Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The MCA_IPID register uniquely identifies a bank's type and instance
on Scalable MCA systems. We should save the value of this register
in struct mce along with the other relevant error information. This
ensures that we can decode errors without relying on system software to
correlate the bank to the type.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1472680624-34221-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Syndrome information is no longer contained in MCA_STATUS for SMCA
systems but in a new register - MCA_SYND.
Add a synd field to struct mce to hold MCA_SYND register value. Add it
to the end of struct mce to maintain compatibility with old versions of
mcelog. Also, add it to the respective tracepoint.
Signed-off-by: Yazen Ghannam <Yazen.Ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: http://lkml.kernel.org/r/1467633035-32080-1-git-send-email-Yazen.Ghannam@amd.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Sharp <dhsharp@google.com>
LKML-Reference: <1291421609-14665-9-git-send-email-dhsharp@google.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
This approach is the first baby step towards solving many of the
structural problems the x86 MCE logging code is having today:
- It has a private ring-buffer implementation that has a number
of limitations and has been historically fragile and buggy.
- It is using a quirky /dev/mcelog ioctl driven ABI that is MCE
specific. /dev/mcelog is not part of any larger logging
framework and hence has remained on the fringes for many years.
- The MCE logging code is still very unclean partly due to its ABI
limitations. Fields are being reused for multiple purposes, and
the whole message structure is limited and x86 specific to begin
with.
All in one, the x86 tree would like to move away from this private
implementation of an event logging facility to a broader framework.
By using perf events we gain the following advantages:
- Multiple user-space agents can access MCE events. We can have an
mcelog daemon running but also a system-wide tracer capturing
important events in flight-recorder mode.
- Sampling support: the kernel and the user-space call-chain of MCE
events can be stored and analyzed as well. This way actual patterns
of bad behavior can be matched to precisely what kind of activity
happened in the kernel (and/or in the app) around that moment in
time.
- Coupling with other hardware and software events: the PMU can track a
number of other anomalies - monitoring software might chose to
monitor those plus the MCE events as well - in one coherent stream of
events.
- Discovery of MCE sources - tracepoints are enumerated and tools can
act upon the existence (or non-existence) of various channels of MCE
information.
- Filtering support: we just subscribe to and act upon the events we
are interested in. Then even on a per event source basis there's
in-kernel filter expressions available that can restrict the amount
of data that hits the event channel.
- Arbitrary deep per cpu buffering of events - we can buffer 32
entries or we can buffer as much as we want, as long as we have
the RAM.
- An NMI-safe ring-buffer implementation - mappable to user-space.
- Built-in support for timestamping of events, PID markers, CPU
markers, etc.
- A rich ABI accessible over system call interface. Per cpu, per task
and per workload monitoring of MCE events can be done this way. The
ABI itself has a nice, meaningful structure.
- Extensible ABI: new fields can be added without breaking tooling.
New tracepoints can be added as the hardware side evolves. There's
various parsers that can be used.
- Lots of scheduling/buffering/batching modes of operandi for MCE
events. poll() support. mmap() support. read() support. You name it.
- Rich tooling support: even without any MCE specific extensions added
the 'perf' tool today offers various views of MCE data: perf report,
perf stat, perf trace can all be used to view logged MCE events and
perhaps correlate them to certain user-space usage patterns. But it
can be used directly as well, for user-space agents and policy action
in mcelog, etc.
With this we hope to achieve significant code cleanup and feature
improvements in the MCE code, and we hope to be able to drop the
/dev/mcelog facility in the end.
This patch is just a plain dumb dump of mce_log() records to
the tracepoints / perf events framework - a first proof of
concept step.
Signed-off-by: Hidetoshi Seto <seto.hidetoshi@jp.fujitsu.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
LKML-Reference: <4AD42A0D.7050104@jp.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>