Commit Graph

560 Commits

Author SHA1 Message Date
David Hildenbrand 7cf603d17d kernel/resource: move and rename IORESOURCE_MEM_DRIVER_MANAGED
IORESOURCE_MEM_DRIVER_MANAGED currently uses an unused PnP bit, which is
always set to 0 by hardware.  This is far from beautiful (and confusing),
and the bit only applies to SYSRAM.  So let's move it out of the
bus-specific (PnP) defined bits.

We'll add another SYSRAM specific bit soon.  If we ever need more bits for
other purposes, we can steal some from "desc", or reshuffle/regroup what
we have.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monné <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:18 -07:00
David Hildenbrand ec62d04e3f kernel/resource: make release_mem_region_adjustable() never fail
Patch series "selective merging of system ram resources", v4.

Some add_memory*() users add memory in small, contiguous memory blocks.
Examples include virtio-mem, hyper-v balloon, and the XEN balloon.

This can quickly result in a lot of memory resources, whereby the actual
resource boundaries are not of interest (e.g., it might be relevant for
DIMMs, exposed via /proc/iomem to user space).  We really want to merge
added resources in this scenario where possible.

Resources are effectively stored in a list-based tree.  Having a lot of
resources not only wastes memory, it also makes traversing that tree more
expensive, and makes /proc/iomem explode in size (e.g., requiring
kexec-tools to manually merge resources when creating a kdump header.  The
current kexec-tools resource count limit does not allow for more than
~100GB of memory with a memory block size of 128MB on x86-64).

Let's allow to selectively merge system ram resources by specifying a new
flag for add_memory*().  Patch #5 contains a /proc/iomem example.  Only
tested with virtio-mem.

This patch (of 8):

Let's make sure splitting a resource on memory hotunplug will never fail.
This will become more relevant once we merge selected System RAM resources
- then, we'll trigger that case more often on memory hotunplug.

In general, this function is already unlikely to fail.  When we remove
memory, we free up quite a lot of metadata (memmap, page tables, memory
block device, etc.).  The only reason it could really fail would be when
injecting allocation errors.

All other error cases inside release_mem_region_adjustable() seem to be
sanity checks if the function would be abused in different context - let's
add WARN_ON_ONCE() in these cases so we can catch them.

[natechancellor@gmail.com: fix use of ternary condition in release_mem_region_adjustable]
  Link: https://lkml.kernel.org/r/20200922060748.2452056-1-natechancellor@gmail.com
  Link: https://github.com/ClangBuiltLinux/linux/issues/1159

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kees Cook <keescook@chromium.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Anton Blanchard <anton@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Jason Wang <jasowang@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Grall <julien@xen.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Leonardo Bras <leobras.c@gmail.com>
Cc: Libor Pechacek <lpechacek@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: "Oliver O'Halloran" <oohall@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Roger Pau Monn <roger.pau@citrix.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Liu <wei.liu@kernel.org>
Link: https://lkml.kernel.org/r/20200911103459.10306-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand b30c59279d mm/memory_hotplug: mark pageblocks MIGRATE_ISOLATE while onlining memory
Currently, it can happen that pages are allocated (and freed) via the
buddy before we finished basic memory onlining.

For example, pages are exposed to the buddy and can be allocated before we
actually mark the sections online.  Allocated pages could suddenly fail
pfn_to_online_page() checks.  We had similar issues with pcp handling,
when pages are allocated+freed before we reach zone_pcp_update() in
online_pages() [1].

Instead, mark all pageblocks MIGRATE_ISOLATE, such that allocations are
impossible.  Once done with the heavy lifting, use
undo_isolate_page_range() to move the pages to the MIGRATE_MOVABLE
freelist, marking them ready for allocation.  Similar to offline_pages(),
we have to manually adjust zone->nr_isolate_pageblock.

[1] https://lkml.kernel.org/r/1597150703-19003-1-git-send-email-charante@codeaurora.org

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-11-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand d882c0067d mm: pass migratetype into memmap_init_zone() and move_pfn_range_to_zone()
On the memory onlining path, we want to start with MIGRATE_ISOLATE, to
un-isolate the pages after memory onlining is complete.  Let's allow
passing in the migratetype.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Link: https://lkml.kernel.org/r/20200819175957.28465-10-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand aac65321ba mm/memory_hotplug: simplify page onlining
We don't allow to offline memory with holes, all boot memory is online,
and all hotplugged memory cannot have holes.

We can now simplify onlining of pages.  As we only allow to online/offline
full sections and sections always span full MAX_ORDER_NR_PAGES, we can
just process MAX_ORDER - 1 pages without further special handling.

The number of onlined pages simply corresponds to the number of pages we
were requested to online.

While at it, refine the comment regarding the callback not exposing all
pages to the buddy.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-8-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand 3fa0c7c79d mm/page_isolation: simplify return value of start_isolate_page_range()
Callers no longer need the number of isolated pageblocks.  Let's simplify.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-7-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand ea15153c3d mm/memory_hotplug: drop nr_isolate_pageblock in offline_pages()
We make sure that we cannot have any memory holes right at the beginning
of offline_pages() and we only support to online/offline full sections.
Both, sections and pageblocks are a power of two in size, and sections
always span full pageblocks.

We can directly calculate the number of isolated pageblocks from nr_pages.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-6-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand 0a1a9a0008 mm/memory_hotplug: simplify page offlining
We make sure that we cannot have any memory holes right at the beginning
of offline_pages().  We no longer need walk_system_ram_range() and can
call test_pages_isolated() and __offline_isolated_pages() directly.

offlined_pages always corresponds to nr_pages, so we can simplify that.

[akpm@linux-foundation.org: patch conflict resolution]

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-4-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand 4986fac160 mm/memory_hotplug: enforce section granularity when onlining/offlining
Already two people (including me) tried to offline subsections, because
the function looks like it can deal with it.  But we really can only
online/offline full sections that are properly aligned (e.g., we can only
mark full sections online/offline via SECTION_IS_ONLINE).

Add a simple safety net to document the restriction now.  Current users
(core and powernv/memtrace) respect these restrictions.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200819175957.28465-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
David Hildenbrand 73a11c9658 mm/memory_hotplug: inline __offline_pages() into offline_pages()
Patch series "mm/memory_hotplug: online_pages()/offline_pages() cleanups", v2.

These are a bunch of cleanups for online_pages()/offline_pages() and
related code, mostly getting rid of memory hole handling that is no longer
necessary.  There is only a single walk_system_ram_range() call left in
offline_pages(), to make sure we don't have any memory holes.  I had some
of these patches lying around for a longer time but didn't have time to
polish them.

In addition, the last patch marks all pageblocks of memory to get onlined
MIGRATE_ISOLATE, so pages that have just been exposed to the buddy cannot
get allocated before onlining is complete.  Once heavy lifting is done,
the pageblocks are set to MIGRATE_MOVABLE, such that allocations are
possible.

I played with DIMMs and virtio-mem on x86-64 and didn't spot any
surprises.  I verified that the numer of isolated pageblocks is correctly
handled when onlining/offlining.

This patch (of 10):

There is only a single user, offline_pages(). Let's inline, to make
it look more similar to online_pages().

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Charan Teja Reddy <charante@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Link: https://lkml.kernel.org/r/20200819175957.28465-1-david@redhat.com
Link: https://lkml.kernel.org/r/20200819175957.28465-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-16 11:11:17 -07:00
Dan Williams a035b6bf86 mm/memory_hotplug: introduce default phys_to_target_node() implementation
In preparation to set a fallback value for dev_dax->target_node, introduce
generic fallback helpers for phys_to_target_node()

A generic implementation based on node-data or memblock was proposed, but
as noted by Mike:

    "Here again, I would prefer to add a weak default for
     phys_to_target_node() because the "generic" implementation is not really
     generic.

     The fallback to reserved ranges is x86 specfic because on x86 most of
     the reserved areas is not in memblock.memory. AFAIK, no other
     architecture does this."

The info message in the generic memory_add_physaddr_to_nid()
implementation is fixed up to properly reflect that
memory_add_physaddr_to_nid() communicates "online" node info and
phys_to_target_node() indicates "target / to-be-onlined" node info.

[akpm@linux-foundation.org: fix CONFIG_MEMORY_HOTPLUG=n build]
  Link: https://lkml.kernel.org/r/202008252130.7YrHIyMI%25lkp@intel.com

Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jia He <justin.he@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brice Goglin <Brice.Goglin@inria.fr>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Cc: Will Deacon <will@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Hulk Robot <hulkci@huawei.com>
Cc: Jason Yan <yanaijie@huawei.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Link: https://lkml.kernel.org/r/159643097768.4062302.3135192588966888630.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-13 18:38:27 -07:00
Laurent Dufour f85086f95f mm: don't rely on system state to detect hot-plug operations
In register_mem_sect_under_node() the system_state's value is checked to
detect whether the call is made during boot time or during an hot-plug
operation.  Unfortunately, that check against SYSTEM_BOOTING is wrong
because regular memory is registered at SYSTEM_SCHEDULING state.  In
addition, memory hot-plug operation can be triggered at this system
state by the ACPI [1].  So checking against the system state is not
enough.

The consequence is that on system with interleaved node's ranges like this:

 Early memory node ranges
   node   1: [mem 0x0000000000000000-0x000000011fffffff]
   node   2: [mem 0x0000000120000000-0x000000014fffffff]
   node   1: [mem 0x0000000150000000-0x00000001ffffffff]
   node   0: [mem 0x0000000200000000-0x000000048fffffff]
   node   2: [mem 0x0000000490000000-0x00000007ffffffff]

This can be seen on PowerPC LPAR after multiple memory hot-plug and
hot-unplug operations are done.  At the next reboot the node's memory
ranges can be interleaved and since the call to link_mem_sections() is
made in topology_init() while the system is in the SYSTEM_SCHEDULING
state, the node's id is not checked, and the sections registered to
multiple nodes:

  $ ls -l /sys/devices/system/memory/memory21/node*
  total 0
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node1 -> ../../node/node1
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node2 -> ../../node/node2

In that case, the system is able to boot but if later one of theses
memory blocks is hot-unplugged and then hot-plugged, the sysfs
inconsistency is detected and this is triggering a BUG_ON():

  kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
  Oops: Exception in kernel mode, sig: 5 [#1]
  LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
  CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
  Call Trace:
    add_memory_resource+0x23c/0x340 (unreliable)
    __add_memory+0x5c/0xf0
    dlpar_add_lmb+0x1b4/0x500
    dlpar_memory+0x1f8/0xb80
    handle_dlpar_errorlog+0xc0/0x190
    dlpar_store+0x198/0x4a0
    kobj_attr_store+0x30/0x50
    sysfs_kf_write+0x64/0x90
    kernfs_fop_write+0x1b0/0x290
    vfs_write+0xe8/0x290
    ksys_write+0xdc/0x130
    system_call_exception+0x160/0x270
    system_call_common+0xf0/0x27c

This patch addresses the root cause by not relying on the system_state
value to detect whether the call is due to a hot-plug operation.  An
extra parameter is added to link_mem_sections() detailing whether the
operation is due to a hot-plug operation.

[1] According to Oscar Salvador, using this qemu command line, ACPI
memory hotplug operations are raised at SYSTEM_SCHEDULING state:

  $QEMU -enable-kvm -machine pc -smp 4,sockets=4,cores=1,threads=1 -cpu host -monitor pty \
        -m size=$MEM,slots=255,maxmem=4294967296k  \
        -numa node,nodeid=0,cpus=0-3,mem=512 -numa node,nodeid=1,mem=512 \
        -object memory-backend-ram,id=memdimm0,size=134217728 -device pc-dimm,node=0,memdev=memdimm0,id=dimm0,slot=0 \
        -object memory-backend-ram,id=memdimm1,size=134217728 -device pc-dimm,node=0,memdev=memdimm1,id=dimm1,slot=1 \
        -object memory-backend-ram,id=memdimm2,size=134217728 -device pc-dimm,node=0,memdev=memdimm2,id=dimm2,slot=2 \
        -object memory-backend-ram,id=memdimm3,size=134217728 -device pc-dimm,node=0,memdev=memdimm3,id=dimm3,slot=3 \
        -object memory-backend-ram,id=memdimm4,size=134217728 -device pc-dimm,node=1,memdev=memdimm4,id=dimm4,slot=4 \
        -object memory-backend-ram,id=memdimm5,size=134217728 -device pc-dimm,node=1,memdev=memdimm5,id=dimm5,slot=5 \
        -object memory-backend-ram,id=memdimm6,size=134217728 -device pc-dimm,node=1,memdev=memdimm6,id=dimm6,slot=6 \

Fixes: 4fbce63391 ("mm/memory_hotplug.c: make register_mem_sect_under_node() a callback of walk_memory_range()")
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-3-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26 10:33:57 -07:00
Laurent Dufour c1d0da8335 mm: replace memmap_context by meminit_context
Patch series "mm: fix memory to node bad links in sysfs", v3.

Sometimes, firmware may expose interleaved memory layout like this:

 Early memory node ranges
   node   1: [mem 0x0000000000000000-0x000000011fffffff]
   node   2: [mem 0x0000000120000000-0x000000014fffffff]
   node   1: [mem 0x0000000150000000-0x00000001ffffffff]
   node   0: [mem 0x0000000200000000-0x000000048fffffff]
   node   2: [mem 0x0000000490000000-0x00000007ffffffff]

In that case, we can see memory blocks assigned to multiple nodes in
sysfs:

  $ ls -l /sys/devices/system/memory/memory21
  total 0
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node1 -> ../../node/node1
  lrwxrwxrwx 1 root root     0 Aug 24 05:27 node2 -> ../../node/node2
  -rw-r--r-- 1 root root 65536 Aug 24 05:27 online
  -r--r--r-- 1 root root 65536 Aug 24 05:27 phys_device
  -r--r--r-- 1 root root 65536 Aug 24 05:27 phys_index
  drwxr-xr-x 2 root root     0 Aug 24 05:27 power
  -r--r--r-- 1 root root 65536 Aug 24 05:27 removable
  -rw-r--r-- 1 root root 65536 Aug 24 05:27 state
  lrwxrwxrwx 1 root root     0 Aug 24 05:25 subsystem -> ../../../../bus/memory
  -rw-r--r-- 1 root root 65536 Aug 24 05:25 uevent
  -r--r--r-- 1 root root 65536 Aug 24 05:27 valid_zones

The same applies in the node's directory with a memory21 link in both
the node1 and node2's directory.

This is wrong but doesn't prevent the system to run.  However when
later, one of these memory blocks is hot-unplugged and then hot-plugged,
the system is detecting an inconsistency in the sysfs layout and a
BUG_ON() is raised:

  kernel BUG at /Users/laurent/src/linux-ppc/mm/memory_hotplug.c:1084!
  LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries
  Modules linked in: rpadlpar_io rpaphp pseries_rng rng_core vmx_crypto gf128mul binfmt_misc ip_tables x_tables xfs libcrc32c crc32c_vpmsum autofs4
  CPU: 8 PID: 10256 Comm: drmgr Not tainted 5.9.0-rc1+ #25
  Call Trace:
    add_memory_resource+0x23c/0x340 (unreliable)
    __add_memory+0x5c/0xf0
    dlpar_add_lmb+0x1b4/0x500
    dlpar_memory+0x1f8/0xb80
    handle_dlpar_errorlog+0xc0/0x190
    dlpar_store+0x198/0x4a0
    kobj_attr_store+0x30/0x50
    sysfs_kf_write+0x64/0x90
    kernfs_fop_write+0x1b0/0x290
    vfs_write+0xe8/0x290
    ksys_write+0xdc/0x130
    system_call_exception+0x160/0x270
    system_call_common+0xf0/0x27c

This has been seen on PowerPC LPAR.

The root cause of this issue is that when node's memory is registered,
the range used can overlap another node's range, thus the memory block
is registered to multiple nodes in sysfs.

There are two issues here:

 (a) The sysfs memory and node's layouts are broken due to these
     multiple links

 (b) The link errors in link_mem_sections() should not lead to a system
     panic.

To address (a) register_mem_sect_under_node should not rely on the
system state to detect whether the link operation is triggered by a hot
plug operation or not.  This is addressed by the patches 1 and 2 of this
series.

Issue (b) will be addressed separately.

This patch (of 2):

The memmap_context enum is used to detect whether a memory operation is
due to a hot-add operation or happening at boot time.

Make it general to the hotplug operation and rename it as
meminit_context.

There is no functional change introduced by this patch

Suggested-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J . Wysocki" <rafael@kernel.org>
Cc: Nathan Lynch <nathanl@linux.ibm.com>
Cc: Scott Cheloha <cheloha@linux.ibm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200915094143.79181-1-ldufour@linux.ibm.com
Link: https://lkml.kernel.org/r/20200915132624.9723-1-ldufour@linux.ibm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26 10:33:57 -07:00
Pavel Tatashin 9683182612 mm/memory_hotplug: drain per-cpu pages again during memory offline
There is a race during page offline that can lead to infinite loop:
a page never ends up on a buddy list and __offline_pages() keeps
retrying infinitely or until a termination signal is received.

Thread#1 - a new process:

load_elf_binary
 begin_new_exec
  exec_mmap
   mmput
    exit_mmap
     tlb_finish_mmu
      tlb_flush_mmu
       release_pages
        free_unref_page_list
         free_unref_page_prepare
          set_pcppage_migratetype(page, migratetype);
             // Set page->index migration type below  MIGRATE_PCPTYPES

Thread#2 - hot-removes memory
__offline_pages
  start_isolate_page_range
    set_migratetype_isolate
      set_pageblock_migratetype(page, MIGRATE_ISOLATE);
        Set migration type to MIGRATE_ISOLATE-> set
        drain_all_pages(zone);
             // drain per-cpu page lists to buddy allocator.

Thread#1 - continue
         free_unref_page_commit
           migratetype = get_pcppage_migratetype(page);
              // get old migration type
           list_add(&page->lru, &pcp->lists[migratetype]);
              // add new page to already drained pcp list

Thread#2
Never drains pcp again, and therefore gets stuck in the loop.

The fix is to try to drain per-cpu lists again after
check_pages_isolated_cb() fails.

Fixes: c52e75935f ("mm: remove extra drain pages on pcp list")
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200903140032.380431-1-pasha.tatashin@soleen.com
Link: https://lkml.kernel.org/r/20200904151448.100489-2-pasha.tatashin@soleen.com
Link: http://lkml.kernel.org/r/20200904070235.GA15277@dhcp22.suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-19 13:13:39 -07:00
Matthew Wilcox (Oracle) 6c357848b4 mm: replace hpage_nr_pages with thp_nr_pages
The thp prefix is more frequently used than hpage and we should be
consistent between the various functions.

[akpm@linux-foundation.org: fix mm/migrate.c]

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14 19:56:56 -07:00
Joonsoo Kim 19fc7bed25 mm/migrate: introduce a standard migration target allocation function
There are some similar functions for migration target allocation.  Since
there is no fundamental difference, it's better to keep just one rather
than keeping all variants.  This patch implements base migration target
allocation function.  In the following patches, variants will be converted
to use this function.

Changes should be mechanical, but, unfortunately, there are some
differences.  First, some callers' nodemask is assgined to NULL since NULL
nodemask will be considered as all available nodes, that is,
&node_states[N_MEMORY].  Second, for hugetlb page allocation, gfp_mask is
redefined as regular hugetlb allocation gfp_mask plus __GFP_THISNODE if
user provided gfp_mask has it.  This is because future caller of this
function requires to set this node constaint.  Lastly, if provided nodeid
is NUMA_NO_NODE, nodeid is set up to the node where migration source
lives.  It helps to remove simple wrappers for setting up the nodeid.

Note that PageHighmem() call in previous function is changed to open-code
"is_highmem_idx()" since it provides more readability.

[akpm@linux-foundation.org: tweak patch title, per Vlastimil]
[akpm@linux-foundation.org: fix typo in comment]

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/1594622517-20681-6-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:58:02 -07:00
Charan Teja Reddy de1193f0be mm, memory_hotplug: update pcp lists everytime onlining a memory block
When onlining a first memory block in a zone, pcp lists are not updated
thus pcp struct will have the default setting of ->high = 0,->batch = 1.

This means till the second memory block in a zone(if it have) is onlined
the pcp lists of this zone will not contain any pages because pcp's
->count is always greater than ->high thus free_pcppages_bulk() is called
to free batch size(=1) pages every time system wants to add a page to the
pcp list through free_unref_page().

To put this in a word, system is not using benefits offered by the pcp
lists when there is a single onlineable memory block in a zone.  Correct
this by always updating the pcp lists when memory block is onlined.

Fixes: 1f522509c7 ("mem-hotplug: avoid multiple zones sharing same boot strapping boot_pageset")
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Link: http://lkml.kernel.org/r/1596372896-15336-1-git-send-email-charante@codeaurora.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:57 -07:00
Jia He b4223a510e mm/memory_hotplug: fix unpaired mem_hotplug_begin/done
When check_memblock_offlined_cb() returns failed rc(e.g. the memblock is
online at that time), mem_hotplug_begin/done is unpaired in such case.

Therefore a warning:
 Call Trace:
  percpu_up_write+0x33/0x40
  try_remove_memory+0x66/0x120
  ? _cond_resched+0x19/0x30
  remove_memory+0x2b/0x40
  dev_dax_kmem_remove+0x36/0x72 [kmem]
  device_release_driver_internal+0xf0/0x1c0
  device_release_driver+0x12/0x20
  bus_remove_device+0xe1/0x150
  device_del+0x17b/0x3e0
  unregister_dev_dax+0x29/0x60
  devm_action_release+0x15/0x20
  release_nodes+0x19a/0x1e0
  devres_release_all+0x3f/0x50
  device_release_driver_internal+0x100/0x1c0
  driver_detach+0x4c/0x8f
  bus_remove_driver+0x5c/0xd0
  driver_unregister+0x31/0x50
  dax_pmem_exit+0x10/0xfe0 [dax_pmem]

Fixes: f1037ec0cc ("mm/memory_hotplug: fix remove_memory() lockdep splat")
Signed-off-by: Jia He <justin.he@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: <stable@vger.kernel.org>	[5.6+]
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chuhong Yuan <hslester96@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Kaly Xin <Kaly.Xin@arm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200710031619.18762-3-justin.he@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:57 -07:00
Jia He d622ecec5f mm/memory_hotplug: introduce default dummy memory_add_physaddr_to_nid()
This is to introduce a general dummy helper.  memory_add_physaddr_to_nid()
is a fallback option to get the nid in case NUMA_NO_NID is detected.

After this patch, arm64/sh/s390 can simply use the general dummy version.
PowerPC/x86/ia64 will still use their specific version.

This is the preparation to set a fallback value for dev_dax->target_node.

Signed-off-by: Jia He <justin.he@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Chuhong Yuan <hslester96@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@Huawei.com>
Cc: Kaly Xin <Kaly.Xin@arm.com>
Link: http://lkml.kernel.org/r/20200710031619.18762-2-justin.he@arm.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:57 -07:00
David Hildenbrand 93146d98ce mm/memory_hotplug: document why shuffle_zone() is relevant
It's not completely obvious why we have to shuffle the complete zone -
introduced in commit e900a918b0 ("mm: shuffle initial free memory to
improve memory-side-cache utilization") - because some sort of shuffling
is already performed when onlining pages via __free_one_page(), placing
MAX_ORDER-1 pages either to the head or the tail of the freelist.  Let's
document why we have to shuffle the complete zone when exposing larger,
contiguous physical memory areas to the buddy.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200624094741.9918-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:29 -07:00
David Hildenbrand 0a18e60788 mm: remove vm_total_pages
The global variable "vm_total_pages" is a relic from older days.  There is
only a single user that reads the variable - build_all_zonelists() - and
the first thing it does is update it.

Use a local variable in build_all_zonelists() instead and remove the
global variable.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Link: http://lkml.kernel.org/r/20200619132410.23859-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-07 11:33:28 -07:00
Ben Widawsky b7e3debdd0 mm/memory_hotplug.c: fix false softlockup during pfn range removal
When working with very large nodes, poisoning the struct pages (for which
there will be very many) can take a very long time.  If the system is
using voluntary preemptions, the software watchdog will not be able to
detect forward progress.  This patch addresses this issue by offering to
give up time like __remove_pages() does.  This behavior was introduced in
v5.6 with: commit d33695b16a ("mm/memory_hotplug: poison memmap in
remove_pfn_range_from_zone()")

Alternately, init_page_poison could do this cond_resched(), but it seems
to me that the caller of init_page_poison() is what actually knows whether
or not it should relax its own priority.

Based on Dan's notes, I think this is perfectly safe: commit f931ab479d
("mm: fix devm_memremap_pages crash, use mem_hotplug_{begin, done}")

Aside from fixing the lockup, it is also a friendlier thing to do on lower
core systems that might wipe out large chunks of hotplug memory (probably
not a very common case).

Fixes this kind of splat:

  watchdog: BUG: soft lockup - CPU#46 stuck for 22s! [daxctl:9922]
  irq event stamp: 138450
  hardirqs last  enabled at (138449): [<ffffffffa1001f26>] trace_hardirqs_on_thunk+0x1a/0x1c
  hardirqs last disabled at (138450): [<ffffffffa1001f42>] trace_hardirqs_off_thunk+0x1a/0x1c
  softirqs last  enabled at (138448): [<ffffffffa1e00347>] __do_softirq+0x347/0x456
  softirqs last disabled at (138443): [<ffffffffa10c416d>] irq_exit+0x7d/0xb0
  CPU: 46 PID: 9922 Comm: daxctl Not tainted 5.7.0-BEN-14238-g373c6049b336 #30
  Hardware name: Intel Corporation PURLEY/PURLEY, BIOS PLYXCRB1.86B.0578.D07.1902280810 02/28/2019
  RIP: 0010:memset_erms+0x9/0x10
  Code: c1 e9 03 40 0f b6 f6 48 b8 01 01 01 01 01 01 01 01 48 0f af c6 f3 48 ab 89 d1 f3 aa 4c 89 c8 c3 90 49 89 f9 40 88 f0 48 89 d1 <f3> aa 4c 89 c8 c3 90 49 89 fa 40 0f b6 ce 48 b8 01 01 01 01 01 01
  Call Trace:
   remove_pfn_range_from_zone+0x3a/0x380
   memunmap_pages+0x17f/0x280
   release_nodes+0x22a/0x260
   __device_release_driver+0x172/0x220
   device_driver_detach+0x3e/0xa0
   unbind_store+0x113/0x130
   kernfs_fop_write+0xdc/0x1c0
   vfs_write+0xde/0x1d0
   ksys_write+0x58/0xd0
   do_syscall_64+0x5a/0x120
   entry_SYSCALL_64_after_hwframe+0x49/0xb3
  Built 2 zonelists, mobility grouping on.  Total pages: 49050381
  Policy zone: Normal
  Built 3 zonelists, mobility grouping on.  Total pages: 49312525
  Policy zone: Normal

David said: "It really only is an issue for devmem.  Ordinary
hotplugged system memory is not affected (onlined/offlined in memory
block granularity)."

Link: http://lkml.kernel.org/r/20200619231213.1160351-1-ben.widawsky@intel.com
Fixes: commit d33695b16a ("mm/memory_hotplug: poison memmap in remove_pfn_range_from_zone()")
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Reported-by: "Scargall, Steve" <steve.scargall@intel.com>
Reported-by: Ben Widawsky <ben.widawsky@intel.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-26 00:27:38 -07:00
Linus Torvalds 09102704c6 virtio: features, fixes
virtio-mem
 doorbell mapping for vdpa
 config interrupt support in ifc
 fixes all over the place
 
 Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
 -----BEGIN PGP SIGNATURE-----
 
 iQFDBAABCAAtFiEEXQn9CHHI+FuUyooNKB8NuNKNVGkFAl7fZ6APHG1zdEByZWRo
 YXQuY29tAAoJECgfDbjSjVRpkDoIAMcBcQx5su1iuX7vT35xzUWZO478eAf1jOMZ
 7KxKUVBeztkcxVFUlRVRu9MR6wOzwHils+1HD6025775Smr5M6x3aJxR6xOORaBj
 RoU6OVGkpDvbzsxlhW+xhONz4O7/RkveKJPCwzGjqHrsFeh92lkfTqroz/EuNpw+
 LZsO0+DhdUf123HbwHQp5lxW8EjyrRabgeZZg/D9VLPhoCP88vCjRhBXU2GPuaUl
 /UNXsQafn4xUgrxPaoN5f4Phn/P46NNrbZ1jmlkw/z/3QhF/DhktGXGaZsIHDCN/
 vicUii0or5QLeBsZpMbKko/BIe2xWHxFjkMRhMOMZOfcBb6sMBI=
 =auUa
 -----END PGP SIGNATURE-----

Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost

Pull virtio updates from Michael Tsirkin:

 - virtio-mem: paravirtualized memory hotplug

 - support doorbell mapping for vdpa

 - config interrupt support in ifc

 - fixes all over the place

* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost: (40 commits)
  vhost/test: fix up after API change
  virtio_mem: convert device block size into 64bit
  virtio-mem: drop unnecessary initialization
  ifcvf: implement config interrupt in IFCVF
  vhost: replace -1 with VHOST_FILE_UNBIND in ioctls
  vhost_vdpa: Support config interrupt in vdpa
  ifcvf: ignore continuous setting same status value
  virtio-mem: Don't rely on implicit compiler padding for requests
  virtio-mem: Try to unplug the complete online memory block first
  virtio-mem: Use -ETXTBSY as error code if the device is busy
  virtio-mem: Unplug subblocks right-to-left
  virtio-mem: Drop manual check for already present memory
  virtio-mem: Add parent resource for all added "System RAM"
  virtio-mem: Better retry handling
  virtio-mem: Offline and remove completely unplugged memory blocks
  mm/memory_hotplug: Introduce offline_and_remove_memory()
  virtio-mem: Allow to offline partially unplugged memory blocks
  mm: Allow to offline unmovable PageOffline() pages via MEM_GOING_OFFLINE
  virtio-mem: Paravirtualized memory hotunplug part 2
  virtio-mem: Paravirtualized memory hotunplug part 1
  ...
2020-06-10 13:42:09 -07:00
Ethon Paul 52cfc24578 mm/memory_hotplug: fix a typo in comment "recoreded"->"recorded"
There is a typo in comment, fix it.
s/recoreded/recorded

Signed-off-by: Ethon Paul <ethp@qq.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Link: http://lkml.kernel.org/r/20200410160328.13843-1-ethp@qq.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:23 -07:00
David Hildenbrand 7b7b27214b mm/memory_hotplug: introduce add_memory_driver_managed()
Patch series "mm/memory_hotplug: Interface to add driver-managed system
ram", v4.

kexec (via kexec_load()) can currently not properly handle memory added
via dax/kmem, and will have similar issues with virtio-mem.  kexec-tools
will currently add all memory to the fixed-up initial firmware memmap.  In
case of dax/kmem, this means that - in contrast to a proper reboot - how
that persistent memory will be used can no longer be configured by the
kexec'd kernel.  In case of virtio-mem it will be harmful, because that
memory might contain inaccessible pieces that require coordination with
hypervisor first.

In both cases, we want to let the driver in the kexec'd kernel handle
detecting and adding the memory, like during an ordinary reboot.
Introduce add_memory_driver_managed().  More on the samentics are in patch
#1.

In the future, we might want to make this behavior configurable for
dax/kmem- either by configuring it in the kernel (which would then also
allow to configure kexec_file_load()) or in kexec-tools by also adding
"System RAM (kmem)" memory from /proc/iomem to the fixed-up initial
firmware memmap.

More on the motivation can be found in [1] and [2].

[1] https://lkml.kernel.org/r/20200429160803.109056-1-david@redhat.com
[2] https://lkml.kernel.org/r/20200430102908.10107-1-david@redhat.com

This patch (of 3):

Some device drivers rely on memory they managed to not get added to the
initial (firmware) memmap as system RAM - so it's not used as initial
system RAM by the kernel and the driver is under control.  While this is
the case during cold boot and after a reboot, kexec is not aware of that
and might add such memory to the initial (firmware) memmap of the kexec
kernel.  We need ways to teach kernel and userspace that this system ram
is different.

For example, dax/kmem allows to decide at runtime if persistent memory is
to be used as system ram.  Another future user is virtio-mem, which has to
coordinate with its hypervisor to deal with inaccessible parts within
memory resources.

We want to let users in the kernel (esp. kexec) but also user space
(esp. kexec-tools) know that this memory has different semantics and
needs to be handled differently:
1. Don't create entries in /sys/firmware/memmap/
2. Name the memory resource "System RAM ($DRIVER)" (exposed via
   /proc/iomem) ($DRIVER might be "kmem", "virtio_mem").
3. Flag the memory resource IORESOURCE_MEM_DRIVER_MANAGED

/sys/firmware/memmap/ [1] represents the "raw firmware-provided memory
map" because "on most architectures that firmware-provided memory map is
modified afterwards by the kernel itself".  The primary user is kexec on
x86-64.  Since commit d96ae53091 ("memory-hotplug: create
/sys/firmware/memmap entry for new memory"), we add all hotplugged memory
to that firmware memmap - which makes perfect sense for traditional memory
hotplug on x86-64, where real HW will also add hotplugged DIMMs to the
firmware memmap.  We replicate what the "raw firmware-provided memory map"
looks like after hot(un)plug.

To keep things simple, let the user provide the full resource name instead
of only the driver name - this way, we don't have to manually
allocate/craft strings for memory resources.  Also use the resource name
to make decisions, to avoid passing additional flags.  In case the name
isn't "System RAM", it's special.

We don't have to worry about firmware_map_remove() on the removal path.
If there is no entry, it will simply return with -EINVAL.

We'll adapt dax/kmem in a follow-up patch.

[1] https://www.kernel.org/doc/Documentation/ABI/testing/sysfs-firmware-memmap

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200508084217.9160-1-david@redhat.com
Link: http://lkml.kernel.org/r/20200508084217.9160-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:23 -07:00
David Hildenbrand 52219aeaf2 mm/memory_hotplug: handle memblocks only with CONFIG_ARCH_KEEP_MEMBLOCK
The comment in add_memory_resource() is stale: hotadd_new_pgdat() will no
longer call get_pfn_range_for_nid(), as a hotadded pgdat will simply span
no pages at all, until memory is moved to the zone/node via
move_pfn_range_to_zone() - e.g., when onlining memory blocks.

The only archs that care about memblocks for hotplugged memory (either for
iterating over all system RAM or testing for memory validity) are arm64,
s390x, and powerpc - due to CONFIG_ARCH_KEEP_MEMBLOCK.  Without
CONFIG_ARCH_KEEP_MEMBLOCK, we can simply stop messing with memblocks.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Link: http://lkml.kernel.org/r/20200422155353.25381-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:23 -07:00
David Hildenbrand c68ab18c6a mm/memory_hotplug: set node_start_pfn of hotadded pgdat to 0
Patch series "mm/memory_hotplug: handle memblocks only with
CONFIG_ARCH_KEEP_MEMBLOCK", v1.

A hotadded node/pgdat will span no pages at all, until memory is moved to
the zone/node via move_pfn_range_to_zone() -> resize_pgdat_range - e.g.,
when onlining memory blocks.  We don't have to initialize the
node_start_pfn to the memory we are adding.

This patch (of 2):

Especially, there is an inconsistency:
 - Hotplugging memory to a memory-less node with cpus: node_start_pf ==  0
 - Offlining and removing last memory from a node: node_start_pfn == 0
 - Hotplugging memory to a memory-less node without cpus: node_start_pfn != 0

As soon as memory is onlined, node_start_pfn is overwritten with the
actual start.  E.g., when adding two DIMMs but only onlining one of both,
only that DIMM (with online memory blocks) is spanned by the node.

Currently, the validity of node_start_pfn really is linked to
node_spanned_pages != 0.  With node_spanned_pages == 0 (e.g., before
onlining memory), it has no meaning.

So let's stop setting node_start_pfn, just to be overwritten via
move_pfn_range_to_zone().  This avoids confusion when looking at the code,
wondering which magic will be performed with the node_start_pfn in this
function, when hotadding a pgdat.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20200422155353.25381-1-david@redhat.com
Link: http://lkml.kernel.org/r/20200422155353.25381-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:23 -07:00
David Hildenbrand 04f3465c98 mm/memory_hotplug: remove is_mem_section_removable()
Fortunately, all users of is_mem_section_removable() are gone.  Get rid of
it, including some now unnecessary functions.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Oscar Salvador <osalvador@suse.de>
Link: http://lkml.kernel.org/r/20200407135416.24093-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:23 -07:00
Vishal Verma fa6d9ec790 mm/memory_hotplug: refrain from adding memory into an impossible node
A misbehaving qemu created a situation where the ACPI SRAT table
advertised one fewer proximity domains than intended.  The NFIT table did
describe all the expected proximity domains.  This caused the device dax
driver to assign an impossible target_node to the device, and when
hotplugged as system memory, this would fail with the following signature:

   BUG: kernel NULL pointer dereference, address: 0000000000000088
   #PF: supervisor read access in kernel mode
   #PF: error_code(0x0000) - not-present page
   PGD 80000001767d4067 P4D 80000001767d4067 PUD 10e0c4067 PMD 0
   Oops: 0000 [#1] SMP PTI
   CPU: 4 PID: 22737 Comm: kswapd3 Tainted: G           O      5.6.0-rc5 #9
   Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
   RIP: 0010:prepare_kswapd_sleep+0x7c/0xc0
   Code: 89 df e8 87 fd ff ff 89 c2 31 c0 84 d2 74 e6 0f 1f 44 00 00 48 8b 05 fb af 7a 01 48 63 93 88 1d 01 00 48 8b 84 d0 20 0f 00 00 <48> 3b 98 88 00 00 00 75 28 f0 80 a0 80 00 00 00 fe f0 80 a3 38 20
   RSP: 0018:ffffc900017a3e78 EFLAGS: 00010202
   RAX: 0000000000000000 RBX: ffff8881209e0000 RCX: 0000000000000000
   RDX: 0000000000000003 RSI: 0000000000000000 RDI: ffff8881209e0e80
   RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000008000
   R10: 0000000000000000 R11: 0000000000000003 R12: 0000000000000003
   R13: 0000000000000003 R14: 0000000000000000 R15: ffffc900017a3ec8
   FS:  0000000000000000(0000) GS:ffff888318c00000(0000) knlGS:0000000000000000
   CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
   CR2: 0000000000000088 CR3: 0000000120b50002 CR4: 00000000001606e0
   Call Trace:
    kswapd+0x103/0x520
    kthread+0x120/0x140
    ret_from_fork+0x3a/0x50

Add a check in the add_memory path to fail if the node to which we are
adding memory is in the node_possible_map

Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: http://lkml.kernel.org/r/20200416225438.15208-1-vishal.l.verma@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-04 19:06:23 -07:00
David Hildenbrand 08b3acd7a6 mm/memory_hotplug: Introduce offline_and_remove_memory()
virtio-mem wants to offline and remove a memory block once it unplugged
all subblocks (e.g., using alloc_contig_range()). Let's provide
an interface to do that from a driver. virtio-mem already supports to
offline partially unplugged memory blocks. Offlining a fully unplugged
memory block will not require to migrate any pages. All unplugged
subblocks are PageOffline() and have a reference count of 0 - so
offlining code will simply skip them.

All we need is an interface to offline and remove the memory from kernel
module context, where we don't have access to the memory block devices
(esp. find_memory_block() and device_offline()) and the device hotplug
lock.

To keep things simple, allow to only work on a single memory block.

Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-9-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-04 15:36:52 -04:00
David Hildenbrand aa218795cb mm: Allow to offline unmovable PageOffline() pages via MEM_GOING_OFFLINE
virtio-mem wants to allow to offline memory blocks of which some parts
were unplugged (allocated via alloc_contig_range()), especially, to later
offline and remove completely unplugged memory blocks. The important part
is that PageOffline() has to remain set until the section is offline, so
these pages will never get accessed (e.g., when dumping). The pages should
not be handed back to the buddy (which would require clearing PageOffline()
and result in issues if offlining fails and the pages are suddenly in the
buddy).

Let's allow to do that by allowing to isolate any PageOffline() page
when offlining. This way, we can reach the memory hotplug notifier
MEM_GOING_OFFLINE, where the driver can signal that he is fine with
offlining this page by dropping its reference count. PageOffline() pages
with a reference count of 0 can then be skipped when offlining the
pages (like if they were free, however they are not in the buddy).

Anybody who uses PageOffline() pages and does not agree to offline them
(e.g., Hyper-V balloon, XEN balloon, VMWare balloon for 2MB pages) will not
decrement the reference count and make offlining fail when trying to
migrate such an unmovable page. So there should be no observable change.
Same applies to balloon compaction users (movable PageOffline() pages), the
pages will simply be migrated.

Note 1: If offlining fails, a driver has to increment the reference
	count again in MEM_CANCEL_OFFLINE.

Note 2: A driver that makes use of this has to be aware that re-onlining
	the memory block has to be handled by hooking into onlining code
	(online_page_callback_t), resetting the page PageOffline() and
	not giving them to the buddy.

Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Link: https://lore.kernel.org/r/20200507140139.17083-7-david@redhat.com
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2020-06-04 15:36:52 -04:00
Joonsoo Kim 97a225e69a mm/page_alloc: integrate classzone_idx and high_zoneidx
classzone_idx is just different name for high_zoneidx now.  So, integrate
them and add some comment to struct alloc_context in order to reduce
future confusion about the meaning of this variable.

The accessor, ac_classzone_idx() is also removed since it isn't needed
after integration.

In addition to integration, this patch also renames high_zoneidx to
highest_zoneidx since it represents more precise meaning.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ye Xiaolong <xiaolong.ye@intel.com>
Link: http://lkml.kernel.org/r/1587095923-7515-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:44 -07:00
Mike Rapoport 3f08a302f5 mm: remove CONFIG_HAVE_MEMBLOCK_NODE_MAP option
CONFIG_HAVE_MEMBLOCK_NODE_MAP is used to differentiate initialization of
nodes and zones structures between the systems that have region to node
mapping in memblock and those that don't.

Currently all the NUMA architectures enable this option and for the
non-NUMA systems we can presume that all the memory belongs to node 0 and
therefore the compile time configuration option is not required.

The remaining few architectures that use DISCONTIGMEM without NUMA are
easily updated to use memblock_add_node() instead of memblock_add() and
thus have proper correspondence of memblock regions to NUMA nodes.

Still, free_area_init_node() must have a backward compatible version
because its semantics with and without CONFIG_HAVE_MEMBLOCK_NODE_MAP is
different.  Once all the architectures will use the new semantics, the
entire compatibility layer can be dropped.

To avoid addition of extra run time memory to store node id for
architectures that keep memblock but have only a single node, the node id
field of the memblock_region is guarded by CONFIG_NEED_MULTIPLE_NODES and
the corresponding accessors presume that in those cases it is always 0.

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Hoan Tran <hoan@os.amperecomputing.com>	[arm64]
Acked-by: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Cc: Baoquan He <bhe@redhat.com>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200412194859.12663-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-03 20:09:43 -07:00
Logan Gunthorpe bfeb022f8f mm/memory_hotplug: add pgprot_t to mhp_params
devm_memremap_pages() is currently used by the PCI P2PDMA code to create
struct page mappings for IO memory.  At present, these mappings are
created with PAGE_KERNEL which implies setting the PAT bits to be WB.
However, on x86, an mtrr register will typically override this and force
the cache type to be UC-.  In the case firmware doesn't set this
register it is effectively WB and will typically result in a machine
check exception when it's accessed.

Other arches are not currently likely to function correctly seeing they
don't have any MTRR registers to fall back on.

To solve this, provide a way to specify the pgprot value explicitly to
arch_add_memory().

Of the arches that support MEMORY_HOTPLUG: x86_64, and arm64 need a
simple change to pass the pgprot_t down to their respective functions
which set up the page tables.  For x86_32, set the page tables
explicitly using _set_memory_prot() (seeing they are already mapped).

For ia64, s390 and sh, reject anything but PAGE_KERNEL settings -- this
should be fine, for now, seeing these architectures don't support
ZONE_DEVICE.

A check in __add_pages() is also added to ensure the pgprot parameter
was set for all arches.

Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-7-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-10 15:36:21 -07:00
Logan Gunthorpe f5637d3b42 mm/memory_hotplug: rename mhp_restrictions to mhp_params
The mhp_restrictions struct really doesn't specify anything resembling a
restriction anymore so rename it to be mhp_params as it is a list of
extended parameters.

Signed-off-by: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Eric Badger <ebadger@gigaio.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200306170846.9333-3-logang@deltatee.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-10 15:36:21 -07:00
chenqiwu 104049017b mm/memory_hotplug.c: use __pfn_to_section() instead of open-coding
Use __pfn_to_section() API instead of open-coding for better code
readability.

Signed-off-by: chenqiwu <chenqiwu@xiaomi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/1584345134-16671-1-git-send-email-qiwuchen55@gmail.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:41 -07:00
David Hildenbrand 5f47adf762 mm/memory_hotplug: allow to specify a default online_type
For now, distributions implement advanced udev rules to essentially
- Don't online any hotplugged memory (s390x)
- Online all memory to ZONE_NORMAL (e.g., most virt environments like
  hyperv)
- Online all memory to ZONE_MOVABLE in case the zone imbalance is taken
  care of (e.g., bare metal, special virt environments)

In summary: All memory is usually onlined the same way, however, the
kernel always has to ask user space to come up with the same answer.
E.g., Hyper-V always waits for a memory block to get onlined before
continuing, otherwise it might end up adding memory faster than
onlining it, which can result in strange OOM situations.  This waiting
slows down adding of a bigger amount of memory.

Let's allow to specify a default online_type, not just "online" and
"offline".  This allows distributions to configure the default online_type
when booting up and be done with it.

We can now specify "offline", "online", "online_movable" and
"online_kernel" via
- "memhp_default_state=" on the kernel cmdline
- /sys/devices/system/memory/auto_online_blocks
just like we are able to specify for a single memory block via
/sys/devices/system/memory/memoryX/state

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-9-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:41 -07:00
David Hildenbrand 862919e568 mm/memory_hotplug: convert memhp_auto_online to store an online_type
...  and rename it to memhp_default_online_type.  This is a preparation
for more detailed default online behavior.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-8-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:40 -07:00
David Hildenbrand 5a04af1322 mm/memory_hotplug: unexport memhp_auto_online
All in-tree users except the mm-core are gone. Let's drop the export.

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Baoquan He <bhe@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Eduardo Habkost <ehabkost@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wei Liu <wei.liu@kernel.org>
Cc: Yumei Huang <yuhuang@redhat.com>
Link: http://lkml.kernel.org/r/20200317104942.11178-7-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:40 -07:00
David Hildenbrand 6cdd0b30a9 mm/memory_hotplug.c: cleanup __add_pages()
Let's drop the basically unused section stuff and simplify.  The logic now
matches the logic in __remove_pages().

Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Segher Boessenkool <segher@kernel.crashing.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200228095819.10750-3-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:40 -07:00
David Hildenbrand a11b941924 mm/memory_hotplug.c: simplify calculation of number of pages in __remove_pages()
In commit 52fb87c81f ("mm/memory_hotplug: cleanup __remove_pages()"), we
cleaned up __remove_pages(), and introduced a shorter variant to calculate
the number of pages to the next section boundary.

Turns out we can make this calculation easier to read.  We always want to
have the number of pages (> 0) to the next section boundary, starting from
the current pfn.

We'll clean up __remove_pages() in a follow-up patch and directly make use
of this computation.

Suggested-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Link: http://lkml.kernel.org/r/20200228095819.10750-2-david@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:40 -07:00
Baoquan He f3cd4c865b mm/memory_hotplug.c: only respect mem= parameter during boot stage
In commit 357b4da50a ("x86: respect memory size limiting via mem=
parameter") a global varialbe max_mem_size is added to store the value
parsed from 'mem= ', then checked when memory region is added.  This truly
stops those DIMMs from being added into system memory during boot-time.

However, it also limits the later memory hotplug functionality.  Any DIMM
can't be hotplugged any more if its region is beyond the max_mem_size.  We
will get errors like:

[  216.387164] acpi PNP0C80:02: add_memory failed
[  216.389301] acpi PNP0C80:02: acpi_memory_enable_device() error
[  216.392187] acpi PNP0C80:02: Enumeration failure

This will cause issue in a known use case where 'mem=' is added to the
hypervisor.  The memory that lies after 'mem=' boundary will be assigned
to KVM guests.  After commit 357b4da50a merged, memory can't be extended
dynamically if system memory on hypervisor is not sufficient.

So fix it by also checking if it's during boot-time restricting to add
memory.  Otherwise, skip the restriction.

And also add this use case to document of 'mem=' kernel parameter.

Fixes: 357b4da50a ("x86: respect memory size limiting via mem= parameter")
Signed-off-by: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Link: http://lkml.kernel.org/r/20200204050643.20925-1-bhe@redhat.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:40 -07:00
Huang Ying 9de4f22a60 mm: code cleanup for MADV_FREE
Some comments for MADV_FREE is revised and added to help people understand
the MADV_FREE code, especially the page flag, PG_swapbacked.  This makes
page_is_file_cache() isn't consistent with its comments.  So the function
is renamed to page_is_file_lru() to make them consistent again.  All these
are put in one patch as one logical change.

Suggested-by: David Hildenbrand <david@redhat.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: David Rientjes <rientjes@google.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@surriel.com>
Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07 10:43:38 -07:00
Vlastimil Babka c87cbc1f00 mm, hotplug: fix page online with DEBUG_PAGEALLOC compiled but not enabled
Commit cd02cf1ace ("mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC")
fixed memory hotplug with debug_pagealloc enabled, where onlining a page
goes through page freeing, which removes the direct mapping.  Some arches
don't like when the page is not mapped in the first place, so
generic_online_page() maps it first.  This is somewhat wasteful, but
better than special casing page freeing fast paths.

The commit however missed that DEBUG_PAGEALLOC configured doesn't mean
it's actually enabled.  One has to test debug_pagealloc_enabled() since
031bc5743f ("mm/debug-pagealloc: make debug-pagealloc boottime
configurable"), or alternatively debug_pagealloc_enabled_static() since
8e57f8acbb ("mm, debug_pagealloc: don't rely on static keys too early"),
but this is not done.

As a result, a s390 kernel with DEBUG_PAGEALLOC configured but not enabled
will crash:

Unable to handle kernel pointer dereference in virtual kernel address space
Failing address: 0000000000000000 TEID: 0000000000000483
Fault in home space mode while using kernel ASCE.
AS:0000001ece13400b R2:000003fff7fd000b R3:000003fff7fcc007 S:000003fff7fd7000 P:000000000000013d
Oops: 0004 ilc:2 [#1] SMP
CPU: 1 PID: 26015 Comm: chmem Kdump: loaded Tainted: GX 5.3.18-5-default #1 SLE15-SP2 (unreleased)
Krnl PSW : 0704e00180000000 0000001ecd281b9e (__kernel_map_pages+0x166/0x188)
R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3
Krnl GPRS: 0000000000000000 0000000000000800 0000400b00000000 0000000000000100
0000000000000001 0000000000000000 0000000000000002 0000000000000100
0000001ece139230 0000001ecdd98d40 0000400b00000100 0000000000000000
000003ffa17e4000 001fffe0114f7d08 0000001ecd4d93ea 001fffe0114f7b20
Krnl Code: 0000001ecd281b8e: ec17ffff00d8 ahik %r1,%r7,-1
0000001ecd281b94: ec111dbc0355 risbg %r1,%r1,29,188,3
>0000001ecd281b9e: 94fb5006 ni 6(%r5),251
0000001ecd281ba2: 41505008 la %r5,8(%r5)
0000001ecd281ba6: ec51fffc6064 cgrj %r5,%r1,6,1ecd281b9e
0000001ecd281bac: 1a07 ar %r0,%r7
0000001ecd281bae: ec03ff584076 crj %r0,%r3,4,1ecd281a5e
Call Trace:
[<0000001ecd281b9e>] __kernel_map_pages+0x166/0x188
[<0000001ecd4d9516>] online_pages_range+0xf6/0x128
[<0000001ecd2a8186>] walk_system_ram_range+0x7e/0xd8
[<0000001ecda28aae>] online_pages+0x2fe/0x3f0
[<0000001ecd7d02a6>] memory_subsys_online+0x8e/0xc0
[<0000001ecd7add42>] device_online+0x5a/0xc8
[<0000001ecd7d0430>] state_store+0x88/0x118
[<0000001ecd5b9f62>] kernfs_fop_write+0xc2/0x200
[<0000001ecd5064b6>] vfs_write+0x176/0x1e0
[<0000001ecd50676a>] ksys_write+0xa2/0x100
[<0000001ecda315d4>] system_call+0xd8/0x2c8

Fix this by checking debug_pagealloc_enabled_static() before calling
kernel_map_pages(). Backports for kernel before 5.5 should use
debug_pagealloc_enabled() instead. Also add comments.

Fixes: cd02cf1ace ("mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC")
Reported-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Qian Cai <cai@lca.pw>
Link: http://lkml.kernel.org/r/20200224094651.18257-1-vbabka@suse.cz
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-06 07:06:09 -06:00
David Hildenbrand 9291799884 mm/memory_hotplug: drop valid_start/valid_end from test_pages_in_a_zone()
The callers are only interested in the actual zone, they don't care about
boundaries.  Return the zone instead to simplify.

Link: http://lkml.kernel.org/r/20200110183308.11849-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:23 +00:00
David Hildenbrand 52fb87c81f mm/memory_hotplug: cleanup __remove_pages()
Let's drop the basically unused section stuff and simplify.

Also, let's use a shorter variant to calculate the number of pages to
the next section boundary.

Link: http://lkml.kernel.org/r/20191006085646.5768-11-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:23 +00:00
David Hildenbrand 5d12071c5d mm/memory_hotplug: drop local variables in shrink_zone_span()
Get rid of the unnecessary local variables.

Link: http://lkml.kernel.org/r/20191006085646.5768-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:23 +00:00
David Hildenbrand 950b68d917 mm/memory_hotplug: don't check for "all holes" in shrink_zone_span()
If we have holes, the holes will automatically get detected and removed
once we remove the next bigger/smaller section.  The extra checks can go.

Link: http://lkml.kernel.org/r/20191006085646.5768-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:23 +00:00
David Hildenbrand 9b05158f5d mm/memory_hotplug: we always have a zone in find_(smallest|biggest)_section_pfn
With shrink_pgdat_span() out of the way, we now always have a valid zone.

Link: http://lkml.kernel.org/r/20191006085646.5768-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:23 +00:00
David Hildenbrand d33695b16a mm/memory_hotplug: poison memmap in remove_pfn_range_from_zone()
Let's poison the pages similar to when adding new memory in
sparse_add_section().  Also call remove_pfn_range_from_zone() from
memunmap_pages(), so we can poison the memmap from there as well.

Link: http://lkml.kernel.org/r/20191006085646.5768-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pankaj Gupta <pagupta@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-02-04 03:05:23 +00:00
David Hildenbrand bd5c2344f9 mm/memory_hotplug: pass in nid to online_pages()
Patch series "mm/memory_hotplug: pass in nid to online_pages()".

Simplify onlining code and get rid of find_memory_block().  Pass in the
nid from the memory block we are trying to online directly, instead of
manually looking it up.

This patch (of 2):

No need to lookup the memory block, we can directly pass in the nid.

Link: http://lkml.kernel.org/r/20200113113354.6341-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:39 -08:00
David Hildenbrand fe4c86c916 mm: remove "count" parameter from has_unmovable_pages()
Now that the memory isolate notifier is gone, the parameter is always 0.
Drop it and cleanup has_unmovable_pages().

Link: http://lkml.kernel.org/r/20191114131911.11783-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:38 -08:00
Dan Williams f1037ec0cc mm/memory_hotplug: fix remove_memory() lockdep splat
The daxctl unit test for the dax_kmem driver currently triggers the
(false positive) lockdep splat below.  It results from the fact that
remove_memory_block_devices() is invoked under the mem_hotplug_lock()
causing lockdep entanglements with cpu_hotplug_lock() and sysfs (kernfs
active state tracking).  It is a false positive because the sysfs
attribute path triggering the memory remove is not the same attribute
path associated with memory-block device.

sysfs_break_active_protection() is not applicable since there is no real
deadlock conflict, instead move memory-block device removal outside the
lock.  The mem_hotplug_lock() is not needed to synchronize the
memory-block device removal vs the page online state, that is already
handled by lock_device_hotplug().  Specifically, lock_device_hotplug()
is sufficient to allow try_remove_memory() to check the offline state of
the memblocks and be assured that any in progress online attempts are
flushed / blocked by kernfs_drain() / attribute removal.

The add_memory() path safely creates memblock devices under the
mem_hotplug_lock().  There is no kernfs active state synchronization in
the memblock device_register() path, so nothing to fix there.

This change is only possible thanks to the recent change that refactored
memory block device removal out of arch_remove_memory() (commit
4c4b7f9ba9 "mm/memory_hotplug: remove memory block devices before
arch_remove_memory()"), and David's due diligence tracking down the
guarantees afforded by kernfs_drain().  Not flagged for -stable since
this only impacts ongoing development and lockdep validation, not a
runtime issue.

    ======================================================
    WARNING: possible circular locking dependency detected
    5.5.0-rc3+ #230 Tainted: G           OE
    ------------------------------------------------------
    lt-daxctl/6459 is trying to acquire lock:
    ffff99c7f0003510 (kn->count#241){++++}, at: kernfs_remove_by_name_ns+0x41/0x80

    but task is already holding lock:
    ffffffffa76a5450 (mem_hotplug_lock.rw_sem){++++}, at: percpu_down_write+0x20/0xe0

    which lock already depends on the new lock.

    the existing dependency chain (in reverse order) is:

    -> #2 (mem_hotplug_lock.rw_sem){++++}:
           __lock_acquire+0x39c/0x790
           lock_acquire+0xa2/0x1b0
           get_online_mems+0x3e/0xb0
           kmem_cache_create_usercopy+0x2e/0x260
           kmem_cache_create+0x12/0x20
           ptlock_cache_init+0x20/0x28
           start_kernel+0x243/0x547
           secondary_startup_64+0xb6/0xc0

    -> #1 (cpu_hotplug_lock.rw_sem){++++}:
           __lock_acquire+0x39c/0x790
           lock_acquire+0xa2/0x1b0
           cpus_read_lock+0x3e/0xb0
           online_pages+0x37/0x300
           memory_subsys_online+0x17d/0x1c0
           device_online+0x60/0x80
           state_store+0x65/0xd0
           kernfs_fop_write+0xcf/0x1c0
           vfs_write+0xdb/0x1d0
           ksys_write+0x65/0xe0
           do_syscall_64+0x5c/0xa0
           entry_SYSCALL_64_after_hwframe+0x49/0xbe

    -> #0 (kn->count#241){++++}:
           check_prev_add+0x98/0xa40
           validate_chain+0x576/0x860
           __lock_acquire+0x39c/0x790
           lock_acquire+0xa2/0x1b0
           __kernfs_remove+0x25f/0x2e0
           kernfs_remove_by_name_ns+0x41/0x80
           remove_files.isra.0+0x30/0x70
           sysfs_remove_group+0x3d/0x80
           sysfs_remove_groups+0x29/0x40
           device_remove_attrs+0x39/0x70
           device_del+0x16a/0x3f0
           device_unregister+0x16/0x60
           remove_memory_block_devices+0x82/0xb0
           try_remove_memory+0xb5/0x130
           remove_memory+0x26/0x40
           dev_dax_kmem_remove+0x44/0x6a [kmem]
           device_release_driver_internal+0xe4/0x1c0
           unbind_store+0xef/0x120
           kernfs_fop_write+0xcf/0x1c0
           vfs_write+0xdb/0x1d0
           ksys_write+0x65/0xe0
           do_syscall_64+0x5c/0xa0
           entry_SYSCALL_64_after_hwframe+0x49/0xbe

    other info that might help us debug this:

    Chain exists of:
      kn->count#241 --> cpu_hotplug_lock.rw_sem --> mem_hotplug_lock.rw_sem

     Possible unsafe locking scenario:

           CPU0                    CPU1
           ----                    ----
      lock(mem_hotplug_lock.rw_sem);
                                   lock(cpu_hotplug_lock.rw_sem);
                                   lock(mem_hotplug_lock.rw_sem);
      lock(kn->count#241);

     *** DEADLOCK ***

No fixes tag as this has been a long standing issue that predated the
addition of kernfs lockdep annotations.

Link: http://lkml.kernel.org/r/157991441887.2763922.4770790047389427325.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-31 10:30:36 -08:00
David Hildenbrand feee6b2989 mm/memory_hotplug: shrink zones when offlining memory
We currently try to shrink a single zone when removing memory.  We use
the zone of the first page of the memory we are removing.  If that
memmap was never initialized (e.g., memory was never onlined), we will
read garbage and can trigger kernel BUGs (due to a stale pointer):

    BUG: unable to handle page fault for address: 000000000000353d
    #PF: supervisor write access in kernel mode
    #PF: error_code(0x0002) - not-present page
    PGD 0 P4D 0
    Oops: 0002 [#1] SMP PTI
    CPU: 1 PID: 7 Comm: kworker/u8:0 Not tainted 5.3.0-rc5-next-20190820+ #317
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.4
    Workqueue: kacpi_hotplug acpi_hotplug_work_fn
    RIP: 0010:clear_zone_contiguous+0x5/0x10
    Code: 48 89 c6 48 89 c3 e8 2a fe ff ff 48 85 c0 75 cf 5b 5d c3 c6 85 fd 05 00 00 01 5b 5d c3 0f 1f 840
    RSP: 0018:ffffad2400043c98 EFLAGS: 00010246
    RAX: 0000000000000000 RBX: 0000000200000000 RCX: 0000000000000000
    RDX: 0000000000200000 RSI: 0000000000140000 RDI: 0000000000002f40
    RBP: 0000000140000000 R08: 0000000000000000 R09: 0000000000000001
    R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000140000
    R13: 0000000000140000 R14: 0000000000002f40 R15: ffff9e3e7aff3680
    FS:  0000000000000000(0000) GS:ffff9e3e7bb00000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 000000000000353d CR3: 0000000058610000 CR4: 00000000000006e0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
    Call Trace:
     __remove_pages+0x4b/0x640
     arch_remove_memory+0x63/0x8d
     try_remove_memory+0xdb/0x130
     __remove_memory+0xa/0x11
     acpi_memory_device_remove+0x70/0x100
     acpi_bus_trim+0x55/0x90
     acpi_device_hotplug+0x227/0x3a0
     acpi_hotplug_work_fn+0x1a/0x30
     process_one_work+0x221/0x550
     worker_thread+0x50/0x3b0
     kthread+0x105/0x140
     ret_from_fork+0x3a/0x50
    Modules linked in:
    CR2: 000000000000353d

Instead, shrink the zones when offlining memory or when onlining failed.
Introduce and use remove_pfn_range_from_zone(() for that.  We now
properly shrink the zones, even if we have DIMMs whereby

 - Some memory blocks fall into no zone (never onlined)

 - Some memory blocks fall into multiple zones (offlined+re-onlined)

 - Multiple memory blocks that fall into different zones

Drop the zone parameter (with a potential dubious value) from
__remove_pages() and __remove_section().

Link: http://lkml.kernel.org/r/20191006085646.5768-6-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: <stable@vger.kernel.org>	[5.0+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-01-04 13:55:08 -08:00
Souptick Joarder 12cc1c7345 mm/memory_hotplug.c: remove __online_page_set_limits()
__online_page_set_limits() is a dummy function - remove it and all
callers.

Link: http://lkml.kernel.org/r/8e1bc9d3b492f6bde16e95ebc1dee11d6aefabd7.1567889743.git.jrdr.linux@gmail.com
Link: http://lkml.kernel.org/r/854db2cf8145d9635249c95584d9a91fd774a229.1567889743.git.jrdr.linux@gmail.com
Link: http://lkml.kernel.org/r/9afe6c5a18158f3884a6b302ac2c772f3da49ccc.1567889743.git.jrdr.linux@gmail.com
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:10 -08:00
David Hildenbrand c5e79ef561 mm/memory_hotplug.c: don't allow to online/offline memory blocks with holes
Our onlining/offlining code is unnecessarily complicated.  Only memory
blocks added during boot can have holes (a range that is not
IORESOURCE_SYSTEM_RAM).  Hotplugged memory never has holes (e.g., see
add_memory_resource()).  All memory blocks that belong to boot memory
are already online.

Note that boot memory can have holes and the memmap of the holes is
marked PG_reserved.  However, also memory allocated early during boot is
PG_reserved - basically every page of boot memory that is not given to
the buddy is PG_reserved.

Therefore, when we stop allowing to offline memory blocks with holes, we
implicitly no longer have to deal with onlining memory blocks with
holes.  E.g., online_pages() will do a walk_system_ram_range(...,
online_pages_range), whereby online_pages_range() will effectively only
free the memory holes not falling into a hole to the buddy.  The other
pages (holes) are kept PG_reserved (via
move_pfn_range_to_zone()->memmap_init_zone()).

This allows to simplify the code.  For example, we no longer have to
worry about marking pages that fall into memory holes PG_reserved when
onlining memory.  We can stop setting pages PG_reserved completely in
memmap_init_zone().

Offlining memory blocks added during boot is usually not guaranteed to
work either way (unmovable data might have easily ended up on that
memory during boot).  So stopping to do that should not really hurt.
Also, people are not even aware of a setup where onlining/offlining of
memory blocks with holes used to work reliably (see [1] and [2]
especially regarding the hotplug path) - I doubt it worked reliably.

For the use case of offlining memory to unplug DIMMs, we should see no
change.  (holes on DIMMs would be weird).

Please note that hardware errors (PG_hwpoison) are not memory holes and
are not affected by this change when offlining.

[1] https://lkml.org/lkml/2019/10/22/135
[2] https://lkml.org/lkml/2019/8/14/1365

Link: http://lkml.kernel.org/r/20191119115237.6662-1-david@redhat.com
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:05 -08:00
David Hildenbrand 756d25be45 mm/page_isolation.c: convert SKIP_HWPOISON to MEMORY_OFFLINE
We have two types of users of page isolation:

 1. Memory offlining:  Offline memory so it can be unplugged. Memory
                       won't be touched.

 2. Memory allocation: Allocate memory (e.g., alloc_contig_range()) to
                       become the owner of the memory and make use of
                       it.

For example, in case we want to offline memory, we can ignore (skip
over) PageHWPoison() pages, as the memory won't get used.  We can allow
to offline memory.  In contrast, we don't want to allow to allocate such
memory.

Let's generalize the approach so we can special case other types of
pages we want to skip over in case we offline memory.  While at it, also
pass the same flags to test_pages_isolated().

Link: http://lkml.kernel.org/r/20191021172353.3056-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:04 -08:00
David Hildenbrand 0ee5f4f31d mm/page_alloc.c: don't set pages PageReserved() when offlining
Patch series "mm: Memory offlining + page isolation cleanups", v2.

This patch (of 2):

We call __offline_isolated_pages() from __offline_pages() after all
pages were isolated and are either free (PageBuddy()) or PageHWPoison.
Nothing can stop us from offlining memory at this point.

In __offline_isolated_pages() we first set all affected memory sections
offline (offline_mem_sections(pfn, end_pfn)), to mark the memmap as
invalid (pfn_to_online_page() will no longer succeed), and then walk
over all pages to pull the free pages from the free lists (to the
isolated free lists, to be precise).

Note that re-onlining a memory block will result in the whole memmap
getting reinitialized, overwriting any old state.  We already poision
the memmap when offlining is complete to find any access to
stale/uninitialized memmaps.

So, setting the pages PageReserved() is not helpful.  The memap is
marked offline and all pageblocks are isolated.  As soon as offline, the
memmap is stale either way.

This looks like a leftover from ancient times where we initialized the
memmap when adding memory and not when onlining it (the pages were set
PageReserved so re-onling would work as expected).

Link: http://lkml.kernel.org/r/20191021172353.3056-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:04 -08:00
David Hildenbrand 0ec4709743 mm/memory_hotplug: remove __online_page_free() and __online_page_increment_counters()
Let's drop the now unused functions.

Link: http://lkml.kernel.org/r/20190909114830.662-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:04 -08:00
David Hildenbrand 18db149120 mm/memory_hotplug: export generic_online_page()
Patch series "mm/memory_hotplug: Export generic_online_page()".

Let's replace the __online_page...() functions by generic_online_page().
Hyper-V only wants to delay the actual onlining of un-backed pages, so
we can simpy re-use the generic function.

This patch (of 3):

Let's expose generic_online_page() so online_page_callback users can
simply fall back to the generic implementation when actually deciding to
online the pages.

Link: http://lkml.kernel.org/r/20190909114830.662-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:04 -08:00
Alastair D'Silva dca4436d1c mm/memory_hotplug.c: add a bounds check to __add_pages()
On PowerPC, the address ranges allocated to OpenCAPI LPC memory are
allocated from firmware.  These address ranges may be higher than what
older kernels permit, as we increased the maximum permissable address in
commit 4ffe713b75 ("powerpc/mm: Increase the max addressable memory to
2PB").  It is possible that the addressable range may change again in
the future.

In this scenario, we end up with a bogus section returned from
__section_nr (see the discussion on the thread "mm: Trigger bug on if a
section is not found in __section_nr").

Adding a check here means that we fail early and have an opportunity to
handle the error gracefully, rather than rumbling on and potentially
accessing an incorrect section.

Further discussion is also on the thread ("powerpc: Perform a bounds
check in arch_add_memory")
  http://lkml.kernel.org/r/20190827052047.31547-1-alastair@au1.ibm.com

Link: http://lkml.kernel.org/r/20191001004617.7536-2-alastair@au1.ibm.com
Signed-off-by: Alastair D'Silva <alastair@d-silva.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:04 -08:00
Anshuman Khandual 32d1fe8fcb mm/hotplug: reorder memblock_[free|remove]() calls in try_remove_memory()
Currently during memory hot add procedure, memory gets into memblock
before calling arch_add_memory() which creates its linear mapping.

  add_memory_resource() {
	..................
	memblock_add_node()
	..................
	arch_add_memory()
	..................
  }

But during memory hot remove procedure, removal from memblock happens
first before its linear mapping gets teared down with
arch_remove_memory() which is not consistent.  Resource removal should
happen in reverse order as they were added.  However this does not pose
any problem for now, unless there is an assumption regarding linear
mapping.  One example was a subtle failure on arm64 platform [1].
Though this has now found a different solution.

  try_remove_memory() {
	..................
	memblock_free()
	memblock_remove()
	..................
	arch_remove_memory()
	..................
  }

This changes the sequence of resource removal including memblock and
linear mapping tear down during memory hot remove which will now be the
reverse order in which they were added during memory hot add.  The
changed removal order looks like the following.

  try_remove_memory() {
	..................
	arch_remove_memory()
	..................
	memblock_free()
	memblock_remove()
	..................
  }

[1] https://patchwork.kernel.org/patch/11127623/

Memory hot remove now works on arm64 without this because a recent
commit 60bb462fc7ad ("drivers/base/node.c: simplify
unregister_memory_block_under_nodes()").

This does not fix a serious problem.  It just removes an inconsistency
while freeing resources during memory hot remove which for now does not
pose a real problem.

David mentioned that re-ordering should still make sense for consistency
purpose (removing stuff in the reverse order they were added).  This
patch is now detached from arm64 hot-remove series.

Michal:

: I would just a note that the inconsistency doesn't pose any problem now
: but if somebody makes any assumptions about linear mappings then it could
: get subtly broken like your example for arm64 which has found a different
: solution in the meantime.

Link: http://lkml.kernel.org/r/1569380273-7708-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:04 -08:00
David Hildenbrand 7ce700bf11 mm/memory_hotplug: don't access uninitialized memmaps in shrink_zone_span()
Let's limit shrinking to !ZONE_DEVICE so we can fix the current code.
We should never try to touch the memmap of offline sections where we
could have uninitialized memmaps and could trigger BUGs when calling
page_to_nid() on poisoned pages.

There is no reliable way to distinguish an uninitialized memmap from an
initialized memmap that belongs to ZONE_DEVICE, as we don't have
anything like SECTION_IS_ONLINE we can use similar to
pfn_to_online_section() for !ZONE_DEVICE memory.

E.g., set_zone_contiguous() similarly relies on pfn_to_online_section()
and will therefore never set a ZONE_DEVICE zone consecutive.  Stopping
to shrink the ZONE_DEVICE therefore results in no observable changes,
besides /proc/zoneinfo indicating different boundaries - something we
can totally live with.

Before commit d0dc12e86b ("mm/memory_hotplug: optimize memory
hotplug"), the memmap was initialized with 0 and the node with the right
value.  So the zone might be wrong but not garbage.  After that commit,
both the zone and the node will be garbage when touching uninitialized
memmaps.

Toshiki reported a BUG (race between delayed initialization of
ZONE_DEVICE memmaps without holding the memory hotplug lock and
concurrent zone shrinking).

  https://lkml.org/lkml/2019/11/14/1040

"Iteration of create and destroy namespace causes the panic as below:

      kernel BUG at mm/page_alloc.c:535!
      CPU: 7 PID: 2766 Comm: ndctl Not tainted 5.4.0-rc4 #6
      Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.0-0-g63451fca13-prebuilt.qemu-project.org 04/01/2014
      RIP: 0010:set_pfnblock_flags_mask+0x95/0xf0
      Call Trace:
       memmap_init_zone_device+0x165/0x17c
       memremap_pages+0x4c1/0x540
       devm_memremap_pages+0x1d/0x60
       pmem_attach_disk+0x16b/0x600 [nd_pmem]
       nvdimm_bus_probe+0x69/0x1c0
       really_probe+0x1c2/0x3e0
       driver_probe_device+0xb4/0x100
       device_driver_attach+0x4f/0x60
       bind_store+0xc9/0x110
       kernfs_fop_write+0x116/0x190
       vfs_write+0xa5/0x1a0
       ksys_write+0x59/0xd0
       do_syscall_64+0x5b/0x180
       entry_SYSCALL_64_after_hwframe+0x44/0xa9

  While creating a namespace and initializing memmap, if you destroy the
  namespace and shrink the zone, it will initialize the memmap outside
  the zone and trigger VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page),
  pfn), page) in set_pfnblock_flags_mask()."

This BUG is also mitigated by this commit, where we for now stop to
shrink the ZONE_DEVICE zone until we can do it in a safe and clean way.

Link: http://lkml.kernel.org/r/20191006085646.5768-5-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[visible after d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Toshiki Fukasawa <t-fukasawa@vx.jp.nec.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Damian Tometzki <damian.tometzki@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Halil Pasic <pasic@linux.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-22 09:11:18 -08:00
David Hildenbrand 2c91f8fc6c mm/memory_hotplug: fix try_offline_node()
try_offline_node() is pretty much broken right now:

 - The node span is updated when onlining memory, not when adding it. We
   ignore memory that was mever onlined. Bad.

 - We touch possible garbage memmaps. The pfn_to_nid(pfn) can easily
   trigger a kernel panic. Bad for memory that is offline but also bad
   for subsection hotadd with ZONE_DEVICE, whereby the memmap of the
   first PFN of a section might contain garbage.

 - Sections belonging to mixed nodes are not properly considered.

As memory blocks might belong to multiple nodes, we would have to walk
all pageblocks (or at least subsections) within present sections.
However, we don't have a way to identify whether a memmap that is not
online was initialized (relevant for ZONE_DEVICE).  This makes things
more complicated.

Luckily, we can piggy pack on the node span and the nid stored in memory
blocks.  Currently, the node span is grown when calling
move_pfn_range_to_zone() - e.g., when onlining memory, and shrunk when
removing memory, before calling try_offline_node().  Sysfs links are
created via link_mem_sections(), e.g., during boot or when adding
memory.

If the node still spans memory or if any memory block belongs to the
nid, we don't set the node offline.  As memory blocks that span multiple
nodes cannot get offlined, the nid stored in memory blocks is reliable
enough (for such online memory blocks, the node still spans the memory).

Introduce for_each_memory_block() to efficiently walk all memory blocks.

Note: We will soon stop shrinking the ZONE_DEVICE zone and the node span
when removing ZONE_DEVICE memory to fix similar issues (access of
garbage memmaps) - until we have a reliable way to identify whether
these memmaps were properly initialized.  This implies later, that once
a node had ZONE_DEVICE memory, we won't be able to set a node offline -
which should be acceptable.

Since commit f1dd2cd13c ("mm, memory_hotplug: do not associate
hotadded memory to zones until online") memory that is added is not
assoziated with a zone/node (memmap not initialized).  The introducing
commit 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
already missed that we could have multiple nodes for a section and that
the zone/node span is updated when onlining pages, not when adding them.

I tested this by hotplugging two DIMMs to a memory-less and cpu-less
NUMA node.  The node is properly onlined when adding the DIMMs.  When
removing the DIMMs, the node is properly offlined.

Masayoshi Mizuma reported:

: Without this patch, memory hotplug fails as panic:
:
:  BUG: kernel NULL pointer dereference, address: 0000000000000000
:  ...
:  Call Trace:
:   remove_memory_block_devices+0x81/0xc0
:   try_remove_memory+0xb4/0x130
:   __remove_memory+0xa/0x20
:   acpi_memory_device_remove+0x84/0x100
:   acpi_bus_trim+0x57/0x90
:   acpi_bus_trim+0x2e/0x90
:   acpi_device_hotplug+0x2b2/0x4d0
:   acpi_hotplug_work_fn+0x1a/0x30
:   process_one_work+0x171/0x380
:   worker_thread+0x49/0x3f0
:   kthread+0xf8/0x130
:   ret_from_fork+0x35/0x40

[david@redhat.com: v3]
  Link: http://lkml.kernel.org/r/20191102120221.7553-1-david@redhat.com
Link: http://lkml.kernel.org/r/20191028105458.28320-1-david@redhat.com
Fixes: 60a5a19e74 ("memory-hotplug: remove sysfs file of node")
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online") # visiable after d0dc12e86b
Signed-off-by: David Hildenbrand <david@redhat.com>
Tested-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Nayna Jain <nayna@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15 18:34:00 -08:00
David Hildenbrand 656d571193 mm/memory_hotplug: fix updating the node span
We recently started updating the node span based on the zone span to
avoid touching uninitialized memmaps.

Currently, we will always detect the node span to start at 0, meaning a
node can easily span too many pages.  pgdat_is_empty() will still work
correctly if all zones span no pages.  We should skip over all zones
without spanned pages and properly handle the first detected zone that
spans pages.

Unfortunately, in contrast to the zone span (/proc/zoneinfo), the node
span cannot easily be inspected and tested.  The node span gives no real
guarantees when an architecture supports memory hotplug, meaning it can
easily contain holes or span pages of different nodes.

The node span is not really used after init on architectures that
support memory hotplug.

E.g., we use it in mm/memory_hotplug.c:try_offline_node() and in
mm/kmemleak.c:kmemleak_scan().  These users seem to be fine.

Link: http://lkml.kernel.org/r/20191027222714.5313-1-david@redhat.com
Fixes: 00d6c019b5 ("mm/memory_hotplug: don't access uninitialized memmaps in shrink_pgdat_span()")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-06 08:47:50 -08:00
David Hildenbrand 00d6c019b5 mm/memory_hotplug: don't access uninitialized memmaps in shrink_pgdat_span()
We might use the nid of memmaps that were never initialized.  For
example, if the memmap was poisoned, we will crash the kernel in
pfn_to_nid() right now.  Let's use the calculated boundaries of the
separate zones instead.  This now also avoids having to iterate over a
whole bunch of subsections again, after shrinking one zone.

Before commit d0dc12e86b ("mm/memory_hotplug: optimize memory
hotplug"), the memmap was initialized to 0 and the node was set to the
right value.  After that commit, the node might be garbage.

We'll have to fix shrink_zone_span() next.

Link: http://lkml.kernel.org/r/20191006085646.5768-4-david@redhat.com
Fixes: f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded memory to zones until online")	[d0dc12e86b]
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Damian Tometzki <damian.tometzki@gmail.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Halil Pasic <pasic@linux.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Pankaj Gupta <pagupta@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-10-19 06:32:31 -04:00
Souptick Joarder 29a90db929 mm/memory_hotplug.c: s/is/if
Correct typo in comment.

Link: http://lkml.kernel.org/r/1568233954-3913-1-git-send-email-jrdr.linux@gmail.com
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand ca9a46f8a4 mm/memory_hotplug: online_pages cannot be 0 in online_pages()
walk_system_ram_range() will fail with -EINVAL in case
online_pages_range() was never called (== no resource applicable in the
range).  Otherwise, we will always call online_pages_range() with nr_pages
> 0 and, therefore, have online_pages > 0.

Remove that special handling.

Link: http://lkml.kernel.org/r/20190814154109.3448-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand bd02cc01d3 mm/memory_hotplug: make sure the pfn is aligned to the order when onlining
Commit a9cd410a3d ("mm/page_alloc.c: memory hotplug: free pages as
higher order") assumed that any PFN we get via memory resources is aligned
to to MAX_ORDER - 1, I am not convinced that is always true.  Let's play
safe, check the alignment and fallback to single pages.

akpm: warn in this situation so we get to find out if and why this ever
occurs.

[akpm@linux-foundation.org: add WARN_ON_ONCE()]
Link: http://lkml.kernel.org/r/20190814154109.3448-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand b2c2ab208e mm/memory_hotplug: simplify online_pages_range()
online_pages always corresponds to nr_pages.  Simplify the code, getting
rid of online_pages_blocks().  Add some comments.

Link: http://lkml.kernel.org/r/20190814154109.3448-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand 5ecae6359e mm/memory_hotplug: drop PageReserved() check in online_pages_range()
move_pfn_range_to_zone() will set all pages to PG_reserved via
memmap_init_zone().  The only way a page could no longer be reserved would
be if a MEM_GOING_ONLINE notifier would clear PG_reserved - which is not
done (the online_page callback is used for that purpose by e.g., Hyper-V
instead).  walk_system_ram_range() will never call online_pages_range()
with duplicate PFNs, so drop the PageReserved() check.

This seems to be a leftover from ancient times where the memmap was
initialized when adding memory and we wanted to check for already onlined
memory.

Link: http://lkml.kernel.org/r/20190814154109.3448-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
Wei Yang 33fce0113d mm/memory_hotplug.c: prevent memory leak when reusing pgdat
When offlining a node in try_offline_node(), pgdat is not released.  So
that pgdat could be reused in hotadd_new_pgdat().  While we reallocate
pgdat->per_cpu_nodestats if this pgdat is reused.

This patch prevents the memory leak by just allocating per_cpu_nodestats
when it is a new pgdat.

Link: http://lkml.kernel.org/r/20190813020608.10194-1-richardw.yang@linux.intel.com
Signed-off-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand b6c88d3b9d drivers/base/memory.c: don't store end_section_nr in memory blocks
Each memory block spans the same amount of sections/pages/bytes.  The size
is determined before the first memory block is created.  No need to store
what we can easily calculate - and the calculations even look simpler now.

Michal brought up the idea of variable-sized memory blocks.  However, if
we ever implement something like this, we will need an API compatibility
switch and reworks at various places (most code assumes a fixed memory
block size).  So let's cleanup what we have right now.

While at it, fix the variable naming in register_mem_sect_under_node() -
we no longer talk about a single section.

Link: http://lkml.kernel.org/r/20190809110200.2746-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
David Hildenbrand 3fccb74cf3 mm/memory_hotplug: remove move_pfn_range()
Let's remove this indirection.  We need the zone in the caller either way,
so let's just detect it there.  Add some documentation for
move_pfn_range_to_zone() instead.

[akpm@linux-foundation.org: restore newline, per David]
Link: http://lkml.kernel.org/r/20190724142324.3686-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:09 -07:00
Matthew Wilcox (Oracle) d8c6546b1a mm: introduce compound_nr()
Replace 1 << compound_order(page) with compound_nr(page).  Minor
improvements in readability.

Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-09-24 15:54:08 -07:00
Weitao Hou aa4996b3af mm/memory_hotplug.c: remove unneeded return for void function
return is unneeded in void function

Link: http://lkml.kernel.org/r/20190723130814.21826-1-houweitaoo@gmail.com
Signed-off-by: Weitao Hou <houweitaoo@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-08-03 07:02:01 -07:00
Dan Williams 9a84503042 mm/sparsemem: cleanup 'section number' data types
David points out that there is a mixture of 'int' and 'unsigned long'
usage for section number data types.  Update the memory hotplug path to
use 'unsigned long' consistently for section numbers.

[akpm@linux-foundation.org: fix printk format]
Link: http://lkml.kernel.org/r/156107543656.1329419.11505835211949439815.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reported-by: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
Dan Williams ba72b4c8cf mm/sparsemem: support sub-section hotplug
The libnvdimm sub-system has suffered a series of hacks and broken
workarounds for the memory-hotplug implementation's awkward
section-aligned (128MB) granularity.

For example the following backtrace is emitted when attempting
arch_add_memory() with physical address ranges that intersect 'System
RAM' (RAM) with 'Persistent Memory' (PMEM) within a given section:

    # cat /proc/iomem | grep -A1 -B1 Persistent\ Memory
    100000000-1ffffffff : System RAM
    200000000-303ffffff : Persistent Memory (legacy)
    304000000-43fffffff : System RAM
    440000000-23ffffffff : Persistent Memory
    2400000000-43bfffffff : Persistent Memory
      2400000000-43bfffffff : namespace2.0

    WARNING: CPU: 38 PID: 928 at arch/x86/mm/init_64.c:850 add_pages+0x5c/0x60
    [..]
    RIP: 0010:add_pages+0x5c/0x60
    [..]
    Call Trace:
     devm_memremap_pages+0x460/0x6e0
     pmem_attach_disk+0x29e/0x680 [nd_pmem]
     ? nd_dax_probe+0xfc/0x120 [libnvdimm]
     nvdimm_bus_probe+0x66/0x160 [libnvdimm]

It was discovered that the problem goes beyond RAM vs PMEM collisions as
some platform produce PMEM vs PMEM collisions within a given section.
The libnvdimm workaround for that case revealed that the libnvdimm
section-alignment-padding implementation has been broken for a long
while.

A fix for that long-standing breakage introduces as many problems as it
solves as it would require a backward-incompatible change to the
namespace metadata interpretation.  Instead of that dubious route [1],
address the root problem in the memory-hotplug implementation.

Note that EEXIST is no longer treated as success as that is how
sparse_add_section() reports subsection collisions, it was also obviated
by recent changes to perform the request_region() for 'System RAM'
before arch_add_memory() in the add_memory() sequence.

[1] https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com

[osalvador@suse.de: fix deactivate_section for early sections]
  Link: http://lkml.kernel.org/r/20190715081549.32577-2-osalvador@suse.de
Link: http://lkml.kernel.org/r/156092354368.979959.6232443923440952359.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
Dan Williams 7ea6216049 mm/sparsemem: prepare for sub-section ranges
Prepare the memory hot-{add,remove} paths for handling sub-section
ranges by plumbing the starting page frame and number of pages being
handled through arch_{add,remove}_memory() to
sparse_{add,remove}_one_section().

This is simply plumbing, small cleanups, and some identifier renames.
No intended functional changes.

Link: http://lkml.kernel.org/r/156092353780.979959.9713046515562743194.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
Dan Williams 96da435000 mm/hotplug: kill is_dev_zone() usage in __remove_pages()
The zone type check was a leftover from the cleanup that plumbed altmap
through the memory hotplug path, i.e.  commit da024512a1 "mm: pass the
vmem_altmap to arch_remove_memory and __remove_pages".

Link: http://lkml.kernel.org/r/156092352642.979959.6664333788149363039.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
Cc: Michal Hocko <mhocko@suse.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
Dan Williams 49ba3c6b37 mm/hotplug: prepare shrink_{zone, pgdat}_span for sub-section removal
Sub-section hotplug support reduces the unit of operation of hotplug
from section-sized-units (PAGES_PER_SECTION) to sub-section-sized units
(PAGES_PER_SUBSECTION).  Teach shrink_{zone,pgdat}_span() to consider
PAGES_PER_SUBSECTION boundaries as the points where pfn_valid(), not
valid_section(), can toggle.

[osalvador@suse.de: fix shrink_{zone,node}_span]
  Link: http://lkml.kernel.org/r/20190717090725.23618-3-osalvador@suse.de
Link: http://lkml.kernel.org/r/156092351496.979959.12703722803097017492.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Wei Yang <richardw.yang@linux.intel.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
Dan Williams f1eca35a0d mm/sparsemem: introduce struct mem_section_usage
Patch series "mm: Sub-section memory hotplug support", v10.

The memory hotplug section is an arbitrary / convenient unit for memory
hotplug.  'Section-size' units have bled into the user interface
('memblock' sysfs) and can not be changed without breaking existing
userspace.  The section-size constraint, while mostly benign for typical
memory hotplug, has and continues to wreak havoc with 'device-memory'
use cases, persistent memory (pmem) in particular.  Recall that pmem
uses devm_memremap_pages(), and subsequently arch_add_memory(), to
allocate a 'struct page' memmap for pmem.  However, it does not use the
'bottom half' of memory hotplug, i.e.  never marks pmem pages online and
never exposes the userspace memblock interface for pmem.  This leaves an
opening to redress the section-size constraint.

To date, the libnvdimm subsystem has attempted to inject padding to
satisfy the internal constraints of arch_add_memory().  Beyond
complicating the code, leading to bugs [2], wasting memory, and limiting
configuration flexibility, the padding hack is broken when the platform
changes this physical memory alignment of pmem from one boot to the
next.  Device failure (intermittent or permanent) and physical
reconfiguration are events that can cause the platform firmware to
change the physical placement of pmem on a subsequent boot, and device
failure is an everyday event in a data-center.

It turns out that sections are only a hard requirement of the
user-facing interface for memory hotplug and with a bit more
infrastructure sub-section arch_add_memory() support can be added for
kernel internal usages like devm_memremap_pages().  Here is an analysis
of the current design assumptions in the current code and how they are
addressed in the new implementation:

Current design assumptions:

 - Sections that describe boot memory (early sections) are never
   unplugged / removed.

 - pfn_valid(), in the CONFIG_SPARSEMEM_VMEMMAP=y, case devolves to a
   valid_section() check

 - __add_pages() and helper routines assume all operations occur in
   PAGES_PER_SECTION units.

 - The memblock sysfs interface only comprehends full sections

New design assumptions:

 - Sections are instrumented with a sub-section bitmask to track (on
   x86) individual 2MB sub-divisions of a 128MB section.

 - Partially populated early sections can be extended with additional
   sub-sections, and those sub-sections can be removed with
   arch_remove_memory(). With this in place we no longer lose usable
   memory capacity to padding.

 - pfn_valid() is updated to look deeper than valid_section() to also
   check the active-sub-section mask. This indication is in the same
   cacheline as the valid_section() so the performance impact is
   expected to be negligible. So far the lkp robot has not reported any
   regressions.

 - Outside of the core vmemmap population routines which are replaced,
   other helper routines like shrink_{zone,pgdat}_span() are updated to
   handle the smaller granularity. Core memory hotplug routines that
   deal with online memory are not touched.

 - The existing memblock sysfs user api guarantees / assumptions are not
   touched since this capability is limited to !online
   !memblock-sysfs-accessible sections.

Meanwhile the issue reports continue to roll in from users that do not
understand when and how the 128MB constraint will bite them.  The current
implementation relied on being able to support at least one misaligned
namespace, but that immediately falls over on any moderately complex
namespace creation attempt.  Beyond the initial problem of 'System RAM'
colliding with pmem, and the unsolvable problem of physical alignment
changes, Linux is now being exposed to platforms that collide pmem ranges
with other pmem ranges by default [3].  In short, devm_memremap_pages()
has pushed the venerable section-size constraint past the breaking point,
and the simplicity of section-aligned arch_add_memory() is no longer
tenable.

These patches are exposed to the kbuild robot on a subsection-v10 branch
[4], and a preview of the unit test for this functionality is available
on the 'subsection-pending' branch of ndctl [5].

[2]: https://lore.kernel.org/r/155000671719.348031.2347363160141119237.stgit@dwillia2-desk3.amr.corp.intel.com
[3]: https://github.com/pmem/ndctl/issues/76
[4]: https://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm.git/log/?h=subsection-v10
[5]: https://github.com/pmem/ndctl/commit/7c59b4867e1c

This patch (of 13):

Towards enabling memory hotplug to track partial population of a section,
introduce 'struct mem_section_usage'.

A pointer to a 'struct mem_section_usage' instance replaces the existing
pointer to a 'pageblock_flags' bitmap.  Effectively it adds one more
'unsigned long' beyond the 'pageblock_flags' (usemap) allocation to house
a new 'subsection_map' bitmap.  The new bitmap enables the memory
hot{plug,remove} implementation to act on incremental sub-divisions of a
section.

SUBSECTION_SHIFT is defined as global constant instead of per-architecture
value like SECTION_SIZE_BITS in order to allow cross-arch compatibility of
subsection users.  Specifically a common subsection size allows for the
possibility that persistent memory namespace configurations be made
compatible across architectures.

The primary motivation for this functionality is to support platforms that
mix "System RAM" and "Persistent Memory" within a single section, or
multiple PMEM ranges with different mapping lifetimes within a single
section.  The section restriction for hotplug has caused an ongoing saga
of hacks and bugs for devm_memremap_pages() users.

Beyond the fixups to teach existing paths how to retrieve the 'usemap'
from a section, and updates to usemap allocation path, there are no
expected behavior changes.

Link: http://lkml.kernel.org/r/156092349845.979959.73333291612799019.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>	[ppc64]
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Qian Cai <cai@lca.pw>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:07 -07:00
David Hildenbrand ea8846411a mm/memory_hotplug: move and simplify walk_memory_blocks()
Let's move walk_memory_blocks() to the place where memory block logic
resides and simplify it.  While at it, add a type for the callback
function.

Link: http://lkml.kernel.org/r/20190614100114.311-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand fbcf73ce65 mm/memory_hotplug: rename walk_memory_range() and pass start+size instead of pfns
walk_memory_range() was once used to iterate over sections.  Now, it
iterates over memory blocks.  Rename the function, fixup the
documentation.

Also, pass start+size instead of PFNs, which is what most callers
already have at hand.  (we'll rework link_mem_sections() most probably
soon)

Follow-up patches will rework, simplify, and move walk_memory_blocks()
to drivers/base/memory.c.

Note: walk_memory_blocks() only works correctly right now if the
start_pfn is aligned to a section start.  This is the case right now,
but we'll generalize the function in a follow up patch so the semantics
match the documentation.

[akpm@linux-foundation.org: remove unused variable]
Link: http://lkml.kernel.org/r/20190614100114.311-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Rashmica Gupta <rashmica.g@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand b9bf8d342d mm/memory_hotplug: remove "zone" parameter from sparse_remove_one_section
The parameter is unused, so let's drop it.  Memory removal paths should
never care about zones.  This is the job of memory offlining and will
require more refactorings.

Link: http://lkml.kernel.org/r/20190527111152.16324-12-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand 4c4b7f9ba9 mm/memory_hotplug: remove memory block devices before arch_remove_memory()
Let's factor out removing of memory block devices, which is only
necessary for memory added via add_memory() and friends that created
memory block devices.  Remove the devices before calling
arch_remove_memory().

This finishes factoring out memory block device handling from
arch_add_memory() and arch_remove_memory().

Link: http://lkml.kernel.org/r/20190527111152.16324-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand 05f800a0bd mm/memory_hotplug: drop MHP_MEMBLOCK_API
No longer needed, the callers of arch_add_memory() can handle this
manually.

Link: http://lkml.kernel.org/r/20190527111152.16324-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand db051a0dac mm/memory_hotplug: create memory block devices after arch_add_memory()
Only memory to be added to the buddy and to be onlined/offlined by user
space using /sys/devices/system/memory/...  needs (and should have!)
memory block devices.

Factor out creation of memory block devices.  Create all devices after
arch_add_memory() succeeded.  We can later drop the want_memblock
parameter, because it is now effectively stale.

Only after memory block devices have been added, memory can be onlined
by user space.  This implies, that memory is not visible to user space
at all before arch_add_memory() succeeded.

While at it
 - use WARN_ON_ONCE instead of BUG_ON in moved unregister_memory()
 - introduce find_memory_block_by_id() to search via block id
 - Use find_memory_block_by_id() in init_memory_block() to catch
   duplicates

Link: http://lkml.kernel.org/r/20190527111152.16324-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand 80ec922dbd mm/memory_hotplug: allow arch_remove_memory() without CONFIG_MEMORY_HOTREMOVE
We want to improve error handling while adding memory by allowing to use
arch_remove_memory() and __remove_pages() even if
CONFIG_MEMORY_HOTREMOVE is not set to e.g., implement something like:

	arch_add_memory()
	rc = do_something();
	if (rc) {
		arch_remove_memory();
	}

We won't get rid of CONFIG_MEMORY_HOTREMOVE for now, as it will require
quite some dependencies for memory offlining.

Link: http://lkml.kernel.org/r/20190527111152.16324-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Mark Brown <broonie@kernel.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
David Hildenbrand cec3ebd083 mm/memory_hotplug: simplify and fix check_hotplug_memory_range()
Patch series "mm/memory_hotplug: Factor out memory block devicehandling", v3.

We only want memory block devices for memory to be onlined/offlined
(add/remove from the buddy).  This is required so user space can
online/offline memory and kdump gets notified about newly onlined
memory.

Let's factor out creation/removal of memory block devices.  This helps
to further cleanup arch_add_memory/arch_remove_memory() and to make
implementation of new features easier - especially sub-section memory
hot add from Dan.

Anshuman Khandual is currently working on arch_remove_memory().  I added
a temporary solution via "arm64/mm: Add temporary arch_remove_memory()
implementation", that is sufficient as a firsts tep in the context of
this series.  (we don't cleanup page tables in case anything goes wrong
already)

Did a quick sanity test with DIMM plug/unplug, making sure all devices
and sysfs links properly get added/removed.  Compile tested on s390x and
x86-64.

This patch (of 11):

By converting start and size to page granularity, we actually ignore
unaligned parts within a page instead of properly bailing out with an
error.

Link: http://lkml.kernel.org/r/20190527111152.16324-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Wei Yang <richardw.yang@linux.intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Jun Yao <yaojun8558363@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: "mike.travis@hpe.com" <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-18 17:08:06 -07:00
Pavel Tatashin eca499ab37 mm/hotplug: make remove_memory() interface usable
Presently the remove_memory() interface is inherently broken.  It tries
to remove memory but panics if some memory is not offline.  The problem
is that it is impossible to ensure that all memory blocks are offline as
this function also takes lock_device_hotplug that is required to change
memory state via sysfs.

So, between calling this function and offlining all memory blocks there
is always a window when lock_device_hotplug is released, and therefore,
there is always a chance for a panic during this window.

Make this interface to return an error if memory removal fails.  This
way it is safe to call this function without panicking machine, and also
makes it symmetric to add_memory() which already returns an error.

Link: http://lkml.kernel.org/r/20190517215438.6487-3-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-07-16 19:23:24 -07:00
Christoph Hellwig 514caf23a7 memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag
Add a flags field to struct dev_pagemap to replace the altmap_valid
boolean to be a little more extensible.  Also add a pgmap_altmap() helper
to find the optional altmap and clean up the code using the altmap using
it.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-07-02 14:32:44 -03:00
Thomas Gleixner 457c899653 treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have EXPORT_.*_SYMBOL_GPL inside which was used in the
   initial scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00
Dan Williams e900a918b0 mm: shuffle initial free memory to improve memory-side-cache utilization
Patch series "mm: Randomize free memory", v10.

This patch (of 3):

Randomization of the page allocator improves the average utilization of
a direct-mapped memory-side-cache.  Memory side caching is a platform
capability that Linux has been previously exposed to in HPC
(high-performance computing) environments on specialty platforms.  In
that instance it was a smaller pool of high-bandwidth-memory relative to
higher-capacity / lower-bandwidth DRAM.  Now, this capability is going
to be found on general purpose server platforms where DRAM is a cache in
front of higher latency persistent memory [1].

Robert offered an explanation of the state of the art of Linux
interactions with memory-side-caches [2], and I copy it here:

    It's been a problem in the HPC space:
    http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/

    A kernel module called zonesort is available to try to help:
    https://software.intel.com/en-us/articles/xeon-phi-software

    and this abandoned patch series proposed that for the kernel:
    https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com

    Dan's patch series doesn't attempt to ensure buffers won't conflict, but
    also reduces the chance that the buffers will. This will make performance
    more consistent, albeit slower than "optimal" (which is near impossible
    to attain in a general-purpose kernel).  That's better than forcing
    users to deploy remedies like:
        "To eliminate this gradual degradation, we have added a Stream
         measurement to the Node Health Check that follows each job;
         nodes are rebooted whenever their measured memory bandwidth
         falls below 300 GB/s."

A replacement for zonesort was merged upstream in commit cc9aec03e5
("x86/numa_emulation: Introduce uniform split capability").  With this
numa_emulation capability, memory can be split into cache sized
("near-memory" sized) numa nodes.  A bind operation to such a node, and
disabling workloads on other nodes, enables full cache performance.
However, once the workload exceeds the cache size then cache conflicts
are unavoidable.  While HPC environments might be able to tolerate
time-scheduling of cache sized workloads, for general purpose server
platforms, the oversubscribed cache case will be the common case.

The worst case scenario is that a server system owner benchmarks a
workload at boot with an un-contended cache only to see that performance
degrade over time, even below the average cache performance due to
excessive conflicts.  Randomization clips the peaks and fills in the
valleys of cache utilization to yield steady average performance.

Here are some performance impact details of the patches:

1/ An Intel internal synthetic memory bandwidth measurement tool, saw a
   3X speedup in a contrived case that tries to force cache conflicts.
   The contrived cased used the numa_emulation capability to force an
   instance of the benchmark to be run in two of the near-memory sized
   numa nodes.  If both instances were placed on the same emulated they
   would fit and cause zero conflicts.  While on separate emulated nodes
   without randomization they underutilized the cache and conflicted
   unnecessarily due to the in-order allocation per node.

2/ A well known Java server application benchmark was run with a heap
   size that exceeded cache size by 3X.  The cache conflict rate was 8%
   for the first run and degraded to 21% after page allocator aging.  With
   randomization enabled the rate levelled out at 11%.

3/ A MongoDB workload did not observe measurable difference in
   cache-conflict rates, but the overall throughput dropped by 7% with
   randomization in one case.

4/ Mel Gorman ran his suite of performance workloads with randomization
   enabled on platforms without a memory-side-cache and saw a mix of some
   improvements and some losses [3].

While there is potentially significant improvement for applications that
depend on low latency access across a wide working-set, the performance
may be negligible to negative for other workloads.  For this reason the
shuffle capability defaults to off unless a direct-mapped
memory-side-cache is detected.  Even then, the page_alloc.shuffle=0
parameter can be specified to disable the randomization on those systems.

Outside of memory-side-cache utilization concerns there is potentially
security benefit from randomization.  Some data exfiltration and
return-oriented-programming attacks rely on the ability to infer the
location of sensitive data objects.  The kernel page allocator, especially
early in system boot, has predictable first-in-first out behavior for
physical pages.  Pages are freed in physical address order when first
onlined.

Quoting Kees:
    "While we already have a base-address randomization
     (CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and
     memory layouts would certainly be using the predictability of
     allocation ordering (i.e. for attacks where the base address isn't
     important: only the relative positions between allocated memory).
     This is common in lots of heap-style attacks. They try to gain
     control over ordering by spraying allocations, etc.

     I'd really like to see this because it gives us something similar
     to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator."

While SLAB_FREELIST_RANDOM reduces the predictability of some local slab
caches it leaves vast bulk of memory to be predictably in order allocated.
However, it should be noted, the concrete security benefits are hard to
quantify, and no known CVE is mitigated by this randomization.

Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform
a Fisher-Yates shuffle of the page allocator 'free_area' lists when they
are initially populated with free memory at boot and at hotplug time.  Do
this based on either the presence of a page_alloc.shuffle=Y command line
parameter, or autodetection of a memory-side-cache (to be added in a
follow-on patch).

The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free
pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e.  10,
4MB this trades off randomization granularity for time spent shuffling.
MAX_ORDER-1 was chosen to be minimally invasive to the page allocator
while still showing memory-side cache behavior improvements, and the
expectation that the security implications of finer granularity
randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM.  The
performance impact of the shuffling appears to be in the noise compared to
other memory initialization work.

This initial randomization can be undone over time so a follow-on patch is
introduced to inject entropy on page free decisions.  It is reasonable to
ask if the page free entropy is sufficient, but it is not enough due to
the in-order initial freeing of pages.  At the start of that process
putting page1 in front or behind page0 still keeps them close together,
page2 is still near page1 and has a high chance of being adjacent.  As
more pages are added ordering diversity improves, but there is still high
page locality for the low address pages and this leads to no significant
impact to the cache conflict rate.

[1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
[2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM
[3]: https://lkml.org/lkml/2018/10/12/309

[dan.j.williams@intel.com: fix shuffle enable]
  Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com
[cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts]
  Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw
Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 19:52:48 -07:00
David Hildenbrand ac5c942645 mm/memory_hotplug: make __remove_pages() and arch_remove_memory() never fail
All callers of arch_remove_memory() ignore errors.  And we should really
try to remove any errors from the memory removal path.  No more errors are
reported from __remove_pages().  BUG() in s390x code in case
arch_remove_memory() is triggered.  We may implement that properly later.
WARN in case powerpc code failed to remove the section mapping, which is
better than ignoring the error completely right now.

Link: http://lkml.kernel.org/r/20190409100148.24703-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:50 -07:00
David Hildenbrand 9d1d887d78 mm/memory_hotplug: make __remove_section() never fail
Let's just warn in case a section is not valid instead of failing to
remove somewhere in the middle of the process, returning an error that
will be mostly ignored by callers.

Link: http://lkml.kernel.org/r/20190409100148.24703-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
David Hildenbrand cb7b3a3685 mm/memory_hotplug: make unregister_memory_section() never fail
Failing while removing memory is mostly ignored and cannot really be
handled.  Let's treat errors in unregister_memory_section() in a nice way,
warning, but continuing.

Link: http://lkml.kernel.org/r/20190409100148.24703-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
David Hildenbrand d9eb1417c7 mm/memory_hotplug: release memory resource after arch_remove_memory()
Patch series "mm/memory_hotplug: Better error handling when removing
memory", v1.

Error handling when removing memory is somewhat messed up right now.  Some
errors result in warnings, others are completely ignored.  Memory unplug
code can essentially not deal with errors properly as of now.
remove_memory() will never fail.

We have basically two choices:
1. Allow arch_remov_memory() and friends to fail, propagating errors via
   remove_memory(). Might be problematic (e.g. DIMMs consisting of multiple
   pieces added/removed separately).
2. Don't allow the functions to fail, handling errors in a nicer way.

It seems like most errors that can theoretically happen are really corner
cases and mostly theoretical (e.g.  "section not valid").  However e.g.
aborting removal of sections while all callers simply continue in case of
errors is not nice.

If we can gurantee that removal of memory always works (and WARN/skip in
case of theoretical errors so we can figure out what is going on), we can
go ahead and implement better error handling when adding memory.

E.g. via add_memory():

arch_add_memory()
ret = do_stuff()
if (ret) {
	arch_remove_memory();
	goto error;
}

Handling here that arch_remove_memory() might fail is basically
impossible.  So I suggest, let's avoid reporting errors while removing
memory, warning on theoretical errors instead and continuing instead of
aborting.

This patch (of 4):

__add_pages() doesn't add the memory resource, so __remove_pages()
shouldn't remove it.  Let's factor it out.  Especially as it is a special
case for memory used as system memory, added via add_memory() and friends.

We now remove the resource after removing the sections instead of doing it
the other way around.  I don't think this change is problematic.

add_memory()
	register memory resource
	arch_add_memory()

remove_memory
	arch_remove_memory()
	release memory resource

While at it, explain why we ignore errors and that it only happeny if
we remove memory in a different granularity as we added it.

[david@redhat.com: fix printk warning]
  Link: http://lkml.kernel.org/r/20190417120204.6997-1-david@redhat.com
Link: http://lkml.kernel.org/r/20190409100148.24703-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Michal Hocko 940519f0c8 mm, memory_hotplug: provide a more generic restrictions for memory hotplug
arch_add_memory, __add_pages take a want_memblock which controls whether
the newly added memory should get the sysfs memblock user API (e.g.
ZONE_DEVICE users do not want/need this interface).  Some callers even
want to control where do we allocate the memmap from by configuring
altmap.

Add a more generic hotplug context for arch_add_memory and __add_pages.
struct mhp_restrictions contains flags which contains additional features
to be enabled by the memory hotplug (MHP_MEMBLOCK_API currently) and
altmap for alternative memmap allocator.

This patch shouldn't introduce any functional change.

[akpm@linux-foundation.org: build fix]
Link: http://lkml.kernel.org/r/20190408082633.2864-3-osalvador@suse.de
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Michal Hocko 5557c766ab mm, memory_hotplug: cleanup memory offline path
check_pages_isolated_cb currently accounts the whole pfn range as being
offlined if test_pages_isolated suceeds on the range.  This is based on
the assumption that all pages in the range are freed which is currently
the case in most cases but it won't be with later changes, as pages marked
as vmemmap won't be isolated.

Move the offlined pages counting to offline_isolated_pages_cb and rely on
__offline_isolated_pages to return the correct value.
check_pages_isolated_cb will still do it's primary job and check the pfn
range.

While we are at it remove check_pages_isolated and offline_isolated_pages
and use directly walk_system_ram_range as do in online_pages.

Link: http://lkml.kernel.org/r/20190408082633.2864-2-osalvador@suse.de
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:49 -07:00
Baoquan He d3ba3ae197 mm/memory_hotplug.c: fix the wrong usage of N_HIGH_MEMORY
In node_states_check_changes_online(), N_HIGH_MEMORY is used to substitute
ZONE_HIGHMEM directly.  This is not right.  N_HIGH_MEMORY is to mark the
memory state of node.  Here zone index is checked, which should be
compared with 'ZONE_HIGHMEM' accordingly.

Replace it with ZONE_HIGHMEM.

This is a code cleanup - no known runtime effects.

Link: http://lkml.kernel.org/r/20190320080732.14933-1-bhe@redhat.com
Fixes: 8efe33f40f ("mm/memory_hotplug.c: simplify node_states_check_changes_online")
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Oscar Salvador 39186cbe65 mm,memory_hotplug: drop redundant hugepage_migration_supported check
has_unmovable_pages() already checks whether the hugetlb page supports
migration, so all non-migratable hugetlb pages should have been caught
there.  Let us drop the check from scan_movable_pages() as is redundant.

Link: http://lkml.kernel.org/r/20190320152658.10855-3-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
Oscar Salvador 10eeadf304 mm,memory_hotplug: unlock 1GB-hugetlb on x86_64
On x86_64, 1GB-hugetlb pages could never be offlined due to the fact
that hugepage_migration_supported() returned false for PUD_SHIFT.
So whenever we wanted to offline a memblock containing a gigantic
hugetlb page, we never got beyond has_unmovable_pages() check.
This changed with [1], where now we also return true for PUD_SHIFT.

After that patch, the check in has_unmovable_pages() and scan_movable_pages()
returned true, but we still had a final barrier in do_migrate_range():

if (compound_order(head) > PFN_SECTION_SHIFT) {
	ret = -EBUSY;
	break;
}

This is not really nice, and we do not really need it.
It is perfectly possible to migrate a gigantic page as long as another node has
a spare gigantic page for us.
In alloc_huge_page_nodemask(), we calculate the __real__ number of free pages,
and if any, we try to dequeue one from another node.

This all works fine when we do have another node with a spare gigantic page,
but if that is not the case, alloc_huge_page_nodemask() ends up calling
alloc_migrate_huge_page() which bails out if the wanted page is gigantic.
That is mainly because finding a 1GB (or even 16GB on powerpc) contiguous
memory is quite unlikely when the system has been running for a while.

In that situation, we will keep looping forever because scan_movable_pages()
will give us the same page and we will fail again because there is no node
where we can dequeue a gigantic page from.
This is not nice, and it has been raised that we might want to treat -ENOMEM
as a fatal error in do_migrate_range(), but this has to be checked further.

Anyway, I would tend say that this is the administrator's job, to make sure
that the system can keep up with the memory to be offlined, so that would mean
that if we want to use gigantic pages, make sure that the other nodes have at
least enough gigantic pages to keep up in case we need to offline memory.

Just for the sake of completeness, this is one of the tests done:

 # echo 1 > /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
 # echo 1 > /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages

 # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/nr_hugepages
   1
 # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages
   1

 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/nr_hugepages
   1
 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages
   1

 (hugetlb1gb is a program that maps 1GB region using MAP_HUGE_1GB)

 # numactl -m 1 ./hugetlb1gb
 # cat /sys/devices/system/node/node1/hugepages/hugepages-1048576kB/free_hugepages
   0
 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages
   1

 # offline node1 memory
 # cat /sys/devices/system/node/node2/hugepages/hugepages-1048576kB/free_hugepages
   0

[1] https://lore.kernel.org/patchwork/patch/998796/

Link: http://lkml.kernel.org/r/20190320152658.10855-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:46 -07:00
David Hildenbrand 89c02e69fc mm/memory_hotplug.c: drop memory device reference after find_memory_block()
Right now we are using find_memory_block() to get the node id for the
pfn range to online.  We are missing to drop a reference to the memory
block device.  While the device still gets unregistered via
device_unregister(), resulting in no user visible problem, the device is
never released via device_release(), resulting in a memory leak.  Fix
that by properly using a put_device().

Link: http://lkml.kernel.org/r/20190411110955.1430-1-david@redhat.com
Fixes: d0dc12e86b ("mm/memory_hotplug: optimize memory hotplug")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pankaj Gupta <pagupta@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-26 09:18:04 -07:00
Qian Cai c4efe484b5 mm/memory_hotplug.c: fix notification in offline error path
When start_isolate_page_range() returned -EBUSY in __offline_pages(), it
calls memory_notify(MEM_CANCEL_OFFLINE, &arg) with an uninitialized
"arg".  As the result, it triggers warnings below.  Also, it is only
necessary to notify MEM_CANCEL_OFFLINE after MEM_GOING_OFFLINE.

  page:ffffea0001200000 count:1 mapcount:0 mapping:0000000000000000
  index:0x0
  flags: 0x3fffe000001000(reserved)
  raw: 003fffe000001000 ffffea0001200008 ffffea0001200008 0000000000000000
  raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000
  page dumped because: unmovable page
  WARNING: CPU: 25 PID: 1665 at mm/kasan/common.c:665
  kasan_mem_notifier+0x34/0x23b
  CPU: 25 PID: 1665 Comm: bash Tainted: G        W         5.0.0+ #94
  Hardware name: HP ProLiant DL180 Gen9/ProLiant DL180 Gen9, BIOS U20
  10/25/2017
  RIP: 0010:kasan_mem_notifier+0x34/0x23b
  RSP: 0018:ffff8883ec737890 EFLAGS: 00010206
  RAX: 0000000000000246 RBX: ff10f0f4435f1000 RCX: f887a7a21af88000
  RDX: dffffc0000000000 RSI: 0000000000000020 RDI: ffff8881f221af88
  RBP: ffff8883ec737898 R08: ffff888000000000 R09: ffffffffb0bddcd0
  R10: ffffed103e857088 R11: ffff8881f42b8443 R12: dffffc0000000000
  R13: 00000000fffffff9 R14: dffffc0000000000 R15: 0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000560fbd31d730 CR3: 00000004049c6003 CR4: 00000000001606a0
  Call Trace:
   notifier_call_chain+0xbf/0x130
   __blocking_notifier_call_chain+0x76/0xc0
   blocking_notifier_call_chain+0x16/0x20
   memory_notify+0x1b/0x20
   __offline_pages+0x3e2/0x1210
   offline_pages+0x11/0x20
   memory_block_action+0x144/0x300
   memory_subsys_offline+0xe5/0x170
   device_offline+0x13f/0x1e0
   state_store+0xeb/0x110
   dev_attr_store+0x3f/0x70
   sysfs_kf_write+0x104/0x150
   kernfs_fop_write+0x25c/0x410
   __vfs_write+0x66/0x120
   vfs_write+0x15a/0x4f0
   ksys_write+0xd2/0x1b0
   __x64_sys_write+0x73/0xb0
   do_syscall_64+0xeb/0xb78
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  RIP: 0033:0x7f14f75cc3b8
  RSP: 002b:00007ffe84d01d68 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
  RAX: ffffffffffffffda RBX: 0000000000000008 RCX: 00007f14f75cc3b8
  RDX: 0000000000000008 RSI: 0000563f8e433d70 RDI: 0000000000000001
  RBP: 0000563f8e433d70 R08: 000000000000000a R09: 00007ffe84d018f0
  R10: 000000000000000a R11: 0000000000000246 R12: 00007f14f789e780
  R13: 0000000000000008 R14: 00007f14f7899740 R15: 0000000000000008

Link: http://lkml.kernel.org/r/20190320204255.53571-1-cai@lca.pw
Fixes: 7960509329 ("mm, memory_hotplug: print reason for the offlining failure")
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: <stable@vger.kernel.org>	[5.0.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 10:01:37 -07:00
Qian Cai 9b7ea46a82 mm/hotplug: fix offline undo_isolate_page_range()
Commit f1dd2cd13c ("mm, memory_hotplug: do not associate hotadded
memory to zones until online") introduced move_pfn_range_to_zone() which
calls memmap_init_zone() during onlining a memory block.
memmap_init_zone() will reset pagetype flags and makes migrate type to
be MOVABLE.

However, in __offline_pages(), it also call undo_isolate_page_range()
after offline_isolated_pages() to do the same thing.  Due to commit
2ce13640b3 ("mm: __first_valid_page skip over offline pages") changed
__first_valid_page() to skip offline pages, undo_isolate_page_range()
here just waste CPU cycles looping around the offlining PFN range while
doing nothing, because __first_valid_page() will return NULL as
offline_isolated_pages() has already marked all memory sections within
the pfn range as offline via offline_mem_sections().

Also, after calling the "useless" undo_isolate_page_range() here, it
reaches the point of no returning by notifying MEM_OFFLINE.  Those pages
will be marked as MIGRATE_MOVABLE again once onlining.  The only thing
left to do is to decrease the number of isolated pageblocks zone counter
which would make some paths of the page allocation slower that the above
commit introduced.

Even if alloc_contig_range() can be used to isolate 16GB-hugetlb pages
on ppc64, an "int" should still be enough to represent the number of
pageblocks there.  Fix an incorrect comment along the way.

[cai@lca.pw: v4]
  Link: http://lkml.kernel.org/r/20190314150641.59358-1-cai@lca.pw
Link: http://lkml.kernel.org/r/20190313143133.46200-1-cai@lca.pw
Fixes: 2ce13640b3 ("mm: __first_valid_page skip over offline pages")
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>	[4.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-29 10:01:37 -07:00
Linus Torvalds f67e3fb489 device-dax for 5.1
* Replace the /sys/class/dax device model with /sys/bus/dax, and include
   a compat driver so distributions can opt-in to the new ABI.
 
 * Allow for an alternative driver for the device-dax address-range
 
 * Introduce the 'kmem' driver to hotplug / assign a device-dax
   address-range to the core-mm.
 
 * Arrange for the device-dax target-node to be onlined so that the newly
   added memory range can be uniquely referenced by numa apis.
 -----BEGIN PGP SIGNATURE-----
 
 iQIcBAABAgAGBQJchWpGAAoJEB7SkWpmfYgCJk8P/0Q1DINszUDO/vKjJ09cDs9P
 Jw3it6GBIL50rDOu9QdcprSpwYDD0h1mLAV/m6oa3bVO+p4uWGvnxaxRx2HN2c/v
 vhZFtUDpHlqR63vzWMNVKRprYixCRJDUr6xQhhCcE3ak/ELN6w7LWfikKVWv15UL
 MfR96IQU38f+xRda/zSXnL9606Dvkvu/inEHj84lRcHIwj3sQAUalrE8bR3O32gZ
 bDg/l5kzT49o8ZXUo/TegvRSSSZpJmOl2DD0RW+ax5q3NI2bOXFrVDUKBKxf/hcQ
 E/V9i57TrqQx0GqRhnU7rN/v53cFZGGs31TEEIB/xs3bzCnADxwXcjL5b5K005J6
 vJjBA2ODBewHFK3uVx46Hy1iV4eCtZWj4QrMnrjdSrjXOfbF5GTbWOhPFgoq7TWf
 S7VqFEf3I2gDPaMq4o8Ej1kLH4HMYeor2NSOZjyvGn87rSZ3ZIQguwbaNIVl+itz
 gdDt0ZOU0BgOBkV+rZIeZDaGdloWCHcDPL15CkZaOZyzdWhfEZ7dod6ad+9udilU
 EUPH62RgzXZtfm5zpebYyjNVLbb9pLZ0nT+UypyGR6zqWx1SqU3mXi63NFXPco+x
 XA9j//edPeI6NHg2CXLEh8DLuCg3dG1zWRJANkiF+niBwyCR8CHtGWAoY6soXbKe
 2UrXGcIfXxyJ8V9v8v4q
 =hfa3
 -----END PGP SIGNATURE-----

Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull device-dax updates from Dan Williams:
 "New device-dax infrastructure to allow persistent memory and other
  "reserved" / performance differentiated memories, to be assigned to
  the core-mm as "System RAM".

  Some users want to use persistent memory as additional volatile
  memory. They are willing to cope with potential performance
  differences, for example between DRAM and 3D Xpoint, and want to use
  typical Linux memory management apis rather than a userspace memory
  allocator layered over an mmap() of a dax file. The administration
  model is to decide how much Persistent Memory (pmem) to use as System
  RAM, create a device-dax-mode namespace of that size, and then assign
  it to the core-mm. The rationale for device-dax is that it is a
  generic memory-mapping driver that can be layered over any "special
  purpose" memory, not just pmem. On subsequent boots udev rules can be
  used to restore the memory assignment.

  One implication of using pmem as RAM is that mlock() no longer keeps
  data off persistent media. For this reason it is recommended to enable
  NVDIMM Security (previously merged for 5.0) to encrypt pmem contents
  at rest. We considered making this recommendation an actively enforced
  requirement, but in the end decided to leave it as a distribution /
  administrator policy to allow for emulation and test environments that
  lack security capable NVDIMMs.

  Summary:

   - Replace the /sys/class/dax device model with /sys/bus/dax, and
     include a compat driver so distributions can opt-in to the new ABI.

   - Allow for an alternative driver for the device-dax address-range

   - Introduce the 'kmem' driver to hotplug / assign a device-dax
     address-range to the core-mm.

   - Arrange for the device-dax target-node to be onlined so that the
     newly added memory range can be uniquely referenced by numa apis"

NOTE! I'm not entirely happy with the whole "PMEM as RAM" model because
we currently have special - and very annoying rules in the kernel about
accessing PMEM only with the "MC safe" accessors, because machine checks
inside the regular repeat string copy functions can be fatal in some
(not described) circumstances.

And apparently the PMEM modules can cause that a lot more than regular
RAM.  The argument is that this happens because PMEM doesn't necessarily
get scrubbed at boot like RAM does, but that is planned to be added for
the user space tooling.

Quoting Dan from another email:
 "The exposure can be reduced in the volatile-RAM case by scanning for
  and clearing errors before it is onlined as RAM. The userspace tooling
  for that can be in place before v5.1-final. There's also runtime
  notifications of errors via acpi_nfit_uc_error_notify() from
  background scrubbers on the DIMM devices. With that mechanism the
  kernel could proactively clear newly discovered poison in the volatile
  case, but that would be additional development more suitable for v5.2.

  I understand the concern, and the need to highlight this issue by
  tapping the brakes on feature development, but I don't see PMEM as RAM
  making the situation worse when the exposure is also there via DAX in
  the PMEM case. Volatile-RAM is arguably a safer use case since it's
  possible to repair pages where the persistent case needs active
  application coordination"

* tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
  device-dax: "Hotplug" persistent memory for use like normal RAM
  mm/resource: Let walk_system_ram_range() search child resources
  mm/memory-hotplug: Allow memory resources to be children
  mm/resource: Move HMM pr_debug() deeper into resource code
  mm/resource: Return real error codes from walk failures
  device-dax: Add a 'modalias' attribute to DAX 'bus' devices
  device-dax: Add a 'target_node' attribute
  device-dax: Auto-bind device after successful new_id
  acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node
  device-dax: Add /sys/class/dax backwards compatibility
  device-dax: Add support for a dax override driver
  device-dax: Move resource pinning+mapping into the common driver
  device-dax: Introduce bus + driver model
  device-dax: Start defining a dax bus model
  device-dax: Remove multi-resource infrastructure
  device-dax: Kill dax_region base
  device-dax: Kill dax_region ida
2019-03-16 13:05:32 -07:00
Linus Torvalds d14d7f14f1 xen: fixes and features for 5.1-rc1
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCXIYrgwAKCRCAXGG7T9hj
 viyuAP4/bKpQ8QUp2V6ddkyEG4NTkA7H87pqQQsxJe9sdoyRRwD5AReS7oitoRS/
 cm6SBpwdaPRX/hfVvT2/h1GWxkvDFgA=
 =8Zfa
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip

Pull xen updates from Juergen Gross:
 "xen fixes and features:

   - remove fallback code for very old Xen hypervisors

   - three patches for fixing Xen dom0 boot regressions

   - an old patch for Xen PCI passthrough which was never applied for
     unknown reasons

   - some more minor fixes and cleanup patches"

* tag 'for-linus-5.1a-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
  xen: fix dom0 boot on huge systems
  xen, cpu_hotplug: Prevent an out of bounds access
  xen: remove pre-xen3 fallback handlers
  xen/ACPI: Switch to bitmap_zalloc()
  x86/xen: dont add memory above max allowed allocation
  x86: respect memory size limiting via mem= parameter
  xen/gntdev: Check and release imported dma-bufs on close
  xen/gntdev: Do not destroy context while dma-bufs are in use
  xen/pciback: Don't disable PCI_COMMAND on PCI device reset.
  xen-scsiback: mark expected switch fall-through
  xen: mark expected switch fall-through
2019-03-11 17:08:14 -07:00
Qian Cai cd02cf1ace mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
When onlining a memory block with DEBUG_PAGEALLOC, it unmaps the pages
in the block from kernel, However, it does not map those pages while
offlining at the beginning.  As the result, it triggers a panic below
while onlining on ppc64le as it checks if the pages are mapped before
unmapping.  However, the imbalance exists for all arches where
double-unmappings could happen.  Therefore, let kernel map those pages
in generic_online_page() before they have being freed into the page
allocator for the first time where it will set the page count to one.

On the other hand, it works fine during the boot, because at least for
IBM POWER8, it does,

early_setup
  early_init_mmu
    harsh__early_init_mmu
      htab_initialize [1]
        htab_bolt_mapping [2]

where it effectively map all memblock regions just like
kernel_map_linear_page(), so later mem_init() -> memblock_free_all()
will unmap them just fine without any imbalance.  On other arches
without this imbalance checking, it still unmap them once at the most.

[1]
for_each_memblock(memory, reg) {
        base = (unsigned long)__va(reg->base);
        size = reg->size;

        DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
                base, size, prot);

        BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
                prot, mmu_linear_psize, mmu_kernel_ssize));
        }

[2] linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
    kernel BUG at arch/powerpc/mm/hash_utils_64.c:1815!
    Oops: Exception in kernel mode, sig: 5 [#1]
    LE SMP NR_CPUS=256 DEBUG_PAGEALLOC NUMA pSeries
    CPU: 2 PID: 4298 Comm: bash Not tainted 5.0.0-rc7+ #15
    NIP:  c000000000062670 LR: c00000000006265c CTR: 0000000000000000
    REGS: c0000005bf8a75b0 TRAP: 0700   Not tainted  (5.0.0-rc7+)
    MSR:  800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE>  CR: 28422842
    XER: 00000000
    CFAR: c000000000804f44 IRQMASK: 1
    NIP [c000000000062670] __kernel_map_pages+0x2e0/0x4f0
    LR [c00000000006265c] __kernel_map_pages+0x2cc/0x4f0
    Call Trace:
       __kernel_map_pages+0x2cc/0x4f0
       free_unref_page_prepare+0x2f0/0x4d0
       free_unref_page+0x44/0x90
       __online_page_free+0x84/0x110
       online_pages_range+0xc0/0x150
       walk_system_ram_range+0xc8/0x120
       online_pages+0x280/0x5a0
       memory_subsys_online+0x1b4/0x270
       device_online+0xc0/0xf0
       state_store+0xc0/0x180
       dev_attr_store+0x3c/0x60
       sysfs_kf_write+0x70/0xb0
       kernfs_fop_write+0x10c/0x250
       __vfs_write+0x48/0x240
       vfs_write+0xd8/0x210
       ksys_write+0x70/0x120
       system_call+0x5c/0x70

Link: http://lkml.kernel.org/r/20190301220814.97339-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>	[powerpc]
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Oscar Salvador daf3538ad5 mm,memory_hotplug: explicitly pass the head to isolate_huge_page
isolate_huge_page() expects we pass the head of hugetlb page to it:

  bool isolate_huge_page(...)
  {
	...
	VM_BUG_ON_PAGE(!PageHead(page), page);
	...
  }

While I really cannot think of any situation where we end up with a
non-head page between hands in do_migrate_range(), let us make sure the
code is as sane as possible by explicitly passing the Head.  Since we
already got the pointer, it does not take us extra effort.

Link: http://lkml.kernel.org/r/20190208090604.975-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Anthony Yznaga <anthony.yznaga@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:20 -08:00
Wei Yang c52e75935f mm: remove extra drain pages on pcp list
In the current implementation, there are two places to isolate a range
of page: __offline_pages() and alloc_contig_range().  During this
procedure, it will drain pages on pcp list.

Below is a brief call flow:

  __offline_pages()/alloc_contig_range()
      start_isolate_page_range()
          set_migratetype_isolate()
              drain_all_pages()
      drain_all_pages()                 <--- A

This snippet shows the current logic is isolate and drain pcp list for
each pageblock and drain pcp list again for the whole range.

start_isolate_page_range is responsible for isolating the given pfn
range.  One part of that job is to make sure that also pages that are on
the allocator pcp lists are properly isolated.  Otherwise they could be
reused and the range wouldn't be completely isolated until the memory is
freed back.  While there is no strict guarantee here because pages might
get allocated at any time before drain_all_pages is called there doesn't
seem to be any strong demand for such a guarantee.

In any case, draining is already done at the isolation level and there
is no need to do it again later by start_isolate_page_range callers
(memory hotplug and CMA allocator currently).  Therefore remove
pointless draining in existing callers to make the code more clear and
functionally correct.

[mhocko@suse.com: provide a clearer changelog for the last two paragraphs]
Link: http://lkml.kernel.org/r/20190105233141.2329-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:15 -08:00
Anshuman Khandual 98fa15f34c mm: replace all open encodings for NUMA_NO_NODE
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.

All these places for replacement were found by running the following
grep patterns on the entire kernel code.  Please let me know if this
might have missed some instances.  This might also have replaced some
false positives.  I will appreciate suggestions, inputs and review.

1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"

This patch (of 2):

At present there are multiple places where invalid node number is
encoded as -1.  Even though implicitly understood it is always better to
have macros in there.  Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE.  This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.

Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>	[ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk>			[mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org>			[dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au>		[powerpc]
Acked-by: Doug Ledford <dledford@redhat.com>		[drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:14 -08:00
Arun KS a9cd410a3d mm/page_alloc.c: memory hotplug: free pages as higher order
When freeing pages are done with higher order, time spent on coalescing
pages by buddy allocator can be reduced.  With section size of 256MB,
hot add latency of a single section shows improvement from 50-60 ms to
less than 1 ms, hence improving the hot add latency by 60 times.  Modify
external providers of online callback to align with the change.

[arunks@codeaurora.org: v11]
  Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org
[akpm@linux-foundation.org: remove unused local, per Arun]
[akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar]
[akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch]
[arunks@codeaurora.org: v8]
  Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org
[arunks@codeaurora.org: v9]
  Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org
Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:14 -08:00
Dave Hansen 2794129e90 mm/memory-hotplug: Allow memory resources to be children
The mm/resource.c code is used to manage the physical address
space.  The current resource configuration can be viewed in
/proc/iomem.  An example of this is at the bottom of this
description.

The nvdimm subsystem "owns" the physical address resources which
map to persistent memory and has resources inserted for them as
"Persistent Memory".  The best way to repurpose this for volatile
use is to leave the existing resource in place, but add a "System
RAM" resource underneath it. This clearly communicates the
ownership relationship of this memory.

The request_resource_conflict() API only deals with the
top-level resources.  Replace it with __request_region() which
will search for !IORESOURCE_BUSY areas lower in the resource
tree than the top level.

We *could* also simply truncate the existing top-level
"Persistent Memory" resource and take over the released address
space.  But, this means that if we ever decide to hot-unplug the
"RAM" and give it back, we need to recreate the original setup,
which may mean going back to the BIOS tables.

This should have no real effect on the existing collision
detection because the areas that truly conflict should be marked
IORESOURCE_BUSY.

00000000-00000fff : Reserved
00001000-0009fbff : System RAM
0009fc00-0009ffff : Reserved
000a0000-000bffff : PCI Bus 0000:00
000c0000-000c97ff : Video ROM
000c9800-000ca5ff : Adapter ROM
000f0000-000fffff : Reserved
  000f0000-000fffff : System ROM
00100000-9fffffff : System RAM
  01000000-01e071d0 : Kernel code
  01e071d1-027dfdff : Kernel data
  02dc6000-0305dfff : Kernel bss
a0000000-afffffff : Persistent Memory (legacy)
  a0000000-a7ffffff : System RAM
b0000000-bffdffff : System RAM
bffe0000-bfffffff : Reserved
c0000000-febfffff : PCI Bus 0000:00

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Keith Busch <keith.busch@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-28 10:41:23 -08:00
Dave Hansen b926b7f3ba mm/resource: Move HMM pr_debug() deeper into resource code
HMM consumes physical address space for its own use, even
though nothing is mapped or accessible there.  It uses a
special resource description (IORES_DESC_DEVICE_PRIVATE_MEMORY)
to uniquely identify these areas.

When HMM consumes address space, it makes a best guess about
what to consume.  However, it is possible that a future memory
or device hotplug can collide with the reserved area.  In the
case of these conflicts, there is an error message in
register_memory_resource().

Later patches in this series move register_memory_resource()
from using request_resource_conflict() to __request_region().
Unfortunately, __request_region() does not return the conflict
like the previous function did, which makes it impossible to
check for IORES_DESC_DEVICE_PRIVATE_MEMORY in a conflicting
resource.

Instead of warning in register_memory_resource(), move the
check into the core resource code itself (__request_region())
where the conflicting resource _is_ available.  This has the
added bonus of producing a warning in case of HMM conflicts
with devices *or* RAM address space, as opposed to the RAM-
only warnings that were there previously.

Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: linux-nvdimm@lists.01.org
Cc: linux-kernel@vger.kernel.org
Cc: linux-mm@kvack.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2019-02-28 10:41:23 -08:00
Michal Hocko 891cb2a72d mm, memory_hotplug: fix off-by-one in is_pageblock_removable
Rong Chen has reported the following boot crash:

    PGD 0 P4D 0
    Oops: 0000 [#1] PREEMPT SMP PTI
    CPU: 1 PID: 239 Comm: udevd Not tainted 5.0.0-rc4-00149-gefad4e4 #1
    Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.2-1 04/01/2014
    RIP: 0010:page_mapping+0x12/0x80
    Code: 5d c3 48 89 df e8 0e ad 02 00 85 c0 75 da 89 e8 5b 5d c3 0f 1f 44 00 00 53 48 89 fb 48 8b 43 08 48 8d 50 ff a8 01 48 0f 45 da <48> 8b 53 08 48 8d 42 ff 83 e2 01 48 0f 44 c3 48 83 38 ff 74 2f 48
    RSP: 0018:ffff88801fa87cd8 EFLAGS: 00010202
    RAX: ffffffffffffffff RBX: fffffffffffffffe RCX: 000000000000000a
    RDX: fffffffffffffffe RSI: ffffffff820b9a20 RDI: ffff88801e5c0000
    RBP: 6db6db6db6db6db7 R08: ffff88801e8bb000 R09: 0000000001b64d13
    R10: ffff88801fa87cf8 R11: 0000000000000001 R12: ffff88801e640000
    R13: ffffffff820b9a20 R14: ffff88801f145258 R15: 0000000000000001
    FS:  00007fb2079817c0(0000) GS:ffff88801dd00000(0000) knlGS:0000000000000000
    CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
    CR2: 0000000000000006 CR3: 000000001fa82000 CR4: 00000000000006a0
    Call Trace:
     __dump_page+0x14/0x2c0
     is_mem_section_removable+0x24c/0x2c0
     removable_show+0x87/0xa0
     dev_attr_show+0x25/0x60
     sysfs_kf_seq_show+0xba/0x110
     seq_read+0x196/0x3f0
     __vfs_read+0x34/0x180
     vfs_read+0xa0/0x150
     ksys_read+0x44/0xb0
     do_syscall_64+0x5e/0x4a0
     entry_SYSCALL_64_after_hwframe+0x49/0xbe

and bisected it down to commit efad4e475c ("mm, memory_hotplug:
is_mem_section_removable do not pass the end of a zone").

The reason for the crash is that the mapping is garbage for poisoned
(uninitialized) page.  This shouldn't happen as all pages in the zone's
boundary should be initialized.

Later debugging revealed that the actual problem is an off-by-one when
evaluating the end_page.  'start_pfn + nr_pages' resp 'zone_end_pfn'
refers to a pfn after the range and as such it might belong to a
differen memory section.

This along with CONFIG_SPARSEMEM then makes the loop condition
completely bogus because a pointer arithmetic doesn't work for pages
from two different sections in that memory model.

Fix the issue by reworking is_pageblock_removable to be pfn based and
only use struct page where necessary.  This makes the code slightly
easier to follow and we will remove the problematic pointer arithmetic
completely.

Link: http://lkml.kernel.org/r/20190218181544.14616-1-mhocko@kernel.org
Fixes: efad4e475c ("mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: <rong.a.chen@intel.com>
Tested-by: <rong.a.chen@intel.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-21 09:01:01 -08:00
Juergen Gross 357b4da50a x86: respect memory size limiting via mem= parameter
When limiting memory size via kernel parameter "mem=" this should be
respected even in case of memory made accessible via a PCI card.

Today this kind of memory won't be made usable in initial memory
setup as the memory won't be visible in E820 map, but it might be
added when adding PCI devices due to corresponding ACPI table entries.

Not respecting "mem=" can be corrected by adding a global max_mem_size
variable set by parse_memopt() which will result in rejecting adding
memory areas resulting in a memory size above the allowed limit.

Signed-off-by: Juergen Gross <jgross@suse.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
2019-02-18 06:50:34 +01:00
Michal Hocko e3df4c6e48 mm, memory_hotplug: __offline_pages fix wrong locking
Jan has noticed that we do double unlock on some failure paths when
offlining a page range.  This is indeed the case when
test_pages_in_a_zone respp.  start_isolate_page_range fail.  This was an
omission when forward porting the debugging patch from an older kernel.

Fix the issue by dropping mem_hotplug_done from the failure condition
and keeping the single unlock in the catch all failure path.

Link: http://lkml.kernel.org/r/20190115120307.22768-1-mhocko@kernel.org
Fixes: 7960509329 ("mm, memory_hotplug: print reason for the offlining failure")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Jan Kara <jack@suse.cz>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: Jan Kara <jack@suse.cz>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 15:46:23 -08:00
Oscar Salvador eeb0efd071 mm,memory_hotplug: fix scan_movable_pages() for gigantic hugepages
This is the same sort of error we saw in commit 17e2e7d7e1 ("mm,
page_alloc: fix has_unmovable_pages for HugePages").

Gigantic hugepages cross several memblocks, so it can be that the page
we get in scan_movable_pages() is a page-tail belonging to a
1G-hugepage.  If that happens, page_hstate()->size_to_hstate() will
return NULL, and we will blow up in hugepage_migration_supported().

The splat is as follows:

  BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
  #PF error: [normal kernel read fault]
  PGD 0 P4D 0
  Oops: 0000 [#1] SMP PTI
  CPU: 1 PID: 1350 Comm: bash Tainted: G            E     5.0.0-rc1-mm1-1-default+ #27
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014
  RIP: 0010:__offline_pages+0x6ae/0x900
  Call Trace:
   memory_subsys_offline+0x42/0x60
   device_offline+0x80/0xa0
   state_store+0xab/0xc0
   kernfs_fop_write+0x102/0x180
   __vfs_write+0x26/0x190
   vfs_write+0xad/0x1b0
   ksys_write+0x42/0x90
   do_syscall_64+0x5b/0x180
   entry_SYSCALL_64_after_hwframe+0x44/0xa9
  Modules linked in: af_packet(E) xt_tcpudp(E) ipt_REJECT(E) xt_conntrack(E) nf_conntrack(E) nf_defrag_ipv4(E) ip_set(E) nfnetlink(E) ebtable_nat(E) ebtable_broute(E) bridge(E) stp(E) llc(E) iptable_mangle(E) iptable_raw(E) iptable_security(E) ebtable_filter(E) ebtables(E) iptable_filter(E) ip_tables(E) x_tables(E) kvm_intel(E) kvm(E) irqbypass(E) crct10dif_pclmul(E) crc32_pclmul(E) ghash_clmulni_intel(E) bochs_drm(E) ttm(E) aesni_intel(E) drm_kms_helper(E) aes_x86_64(E) crypto_simd(E) cryptd(E) glue_helper(E) drm(E) virtio_net(E) syscopyarea(E) sysfillrect(E) net_failover(E) sysimgblt(E) pcspkr(E) failover(E) i2c_piix4(E) fb_sys_fops(E) parport_pc(E) parport(E) button(E) btrfs(E) libcrc32c(E) xor(E) zstd_decompress(E) zstd_compress(E) xxhash(E) raid6_pq(E) sd_mod(E) ata_generic(E) ata_piix(E) ahci(E) libahci(E) libata(E) crc32c_intel(E) serio_raw(E) virtio_pci(E) virtio_ring(E) virtio(E) sg(E) scsi_mod(E) autofs4(E)

[akpm@linux-foundation.org: fix brace layout, per David.  Reduce indentation]
Link: http://lkml.kernel.org/r/20190122154407.18417-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 15:46:23 -08:00
Mikhail Zaslonko 24feb47c5f mm, memory_hotplug: test_pages_in_a_zone do not pass the end of zone
If memory end is not aligned with the sparse memory section boundary,
the mapping of such a section is only partly initialized.  This may lead
to VM_BUG_ON due to uninitialized struct pages access from
test_pages_in_a_zone() function triggered by memory_hotplug sysfs
handlers.

Here are the the panic examples:
 CONFIG_DEBUG_VM_PGFLAGS=y
 kernel parameter mem=2050M
 --------------------------
 page:000003d082008000 is uninitialized and poisoned
 page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
 Call Trace:
   test_pages_in_a_zone+0xde/0x160
   show_valid_zones+0x5c/0x190
   dev_attr_show+0x34/0x70
   sysfs_kf_seq_show+0xc8/0x148
   seq_read+0x204/0x480
   __vfs_read+0x32/0x178
   vfs_read+0x82/0x138
   ksys_read+0x5a/0xb0
   system_call+0xdc/0x2d8
 Last Breaking-Event-Address:
   test_pages_in_a_zone+0xde/0x160
 Kernel panic - not syncing: Fatal exception: panic_on_oops

Fix this by checking whether the pfn to check is within the zone.

[mhocko@suse.com: separated this change from http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com]
Link: http://lkml.kernel.org/r/20190128144506.15603-3-mhocko@kernel.org

[mhocko@suse.com: separated this change from
http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 15:46:23 -08:00
Michal Hocko efad4e475c mm, memory_hotplug: is_mem_section_removable do not pass the end of a zone
Patch series "mm, memory_hotplug: fix uninitialized pages fallouts", v2.

Mikhail Zaslonko has posted fixes for the two bugs quite some time ago
[1].  I have pushed back on those fixes because I believed that it is
much better to plug the problem at the initialization time rather than
play whack-a-mole all over the hotplug code and find all the places
which expect the full memory section to be initialized.

We have ended up with commit 2830bf6f05 ("mm, memory_hotplug:
initialize struct pages for the full memory section") merged and cause a
regression [2][3].  The reason is that there might be memory layouts
when two NUMA nodes share the same memory section so the merged fix is
simply incorrect.

In order to plug this hole we really have to be zone range aware in
those handlers.  I have split up the original patch into two.  One is
unchanged (patch 2) and I took a different approach for `removable'
crash.

[1] http://lkml.kernel.org/r/20181105150401.97287-2-zaslonko@linux.ibm.com
[2] https://bugzilla.redhat.com/show_bug.cgi?id=1666948
[3] http://lkml.kernel.org/r/20190125163938.GA20411@dhcp22.suse.cz

This patch (of 2):

Mikhail has reported the following VM_BUG_ON triggered when reading sysfs
removable state of a memory block:

 page:000003d08300c000 is uninitialized and poisoned
 page dumped because: VM_BUG_ON_PAGE(PagePoisoned(p))
 Call Trace:
   is_mem_section_removable+0xb4/0x190
   show_mem_removable+0x9a/0xd8
   dev_attr_show+0x34/0x70
   sysfs_kf_seq_show+0xc8/0x148
   seq_read+0x204/0x480
   __vfs_read+0x32/0x178
   vfs_read+0x82/0x138
   ksys_read+0x5a/0xb0
   system_call+0xdc/0x2d8
 Last Breaking-Event-Address:
   is_mem_section_removable+0xb4/0x190
 Kernel panic - not syncing: Fatal exception: panic_on_oops

The reason is that the memory block spans the zone boundary and we are
stumbling over an unitialized struct page.  Fix this by enforcing zone
range in is_mem_section_removable so that we never run away from a zone.

Link: http://lkml.kernel.org/r/20190128144506.15603-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Debugged-by: Mikhail Zaslonko <zaslonko@linux.ibm.com>
Tested-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Tested-by: Mikhail Gavrilov <mikhail.v.gavrilov@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 15:46:23 -08:00
Oscar Salvador 1723058eab mm, memory_hotplug: don't bail out in do_migrate_range() prematurely
do_migrate_range() takes a memory range and tries to isolate the pages
to put them into a list.  This list will be later on used in
migrate_pages() to know the pages we need to migrate.

Currently, if we fail to isolate a single page, we put all already
isolated pages back to their LRU and we bail out from the function.
This is quite suboptimal, as this will force us to start over again
because scan_movable_pages will give us the same range.  If there is no
chance that we can isolate that page, we will loop here forever.

Issue debugged in [1] has proved that.  During the debugging of that
issue, it was noticed that if do_migrate_ranges() fails to isolate a
single page, we will just discard the work we have done so far and bail
out, which means that scan_movable_pages() will find again the same set
of pages.

Instead, we can just skip the error, keep isolating as much pages as
possible and then proceed with the call to migrate_pages().

This will allow us to do as much work as possible at once.

[1] https://lkml.org/lkml/2018/12/6/324

Michal said:

: I still think that this doesn't give us a whole picture.  Looping for
: ever is a bug.  Failing the isolation is quite possible and it should
: be a ephemeral condition (e.g.  a race with freeing the page or
: somebody else isolating the page for whatever reason).  And here comes
: the disadvantage of the current implementation.  We simply throw
: everything on the floor just because of a ephemeral condition.  The
: racy page_count check is quite dubious to prevent from that.

Link: http://lkml.kernel.org/r/20181211135312.27034-1-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01 15:46:22 -08:00
Michal Hocko bb8965bd82 mm, memory_hotplug: deobfuscate migration part of offlining
Memory migration might fail during offlining and we keep retrying in that
case.  This is currently obfuscated by goto retry loop.  The code is hard
to follow and as a result it is even suboptimal becase each retry round
scans the full range from start_pfn even though we have successfully
scanned/migrated [start_pfn, pfn] range already.  This is all only because
check_pages_isolated failure has to rescan the full range again.

De-obfuscate the migration retry loop by promoting it to a real for loop.
In fact remove the goto altogether by making it a proper double loop
(yeah, gotos are nasty in this specific case).  In the end we will get a
slightly more optimal code which is better readable.

[akpm@linux-foundation.org: reflow comments to 80 cols]
Link: http://lkml.kernel.org/r/20181211142741.2607-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:50 -08:00
Michal Hocko a85009c377 mm, memory_hotplug: try to migrate full pfn range
Patch series "few memory offlining enhancements".

I have been chasing memory offlining not making progress recently.  On the
way I have noticed few weird decisions in the code.  The migration itself
is restricted without a reasonable justification and the retry loop around
the migration is quite messy.  This is addressed by patch 1 and patch 2.

Patch 3 is targeting on the faultaround code which has been a hot
candidate for the initial issue reported upstream [2] and that I am
debugging internally.  It turned out to be not the main contributor in the
end but I believe we should address it regardless.  See the patch
description for more details.

[1] http://lkml.kernel.org/r/20181120134323.13007-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/20181114070909.GB2653@MiWiFi-R3L-srv

This patch (of 3):

do_migrate_range has been limiting the number of pages to migrate to 256
for some reason which is not documented.  Even if the limit made some
sense back then when it was introduced it doesn't really serve a good
purpose these days.  If the range contains huge pages then we break out of
the loop too early and go through LRU and pcp caches draining and
scan_movable_pages is quite suboptimal.

The only reason to limit the number of pages I can think of is to reduce
the potential time to react on the fatal signal.  But even then the number
of pages is a questionable metric because even a single page migration
might block in a non-killable state (e.g.  __unmap_and_move).

Remove the limit and offline the full requested range (this is one
memblock worth of pages with the current code).  Should we ever get a
report that offlining takes too long to react on fatal signal then we
should rather fix the core migration to use killable waits and bailout
on a signal.

Link: http://lkml.kernel.org/r/20181211142741.2607-1-mhocko@kernel.org
Link: http://lkml.kernel.org/r/20181211142741.2607-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:50 -08:00
Michal Hocko b15c87263a hwpoison, memory_hotplug: allow hwpoisoned pages to be offlined
We have received a bug report that an injected MCE about faulty memory
prevents memory offline to succeed on 4.4 base kernel.  The underlying
reason was that the HWPoison page has an elevated reference count and the
migration keeps failing.  There are two problems with that.  First of all
it is dubious to migrate the poisoned page because we know that accessing
that memory is possible to fail.  Secondly it doesn't make any sense to
migrate a potentially broken content and preserve the memory corruption
over to a new location.

Oscar has found out that 4.4 and the current upstream kernels behave
slightly differently with his simply testcase

===

int main(void)
{
        int ret;
        int i;
        int fd;
        char *array = malloc(4096);
        char *array_locked = malloc(4096);

        fd = open("/tmp/data", O_RDONLY);
        read(fd, array, 4095);

        for (i = 0; i < 4096; i++)
                array_locked[i] = 'd';

        ret = mlock((void *)PAGE_ALIGN((unsigned long)array_locked), sizeof(array_locked));
        if (ret)
                perror("mlock");

        sleep (20);

        ret = madvise((void *)PAGE_ALIGN((unsigned long)array_locked), 4096, MADV_HWPOISON);
        if (ret)
                perror("madvise");

        for (i = 0; i < 4096; i++)
                array_locked[i] = 'd';

        return 0;
}
===

+ offline this memory.

In 4.4 kernels he saw the hwpoisoned page to be returned back to the LRU
list
kernel:  [<ffffffff81019ac9>] dump_trace+0x59/0x340
kernel:  [<ffffffff81019e9a>] show_stack_log_lvl+0xea/0x170
kernel:  [<ffffffff8101ac71>] show_stack+0x21/0x40
kernel:  [<ffffffff8132bb90>] dump_stack+0x5c/0x7c
kernel:  [<ffffffff810815a1>] warn_slowpath_common+0x81/0xb0
kernel:  [<ffffffff811a275c>] __pagevec_lru_add_fn+0x14c/0x160
kernel:  [<ffffffff811a2eed>] pagevec_lru_move_fn+0xad/0x100
kernel:  [<ffffffff811a334c>] __lru_cache_add+0x6c/0xb0
kernel:  [<ffffffff81195236>] add_to_page_cache_lru+0x46/0x70
kernel:  [<ffffffffa02b4373>] extent_readpages+0xc3/0x1a0 [btrfs]
kernel:  [<ffffffff811a16d7>] __do_page_cache_readahead+0x177/0x200
kernel:  [<ffffffff811a18c8>] ondemand_readahead+0x168/0x2a0
kernel:  [<ffffffff8119673f>] generic_file_read_iter+0x41f/0x660
kernel:  [<ffffffff8120e50d>] __vfs_read+0xcd/0x140
kernel:  [<ffffffff8120e9ea>] vfs_read+0x7a/0x120
kernel:  [<ffffffff8121404b>] kernel_read+0x3b/0x50
kernel:  [<ffffffff81215c80>] do_execveat_common.isra.29+0x490/0x6f0
kernel:  [<ffffffff81215f08>] do_execve+0x28/0x30
kernel:  [<ffffffff81095ddb>] call_usermodehelper_exec_async+0xfb/0x130
kernel:  [<ffffffff8161c045>] ret_from_fork+0x55/0x80

And that latter confuses the hotremove path because an LRU page is
attempted to be migrated and that fails due to an elevated reference
count.  It is quite possible that the reuse of the HWPoisoned page is some
kind of fixed race condition but I am not really sure about that.

With the upstream kernel the failure is slightly different.  The page
doesn't seem to have LRU bit set but isolate_movable_page simply fails and
do_migrate_range simply puts all the isolated pages back to LRU and
therefore no progress is made and scan_movable_pages finds same set of
pages over and over again.

Fix both cases by explicitly checking HWPoisoned pages before we even try
to get reference on the page, try to unmap it if it is still mapped.  As
explained by Naoya:

: Hwpoison code never unmapped those for no big reason because
: Ksm pages never dominate memory, so we simply didn't have strong
: motivation to save the pages.

Also put WARN_ON(PageLRU) in case there is a race and we can hit LRU
HWPoison pages which shouldn't happen but I couldn't convince myself about
that.  Naoya has noted the following:

: Theoretically no such gurantee, because try_to_unmap() doesn't have a
: guarantee of success and then memory_failure() returns immediately
: when hwpoison_user_mappings fails.
: Or the following code (comes after hwpoison_user_mappings block) also impli=
: es
: that the target page can still have PageLRU flag.
:
:         /*
:          * Torn down by someone else?
:          */
:         if (PageLRU(p) && !PageSwapCache(p) && p->mapping =3D=3D NULL) {
:                 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
:                 res =3D -EBUSY;
:                 goto out;
:         }
:
: So I think it's OK to keep "if (WARN_ON(PageLRU(page)))" block in
: current version of your patch.

Link: http://lkml.kernel.org/r/20181206120135.14079-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.com>
Debugged-by: Oscar Salvador <osalvador@suse.com>
Tested-by: Oscar Salvador <osalvador@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:50 -08:00
Wei Yang fa004ab736 mm, hotplug: move init_currently_empty_zone() under zone_span_lock protection
During online_pages phase, pgdat->nr_zones will be updated in case this
zone is empty.

Currently the online_pages phase is protected by the global locks
(device_device_hotplug_lock and mem_hotplug_lock), which ensures there is
no contention during the update of nr_zones.

These global locks introduces scalability issues (especially the second
one), which slow down code relying on get_online_mems().  This is also a
preparation for not having to rely on get_online_mems() but instead some
more fine grained locks.

The patch moves init_currently_empty_zone under both zone_span_writelock
and pgdat_resize_lock because both the pgdat state is changed (nr_zones)
and the zone's start_pfn.  Also this patch changes the documentation of
node_size_lock to include the protection of nr_zones.

Link: http://lkml.kernel.org/r/20181203205016.14123-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:49 -08:00
Wei Yang 4e0d2e7ef1 mm, sparse: pass nid instead of pgdat to sparse_add_one_section()
Since the information needed in sparse_add_one_section() is node id to
allocate proper memory, it is not necessary to pass its pgdat.

This patch changes the prototype of sparse_add_one_section() to pass node
id directly.  This is intended to reduce misleading that
sparse_add_one_section() would touch pgdat.

Link: http://lkml.kernel.org/r/20181204085657.20472-2-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:49 -08:00
Oscar Salvador 2c2a5af6fe mm, memory_hotplug: add nid parameter to arch_remove_memory
Patch series "Do not touch pages in hot-remove path", v2.

This patchset aims for two things:

 1) A better definition about offline and hot-remove stage
 2) Solving bugs where we can access non-initialized pages
    during hot-remove operations [2] [3].

This is achieved by moving all page/zone handling to the offline
stage, so we do not need to access pages when hot-removing memory.

[1] https://patchwork.kernel.org/cover/10691415/
[2] https://patchwork.kernel.org/patch/10547445/
[3] https://www.spinics.net/lists/linux-mm/msg161316.html

This patch (of 5):

This is a preparation for the following-up patches.  The idea of passing
the nid is that it will allow us to get rid of the zone parameter
afterwards.

Link: http://lkml.kernel.org/r/20181127162005.15833-2-osalvador@suse.de
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>

Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:49 -08:00
David Hildenbrand f29d8e9c01 mm/memory_hotplug: drop "online" parameter from add_memory_resource()
Userspace should always be in charge of how to online memory and if memory
should be onlined automatically in the kernel.  Let's drop the parameter
to overwrite this - XEN passes memhp_auto_online, just like add_memory(),
so we can directly use that instead internally.

Link: http://lkml.kernel.org/r/20181123123740.27652-1-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:48 -08:00
Michal Hocko 46a3679b81 mm, memory_hotplug: do not clear numa_node association after hot_remove
Per-cpu numa_node provides a default node for each possible cpu.  The
association gets initialized during the boot when the architecture
specific code explores cpu->NUMA affinity.  When the whole NUMA node is
removed though we are clearing this association

try_offline_node
  check_and_unmap_cpu_on_node
    unmap_cpu_on_node
      numa_clear_node
        numa_set_node(cpu, NUMA_NO_NODE)

This means that whoever calls cpu_to_node for a cpu associated with such a
node will get NUMA_NO_NODE.  This is problematic for two reasons.  First
it is fragile because __alloc_pages_node would simply blow up on an
out-of-bound access.  We have encountered this when loading kvm module

  BUG: unable to handle kernel paging request at 00000000000021c0
  IP: __alloc_pages_nodemask+0x93/0xb70
  PGD 800000ffe853e067 PUD 7336bbc067 PMD 0
  Oops: 0000 [#1] SMP
  [...]
  CPU: 88 PID: 1223749 Comm: modprobe Tainted: G        W          4.4.156-94.64-default #1
  RIP: __alloc_pages_nodemask+0x93/0xb70
  RSP: 0018:ffff887354493b40  EFLAGS: 00010202
  RAX: 00000000000021c0 RBX: 0000000000000000 RCX: 0000000000000000
  RDX: 0000000000000000 RSI: 0000000000000002 RDI: 00000000014000c0
  RBP: 00000000014000c0 R08: ffffffffffffffff R09: 0000000000000000
  R10: ffff88fffc89e790 R11: 0000000000014000 R12: 0000000000000101
  R13: ffffffffa0772cd4 R14: ffffffffa0769ac0 R15: 0000000000000000
  FS:  00007fdf2f2f1700(0000) GS:ffff88fffc880000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00000000000021c0 CR3: 00000077205ee000 CR4: 0000000000360670
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
    alloc_vmcs_cpu+0x3d/0x90 [kvm_intel]
    hardware_setup+0x781/0x849 [kvm_intel]
    kvm_arch_hardware_setup+0x28/0x190 [kvm]
    kvm_init+0x7c/0x2d0 [kvm]
    vmx_init+0x1e/0x32c [kvm_intel]
    do_one_initcall+0xca/0x1f0
    do_init_module+0x5a/0x1d7
    load_module+0x1393/0x1c90
    SYSC_finit_module+0x70/0xa0
    entry_SYSCALL_64_fastpath+0x1e/0xb7
  DWARF2 unwinder stuck at entry_SYSCALL_64_fastpath+0x1e/0xb7

on an older kernel but the code is basically the same in the current Linus
tree as well.  alloc_vmcs_cpu could use alloc_pages_nodemask which would
recognize NUMA_NO_NODE and use alloc_pages_node which would translate it
to numa_mem_id but that is wrong as well because it would use a cpu
affinity of the local CPU which might be quite far from the original node.
It is also reasonable to expect that cpu_to_node will provide a sane
value and there might be many more callers like that.

The second problem is that __register_one_node relies on cpu_to_node to
properly associate cpus back to the node when it is onlined.  We do not
want to lose that link as there is no arch independent way to get it from
the early boot time AFAICS.

Drop the whole check_and_unmap_cpu_on_node machinery and keep the
association to fix both issues.  The NODE_DATA(nid) is not deallocated so
it will stay in place and if anybody wants to allocate from that node then
a fallback node will be used.

Thanks to Vlastimil Babka for his live system debugging skills that helped
debugging the issue.

Link: http://lkml.kernel.org/r/20181108100413.966-1-mhocko@kernel.org
Fixes: e13fe8695c ("cpu-hotplug,memory-hotplug: clear cpu_to_node() when offlining the node")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Debugged-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Miroslav Benes <mbenes@suse.cz>
Acked-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:47 -08:00
Michal Hocko d381c54760 mm: only report isolation failures when offlining memory
Heiko has complained that his log is swamped by warnings from
has_unmovable_pages

[   20.536664] page dumped because: has_unmovable_pages
[   20.536792] page:000003d081ff4080 count:1 mapcount:0 mapping:000000008ff88600 index:0x0 compound_mapcount: 0
[   20.536794] flags: 0x3fffe0000010200(slab|head)
[   20.536795] raw: 03fffe0000010200 0000000000000100 0000000000000200 000000008ff88600
[   20.536796] raw: 0000000000000000 0020004100000000 ffffffff00000001 0000000000000000
[   20.536797] page dumped because: has_unmovable_pages
[   20.536814] page:000003d0823b0000 count:1 mapcount:0 mapping:0000000000000000 index:0x0
[   20.536815] flags: 0x7fffe0000000000()
[   20.536817] raw: 07fffe0000000000 0000000000000100 0000000000000200 0000000000000000
[   20.536818] raw: 0000000000000000 0000000000000000 ffffffff00000001 0000000000000000

which are not triggered by the memory hotplug but rather CMA allocator.
The original idea behind dumping the page state for all call paths was
that these messages will be helpful debugging failures.  From the above it
seems that this is not the case for the CMA path because we are lacking
much more context.  E.g the second reported page might be a CMA allocated
page.  It is still interesting to see a slab page in the CMA area but it
is hard to tell whether this is bug from the above output alone.

Address this issue by dumping the page state only on request.  Both
start_isolate_page_range and has_unmovable_pages already have an argument
to ignore hwpoison pages so make this argument more generic and turn it
into flags and allow callers to combine non-default modes into a mask.
While we are at it, has_unmovable_pages call from
is_pageblock_removable_nolock (sysfs removable file) is questionable to
report the failure so drop it from there as well.

Link: http://lkml.kernel.org/r/20181218092802.31429-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Michal Hocko 2932c8b050 mm, memory_hotplug: be more verbose for memory offline failures
There is only very limited information printed when the memory offlining
fails:

[ 1984.506184] rac1 kernel: memory offlining [mem 0x82600000000-0x8267fffffff] failed due to signal backoff

This tells us that the failure is triggered by the userspace intervention
but it doesn't tell us much more about the underlying reason.  It might be
that the page migration failes repeatedly and the userspace timeout
expires and send a signal or it might be some of the earlier steps
(isolation, memory notifier) takes too long.

If the migration failes then it would be really helpful to see which page
that and its state.  The same applies to the isolation phase.  If we fail
to isolate a page from the allocator then knowing the state of the page
would be helpful as well.

Dump the page state that fails to get isolated or migrated.  This will
tell us more about the failure and what to focus on during debugging.

[akpm@linux-foundation.org: add missing printk arg]
[mhocko@suse.com: tweak dump_page() `reason' text]
  Link: http://lkml.kernel.org/r/20181116083020.20260-6-mhocko@kernel.org
Link: http://lkml.kernel.org/r/20181107101830.17405-6-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Michal Hocko 7960509329 mm, memory_hotplug: print reason for the offlining failure
The memory offlining failure reporting is inconsistent and insufficient.
Some error paths simply do not report the failure to the log at all.  When
we do report there are no details about the reason of the failure and
there are several of them which makes memory offlining failures hard to
debug.

Make sure that the
	memory offlining [mem %#010llx-%#010llx] failed
message is printed for all failures and also provide a short textual
reason for the failure e.g.

[ 1984.506184] rac1 kernel: memory offlining [mem 0x82600000000-0x8267fffffff] failed due to signal backoff

this tells us that the offlining has failed because of a signal pending
aka user intervention.

[akpm@linux-foundation.org: tweak messages a bit]
Link: http://lkml.kernel.org/r/20181107101830.17405-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Michal Hocko 6cc2baf600 mm, memory_hotplug: drop pointless block alignment checks from __offline_pages
This function is never called from a context which would provide
misaligned pfn range so drop the pointless check.

Link: http://lkml.kernel.org/r/20181107101830.17405-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Oscar Salvador <OSalvador@suse.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:46 -08:00
Michal Hocko dd33ad7b25 memory_hotplug: cond_resched in __remove_pages
We have received a bug report that unbinding a large pmem (>1TB) can
result in a soft lockup:

  NMI watchdog: BUG: soft lockup - CPU#9 stuck for 23s! [ndctl:4365]
  [...]
  Supported: Yes
  CPU: 9 PID: 4365 Comm: ndctl Not tainted 4.12.14-94.40-default #1 SLE12-SP4
  Hardware name: Intel Corporation S2600WFD/S2600WFD, BIOS SE5C620.86B.01.00.0833.051120182255 05/11/2018
  task: ffff9cce7d4410c0 task.stack: ffffbe9eb1bc4000
  RIP: 0010:__put_page+0x62/0x80
  Call Trace:
   devm_memremap_pages_release+0x152/0x260
   release_nodes+0x18d/0x1d0
   device_release_driver_internal+0x160/0x210
   unbind_store+0xb3/0xe0
   kernfs_fop_write+0x102/0x180
   __vfs_write+0x26/0x150
   vfs_write+0xad/0x1a0
   SyS_write+0x42/0x90
   do_syscall_64+0x74/0x150
   entry_SYSCALL_64_after_hwframe+0x3d/0xa2
  RIP: 0033:0x7fd13166b3d0

It has been reported on an older (4.12) kernel but the current upstream
code doesn't cond_resched in the hot remove code at all and the given
range to remove might be really large.  Fix the issue by calling
cond_resched once per memory section.

Link: http://lkml.kernel.org/r/20181031125840.23982-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Dan Williams <dan.j.williams@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-03 10:09:38 -07:00
David Hildenbrand 381eab4a6e mm/memory_hotplug: fix online/offline_pages called w.o. mem_hotplug_lock
There seem to be some problems as result of 30467e0b3b ("mm, hotplug:
fix concurrent memory hot-add deadlock"), which tried to fix a possible
lock inversion reported and discussed in [1] due to the two locks
	a) device_lock()
	b) mem_hotplug_lock

While add_memory() first takes b), followed by a) during
bus_probe_device(), onlining of memory from user space first took a),
followed by b), exposing a possible deadlock.

In [1], and it was decided to not make use of device_hotplug_lock, but
rather to enforce a locking order.

The problems I spotted related to this:

1. Memory block device attributes: While .state first calls
   mem_hotplug_begin() and the calls device_online() - which takes
   device_lock() - .online does no longer call mem_hotplug_begin(), so
   effectively calls online_pages() without mem_hotplug_lock.

2. device_online() should be called under device_hotplug_lock, however
   onlining memory during add_memory() does not take care of that.

In addition, I think there is also something wrong about the locking in

3. arch/powerpc/platforms/powernv/memtrace.c calls offline_pages()
   without locks. This was introduced after 30467e0b3b. And skimming over
   the code, I assume it could need some more care in regards to locking
   (e.g. device_online() called without device_hotplug_lock. This will
   be addressed in the following patches.

Now that we hold the device_hotplug_lock when
- adding memory (e.g. via add_memory()/add_memory_resource())
- removing memory (e.g. via remove_memory())
- device_online()/device_offline()

We can move mem_hotplug_lock usage back into
online_pages()/offline_pages().

Why is mem_hotplug_lock still needed? Essentially to make
get_online_mems()/put_online_mems() be very fast (relying on
device_hotplug_lock would be very slow), and to serialize against
addition of memory that does not create memory block devices (hmm).

[1] http://driverdev.linuxdriverproject.org/pipermail/ driverdev-devel/
    2015-February/065324.html

This patch is partly based on a patch by Vitaly Kuznetsov.

Link: http://lkml.kernel.org/r/20180925091457.28651-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Rashmica Gupta <rashmica.g@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:17 -07:00
David Hildenbrand 8df1d0e4a2 mm/memory_hotplug: make add_memory() take the device_hotplug_lock
add_memory() currently does not take the device_hotplug_lock, however
is aleady called under the lock from
	arch/powerpc/platforms/pseries/hotplug-memory.c
	drivers/acpi/acpi_memhotplug.c
to synchronize against CPU hot-remove and similar.

In general, we should hold the device_hotplug_lock when adding memory to
synchronize against online/offline request (e.g.  from user space) - which
already resulted in lock inversions due to device_lock() and
mem_hotplug_lock - see 30467e0b3b ("mm, hotplug: fix concurrent memory
hot-add deadlock").  add_memory()/add_memory_resource() will create memory
block devices, so this really feels like the right thing to do.

Holding the device_hotplug_lock makes sure that a memory block device
can really only be accessed (e.g. via .online/.state) from user space,
once the memory has been fully added to the system.

The lock is not held yet in
	drivers/xen/balloon.c
	arch/powerpc/platforms/powernv/memtrace.c
	drivers/s390/char/sclp_cmd.c
	drivers/hv/hv_balloon.c
So, let's either use the locked variants or take the lock.

Don't export add_memory_resource(), as it once was exported to be used by
XEN, which is never built as a module.  If somebody requires it, we also
have to export a locked variant (as device_hotplug_lock is never
exported).

Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:17 -07:00
David Hildenbrand d15e59260f mm/memory_hotplug: make remove_memory() take the device_hotplug_lock
Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3.

Reading through the code and studying how mem_hotplug_lock is to be used,
I noticed that there are two places where we can end up calling
device_online()/device_offline() - online_pages()/offline_pages() without
the mem_hotplug_lock.  And there are other places where we call
device_online()/device_offline() without the device_hotplug_lock.

While e.g.
	echo "online" > /sys/devices/system/memory/memory9/state
is fine, e.g.
	echo 1 > /sys/devices/system/memory/memory9/online
Will not take the mem_hotplug_lock. However the device_lock() and
device_hotplug_lock.

E.g.  via memory_probe_store(), we can end up calling
add_memory()->online_pages() without the device_hotplug_lock.  So we can
have concurrent callers in online_pages().  We e.g.  touch in
online_pages() basically unprotected zone->present_pages then.

Looks like there is a longer history to that (see Patch #2 for details),
and fixing it to work the way it was intended is not really possible.  We
would e.g.  have to take the mem_hotplug_lock in device/base/core.c, which
sounds wrong.

Summary: We had a lock inversion on mem_hotplug_lock and device_lock().
More details can be found in patch 3 and patch 6.

I propose the general rules (documentation added in patch 6):

1. add_memory/add_memory_resource() must only be called with
   device_hotplug_lock.
2. remove_memory() must only be called with device_hotplug_lock. This is
   already documented and holds for all callers.
3. device_online()/device_offline() must only be called with
   device_hotplug_lock. This is already documented and true for now in core
   code. Other callers (related to memory hotplug) have to be fixed up.
4. mem_hotplug_lock is taken inside of add_memory/remove_memory/
   online_pages/offline_pages.

To me, this looks way cleaner than what we have right now (and easier to
verify).  And looking at the documentation of remove_memory, using
lock_device_hotplug also for add_memory() feels natural.

This patch (of 6):

remove_memory() is exported right now but requires the
device_hotplug_lock, which is not exported.  So let's provide a variant
that takes the lock and only export that one.

The lock is already held in
	arch/powerpc/platforms/pseries/hotplug-memory.c
	drivers/acpi/acpi_memhotplug.c
	arch/powerpc/platforms/powernv/memtrace.c

Apart from that, there are not other users in the tree.

Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Len Brown <lenb@kernel.org>
Cc: Rashmica Gupta <rashmica.g@gmail.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com>
Cc: John Allen <jallen@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:17 -07:00
Mike Rapoport 57c8a661d9 mm: remove include/linux/bootmem.h
Move remaining definitions and declarations from include/linux/bootmem.h
into include/linux/memblock.h and remove the redundant header.

The includes were replaced with the semantic patch below and then
semi-automated removal of duplicated '#include <linux/memblock.h>

@@
@@
- #include <linux/bootmem.h>
+ #include <linux/memblock.h>

[sfr@canb.auug.org.au: dma-direct: fix up for the removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181002185342.133d1680@canb.auug.org.au
[sfr@canb.auug.org.au: powerpc: fix up for removal of linux/bootmem.h]
  Link: http://lkml.kernel.org/r/20181005161406.73ef8727@canb.auug.org.au
[sfr@canb.auug.org.au: x86/kaslr, ACPI/NUMA: fix for linux/bootmem.h removal]
  Link: http://lkml.kernel.org/r/20181008190341.5e396491@canb.auug.org.au
Link: http://lkml.kernel.org/r/1536927045-23536-30-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-31 08:54:16 -07:00
Oscar Salvador 86b27beae5 mm/memory_hotplug.c: clean up node_states_check_changes_offline()
This patch, as the previous one, gets rid of the wrong if statements.
While at it, I realized that the comments are sometimes very confusing,
to say the least, and wrong.
For example:

___
zone_last = ZONE_MOVABLE;

/*
 * check whether node_states[N_HIGH_MEMORY] will be changed
 * If we try to offline the last present @nr_pages from the node,
 * we can determind we will need to clear the node from
 * node_states[N_HIGH_MEMORY].
 */

for (; zt <= zone_last; zt++)
        present_pages += pgdat->node_zones[zt].present_pages;
if (nr_pages >= present_pages)
        arg->status_change_nid = zone_to_nid(zone);
else
        arg->status_change_nid = -1;
___

In case the node gets empry, it must be removed from N_MEMORY.  We already
check N_HIGH_MEMORY a bit above within the CONFIG_HIGHMEM ifdef code.  Not
to say that status_change_nid is for N_MEMORY, and not for N_HIGH_MEMORY.

So I re-wrote some of the comments to what I think is better.

[osalvador@suse.de: address feedback from Pavel]
  Link: http://lkml.kernel.org/r/20180921132634.10103-5-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180919100819.25518-6-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Oscar Salvador 8efe33f40f mm/memory_hotplug.c: simplify node_states_check_changes_online
While looking at node_states_check_changes_online, I stumbled upon some
confusing things.

Right after entering the function, we find this:

if (N_MEMORY == N_NORMAL_MEMORY)
        zone_last = ZONE_MOVABLE;

This is wrong.
N_MEMORY cannot really be equal to N_NORMAL_MEMORY.
My guess is that this wanted to be something like:

if (N_NORMAL_MEMORY == N_HIGH_MEMORY)

to check if we have CONFIG_HIGHMEM.

Later on, in the CONFIG_HIGHMEM block, we have:

if (N_MEMORY == N_HIGH_MEMORY)
        zone_last = ZONE_MOVABLE;

Again, this is wrong, and will never be evaluated to true.

Besides removing these wrong if statements, I simplified the function a
bit.

[osalvador@suse.de: address feedback from Pavel]
  Link: http://lkml.kernel.org/r/20180921132634.10103-4-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180919100819.25518-5-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <yasu.isimatu@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Oscar Salvador cf01f6f5e3 mm/memory_hotplug.c: tidy up node_states_clear_node()
node_states_clear has the following if statements:

if ((N_MEMORY != N_NORMAL_MEMORY) &&
    (arg->status_change_nid_high >= 0))
        ...

if ((N_MEMORY != N_HIGH_MEMORY) &&
    (arg->status_change_nid >= 0))
        ...

N_MEMORY can never be equal to neither N_NORMAL_MEMORY nor
N_HIGH_MEMORY.

Similar problem was found in [1].
Since this is wrong, let us get rid of it.

[1] https://patchwork.kernel.org/patch/10579155/

Link: http://lkml.kernel.org/r/20180919100819.25518-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <yasu.isimatu@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Oscar Salvador 83d83612d7 mm/memory_hotplug.c: spare unnecessary calls to node_set_state
In node_states_check_changes_online, we check if the node will have to be
set for any of the N_*_MEMORY states after the pages have been onlined.

Later on, we perform the activation in node_states_set_node.  Currently,
in node_states_set_node we set the node to N_MEMORY unconditionally.

This means that we call node_set_state for N_MEMORY every time pages go
online, but we only need to do it if the node has not yet been set for
N_MEMORY.

Fix this by checking status_change_nid.

Link: http://lkml.kernel.org/r/20180919100819.25518-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: <yasu.isimatu@gmail.com>
Cc: Mathieu Malaterre <malat@debian.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Aneesh Kumar K.V 464c7ffbcb mm/hugetlb: filter out hugetlb pages if HUGEPAGE migration is not supported.
When scanning for movable pages, filter out Hugetlb pages if hugepage
migration is not supported.  Without this we hit infinte loop in
__offline_pages() where we do

	pfn = scan_movable_pages(start_pfn, end_pfn);
	if (pfn) { /* We have movable pages */
		ret = do_migrate_range(pfn, end_pfn);
		goto repeat;
	}

Fix this by checking hugepage_migration_supported both in
has_unmovable_pages which is the primary backoff mechanism for page
offlining and for consistency reasons also into scan_movable_pages
because it doesn't make any sense to return a pfn to non-migrateable
huge page.

This issue was revealed by, but not caused by 72b39cfc4d ("mm,
memory_hotplug: do not fail offlining too early").

Link: http://lkml.kernel.org/r/20180824063314.21981-1-aneesh.kumar@linux.ibm.com
Fixes: 72b39cfc4d ("mm, memory_hotplug: do not fail offlining too early")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reported-by: Haren Myneni <haren@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-09-04 16:45:02 -07:00
Oscar Salvador 03e85f9d5f mm/page_alloc: Introduce free_area_init_core_hotplug
Currently, whenever a new node is created/re-used from the memhotplug
path, we call free_area_init_node()->free_area_init_core().  But there is
some code that we do not really need to run when we are coming from such
path.

free_area_init_core() performs the following actions:

1) Initializes pgdat internals, such as spinlock, waitqueues and more.
2) Account # nr_all_pages and # nr_kernel_pages. These values are used later on
   when creating hash tables.
3) Account number of managed_pages per zone, substracting dma_reserved and
   memmap pages.
4) Initializes some fields of the zone structure data
5) Calls init_currently_empty_zone to initialize all the freelists
6) Calls memmap_init to initialize all pages belonging to certain zone

When called from memhotplug path, free_area_init_core() only performs
actions #1 and #4.

Action #2 is pointless as the zones do not have any pages since either the
node was freed, or we are re-using it, eitherway all zones belonging to
this node should have 0 pages.  For the same reason, action #3 results
always in manages_pages being 0.

Action #5 and #6 are performed later on when onlining the pages:
 online_pages()->move_pfn_range_to_zone()->init_currently_empty_zone()
 online_pages()->move_pfn_range_to_zone()->memmap_init_zone()

This patch does two things:

First, moves the node/zone initializtion to their own function, so it
allows us to create a small version of free_area_init_core, where we only
perform:

1) Initialization of pgdat internals, such as spinlock, waitqueues and more
4) Initialization of some fields of the zone structure data

These two functions are: pgdat_init_internals() and zone_init_internals().

The second thing this patch does, is to introduce
free_area_init_core_hotplug(), the memhotplug version of
free_area_init_core():

Currently, we call free_area_init_node() from the memhotplug path.  In
there, we set some pgdat's fields, and call calculate_node_totalpages().
calculate_node_totalpages() calculates the # of pages the node has.

Since the node is either new, or we are re-using it, the zones belonging
to this node should not have any pages, so there is no point to calculate
this now.

Actually, we re-set these values to 0 later on with the calls to:

reset_node_managed_pages()
reset_node_present_pages()

The # of pages per node and the # of pages per zone will be calculated when
onlining the pages:

online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_zone_range()
online_pages()->move_pfn_range()->move_pfn_range_to_zone()->resize_pgdat_range()

Also, since free_area_init_core/free_area_init_node will now only get called during early init, let us replace
__paginginit with __init, so their code gets freed up.

[osalvador@techadventures.net: fix section usage]
  Link: http://lkml.kernel.org/r/20180731101752.GA473@techadventures.net
[osalvador@suse.de: v6]
  Link: http://lkml.kernel.org/r/20180801122348.21588-6-osalvador@techadventures.net
Link: http://lkml.kernel.org/r/20180730101757.28058-5-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:45 -07:00
Oscar Salvador 4fbce63391 mm/memory_hotplug.c: make register_mem_sect_under_node() a callback of walk_memory_range()
link_mem_sections() and walk_memory_range() share most of the code, so
we can use convert link_mem_sections() into a dummy function that calls
walk_memory_range() with a callback to register_mem_sect_under_node().

This patch converts register_mem_sect_under_node() in order to match a
walk_memory_range's callback, getting rid of the check_nid argument and
checking instead if the system is still boothing, since we only have to
check for the nid if the system is in such state.

Link: http://lkml.kernel.org/r/20180622111839.10071-4-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Suggested-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Oscar Salvador d5b6f6a361 mm/memory_hotplug.c: call register_mem_sect_under_node()
When hotplugging memory, it is possible that two calls are being made to
register_mem_sect_under_node().

One comes from __add_section()->hotplug_memory_register() and the other
from add_memory_resource()->link_mem_sections() if we had to register a
new node.

In case we had to register a new node, hotplug_memory_register() will
only handle/allocate the memory_block's since
register_mem_sect_under_node() will return right away because the node
it is not online yet.

I think it is better if we leave hotplug_memory_register() to
handle/allocate only memory_block's and make link_mem_sections() to call
register_mem_sect_under_node().

So this patch removes the call to register_mem_sect_under_node() from
hotplug_memory_register(), and moves the call to link_mem_sections() out
of the condition, so it will always be called.  In this way we only have
one place where the memory sections are registered.

Link: http://lkml.kernel.org/r/20180622111839.10071-3-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Oscar Salvador b9ff036082 mm/memory_hotplug.c: make add_memory_resource use __try_online_node
This is a small cleanup for the memhotplug code.  A lot more could be
done, but it is better to start somewhere.  I tried to unify/remove
duplicated code.

The following is what this patchset does:

1) add_memory_resource() has code to allocate a node in case it was
   offline.  Since try_online_node has some code for that as well, I just
   made add_memory_resource() to use that so we can remove duplicated
   code..  This is better explained in patch 1/4.

2) register_mem_sect_under_node() will be called only from
   link_mem_sections()

3) Make register_mem_sect_under_node() a callback of
   walk_memory_range()

4) Drop unnecessary checks from register_mem_sect_under_node()

I have done some tests and I could not see anything broken because of
this patchset.

add_memory_resource() contains code to allocate a new node in case it is
necessary.  Since try_online_node() also has some code for this purpose,
let us make use of that and remove duplicate code.

This introduces __try_online_node(), which is called by
add_memory_resource() and try_online_node().  __try_online_node() has
two new parameters, start_addr of the node, and if the node should be
onlined and registered right away.  This is always wanted if we are
calling from do_cpu_up(), but not when we are calling from memhotplug
code.  Nothing changes from the point of view of the users of
try_online_node(), since try_online_node passes start_addr=0 and
online_node=true to __try_online_node().

Link: http://lkml.kernel.org/r/20180622111839.10071-2-osalvador@techadventures.net
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:29 -07:00
Mathieu Malaterre fb52bbaee5 mm: move is_pageblock_removable_nolock() to mm/memory_hotplug.c
is_pageblock_removable_nolock() is not used outside of
mm/memory_hotplug.c.  Move it next to unique caller
is_mem_section_removable() and make it static.

Remove prototype in <linux/memory_hotplug.h> to silence gcc warning (W=1):

  mm/page_alloc.c:7704:6: warning: no previous prototype for `is_pageblock_removable_nolock' [-Wmissing-prototypes]

Link: http://lkml.kernel.org/r/20180509190001.24789-1-malat@debian.org
Signed-off-by: Mathieu Malaterre <malat@debian.org>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Jonathan Cameron a21558618c mm/memory_hotplug: fix leftover use of struct page during hotplug
The case of a new numa node got missed in avoiding using the node info
from page_struct during hotplug.  In this path we have a call to
register_mem_sect_under_node (which allows us to specify it is hotplug
so don't change the node), via link_mem_sections which unfortunately
does not.

Fix is to pass check_nid through link_mem_sections as well and disable
it in the new numa node path.

Note the bug only 'sometimes' manifests depending on what happens to be
in the struct page structures - there are lots of them and it only needs
to match one of them.

The result of the bug is that (with a new memory only node) we never
successfully call register_mem_sect_under_node so don't get the memory
associated with the node in sysfs and meminfo for the node doesn't
report it.

It came up whilst testing some arm64 hotplug patches, but appears to be
universal.  Whilst I'm triggering it by removing then reinserting memory
to a node with no other elements (thus making the node disappear then
appear again), it appears it would happen on hotplugging memory where
there was none before and it doesn't seem to be related the arm64
patches.

These patches call __add_pages (where most of the issue was fixed by
Pavel's patch).  If there is a node at the time of the __add_pages call
then all is well as it calls register_mem_sect_under_node from there
with check_nid set to false.  Without a node that function returns
having not done the sysfs related stuff as there is no node to use.
This is expected but it is the resulting path that fails...

Exact path to the problem is as follows:

 mm/memory_hotplug.c: add_memory_resource()

   The node is not online so we enter the 'if (new_node)' twice, on the
   second such block there is a call to link_mem_sections which calls
   into

  drivers/node.c: link_mem_sections() which calls

  drivers/node.c: register_mem_sect_under_node() which calls
     get_nid_for_pfn and keeps trying until the output of that matches
     the expected node (passed all the way down from
     add_memory_resource)

It is effectively the same fix as the one referred to in the fixes tag
just in the code path for a new node where the comments point out we
have to rerun the link creation because it will have failed in
register_new_memory (as there was no node at the time).  (actually that
comment is wrong now as we don't have register_new_memory any more it
got renamed to hotplug_memory_register in Pavel's patch).

Link: http://lkml.kernel.org/r/20180504085311.1240-1-Jonathan.Cameron@huawei.com
Fixes: fc44f7f923 ("mm/memory_hotplug: don't read nid from struct page during hotplug")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-25 18:12:11 -07:00