory.
Poisoning all that memory lengthens boot time. The most noticeable effect
is observed with the HW_TAGS mode. A boot-time impact may potentially
also affect systems with large amount of RAM.
This patch changes the tag-based modes to not poison the memory during the
memblock->page_alloc transition.
An exception is made for KASAN_GENERIC. Since it marks all new memory as
accessible, not poisoning the memory released from memblock will lead to
KASAN missing invalid boot-time accesses to that memory.
With KASAN_SW_TAGS, as it uses the invalid 0xFE tag as the default tag for
all memory, it won't miss bad boot-time accesses even if the poisoning of
memblock memory is removed.
With KASAN_HW_TAGS, the default memory tags values are unspecified.
Therefore, if memblock poisoning is removed, this KASAN mode will miss the
mentioned type of boot-time bugs with a 1/16 probability. This is taken
as an acceptable trafe-off.
Internally, the poisoning is removed as follows. __free_pages_core() is
used when exposing fresh memory during system boot and when onlining
memory during hotplug. This patch adds a new FPI_SKIP_KASAN_POISON flag
and passes it to __free_pages_ok() through free_pages_prepare() from
__free_pages_core(). If FPI_SKIP_KASAN_POISON is set, kasan_free_pages()
is not called.
All memory allocated normally when the boot is over keeps getting poisoned
as usual.
Link: https://lkml.kernel.org/r/a0570dc1e3a8f39a55aa343a1fc08cd5c2d4cad6.1613692950.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can sometimes end up with kasan_byte_accessible() being called on
non-slab memory. For example ksize() and krealloc() may end up calling it
on KFENCE allocated memory. In this case the memory will be tagged with
KASAN_SHADOW_INIT, which a subsequent patch ("kasan: initialize shadow to
TAG_INVALID for SW_TAGS") will set to the same value as KASAN_TAG_INVALID,
causing kasan_byte_accessible() to fail when called on non-slab memory.
This highlighted the fact that the check in kasan_byte_accessible() was
inconsistent with checks as implemented for loads and stores
(kasan_check_range() in SW tags mode and hardware-implemented checks in HW
tags mode). kasan_check_range() does not have a check for
KASAN_TAG_INVALID, and instead has a comparison against
KASAN_SHADOW_START. In HW tags mode, we do not have either, but we do set
TCR_EL1.TCMA which corresponds with the comparison against
KASAN_TAG_KERNEL.
Therefore, update kasan_byte_accessible() for both SW and HW tags modes to
correspond with the respective checks on loads and stores.
Link: https://linux-review.googlesource.com/id/Ic6d40803c57dcc6331bd97fbb9a60b0d38a65a36
Link: https://lkml.kernel.org/r/20210405220647.1965262-1-pcc@google.com
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
strlcpy is marked as deprecated in Documentation/process/deprecated.rst,
and there is no functional difference when the caller expects truncation
(when not checking the return value). strscpy is relatively better as it
also avoids scanning the whole source string.
Link: https://lkml.kernel.org/r/1613970647-23272-1-git-send-email-daizhiyuan@phytium.com.cn
Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn>
Acked-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of keeping open-coded style, move the code related to preloading
into a separate function. Therefore introduce the preload_this_cpu_lock()
routine that prelaods a current CPU with one extra vmap_area object.
There is no functional change as a result of this patch.
Link: https://lkml.kernel.org/r/20210402202237.20334-4-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A potential use after free can occur in _vm_unmap_aliases where an already
freed vmap_area could be accessed, Consider the following scenario:
Process 1 Process 2
__vm_unmap_aliases __vm_unmap_aliases
purge_fragmented_blocks_allcpus rcu_read_lock()
rcu_read_lock()
list_del_rcu(&vb->free_list)
list_for_each_entry_rcu(vb .. )
__purge_vmap_area_lazy
kmem_cache_free(va)
va_start = vb->va->va_start
Here Process 1 is in purge path and it does list_del_rcu on vmap_block and
later frees the vmap_area, since Process 2 was holding the rcu lock at
this time vmap_block will still be present in and Process 2 accesse it and
thereby it tries to access vmap_area of that vmap_block which was already
freed by Process 1 and this results in use after free.
Fix this by adding a check for vb->dirty before accessing vmap_area
structure since vb->dirty will be set to VMAP_BBMAP_BITS in purge path
checking for this will prevent the use after free.
Link: https://lkml.kernel.org/r/1616062105-23263-1-git-send-email-vjitta@codeaurora.org
Signed-off-by: Vijayanand Jitta <vjitta@codeaurora.org>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are several reasons why a vmalloc can fail, virtual space exhausted,
page array allocation failure, page allocation failure, and kernel page
table allocation failure.
Add distinct warning messages for the main causes of failure, with some
added information like page order or allocation size where applicable.
[urezki@gmail.com: print correct vmalloc allocation size]
Link: https://lkml.kernel.org/r/20210329193214.GA28602@pc638.lan
Link: https://lkml.kernel.org/r/20210322021806.892164-6-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a shim around vunmap_range, get rid of it.
Move the main API comment from the _noflush variant to the normal
variant, and make _noflush internal to mm/.
[npiggin@gmail.com: fix nommu builds and a comment bug per sfr]
Link: https://lkml.kernel.org/r/1617292598.m6g0knx24s.astroid@bobo.none
[akpm@linux-foundation.org: move vunmap_range_noflush() stub inside !CONFIG_MMU, not !CONFIG_NUMA]
[npiggin@gmail.com: fix nommu builds]
Link: https://lkml.kernel.org/r/1617292497.o1uhq5ipxp.astroid@bobo.none
Link: https://lkml.kernel.org/r/20210322021806.892164-5-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Cédric Le Goater <clg@kaod.org>
Cc: Uladzislau Rezki <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/vmalloc: cleanup after hugepage series", v2.
Christoph pointed out some overdue cleanups required after the huge
vmalloc series, and I had another failure error message improvement as
well.
This patch (of 5):
This is a shim around vmap_pages_range, get rid of it.
Move the main API comment from the _noflush variant to the normal variant,
and make _noflush internal to mm/.
Link: https://lkml.kernel.org/r/20210322021806.892164-1-npiggin@gmail.com
Link: https://lkml.kernel.org/r/20210322021806.892164-2-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Cédric Le Goater <clg@kaod.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Support huge page vmalloc mappings. Config option HAVE_ARCH_HUGE_VMALLOC
enables support on architectures that define HAVE_ARCH_HUGE_VMAP and
supports PMD sized vmap mappings.
vmalloc will attempt to allocate PMD-sized pages if allocating PMD size or
larger, and fall back to small pages if that was unsuccessful.
Architectures must ensure that any arch specific vmalloc allocations that
require PAGE_SIZE mappings (e.g., module allocations vs strict module rwx)
use the VM_NOHUGE flag to inhibit larger mappings.
This can result in more internal fragmentation and memory overhead for a
given allocation, an option nohugevmalloc is added to disable at boot.
[colin.king@canonical.com: fix read of uninitialized pointer area]
Link: https://lkml.kernel.org/r/20210318155955.18220-1-colin.king@canonical.com
Link: https://lkml.kernel.org/r/20210317062402.533919-14-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As a side-effect, the order of flush_cache_vmap() and
arch_sync_kernel_mappings() calls are switched, but that now matches the
other callers in this file.
Link: https://lkml.kernel.org/r/20210317062402.533919-13-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a generic kernel virtual memory mapper, not specific to ioremap.
Code is unchanged other than making vmap_range non-static.
Link: https://lkml.kernel.org/r/20210317062402.533919-12-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This changes the awkward approach where architectures provide init
functions to determine which levels they can provide large mappings for,
to one where the arch is queried for each call.
This removes code and indirection, and allows constant-folding of dead
code for unsupported levels.
This also adds a prot argument to the arch query. This is unused
currently but could help with some architectures (e.g., some powerpc
processors can't map uncacheable memory with large pages).
Link: https://lkml.kernel.org/r/20210317062402.533919-7-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Ding Tianhong <dingtianhong@huawei.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Will Deacon <will@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will be used as a generic kernel virtual mapping function, so re-name
it in preparation.
Link: https://lkml.kernel.org/r/20210317062402.533919-6-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmalloc mapper operates on a struct page * array rather than a linear
physical address, re-name it to make this distinction clear.
Link: https://lkml.kernel.org/r/20210317062402.533919-5-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
apply_to_pte_range might mistake a large pte for bad, or treat it as a
page table, resulting in a crash or corruption. Add a test to warn and
return error if large entries are found.
Link: https://lkml.kernel.org/r/20210317062402.533919-4-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmalloc_to_page returns NULL for addresses mapped by larger pages[*].
Whether or not a vmap is huge depends on the architecture details,
alignments, boot options, etc., which the caller can not be expected to
know. Therefore HUGE_VMAP is a regression for vmalloc_to_page.
This change teaches vmalloc_to_page about larger pages, and returns the
struct page that corresponds to the offset within the large page. This
makes the API agnostic to mapping implementation details.
[*] As explained by commit 029c54b095 ("mm/vmalloc.c: huge-vmap:
fail gracefully on unexpected huge vmap mappings")
[npiggin@gmail.com: sparc32: add stub pud_page define for walking huge vmalloc page tables]
Link: https://lkml.kernel.org/r/20210324232825.1157363-1-npiggin@gmail.com
Link: https://lkml.kernel.org/r/20210317062402.533919-3-npiggin@gmail.com
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Ding Tianhong <dingtianhong@huawei.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vread() has been linearly searching vmap_area_list for looking up vmalloc
areas to read from. These same areas are also tracked by a rb_tree
(vmap_area_root) which offers logarithmic lookup.
This patch modifies vread() to use the rb_tree structure instead of the
list and the speedup for heavy /proc/kcore readers can be pretty
significant. Below are the wall clock measurements of a Python
application that leverages the drgn debugging library to read and
interpret data read from /proc/kcore.
Before the patch:
-----
$ time sudo sdb -e 'dbuf | head 3000 | wc'
(unsigned long)3000
real 0m22.446s
user 0m2.321s
sys 0m20.690s
-----
With the patch:
-----
$ time sudo sdb -e 'dbuf | head 3000 | wc'
(unsigned long)3000
real 0m2.104s
user 0m2.043s
sys 0m0.921s
-----
Link: https://lkml.kernel.org/r/20210209190253.108763-1-serapheim@delphix.com
Signed-off-by: Serapheim Dimitropoulos <serapheim@delphix.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
remap_vmalloc_range_partial is only used to implement remap_vmalloc_range
and by procfs. Unexport it.
Link: https://lkml.kernel.org/r/20210301082235.932968-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Kirti Wankhede <kwankhede@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sparse_buffer_init() and sparse_buffer_fini() should appear in pair, or a
WARN issue would be through the next time sparse_buffer_init() runs.
Add the missing sparse_buffer_fini() in error branch.
Link: https://lkml.kernel.org/r/20210325113155.118574-1-wangwensheng4@huawei.com
Fixes: 85c77f7913 ("mm/sparse: add new sparse_init_nid() and sparse_init()")
Signed-off-by: Wang Wensheng <wangwensheng4@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
strlcpy is marked as deprecated in Documentation/process/deprecated.rst,
and there is no functional difference when the caller expects truncation
(when not checking the return value). strscpy is relatively better as it
also avoids scanning the whole source string.
Link: https://lkml.kernel.org/r/1613962050-14188-1-git-send-email-daizhiyuan@phytium.com.cn
Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit cd544fd1dc.
As discussed in [1] this commit was a no-op because the mapping type was
checked in vma_to_resize before move_vma is ever called. This meant that
vm_ops->mremap() would never be called on such mappings. Furthermore,
we've since expanded support of MREMAP_DONTUNMAP to non-anonymous
mappings, and these special mappings are still protected by the existing
check of !VM_DONTEXPAND and !VM_PFNMAP which will result in a -EINVAL.
1. https://lkml.org/lkml/2020/12/28/2340
Link: https://lkml.kernel.org/r/20210323182520.2712101-2-bgeffon@google.com
Signed-off-by: Brian Geffon <bgeffon@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Alejandro Colomar <alx.manpages@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Lokesh Gidra <lokeshgidra@google.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: Extend MREMAP_DONTUNMAP to non-anonymous mappings", v5.
This patch (of 3):
Currently MREMAP_DONTUNMAP only accepts private anonymous mappings. This
restriction was placed initially for simplicity and not because there
exists a technical reason to do so.
This change will widen the support to include any mappings which are not
VM_DONTEXPAND or VM_PFNMAP. The primary use case is to support
MREMAP_DONTUNMAP on mappings which may have been created from a memfd.
This change will result in mremap(MREMAP_DONTUNMAP) returning -EINVAL if
VM_DONTEXPAND or VM_PFNMAP mappings are specified.
Lokesh Gidra who works on the Android JVM, provided an explanation of how
such a feature will improve Android JVM garbage collection: "Android is
developing a new garbage collector (GC), based on userfaultfd. The
garbage collector will use userfaultfd (uffd) on the java heap during
compaction. On accessing any uncompacted page, the application threads
will find it missing, at which point the thread will create the compacted
page and then use UFFDIO_COPY ioctl to get it mapped and then resume
execution. Before starting this compaction, in a stop-the-world pause the
heap will be mremap(MREMAP_DONTUNMAP) so that the java heap is ready to
receive UFFD_EVENT_PAGEFAULT events after resuming execution.
To speedup mremap operations, pagetable movement was optimized by moving
PUD entries instead of PTE entries [1]. It was necessary as mremap of
even modest sized memory ranges also took several milliseconds, and
stopping the application for that long isn't acceptable in response-time
sensitive cases.
With UFFDIO_CONTINUE feature [2], it will be even more efficient to
implement this GC, particularly the 'non-moveable' portions of the heap.
It will also help in reducing the need to copy (UFFDIO_COPY) the pages.
However, for this to work, the java heap has to be on a 'shared' vma.
Currently MREMAP_DONTUNMAP only supports private anonymous mappings, this
patch will enable using UFFDIO_CONTINUE for the new userfaultfd-based heap
compaction."
[1] https://lore.kernel.org/linux-mm/20201215030730.NC3CU98e4%25akpm@linux-foundation.org/
[2] https://lore.kernel.org/linux-mm/20210302000133.272579-1-axelrasmussen@google.com/
Link: https://lkml.kernel.org/r/20210323182520.2712101-1-bgeffon@google.com
Signed-off-by: Brian Geffon <bgeffon@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Tested-by: Lokesh Gidra <lokeshgidra@google.com>
Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Alejandro Colomar <alx.manpages@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: "Michael S . Tsirkin" <mst@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sonny Rao <sonnyrao@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With NUMA balancing, in hint page fault handler, the faulting page will be
migrated to the accessing node if necessary. During the migration, TLB
will be shot down on all CPUs that the process has run on recently.
Because in the hint page fault handler, the PTE will be made accessible
before the migration is tried. The overhead of TLB shooting down can be
high, so it's better to be avoided if possible. In fact, if we delay
mapping the page until migration, that can be avoided. This is what this
patch doing.
For the multiple threads applications, it's possible that a page is
accessed by multiple threads almost at the same time. In the original
implementation, because the first thread will install the accessible PTE
before migrating the page, the other threads may access the page directly
before the page is made inaccessible again during migration. While with
the patch, the second thread will go through the page fault handler too.
And because of the PageLRU() checking in the following code path,
migrate_misplaced_page()
numamigrate_isolate_page()
isolate_lru_page()
the migrate_misplaced_page() will return 0, and the PTE will be made
accessible in the second thread.
This will introduce a little more overhead. But we think the possibility
for a page to be accessed by the multiple threads at the same time is low,
and the overhead difference isn't too large. If this becomes a problem in
some workloads, we need to consider how to reduce the overhead.
To test the patch, we run a test case as follows on a 2-socket Intel
server (1 NUMA node per socket) with 128GB DRAM (64GB per socket).
1. Run a memory eater on NUMA node 1 to use 40GB memory before running
pmbench.
2. Run pmbench (normal accessing pattern) with 8 processes, and 8
threads per process, so there are 64 threads in total. The
working-set size of each process is 8960MB, so the total working-set
size is 8 * 8960MB = 70GB. The CPU of all pmbench processes is bound
to node 1. The pmbench processes will access some DRAM on node 0.
3. After the pmbench processes run for 10 seconds, kill the memory
eater. Now, some pages will be migrated from node 0 to node 1 via
NUMA balancing.
Test results show that, with the patch, the pmbench throughput (page
accesses/s) increases 5.5%. The number of the TLB shootdowns interrupts
reduces 98% (from ~4.7e7 to ~9.7e5) with about 9.2e6 pages (35.8GB)
migrated. From the perf profile, it can be found that the CPU cycles
spent by try_to_unmap() and its callees reduces from 6.02% to 0.47%. That
is, the CPU cycles spent by TLB shooting down decreases greatly.
Link: https://lkml.kernel.org/r/20210408132236.1175607-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Matthew Wilcox" <willy@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Arjun Roy <arjunroy@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a helper that calls remap_pfn_range for an struct io_mapping, relying
on the pgprot pre-validation done when creating the mapping instead of
doing it at runtime.
Link: https://lkml.kernel.org/r/20210326055505.1424432-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "add remap_pfn_range_notrack instead of reinventing it in i915", v2.
i915 has some reason to want to avoid the track_pfn_remap overhead in
remap_pfn_range. Add a function to the core VM to do just that rather
than reinventing the functionality poorly in the driver.
Note that the remap_io_sg path does get exercises when using Xorg on my
Thinkpad X1, so this should be considered lightly tested, I've not managed
to hit the remap_io_mapping path at all.
This patch (of 4):
Add a version of remap_pfn_range that does not call track_pfn_range. This
will be used to fix horrible abuses of VM internals in the i915 driver.
Link: https://lkml.kernel.org/r/20210326055505.1424432-1-hch@lst.de
Link: https://lkml.kernel.org/r/20210326055505.1424432-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a comment explaining the value of the ISSTATIC parameter, Inform the
reader that this is not a coding style issue.
Link: https://lkml.kernel.org/r/1613964695-17614-1-git-send-email-daizhiyuan@phytium.com.cn
Signed-off-by: Zhiyuan Dai <daizhiyuan@phytium.com.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the unsigned page_counter underflows, even just by a few pages, a
cgroup will not be able to run anything afterwards and trigger the OOM
killer in a loop.
Underflows shouldn't happen, but when they do in practice, we may just be
off by a small amount that doesn't interfere with the normal operation -
consequences don't need to be that dire.
Reset the page_counter to 0 upon underflow. We'll issue a warning that
the accounting will be off and then try to keep limping along.
[ We used to do this with the original res_counter, where it was a
more straight-forward correction inside the spinlock section. I
didn't carry it forward into the lockless page counters for
simplicity, but it turns out this is quite useful in practice. ]
Link: https://lkml.kernel.org/r/20210408143155.2679744-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is only one user of __memcg_kmem_charge(), so manually inline
__memcg_kmem_charge() to obj_cgroup_charge_pages(). Similarly manually
inline __memcg_kmem_uncharge() into obj_cgroup_uncharge_pages() and call
obj_cgroup_uncharge_pages() in obj_cgroup_release().
This is just code cleanup without any functionality changes.
Link: https://lkml.kernel.org/r/20210319163821.20704-7-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since Roman's series "The new cgroup slab memory controller" applied.
All slab objects are charged via the new APIs of obj_cgroup. The new
APIs introduce a struct obj_cgroup to charge slab objects. It prevents
long-living objects from pinning the original memory cgroup in the
memory. But there are still some corner objects (e.g. allocations
larger than order-1 page on SLUB) which are not charged via the new
APIs. Those objects (include the pages which are allocated from buddy
allocator directly) are charged as kmem pages which still hold a
reference to the memory cgroup.
We want to reuse the obj_cgroup APIs to charge the kmem pages. If we do
that, we should store an object cgroup pointer to page->memcg_data for
the kmem pages.
Finally, page->memcg_data will have 3 different meanings.
1) For the slab pages, page->memcg_data points to an object cgroups
vector.
2) For the kmem pages (exclude the slab pages), page->memcg_data
points to an object cgroup.
3) For the user pages (e.g. the LRU pages), page->memcg_data points
to a memory cgroup.
We do not change the behavior of page_memcg() and page_memcg_rcu(). They
are also suitable for LRU pages and kmem pages. Why?
Because memory allocations pinning memcgs for a long time - it exists at a
larger scale and is causing recurring problems in the real world: page
cache doesn't get reclaimed for a long time, or is used by the second,
third, fourth, ... instance of the same job that was restarted into a new
cgroup every time. Unreclaimable dying cgroups pile up, waste memory, and
make page reclaim very inefficient.
We can convert LRU pages and most other raw memcg pins to the objcg
direction to fix this problem, and then the page->memcg will always point
to an object cgroup pointer. At that time, LRU pages and kmem pages will
be treated the same. The implementation of page_memcg() will remove the
kmem page check.
This patch aims to charge the kmem pages by using the new APIs of
obj_cgroup. Finally, the page->memcg_data of the kmem page points to an
object cgroup. We can use the __page_objcg() to get the object cgroup
associated with a kmem page. Or we can use page_memcg() to get the memory
cgroup associated with a kmem page, but caller must ensure that the
returned memcg won't be released (e.g. acquire the rcu_read_lock or
css_set_lock).
Link: https://lkml.kernel.org/r/20210401030141.37061-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210319163821.20704-6-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
[songmuchun@bytedance.com: fix forget to obtain the ref to objcg in split_page_memcg]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just like assignment to ug->memcg, we only need to update ug->dummy_page
if memcg changed. So move it to there. This is a very small
optimization.
Link: https://lkml.kernel.org/r/20210319163821.20704-5-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_memcg() is not suitable for use by page_expected_state() and
page_bad_reason(). Because it can BUG_ON() for the slab pages when
CONFIG_DEBUG_VM is enabled. As neither lru, nor kmem, nor slab page
should have anything left in there by the time the page is freed, what
we care about is whether the value of page->memcg_data is 0. So just
directly access page->memcg_data here.
Link: https://lkml.kernel.org/r/20210319163821.20704-4-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We know that the unit of slab object charging is bytes, the unit of kmem
page charging is PAGE_SIZE. If we want to reuse obj_cgroup APIs to
charge the kmem pages, we should pass PAGE_SIZE (as third parameter) to
obj_cgroup_charge(). Because the size is already PAGE_SIZE, we can skip
touch the objcg stock. And obj_cgroup_{un}charge_pages() are introduced
to charge in units of page level.
In the latter patch, we also can reuse those two helpers to charge or
uncharge a number of kernel pages to a object cgroup. This is just a
code movement without any functional changes.
Link: https://lkml.kernel.org/r/20210319163821.20704-3-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Use obj_cgroup APIs to charge kmem pages", v5.
Since Roman's series "The new cgroup slab memory controller" applied.
All slab objects are charged with the new APIs of obj_cgroup. The new
APIs introduce a struct obj_cgroup to charge slab objects. It prevents
long-living objects from pinning the original memory cgroup in the
memory. But there are still some corner objects (e.g. allocations
larger than order-1 page on SLUB) which are not charged with the new
APIs. Those objects (include the pages which are allocated from buddy
allocator directly) are charged as kmem pages which still hold a
reference to the memory cgroup.
E.g. We know that the kernel stack is charged as kmem pages because the
size of the kernel stack can be greater than 2 pages (e.g. 16KB on
x86_64 or arm64). If we create a thread (suppose the thread stack is
charged to memory cgroup A) and then move it from memory cgroup A to
memory cgroup B. Because the kernel stack of the thread hold a
reference to the memory cgroup A. The thread can pin the memory cgroup
A in the memory even if we remove the cgroup A. If we want to see this
scenario by using the following script. We can see that the system has
added 500 dying cgroups (This is not a real world issue, just a script
to show that the large kmallocs are charged as kmem pages which can pin
the memory cgroup in the memory).
#!/bin/bash
cat /proc/cgroups | grep memory
cd /sys/fs/cgroup/memory
echo 1 > memory.move_charge_at_immigrate
for i in range{1..500}
do
mkdir kmem_test
echo $$ > kmem_test/cgroup.procs
sleep 3600 &
echo $$ > cgroup.procs
echo `cat kmem_test/cgroup.procs` > cgroup.procs
rmdir kmem_test
done
cat /proc/cgroups | grep memory
This patchset aims to make those kmem pages to drop the reference to
memory cgroup by using the APIs of obj_cgroup. Finally, we can see that
the number of the dying cgroups will not increase if we run the above test
script.
This patch (of 7):
The rcu_read_lock/unlock only can guarantee that the memcg will not be
freed, but it cannot guarantee the success of css_get (which is in the
refill_stock when cached memcg changed) to memcg.
rcu_read_lock()
memcg = obj_cgroup_memcg(old)
__memcg_kmem_uncharge(memcg)
refill_stock(memcg)
if (stock->cached != memcg)
// css_get can change the ref counter from 0 back to 1.
css_get(&memcg->css)
rcu_read_unlock()
This fix is very like the commit:
eefbfa7fd6 ("mm: memcg/slab: fix use after free in obj_cgroup_charge")
Fix this by holding a reference to the memcg which is passed to the
__memcg_kmem_uncharge() before calling __memcg_kmem_uncharge().
Link: https://lkml.kernel.org/r/20210319163821.20704-1-songmuchun@bytedance.com
Link: https://lkml.kernel.org/r/20210319163821.20704-2-songmuchun@bytedance.com
Fixes: 3de7d4f25a ("mm: memcg/slab: optimize objcg stock draining")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the kernel adds the page, allocated for swapin, to the
swapcache before charging the page. This is fine but now we want a
per-memcg swapcache stat which is essential for folks who wants to
transparently migrate from cgroup v1's memsw to cgroup v2's memory and
swap counters. In addition charging a page before exposing it to other
parts of the kernel is a step in the right direction.
To correctly maintain the per-memcg swapcache stat, this patch has
adopted to charge the page before adding it to swapcache. One challenge
in this option is the failure case of add_to_swap_cache() on which we
need to undo the mem_cgroup_charge(). Specifically undoing
mem_cgroup_uncharge_swap() is not simple.
To resolve the issue, this patch decouples the charging for swapin pages
from mem_cgroup_charge(). Two new functions are introduced,
mem_cgroup_swapin_charge_page() for just charging the swapin page and
mem_cgroup_swapin_uncharge_swap() for uncharging the swap slot once the
page has been successfully added to the swapcache.
[shakeelb@google.com: set page->private before calling swap_readpage]
Link: https://lkml.kernel.org/r/20210318015959.2986837-1-shakeelb@google.com
Link: https://lkml.kernel.org/r/20210305212639.775498-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Tested-by: Heiko Carstens <hca@linux.ibm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are two functions to flush the per-cpu data of an lruvec into the
rest of the cgroup tree: when the cgroup is being freed, and when a CPU
disappears during hotplug. The difference is whether all CPUs or just
one is being collected, but the rest of the flushing code is the same.
Merge them into one function and share the common code.
Link: https://lkml.kernel.org/r/20210209163304.77088-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the memory controller's custom hierarchical stats code with the
generic rstat infrastructure provided by the cgroup core.
The current implementation does batched upward propagation from the
write side (i.e. as stats change). The per-cpu batches introduce an
error, which is multiplied by the number of subgroups in a tree. In
systems with many CPUs and sizable cgroup trees, the error can be large
enough to confuse users (e.g. 32 batch pages * 32 CPUs * 32 subgroups
results in an error of up to 128M per stat item). This can entirely
swallow allocation bursts inside a workload that the user is expecting
to see reflected in the statistics.
In the past, we've done read-side aggregation, where a memory.stat read
would have to walk the entire subtree and add up per-cpu counts. This
became problematic with lazily-freed cgroups: we could have large
subtrees where most cgroups were entirely idle. Hence the switch to
change-driven upward propagation. Unfortunately, it needed to trade
accuracy for speed due to the write side being so hot.
Rstat combines the best of both worlds: from the write side, it cheaply
maintains a queue of cgroups that have pending changes, so that the read
side can do selective tree aggregation. This way the reported stats
will always be precise and recent as can be, while the aggregation can
skip over potentially large numbers of idle cgroups.
The way rstat works is that it implements a tree for tracking cgroups
with pending local changes, as well as a flush function that walks the
tree upwards. The controller then drives this by 1) telling rstat when
a local cgroup stat changes (e.g. mod_memcg_state) and 2) when a flush
is required to get uptodate hierarchy stats for a given subtree (e.g.
when memory.stat is read). The controller also provides a flush
callback that is called during the rstat flush walk for each cgroup and
aggregates its local per-cpu counters and propagates them upwards.
This adds a second vmstats to struct mem_cgroup (MEMCG_NR_STAT +
NR_VM_EVENT_ITEMS) to track pending subtree deltas during upward
aggregation. It removes 3 words from the per-cpu data. It eliminates
memcg_exact_page_state(), since memcg_page_state() is now exact.
[akpm@linux-foundation.org: merge fix]
[hannes@cmpxchg.org: fix a sleep in atomic section problem]
Link: https://lkml.kernel.org/r/20210315234100.64307-1-hannes@cmpxchg.org
Link: https://lkml.kernel.org/r/20210209163304.77088-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Balbir Singh <bsingharora@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are no users outside of the memory controller itself. The rest
of the kernel cares either about node or lruvec stats.
Link: https://lkml.kernel.org/r/20210209163304.77088-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No need to encapsulate a simple struct member access.
Link: https://lkml.kernel.org/r/20210209163304.77088-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcontrol: switch to rstat", v3.
This series converts memcg stats tracking to the streamlined rstat
infrastructure provided by the cgroup core code. rstat is already used by
the CPU controller and the IO controller. This change is motivated by
recent accuracy problems in memcg's custom stats code, as well as the
benefits of sharing common infra with other controllers.
The current memcg implementation does batched tree aggregation on the
write side: local stat changes are cached in per-cpu counters, which are
then propagated upward in batches when a threshold (32 pages) is exceeded.
This is cheap, but the error introduced by the lazy upward propagation
adds up: 32 pages times CPUs times cgroups in the subtree. We've had
complaints from service owners that the stats do not reliably track and
react to allocation behavior as expected, sometimes swallowing the results
of entire test applications.
The original memcg stat implementation used to do tree aggregation
exclusively on the read side: local stats would only ever be tracked in
per-cpu counters, and a memory.stat read would iterate the entire subtree
and sum those counters up. This didn't keep up with the times:
- Cgroup trees are much bigger now. We switched to lazily-freed
cgroups, where deleted groups would hang around until their remaining
page cache has been reclaimed. This can result in large subtrees that
are expensive to walk, while most of the groups are idle and their
statistics don't change much anymore.
- Automated monitoring increased. With the proliferation of userspace
oom killing, proactive reclaim, and higher-resolution logging of
workload trends in general, top-level stat files are polled at least
once a second in many deployments.
- The lifetime of cgroups got shorter. Where most cgroup setups in the
past would have a few large policy-oriented cgroups for everything
running on the system, newer cgroup deployments tend to create one
group per application - which gets deleted again as the processes
exit. An aggregation scheme that doesn't retain child data inside the
parents loses event history of the subtree.
Rstat addresses all three of those concerns through intelligent,
persistent read-side aggregation. As statistics change at the local
level, rstat tracks - on a per-cpu basis - only those parts of a subtree
that have changes pending and require aggregation. The actual
aggregation occurs on the colder read side - which can now skip over
(potentially large) numbers of recently idle cgroups.
===
The test_kmem cgroup selftest is currently failing due to excessive
cumulative vmstat drift from 100 subgroups:
ok 1 test_kmem_basic
memory.current = 8810496
slab + anon + file + kernel_stack = 17074568
slab = 6101384
anon = 946176
file = 0
kernel_stack = 10027008
not ok 2 test_kmem_memcg_deletion
ok 3 test_kmem_proc_kpagecgroup
ok 4 test_kmem_kernel_stacks
ok 5 test_kmem_dead_cgroups
ok 6 test_percpu_basic
As you can see, memory.stat items far exceed memory.current. The kernel
stack alone is bigger than all of charged memory. That's because the
memory of the test has been uncharged from memory.current, but the
negative vmstat deltas are still sitting in the percpu caches.
The test at this time isn't even counting percpu, pagetables etc. yet,
which would further contribute to the error. The last patch in the series
updates the test to include them - as well as reduces the vmstat
tolerances in general to only expect page_counter batching.
With all patches applied, the (now more stringent) test succeeds:
ok 1 test_kmem_basic
ok 2 test_kmem_memcg_deletion
ok 3 test_kmem_proc_kpagecgroup
ok 4 test_kmem_kernel_stacks
ok 5 test_kmem_dead_cgroups
ok 6 test_percpu_basic
===
A kernel build test confirms that overhead is comparable. Two kernels are
built simultaneously in a nested tree with several idle siblings:
root - kernelbuild - one - two - three - four - build-a (defconfig, make -j16)
`- build-b (defconfig, make -j16)
`- idle-1
`- ...
`- idle-9
During the builds, kernelbuild/memory.stat is read once a second.
A perf diff shows that the changes in cycle distribution is
minimal. Top 10 kernel symbols:
0.09% +0.08% [kernel.kallsyms] [k] __mod_memcg_lruvec_state
0.00% +0.06% [kernel.kallsyms] [k] cgroup_rstat_updated
0.08% -0.05% [kernel.kallsyms] [k] __mod_memcg_state.part.0
0.16% -0.04% [kernel.kallsyms] [k] release_pages
0.00% +0.03% [kernel.kallsyms] [k] __count_memcg_events
0.01% +0.03% [kernel.kallsyms] [k] mem_cgroup_charge_statistics.constprop.0
0.10% -0.02% [kernel.kallsyms] [k] get_mem_cgroup_from_mm
0.05% -0.02% [kernel.kallsyms] [k] mem_cgroup_update_lru_size
0.57% +0.01% [kernel.kallsyms] [k] asm_exc_page_fault
===
The on-demand aggregated stats are now fully accurate:
$ grep -e nr_inactive_file /proc/vmstat | awk '{print($1,$2*4096)}'; \
grep -e inactive_file /sys/fs/cgroup/memory.stat
vanilla: patched:
nr_inactive_file 1574105088 nr_inactive_file 1027801088
inactive_file 1577410560 inactive_file 1027801088
===
This patch (of 8):
The memcg hotunplug callback erroneously flushes counts on the local CPU,
not the counts of the CPU going away; those counts will be lost.
Flush the CPU that is actually going away.
Also simplify the code a bit by using mod_memcg_state() and
count_memcg_events() instead of open-coding the upward flush - this is
comparable to how vmstat.c handles hotunplug flushing.
Link: https://lkml.kernel.org/r/20210209163304.77088-1-hannes@cmpxchg.org
Link: https://lkml.kernel.org/r/20210209163304.77088-2-hannes@cmpxchg.org
Fixes: a983b5ebee ("mm: memcontrol: fix excessive complexity in memory.stat reporting")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the era of async memcg oom-killer, the commit a0d8b00a33 ("mm: memcg:
do not declare OOM from __GFP_NOFAIL allocations") added the code to skip
memcg oom-killer for __GFP_NOFAIL allocations. The reason was that the
__GFP_NOFAIL callers will not enter aync oom synchronization path and will
keep the task marked as in memcg oom. At that time the tasks marked in
memcg oom can bypass the memcg limits and the oom synchronization would
have happened later in the later userspace triggered page fault. Thus
letting the task marked as under memcg oom bypass the memcg limit for
arbitrary time.
With the synchronous memcg oom-killer (commit 29ef680ae7 ("memcg, oom:
move out_of_memory back to the charge path")) and not letting the task
marked under memcg oom to bypass the memcg limits (commit 1f14c1ac19
("mm: memcg: do not allow task about to OOM kill to bypass the limit")),
we can again allow __GFP_NOFAIL allocations to trigger memcg oom-kill.
This will make memcg oom behavior closer to page allocator oom behavior.
Link: https://lkml.kernel.org/r/20210223204337.2785120-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace the implicit checking of root memcg with explicit root memcg
checking i.e. !css->parent with mem_cgroup_is_root().
Link: https://lkml.kernel.org/r/20210223205625.2792891-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 5a52c9df62 ("uprobe: use FOLL_SPLIT_PMD instead of
FOLL_SPLIT") and commit ba925fa350 ("s390/gmap: improve THP splitting")
FOLL_SPLIT has not been used anymore. Remove the dead code.
Link: https://lkml.kernel.org/r/20210330203900.9222-1-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an unpin_user_page_range_dirty_lock() API which takes a starting page
and how many consecutive pages we want to unpin and optionally dirty.
To that end, define another iterator for_each_compound_range() that
operates in page ranges as opposed to page array.
For users (like RDMA mr_dereg) where each sg represents a contiguous set
of pages, we're able to more efficiently unpin pages without having to
supply an array of pages much of what happens today with
unpin_user_pages().
Link: https://lkml.kernel.org/r/20210212130843.13865-4-joao.m.martins@oracle.com
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than decrementing the head page refcount one by one, we walk the
page array and checking which belong to the same compound_head. Later on
we decrement the calculated amount of references in a single write to the
head page. To that end switch to for_each_compound_head() does most of
the work.
set_page_dirty() needs no adjustment as it's a nop for non-dirty head
pages and it doesn't operate on tail pages.
This considerably improves unpinning of pages with THP and hugetlbfs:
- THP
gup_test -t -m 16384 -r 10 [-L|-a] -S -n 512 -w
PIN_LONGTERM_BENCHMARK (put values): ~87.6k us -> ~23.2k us
- 16G with 1G huge page size
gup_test -f /mnt/huge/file -m 16384 -r 10 [-L|-a] -S -n 512 -w
PIN_LONGTERM_BENCHMARK: (put values): ~87.6k us -> ~27.5k us
Link: https://lkml.kernel.org/r/20210212130843.13865-3-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/gup: page unpining improvements", v4.
This series improves page unpinning, with an eye on improving MR
deregistration for big swaths of memory (which is bound by the page
unpining), particularly:
1) Decrement the head page by @ntails and thus reducing a lot the
number of atomic operations per compound page. This is done by
comparing individual tail pages heads, and counting number of
consecutive tails on which they match heads and based on that update
head page refcount. Should have a visible improvement in all page
(un)pinners which use compound pages
2) Introducing a new API for unpinning page ranges (to avoid the trick
in the previous item and be based on math), and use that in RDMA
ib_mem_release (used for mr deregistration).
Performance improvements: unpin_user_pages() for hugetlbfs and THP
improves ~3x (through gup_test) and RDMA MR dereg improves ~4.5x with the
new API. See patches 2 and 4 for those.
This patch (of 4):
Add a helper that iterates over head pages in a list of pages. It
essentially counts the tails until the next page to process has a
different head that the current. This is going to be used by
unpin_user_pages() family of functions, to batch the head page refcount
updates once for all passed consecutive tail pages.
Link: https://lkml.kernel.org/r/20210212130843.13865-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20210212130843.13865-2-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Doug Ledford <dledford@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an unmapped region was found and the flag is MS_ASYNC (without
MS_INVALIDATE) there is nothing to do and the result would be always
-ENOMEM, so return immediately.
Link: https://lkml.kernel.org/r/20201025092901.56399-1-sh1r4s3@mail.si-head.nl
Signed-off-by: Nikita Ermakov <sh1r4s3@mail.si-head.nl>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a6de4b4873 ("mm: convert find_get_entry to return the head page")
uses @index instead of @offset, but the comment is stale, update it.
Link: https://lkml.kernel.org/r/1617948260-50724-1-git-send-email-zhangshaokun@hisilicon.com
Signed-off-by: Rui Sun <sunrui26@huawei.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_mapping_file() is only used by some architectures, and then it
is usually only used in one place. Make it a static inline function
so other architectures don't have to carry this dead code.
Link: https://lkml.kernel.org/r/20210317123011.350118-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Page writeback doesn't hold a page reference, which allows truncate to
free a page the second PageWriteback is cleared. This used to require
special attention in test_clear_page_writeback(), where we had to be
careful not to rely on the unstable page->memcg binding and look up all
the necessary information before clearing the writeback flag.
Since commit 073861ed77 ("mm: fix VM_BUG_ON(PageTail) and
BUG_ON(PageWriteback)") test_clear_page_writeback() is called with an
explicit reference on the page, and this dance is no longer needed.
Use unlock_page_memcg() and dec_lruvec_page_state() directly.
This removes the last user of the lock_page_memcg() return value, change
it to void. Touch up the comments in there as well. This also removes
the last extern user of __unlock_page_memcg(), make it static. Further,
it removes the last user of dec_lruvec_state(), delete it, along with a
few other unused helpers.
Link: https://lkml.kernel.org/r/YCQbYAWg4nvBFL6h@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the I/O completed successfully, the page will remain Uptodate, even
if it is subsequently truncated. If the I/O completed with an error,
this check would cause us to retry the I/O if the page were truncated
before we woke up. There is no need to retry the I/O; the I/O to fill
the page failed, so we can legitimately just return -EIO.
This code was originally added by commit 56f0d5fe6851 ("[PATCH]
readpage-vs-invalidate fix") in 2005 (this commit ID is from the
linux-fullhistory tree; it is also commit ba1f08f14b52 in tglx-history).
At the time, truncate_complete_page() called ClearPageUptodate(), and so
this was fixing a real bug. In 2008, commit 84209e02de ("mm: dont clear
PG_uptodate on truncate/invalidate") removed the call to
ClearPageUptodate, and this check has been unnecessary ever since.
It doesn't do any real harm, but there's no need to keep it.
Link: https://lkml.kernel.org/r/20210303222547.1056428-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After splitting generic_file_buffered_read() into smaller parts, it turns
out we can reuse one of the parts in filemap_fault(). This fixes an
oversight -- waiting for the I/O to complete is now interruptible by a
fatal signal. And it saves us a few bytes of text in an unlikely path.
$ ./scripts/bloat-o-meter before.o after.o
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-207 (-207)
Function old new delta
filemap_fault 2187 1980 -207
Total: Before=37491, After=37284, chg -0.55%
Link: https://lkml.kernel.org/r/20210226140011.2883498-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the generic page cache read helper, use the better variant of checking
for the need to call filemap_write_and_wait_range() when doing O_DIRECT
reads. This avoids falling back to the slow path for IOCB_NOWAIT, if
there are no pages to wait for (or write out).
Link: https://lkml.kernel.org/r/20210224164455.1096727-3-axboe@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Improve IOCB_NOWAIT O_DIRECT reads", v3.
An internal workload complained because it was using too much CPU, and
when I took a look, we had a lot of io_uring workers going to town.
For an async buffered read like workload, I am normally expecting _zero_
offloads to a worker thread, but this one had tons of them. I'd drop
caches and things would look good again, but then a minute later we'd
regress back to using workers. Turns out that every minute something
was reading parts of the device, which would add page cache for that
inode. I put patches like these in for our kernel, and the problem was
solved.
Don't -EAGAIN IOCB_NOWAIT dio reads just because we have page cache
entries for the given range. This causes unnecessary work from the
callers side, when the IO could have been issued totally fine without
blocking on writeback when there is none.
This patch (of 3):
For O_DIRECT reads/writes, we check if we need to issue a call to
filemap_write_and_wait_range() to issue and/or wait for writeback for any
page in the given range. The existing mechanism just checks for a page in
the range, which is suboptimal for IOCB_NOWAIT as we'll fallback to the
slow path (and needing retry) if there's just a clean page cache page in
the range.
Provide filemap_range_needs_writeback() which tries a little harder to
check if we actually need to issue and/or wait for writeback in the range.
Link: https://lkml.kernel.org/r/20210224164455.1096727-1-axboe@kernel.dk
Link: https://lkml.kernel.org/r/20210224164455.1096727-2-axboe@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When page_poison detects page corruption it's useful to see who freed a
page recently to have a guess where write-after-free corruption happens.
After this change corruption report has extra page data.
Example report from real corruption (includes only page_pwner part):
pagealloc: memory corruption
e00000014cd61d10: 11 00 00 00 00 00 00 00 30 1d d2 ff ff 0f 00 60 ........0......`
e00000014cd61d20: b0 1d d2 ff ff 0f 00 60 90 fe 1c 00 08 00 00 20 .......`.......
...
CPU: 1 PID: 220402 Comm: cc1plus Not tainted 5.12.0-rc5-00107-g9720c6f59ecf #245
Hardware name: hp server rx3600, BIOS 04.03 04/08/2008
...
Call Trace:
[<a000000100015210>] show_stack+0x90/0xc0
[<a000000101163390>] dump_stack+0x150/0x1c0
[<a0000001003f1e90>] __kernel_unpoison_pages+0x410/0x440
[<a0000001003c2460>] get_page_from_freelist+0x1460/0x2ca0
[<a0000001003c6be0>] __alloc_pages_nodemask+0x3c0/0x660
[<a0000001003ed690>] alloc_pages_vma+0xb0/0x500
[<a00000010037deb0>] __handle_mm_fault+0x1230/0x1fe0
[<a00000010037ef70>] handle_mm_fault+0x310/0x4e0
[<a00000010005dc70>] ia64_do_page_fault+0x1f0/0xb80
[<a00000010000ca00>] ia64_leave_kernel+0x0/0x270
page_owner tracks the page as freed
page allocated via order 0, migratetype Movable,
gfp_mask 0x100dca(GFP_HIGHUSER_MOVABLE|__GFP_ZERO), pid 37, ts 8173444098740
__reset_page_owner+0x40/0x200
free_pcp_prepare+0x4d0/0x600
free_unref_page+0x20/0x1c0
__put_page+0x110/0x1a0
migrate_pages+0x16d0/0x1dc0
compact_zone+0xfc0/0x1aa0
proactive_compact_node+0xd0/0x1e0
kcompactd+0x550/0x600
kthread+0x2c0/0x2e0
call_payload+0x50/0x80
Here we can see that page was freed by page migration but something
managed to write to it afterwards.
[slyfox@gentoo.org: s/dump_page_owner/dump_page/, per Vlastimil]
Link: https://lkml.kernel.org/r/20210407230800.1086854-1-slyfox@gentoo.org
Link: https://lkml.kernel.org/r/20210404141735.2152984-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Before the change page_owner recursion was detected via fetching
backtrace and inspecting it for current instruction pointer.
It has a few problems:
- it is slightly slow as it requires extra backtrace and a linear stack
scan of the result
- it is too late to check if backtrace fetching required memory
allocation itself (ia64's unwinder requires it).
To simplify recursion tracking let's use page_owner recursion flag in
'struct task_struct'.
The change make page_owner=on work on ia64 by avoiding infinite
recursion in:
kmalloc()
-> __set_page_owner()
-> save_stack()
-> unwind() [ia64-specific]
-> build_script()
-> kmalloc()
-> __set_page_owner() [we short-circuit here]
-> save_stack()
-> unwind() [recursion]
Link: https://lkml.kernel.org/r/20210402115342.1463781-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ben Segall <bsegall@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I tried to use page_owner=1 for a while noticed too late it had no effect
as opposed to similar init_on_alloc=1 (these work).
Let's make them consistent.
The change decreses binary size slightly:
text data bss dec hex filename
12408 321 17 12746 31ca mm/page_owner.o.before
12320 321 17 12658 3172 mm/page_owner.o.after
Link: https://lkml.kernel.org/r/20210401210909.3532086-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Very minor optimization.
Link: https://lkml.kernel.org/r/20210401212445.3534721-1-slyfox@gentoo.org
Signed-off-by: Sergei Trofimovich <slyfox@gentoo.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 5556cfe8d9 ("mm, page_owner: fix off-by-one error in
__set_page_owner_handle()") introduced, the parameter 'page' will not
used, hence it need to be removed.
Link: https://lkml.kernel.org/r/1616602022-43545-1-git-send-email-zhongjiang-ali@linux.alibaba.com
Signed-off-by: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Collect the time when each allocation is freed, to help with memory
analysis with kdump/ramdump. Add the timestamp also in the page_owner
debugfs file and print it in dump_page().
Having another timestamp when we free the page helps for debugging page
migration issues. For example both alloc and free timestamps being the
same can gave hints that there is an issue with migrating memory, as
opposed to a page just being dropped during migration.
Link: https://lkml.kernel.org/r/20210203175905.12267-1-georgi.djakov@linaro.org
Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit ca0cab65ea ("mm, slub: introduce static key for slub_debug()")
introduced a static key to optimize the case where no debugging is
enabled for any cache. The static key is enabled when slub_debug boot
parameter is passed, or CONFIG_SLUB_DEBUG_ON enabled.
However, some caches might be created with one or more debugging flags
explicitly passed to kmem_cache_create(), and the commit missed this.
Thus the debugging functionality would not be actually performed for
these caches unless the static key gets enabled by boot param or config.
This patch fixes it by checking for debugging flags passed to
kmem_cache_create() and enabling the static key accordingly.
Note such explicit debugging flags should not be used outside of
debugging and testing as they will now enable the static key globally.
btrfs_init_cachep() creates a cache with SLAB_RED_ZONE but that's a
mistake that's being corrected [1]. rcu_torture_stats() creates a cache
with SLAB_STORE_USER, but that is a testing module so it's OK and will
start working as intended after this patch.
Also note that in case of backports to kernels before v5.12 that don't
have 59450bbc12 ("mm, slab, slub: stop taking cpu hotplug lock"),
static_branch_enable_cpuslocked() should be used.
[1] https://lore.kernel.org/linux-btrfs/20210315141824.26099-1-dsterba@suse.com/
Link: https://lkml.kernel.org/r/20210315153415.24404-1-vbabka@suse.cz
Fixes: ca0cab65ea ("mm, slub: introduce static key for slub_debug()")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Oliver Glitta <glittao@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is a minor addition to the allocator setup options to provide a
simple way to on demand enable back cache merging for builds that by
default run with CONFIG_SLAB_MERGE_DEFAULT not set.
Link: https://lkml.kernel.org/r/20210319194506.200159-1-aquini@redhat.com
Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAmCJUfIACgkQnJ2qBz9k
QNkStAf8CA7beya7LZ/GGN7HzXhv2cs+IpUFhRkynLklEM0lxKsOEagLFSZxkoMD
IBSRSo4odkkderqI9W/yp+9OYhOd9+BQCq4isg1Gh9Tf5xANJEpLvBAPnWVhooJs
9CrYZQY9Bdf+fF/8GHbKlrMAYm56vBCmWqyWTEtWUyPBOA12in2ZHQJmCa+5+nge
zTT/B5cvuhN5K7uYhGM4YfeCU5DBmmvD4sV6YBTkQOgCU0bEF0f9R3JjHDo34a1s
yqna3ypqKNRhsJVs8F+aOGRieUYxFoRqtYNHZK3qI9i07v7ndoTm5jzGN6OFlKs3
U3rF9/+cBgeESahWG6IjHIqhXGXNhg==
=KjNm
-----END PGP SIGNATURE-----
Merge tag 'fsnotify_for_v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull fsnotify updates from Jan Kara:
- support for limited fanotify functionality for unpriviledged users
- faster merging of fanotify events
- a few smaller fsnotify improvements
* tag 'fsnotify_for_v5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
shmem: allow reporting fanotify events with file handles on tmpfs
fs: introduce a wrapper uuid_to_fsid()
fanotify_user: use upper_32_bits() to verify mask
fanotify: support limited functionality for unprivileged users
fanotify: configurable limits via sysfs
fanotify: limit number of event merge attempts
fsnotify: use hash table for faster events merge
fanotify: mix event info and pid into merge key hash
fanotify: reduce event objectid to 29-bit hash
fsnotify: allow fsnotify_{peek,remove}_first_event with empty queue
- Bitmap support for "N" as alias for last bit
- kvfree_rcu updates
- mm_dump_obj() updates. (One of these is to mm, but was suggested by Andrew Morton.)
- RCU callback offloading update
- Polling RCU grace-period interfaces
- Realtime-related RCU updates
- Tasks-RCU updates
- Torture-test updates
- Torture-test scripting updates
- Miscellaneous fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJCZERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hRjw/+Jkb9KvR9odPt/zqN/KPtIlburCUWgsFb
2zAlWN4uMocPAiXT2Xq58/8gqMkpyn7ZVZtL1tD8fZSvlwEr0U8Z74+/NdoQvYE+
kMXIYIuhIAGRyAupmzkriqN33iY+BSZPacX3u6ziPj57/0OZzbWVN/DAhbuvyLqG
J/oL4PHCa7XAqXbf95rd5Zjs680QJ3CbTRh4nA8uHArzJmKZOaaHJ05Pxd1LpULe
SJ+5p1GQnnwxd1HqmlHMDu/dW+2hE35BGykF8zi78je9OJXualDoM/6JpIYGhMNY
5qlhU55QYP1jzjuNGVZZUS4L77eS2/W7SpPAaTmMEy/SsVB59G8Kf22oNDpVaEqQ
m+2ErqwaHvlkMjqnsx+JQbsOP0yCi2NZBoEPFdfk1H23E2deVlSDbxPso4Zb1oUD
E12769kN+SWDytuLSOAe1PY/KXqmNUKjPZl1GDCGXL7HlCnWyggUDschTsKJa19O
XXl+yCTGMUH4XAPSqavAKQbBjurqpT6i4zfooSH4TBtOHm1ExgZOUS8gglZ1JuJd
q+uJdZIgS8BcGkGw/k1bYDWY5TA4Rjv3sAOKQL1PgYBl1t/yLK441mE7LI9gWOwz
Crz7vlSxD6Jc2cYQeUVW0KPGt5aVd63Gd9HjpXxGkqYQSDRqYMCebHEAGagz+jj7
Nv/nOnf34Uc=
=mpNt
-----END PGP SIGNATURE-----
Merge tag 'core-rcu-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RCU updates from Ingo Molnar:
- Support for "N" as alias for last bit in bitmap parsing library (eg
using syntax like "nohz_full=2-N")
- kvfree_rcu updates
- mm_dump_obj() updates. (One of these is to mm, but was suggested by
Andrew Morton.)
- RCU callback offloading update
- Polling RCU grace-period interfaces
- Realtime-related RCU updates
- Tasks-RCU updates
- Torture-test updates
- Torture-test scripting updates
- Miscellaneous fixes
* tag 'core-rcu-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (77 commits)
rcutorture: Test start_poll_synchronize_rcu() and poll_state_synchronize_rcu()
rcu: Provide polling interfaces for Tiny RCU grace periods
torture: Fix kvm.sh --datestamp regex check
torture: Consolidate qemu-cmd duration editing into kvm-transform.sh
torture: Print proper vmlinux path for kvm-again.sh runs
torture: Make TORTURE_TRUST_MAKE available in kvm-again.sh environment
torture: Make kvm-transform.sh update jitter commands
torture: Add --duration argument to kvm-again.sh
torture: Add kvm-again.sh to rerun a previous torture-test
torture: Create a "batches" file for build reuse
torture: De-capitalize TORTURE_SUITE
torture: Make upper-case-only no-dot no-slash scenario names official
torture: Rename SRCU-t and SRCU-u to avoid lowercase characters
torture: Remove no-mpstat error message
torture: Record kvm-test-1-run.sh and kvm-test-1-run-qemu.sh PIDs
torture: Record jitter start/stop commands
torture: Extract kvm-test-1-run-qemu.sh from kvm-test-1-run.sh
torture: Record TORTURE_KCONFIG_GDB_ARG in qemu-cmd
torture: Abstract jitter.sh start/stop into scripts
rcu: Provide polling interfaces for Tree RCU grace periods
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmCIBMIACgkQUqAMR0iA
lPIt9w//bbHUN/JsNtLCs/849oExdUn/thVajrD5yELttYZXhdzbXncNdkGX9tlU
4JmExmUoqKYdN6JhSnrcYvckHj7XXZM7pVh9IdzqRh10MEXIQ+7IUHjQc8034Zs/
W4/oZmfMtBjszap+cJ9hvdp9qaJkPz/fRLGlrbjc1K4hhxDa1gGmeD35SKswGltm
q6RzX3uRl5JbBrYsLoqb28MGYRHhjf2+Pvndoj+5Nn9FtwPSot6jAkyqY5Y6iJlS
W2EsFqOt+Kv7/I93FyQlnXC6Nx7vntmow7knmmGPXDf2BqLb0J8Bxl3fwuzpQoao
nZzL/p9GQ4ZXF6y8gRV8+RzPIcftBdayOswEDGH0LzlTkbAe/9Sq9Lo7a4Z8jxHW
ro0P+PSRK5Ksm7jvpVmSTg+Nt+XqDA5zA1lAorX1UjsyeDDNF9ndQ4C+ZNhCKo54
y+RDgtAArJMIvsHLQ53ReoOct5NnGVNb8G/r3bIAu+Dn6K3nesr6fP1XG8iduseL
yFlLB7w214BQMr2B/C+8lQvj54wWE4lea2+LNvObxC5b8puYj0fEniUxTYP6bcB5
QT+LfTToufYz4US7ggJy6hoEfohifGWVvDHbn9tXmyXotSTHH7pHdYypqY+UO+kl
7BkwzNFCm4qCIKsg8nyJxT2hDOlpcCrQx1dBIjveMqJ0c5+ahXU=
=ovSn
-----END PGP SIGNATURE-----
Merge tag 'printk-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux
Pull printk updates from Petr Mladek:
- Stop synchronizing kernel log buffer readers by logbuf_lock. As a
result, the access to the buffer is fully lockless now.
Note that printk() itself still uses locks because it tries to flush
the messages to the console immediately. Also the per-CPU temporary
buffers are still there because they prevent infinite recursion and
serialize backtraces from NMI. All this is going to change in the
future.
- kmsg_dump API rework and cleanup as a side effect of the logbuf_lock
removal.
- Make bstr_printf() aware that %pf and %pF formats could deference the
given pointer.
- Show also page flags by %pGp format.
- Clarify the documentation for plain pointer printing.
- Do not show no_hash_pointers warning multiple times.
- Update Senozhatsky email address.
- Some clean up.
* tag 'printk-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux: (24 commits)
lib/vsprintf.c: remove leftover 'f' and 'F' cases from bstr_printf()
printk: clarify the documentation for plain pointer printing
kernel/printk.c: Fixed mundane typos
printk: rename vprintk_func to vprintk
vsprintf: dump full information of page flags in pGp
mm, slub: don't combine pr_err with INFO
mm, slub: use pGp to print page flags
MAINTAINERS: update Senozhatsky email address
lib/vsprintf: do not show no_hash_pointers message multiple times
printk: console: remove unnecessary safe buffer usage
printk: kmsg_dump: remove _nolock() variants
printk: remove logbuf_lock
printk: introduce a kmsg_dump iterator
printk: kmsg_dumper: remove @active field
printk: add syslog_lock
printk: use atomic64_t for devkmsg_user.seq
printk: use seqcount_latch for clear_seq
printk: introduce CONSOLE_LOG_MAX
printk: consolidate kmsg_dump_get_buffer/syslog_print_all code
printk: refactor kmsg_dump_get_buffer()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmCHPZwACgkQ+7dXa6fL
C2uJxw/9FVNssHxtA8iFDvZskE4YHiL6vMgOgKOeVmBfUvxqJcxWQXcF8ycbon5y
jGcDRV1DWTv395ckALHqmD6SlH/5q+OBt4cCOXCebOlzbC63JmjJ6xOjHntZKw3i
9c3GITNca5AsPXHXHGIcoRY4/4FntpLoVpyfYJ4ZZJCY7a7QUbgnEIIy9/Ps8Clw
BahhiKChl2JCgV3KZBk/ypkf0IBduxKgT+IUxA9o7H5UsLzvUgnfd5uMIALLPMI1
NXzUHBJoUtnWcB52nWPufJx9YwkMfSx70mutT0T74CFxbJakwRgAl2tWr5g989qM
/fQrsOhMlU3NaXYaRPelbxkuzvy3hU1xSe3GLiZcxmh4Cb/YAX0TrHRecO62NWff
pu/UWQS8Du5Gy8DrHScuo8baI1KFfyiV2lWQPfBO8kPaEB2ERw+PN6fWSh993Cn9
4UHaR3Oyn4qyVXeirNZg+frado+BEZAbNMZwn0lyi6jnLeyir6qABOdpQk34SB35
D4jfdPOBxeh3OVFkc+EBJ98i3/nal2+yXrNOqkP4OwmF0HqGt0YKKSaLNigXaDdO
3CKmQlBqBZsUdRYHJyJsofrifkKjP78zx2WyUJPms8MGX9z+9kYR3f1erifLesCT
Kb2TrAFx4ZgqS5tFh6UHnX4x0qy2RckgNrKTMpv38K8lNqplvLo=
=tZgy
-----END PGP SIGNATURE-----
Merge tag 'netfs-lib-20210426' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull network filesystem helper library updates from David Howells:
"Here's a set of patches for 5.13 to begin the process of overhauling
the local caching API for network filesystems. This set consists of
two parts:
(1) Add a helper library to handle the new VM readahead interface.
This is intended to be used unconditionally by the filesystem
(whether or not caching is enabled) and provides a common
framework for doing caching, transparent huge pages and, in the
future, possibly fscrypt and read bandwidth maximisation. It also
allows the netfs and the cache to align, expand and slice up a
read request from the VM in various ways; the netfs need only
provide a function to read a stretch of data to the pagecache and
the helper takes care of the rest.
(2) Add an alternative fscache/cachfiles I/O API that uses the kiocb
facility to do async DIO to transfer data to/from the netfs's
pages, rather than using readpage with wait queue snooping on one
side and vfs_write() on the other. It also uses less memory, since
it doesn't do buffered I/O on the backing file.
Note that this uses SEEK_HOLE/SEEK_DATA to locate the data
available to be read from the cache. Whilst this is an improvement
from the bmap interface, it still has a problem with regard to a
modern extent-based filesystem inserting or removing bridging
blocks of zeros. Fixing that requires a much greater overhaul.
This is a step towards overhauling the fscache API. The change is
opt-in on the part of the network filesystem. A netfs should not try
to mix the old and the new API because of conflicting ways of handling
pages and the PG_fscache page flag and because it would be mixing DIO
with buffered I/O. Further, the helper library can't be used with the
old API.
This does not change any of the fscache cookie handling APIs or the
way invalidation is done at this time.
In the near term, I intend to deprecate and remove the old I/O API
(fscache_allocate_page{,s}(), fscache_read_or_alloc_page{,s}(),
fscache_write_page() and fscache_uncache_page()) and eventually
replace most of fscache/cachefiles with something simpler and easier
to follow.
This patchset contains the following parts:
- Some helper patches, including provision of an ITER_XARRAY iov
iterator and a function to do readahead expansion.
- Patches to add the netfs helper library.
- A patch to add the fscache/cachefiles kiocb API.
- A pair of patches to fix some review issues in the ITER_XARRAY and
read helpers as spotted by Al and Willy.
Jeff Layton has patches to add support in Ceph for this that he
intends for this merge window. I have a set of patches to support AFS
that I will post a separate pull request for.
With this, AFS without a cache passes all expected xfstests; with a
cache, there's an extra failure, but that's also there before these
patches. Fixing that probably requires a greater overhaul. Ceph also
passes the expected tests.
I also have patches in a separate branch to tidy up the handling of
PG_fscache/PG_private_2 and their contribution to page refcounting in
the core kernel here, but I haven't included them in this set and will
route them separately"
Link: https://lore.kernel.org/lkml/3779937.1619478404@warthog.procyon.org.uk/
* tag 'netfs-lib-20210426' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
netfs: Miscellaneous fixes
iov_iter: Four fixes for ITER_XARRAY
fscache, cachefiles: Add alternate API to use kiocb for read/write to cache
netfs: Add a tracepoint to log failures that would be otherwise unseen
netfs: Define an interface to talk to a cache
netfs: Add write_begin helper
netfs: Gather stats
netfs: Add tracepoints
netfs: Provide readahead and readpage netfs helpers
netfs, mm: Add set/end/wait_on_page_fscache() aliases
netfs, mm: Move PG_fscache helper funcs to linux/netfs.h
netfs: Documentation for helper library
netfs: Make a netfs helper module
mm: Implement readahead_control pageset expansion
mm/readahead: Handle ractl nr_pages being modified
fs: Document file_ra_state
mm/filemap: Pass the file_ra_state in the ractl
mm: Add set/end/wait functions for PG_private_2
iov_iter: Add ITER_XARRAY
- MTE asynchronous support for KASan. Previously only synchronous
(slower) mode was supported. Asynchronous is faster but does not allow
precise identification of the illegal access.
- Run kernel mode SIMD with softirqs disabled. This allows using NEON in
softirq context for crypto performance improvements. The conditional
yield support is modified to take softirqs into account and reduce the
latency.
- Preparatory patches for Apple M1: handle CPUs that only have the VHE
mode available (host kernel running at EL2), add FIQ support.
- arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers, new
functions for the HiSilicon HHA and L3C PMU, cleanups.
- Re-introduce support for execute-only user permissions but only when
the EPAN (Enhanced Privileged Access Never) architecture feature is
available.
- Disable fine-grained traps at boot and improve the documented boot
requirements.
- Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).
- Add hierarchical eXecute Never permissions for all page tables.
- Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
to control which PAC keys are enabled in a particular task.
- arm64 kselftests for BTI and some improvements to the MTE tests.
- Minor improvements to the compat vdso and sigpage.
- Miscellaneous cleanups.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmB5xkkACgkQa9axLQDI
XvEBgRAAsr6r8gsBQJP3FDHmbtbVf2ej5QJTCOAQAGHbTt0JH7Pk03pWSBr7h5nF
vsddRDxxeDgB6xd7jWP7EvDaPxHeB0CdSj5gG8EP/ZdOm8sFAwB1ZIHWikgUgSwW
nu6R28yXTMSj+EkyFtahMhTMJ1EMF4sCPuIgAo59ST5w/UMMqLCJByOu4ej6RPKZ
aeSJJWaDLBmbgnTKWxRvCc/MgIx4J/LAHWGkdpGjuMK6SLp38Kdf86XcrklXtzwf
K30ZYeoKq8zZ+nFOsK9gBVlOlocZcbS1jEbN842jD6imb6vKLQtBWrKk9A6o4v5E
XulORWcSBhkZb3ItIU9+6SmelUExf0VeVlSp657QXYPgquoIIGvFl6rCwhrdGMGO
bi6NZKCfJvcFZJoIN1oyhuHejgZSBnzGEcvhvzNdg7ItvOCed7q3uXcGHz/OI6tL
2TZKddzHSEMVfTo0D+RUsYfasZHI1qAiQ0mWVC31c+YHuRuW/K/jlc3a5TXlSBUa
Dwu0/zzMLiqx65ISx9i7XNMrngk55uzrS6MnwSByPoz4M4xsElZxt3cbUxQ8YAQz
jhxTHs1Pwes8i7f4n61ay/nHCFbmVvN/LlsPRpZdwd8JumThLrDolF3tc6aaY0xO
hOssKtnGY4Xvh/WitfJ5uvDb1vMObJKTXQEoZEJh4hlNQDxdeUE=
=6NGI
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- MTE asynchronous support for KASan. Previously only synchronous
(slower) mode was supported. Asynchronous is faster but does not
allow precise identification of the illegal access.
- Run kernel mode SIMD with softirqs disabled. This allows using NEON
in softirq context for crypto performance improvements. The
conditional yield support is modified to take softirqs into account
and reduce the latency.
- Preparatory patches for Apple M1: handle CPUs that only have the VHE
mode available (host kernel running at EL2), add FIQ support.
- arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers,
new functions for the HiSilicon HHA and L3C PMU, cleanups.
- Re-introduce support for execute-only user permissions but only when
the EPAN (Enhanced Privileged Access Never) architecture feature is
available.
- Disable fine-grained traps at boot and improve the documented boot
requirements.
- Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).
- Add hierarchical eXecute Never permissions for all page tables.
- Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
to control which PAC keys are enabled in a particular task.
- arm64 kselftests for BTI and some improvements to the MTE tests.
- Minor improvements to the compat vdso and sigpage.
- Miscellaneous cleanups.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (86 commits)
arm64/sve: Add compile time checks for SVE hooks in generic functions
arm64/kernel/probes: Use BUG_ON instead of if condition followed by BUG.
arm64: pac: Optimize kernel entry/exit key installation code paths
arm64: Introduce prctl(PR_PAC_{SET,GET}_ENABLED_KEYS)
arm64: mte: make the per-task SCTLR_EL1 field usable elsewhere
arm64/sve: Remove redundant system_supports_sve() tests
arm64: fpsimd: run kernel mode NEON with softirqs disabled
arm64: assembler: introduce wxN aliases for wN registers
arm64: assembler: remove conditional NEON yield macros
kasan, arm64: tests supports for HW_TAGS async mode
arm64: mte: Report async tag faults before suspend
arm64: mte: Enable async tag check fault
arm64: mte: Conditionally compile mte_enable_kernel_*()
arm64: mte: Enable TCO in functions that can read beyond buffer limits
kasan: Add report for async mode
arm64: mte: Drop arch_enable_tagging()
kasan: Add KASAN mode kernel parameter
arm64: mte: Add asynchronous mode support
arm64: Get rid of CONFIG_ARM64_VHE
arm64: Cope with CPUs stuck in VHE mode
...
Provide support for randomized stack offsets per syscall to make
stack-based attacks harder which rely on the deterministic stack layout.
The feature is based on the original idea of PaX's RANDSTACK feature, but
uses a significantly different implementation.
The offset does not affect the pt_regs location on the task stack as this
was agreed on to be of dubious value. The offset is applied before the
actual syscall is invoked.
The offset is stored per cpu and the randomization happens at the end of
the syscall which is less predictable than on syscall entry.
The mechanism to apply the offset is via alloca(), i.e. abusing the
dispised VLAs. This comes with the drawback that stack-clash-protection
has to be disabled for the affected compilation units and there is also
a negative interaction with stack-protector.
Those downsides are traded with the advantage that this approach does not
require any intrusive changes to the low level assembly entry code, does
not affect the unwinder and the correct stack alignment is handled
automatically by the compiler.
The feature is guarded with a static branch which avoids the overhead when
disabled.
Currently this is supported for X86 and ARM64.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGjz8THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWsvD/4tGnPAurd6lbzxWzRjW7jOOVyzkODM
UXtIxxICaj7o6MNcloaGe1QtJ8+QOCw3yPQfLG/SoWHse5+oUKQRL9dmWVeJyRSt
JZ1pirkKqWrB+OmPbJKUiO3/TsZ2Z/vO41JVgVTL5/HWhOECSDzZsJkuvF/H+qYD
ReDzd7FUNd76pwVOsXq/cxXclRa81/wMNZRVwmyAwFYE2XoPtQyTERTLrfj6aQKF
P0txr9fEjYlPPwYOk1kjBAoJfDltNm48BBL7CGZtRlsqpNpdsJ1MkeGffhodb6F0
pJYQMlQJHXABZb5GF+v93+iASDpRFn0EvPmLkCxQUfZYLOkRsnuEF2S/fsYX/WPo
uin/wQKwLVdeQq9d9BwlZUKEgsQuV7Q0GVN+JnEQerwD6cWTxv4a1RIUH+K/4Wo5
nTeJVRKcs6m7UkGQRm8JbqnUP0vCV+PSiWWB8J9CmjYeCPbkGjt6mBIsmPaDZ9VL
4i+UX5DJayoREF/rspOBcJftUmExize49p9860UI9N6fd7DsDt7Dq9Ai+ADtZa4C
9BPbF4NWzJq8IWLqBi+PpKBAT3JMX9qQi7s9sbrRxpxtew9Keu5qggKZJYumX71V
qgUMk+xB86HZOrtF6F3oY0zxYv3haPvDydsDgqojtqNGk4PdAdgDYJQwMlb8QSly
SwIWPHIfvP4R9w==
=GMlJ
-----END PGP SIGNATURE-----
Merge tag 'x86-entry-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull entry code update from Thomas Gleixner:
"Provide support for randomized stack offsets per syscall to make
stack-based attacks harder which rely on the deterministic stack
layout.
The feature is based on the original idea of PaX's RANDSTACK feature,
but uses a significantly different implementation.
The offset does not affect the pt_regs location on the task stack as
this was agreed on to be of dubious value. The offset is applied
before the actual syscall is invoked.
The offset is stored per cpu and the randomization happens at the end
of the syscall which is less predictable than on syscall entry.
The mechanism to apply the offset is via alloca(), i.e. abusing the
dispised VLAs. This comes with the drawback that
stack-clash-protection has to be disabled for the affected compilation
units and there is also a negative interaction with stack-protector.
Those downsides are traded with the advantage that this approach does
not require any intrusive changes to the low level assembly entry
code, does not affect the unwinder and the correct stack alignment is
handled automatically by the compiler.
The feature is guarded with a static branch which avoids the overhead
when disabled.
Currently this is supported for X86 and ARM64"
* tag 'x86-entry-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arm64: entry: Enable random_kstack_offset support
lkdtm: Add REPORT_STACK for checking stack offsets
x86/entry: Enable random_kstack_offset support
stack: Optionally randomize kernel stack offset each syscall
init_on_alloc: Optimize static branches
jump_label: Provide CONFIG-driven build state defaults
No problem on 64-bit, or without huge pages, but xfstests generic/285
and other SEEK_HOLE/SEEK_DATA tests have regressed on huge tmpfs, and on
32-bit architectures, with the new mapping_seek_hole_data(). Several
different bugs turned out to need fixing.
u64 cast to stop losing bits when converting unsigned long to loff_t
(and let's use shifts throughout, rather than mixed with * and /).
Use round_up() when advancing pos, to stop assuming that pos was already
THP-aligned when advancing it by THP-size. (This use of round_up()
assumes that any THP has THP-aligned index: true at present and true
going forward, but could be recoded to avoid the assumption.)
Use xas_set() when iterating away from a THP, so that xa_index stays in
synch with start, instead of drifting away to return bogus offset.
Check start against end to avoid wrapping 32-bit xa_index to 0 (and to
handle these additional cases, seek_data or not, it's easier to break
the loop than goto: so rearrange exit from the function).
[hughd@google.com: remove unneeded u64 casts, per Matthew]
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2104221347240.1170@eggly.anvils
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2104211737410.3299@eggly.anvils
Fixes: 41139aa4c3 ("mm/filemap: add mapping_seek_hole_data")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No problem on 64-bit, or without huge pages, but xfstests generic/308
hung uninterruptibly on 32-bit huge tmpfs.
Since commit 0cc3b0ec23 ("Clarify (and fix) in 4.13 MAX_LFS_FILESIZE
macros"), MAX_LFS_FILESIZE is only a PAGE_SIZE away from wrapping 32-bit
xa_index to 0, so the new find_lock_entries() has to be extra careful
when handling a THP.
Link: https://lkml.kernel.org/r/alpine.LSU.2.11.2104211735430.3299@eggly.anvils
Fixes: 5c211ba29d ("mm: add and use find_lock_entries")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
From Roman ("percpu: partial chunk depopulation"):
In our [Facebook] production experience the percpu memory allocator is
sometimes struggling with returning the memory to the system. A typical
example is a creation of several thousands memory cgroups (each has
several chunks of the percpu data used for vmstats, vmevents,
ref counters etc). Deletion and complete releasing of these cgroups
doesn't always lead to a shrinkage of the percpu memory, so that
sometimes there are several GB's of memory wasted.
The underlying problem is the fragmentation: to release an underlying
chunk all percpu allocations should be released first. The percpu
allocator tends to top up chunks to improve the utilization. It means
new small-ish allocations (e.g. percpu ref counters) are placed onto
almost filled old-ish chunks, effectively pinning them in memory.
This patchset solves this problem by implementing a partial depopulation
of percpu chunks: chunks with many empty pages are being asynchronously
depopulated and the pages are returned to the system.
To illustrate the problem the following script can be used:
--
cd /sys/fs/cgroup
mkdir percpu_test
echo "+memory" > percpu_test/cgroup.subtree_control
cat /proc/meminfo | grep Percpu
for i in `seq 1 1000`; do
mkdir percpu_test/cg_"${i}"
for j in `seq 1 10`; do
mkdir percpu_test/cg_"${i}"_"${j}"
done
done
cat /proc/meminfo | grep Percpu
for i in `seq 1 1000`; do
for j in `seq 1 10`; do
rmdir percpu_test/cg_"${i}"_"${j}"
done
done
sleep 10
cat /proc/meminfo | grep Percpu
for i in `seq 1 1000`; do
rmdir percpu_test/cg_"${i}"
done
rmdir percpu_test
--
It creates 11000 memory cgroups and removes every 10 out of 11.
It prints the initial size of the percpu memory, the size after
creating all cgroups and the size after deleting most of them.
Results:
vanilla:
./percpu_test.sh
Percpu: 7488 kB
Percpu: 481152 kB
Percpu: 481152 kB
with this patchset applied:
./percpu_test.sh
Percpu: 7488 kB
Percpu: 481408 kB
Percpu: 135552 kB
The total size of the percpu memory was reduced by more than 3.5 times.
This patch:
This patch implements partial depopulation of percpu chunks.
As of now, a chunk can be depopulated only as a part of the final
destruction, if there are no more outstanding allocations. However
to minimize a memory waste it might be useful to depopulate a
partially filed chunk, if a small number of outstanding allocations
prevents the chunk from being fully reclaimed.
This patch implements the following depopulation process: it scans
over the chunk pages, looks for a range of empty and populated pages
and performs the depopulation. To avoid races with new allocations,
the chunk is previously isolated. After the depopulation the chunk is
sidelined to a special list or freed. New allocations prefer using
active chunks to sidelined chunks. If a sidelined chunk is used, it is
reintegrated to the active lists.
The depopulation is scheduled on the free path if the chunk is all of
the following:
1) has more than 1/4 of total pages free and populated
2) the system has enough free percpu pages aside of this chunk
3) isn't the reserved chunk
4) isn't the first chunk
If it's already depopulated but got free populated pages, it's a good
target too. The chunk is moved to a special slot,
pcpu_to_depopulate_slot, chunk->isolated is set, and the balance work
item is scheduled. On isolation, these pages are removed from the
pcpu_nr_empty_pop_pages. It is constantly replaced to the
to_depopulate_slot when it meets these qualifications.
pcpu_reclaim_populated() iterates over the to_depopulate_slot until it
becomes empty. The depopulation is performed in the reverse direction to
keep populated pages close to the beginning. Depopulated chunks are
sidelined to preferentially avoid them for new allocations. When no
active chunk can suffice a new allocation, sidelined chunks are first
checked before creating a new chunk.
Signed-off-by: Roman Gushchin <guro@fb.com>
Co-developed-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Tested-by: Pratik Sampat <psampat@linux.ibm.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
This prepares for adding a to_depopulate list and sidelined list after
the free slot in the set of lists in pcpu_slot.
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Factor out the pcpu_check_block_hint() helper, which will be useful
in the future. The new function checks if the allocation can likely
fit within the contig hint.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Since kernel v5.1, fanotify_init(2) supports the flag FAN_REPORT_FID
for identifying objects using file handle and fsid in events.
fanotify_mark(2) fails with -ENODEV when trying to set a mark on
filesystems that report null f_fsid in stasfs(2).
Use the digest of uuid as f_fsid for tmpfs to uniquely identify tmpfs
objects as best as possible and allow setting an fanotify mark that
reports events with file handles on tmpfs.
Link: https://lore.kernel.org/r/20210322173944.449469-3-amir73il@gmail.com
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
READ_ONCE() cannot be used for reading PTEs. Use ptep_get() instead, to
avoid the following errors:
CC mm/ptdump.o
In file included from <command-line>:
mm/ptdump.c: In function 'ptdump_pte_entry':
include/linux/compiler_types.h:320:38: error: call to '__compiletime_assert_207' declared with attribute error: Unsupported access size for {READ,WRITE}_ONCE().
320 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
| ^
include/linux/compiler_types.h:301:4: note: in definition of macro '__compiletime_assert'
301 | prefix ## suffix(); \
| ^~~~~~
include/linux/compiler_types.h:320:2: note: in expansion of macro '_compiletime_assert'
320 | _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__)
| ^~~~~~~~~~~~~~~~~~~
include/asm-generic/rwonce.h:36:2: note: in expansion of macro 'compiletime_assert'
36 | compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \
| ^~~~~~~~~~~~~~~~~~
include/asm-generic/rwonce.h:49:2: note: in expansion of macro 'compiletime_assert_rwonce_type'
49 | compiletime_assert_rwonce_type(x); \
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
mm/ptdump.c:114:14: note: in expansion of macro 'READ_ONCE'
114 | pte_t val = READ_ONCE(*pte);
| ^~~~~~~~~
make[2]: *** [mm/ptdump.o] Error 1
See commit 481e980a7c ("mm: Allow arches to provide ptep_get()") and
commit c0e1c8c22b ("powerpc/8xx: Provide ptep_get() with 16k pages")
for details.
Link: https://lkml.kernel.org/r/912b349e2bcaa88939904815ca0af945740c6bd4.1618478922.git.christophe.leroy@csgroup.eu
Fixes: 30d621f672 ("mm: add generic ptdump")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Steven Price <steven.price@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mapping dirty helpers have, so far, been only used on X86, but a port of
vmwgfx to ARM64 exposed a problem which results in a compilation error
on ARM64 systems:
mm/mapping_dirty_helpers.c: In function `wp_clean_pud_entry':
mm/mapping_dirty_helpers.c:172:32: error: implicit declaration of function `pud_dirty'; did you mean `pmd_dirty'? [-Werror=implicit-function-declaration]
This is due to the fact that mapping_dirty_helpers code assumes that
pud_dirty is always defined, which is not the case for architectures
that don't define CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD.
ARM64 arch is a little inconsistent when it comes to PUD hugepage
helpers, e.g. it defines pud_young but not pud_dirty but regardless of
that the core kernel code shouldn't assume that any of the PUD hugepage
helpers are available unless CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
is defined. This prevents compilation errors whenever one of the
drivers is ported to new architectures.
Link: https://lkml.kernel.org/r/20210409165151.694574-1-zackr@vmware.com
Signed-off-by: Zack Rusin <zackr@vmware.com>
Reviewed-by: Thomas Hellstrm (Intel) <thomas_os@shipmail.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
CONFIG_KASAN_STACK and CONFIG_KASAN_STACK_ENABLE both enable KASAN stack
instrumentation, but we should only need one config, so that we remove
CONFIG_KASAN_STACK_ENABLE and make CONFIG_KASAN_STACK workable. see [1].
When enable KASAN stack instrumentation, then for gcc we could do no
prompt and default value y, and for clang prompt and default value n.
This patch fixes the following compilation warning:
include/linux/kasan.h:333:30: warning: 'CONFIG_KASAN_STACK' is not defined, evaluates to 0 [-Wundef]
[akpm@linux-foundation.org: fix merge snafu]
Link: https://bugzilla.kernel.org/show_bug.cgi?id=210221 [1]
Link: https://lkml.kernel.org/r/20210226012531.29231-1-walter-zh.wu@mediatek.com
Fixes: d9b571c885 ("kasan: fix KASAN_STACK dependency for HW_TAGS")
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Nathan Chancellor <natechancellor@gmail.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix stray kernel-doc warnings in mm/ due to mis-typed or missing function
names.
Quietens these kernel-doc warnings:
mm/mmu_gather.c:264: warning: expecting prototype for tlb_gather_mmu(). Prototype was for __tlb_gather_mmu() instead
mm/oom_kill.c:180: warning: expecting prototype for Check whether unreclaimable slab amount is greater than(). Prototype was for should_dump_unreclaim_slab() instead
mm/shuffle.c:155: warning: expecting prototype for shuffle_free_memory(). Prototype was for __shuffle_free_memory() instead
Link: https://lkml.kernel.org/r/20210411210642.11362-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__pcpu_balance_workfn() became fairly big and hard to follow, but in
fact it consists of two fully independent parts, responsible for
the destruction of excessive free chunks and population of necessarily
amount of free pages.
In order to simplify the code and prepare for adding of a new
functionality, split it in two functions:
1) pcpu_balance_free,
2) pcpu_balance_populated.
Move the taking/releasing of the pcpu_alloc_mutex to an upper level
to keep the current synchronization in place.
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Since the commit 3e54097beb ("percpu: manage chunks based on
contig_bits instead of free_bytes") chunks are sorted based on the
size of the biggest continuous free area instead of the total number
of free bytes. Update the corresponding comment to reflect this.
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Pull RCU changes from Paul E. McKenney:
- Bitmap support for "N" as alias for last bit
- kvfree_rcu updates
- mm_dump_obj() updates. (One of these is to mm, but was suggested by Andrew Morton.)
- RCU callback offloading update
- Polling RCU grace-period interfaces
- Realtime-related RCU updates
- Tasks-RCU updates
- Torture-test updates
- Torture-test scripting updates
- Miscellaneous fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This change adds KASAN-KUnit tests support for the async HW_TAGS mode.
In async mode, tag fault aren't being generated synchronously when a
bad access happens, but are instead explicitly checked for by the kernel.
As each KASAN-KUnit test expect a fault to happen before the test is over,
check for faults as a part of the test handler.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20210315132019.33202-10-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Architectures supported by KASAN_HW_TAGS can provide a sync or async mode
of execution. On an MTE enabled arm64 hw for example this can be identified
with the synchronous or asynchronous tagging mode of execution.
In synchronous mode, an exception is triggered if a tag check fault occurs.
In asynchronous mode, if a tag check fault occurs, the TFSR_EL1 register is
updated asynchronously. The kernel checks the corresponding bits
periodically.
KASAN requires a specific kernel command line parameter to make use of this
hw features.
Add KASAN HW execution mode kernel command line parameter.
Note: This patch adds the kasan.mode kernel parameter and the
sync/async kernel command line options to enable the described features.
[ Add a new var instead of exposing kasan_arg_mode to be consistent with
flags for other command line arguments. ]
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Tested-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Link: https://lore.kernel.org/r/20210315132019.33202-3-vincenzo.frascino@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull percpu fix from Dennis Zhou:
"This contains a fix for sporadically failing atomic percpu
allocations.
I only caught it recently while I was reviewing a new series [1] and
simultaneously saw reports by btrfs in xfstests [2] and [3].
In v5.9, memcg accounting was extended to percpu done by adding a
second type of chunk. I missed an interaction with the free page float
count used to ensure we can support atomic allocations. If one type of
chunk has no free pages, but the other has enough to satisfy the free
page float requirement, we will not repopulate the free pages for the
former type of chunk. This led to the sporadically failing atomic
allocations"
Link: https://lore.kernel.org/linux-mm/20210324190626.564297-1-guro@fb.com/ [1]
Link: https://lore.kernel.org/linux-mm/20210401185158.3275.409509F4@e16-tech.com/ [2]
Link: https://lore.kernel.org/linux-mm/CAL3q7H5RNBjCi708GH7jnczAOe0BLnacT9C+OBgA-Dx9jhB6SQ@mail.gmail.com/ [3]
* 'for-5.12-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: make pcpu_nr_empty_pop_pages per chunk type
When page poisoning is enabled, it accesses memory that is marked as
poisoned by KASAN, which leas to false-positive KASAN reports.
Suppress the reports by adding KASAN annotations to unpoison_page()
(poison_page() already has them).
Link: https://lkml.kernel.org/r/2dc799014d31ac13fd97bd906bad33e16376fc67.1617118501.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we do coredump for user process signal, this may be an SIGBUS signal
with BUS_MCEERR_AR or BUS_MCEERR_AO code, which means this signal is
resulted from ECC memory fail like SRAR or SRAO, we expect the memory
recovery work is finished correctly, then the get_dump_page() will not
return the error page as its process pte is set invalid by
memory_failure().
But memory_failure() may fail, and the process's related pte may not be
correctly set invalid, for current code, we will return the poison page,
get it dumped, and then lead to system panic as its in kernel code.
So check the poison status in get_dump_page(), and if TRUE, return NULL.
There maybe other scenario that is also better to check the posion status
and not to panic, so make a wrapper for this check, Thanks to David's
suggestion(<david@redhat.com>).
[akpm@linux-foundation.org: s/0/false/]
[yaoaili@kingsoft.com: is_page_poisoned() arg cannot be null, per Matthew]
Link: https://lkml.kernel.org/r/20210322115233.05e4e82a@alex-virtual-machine
Link: https://lkml.kernel.org/r/20210319104437.6f30e80d@alex-virtual-machine
Signed-off-by: Aili Yao <yaoaili@kingsoft.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Aili Yao <yaoaili@kingsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The state of CONFIG_INIT_ON_ALLOC_DEFAULT_ON (and ...ON_FREE...) did not
change the assembly ordering of the static branches: they were always out
of line. Use the new jump_label macros to check the CONFIG settings to
default to the "expected" state, which slightly optimizes the resulting
assembly code.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Link: https://lore.kernel.org/r/20210401232347.2791257-3-keescook@chromium.org