-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlxLdgsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpoVGD/4sGYQqfiXogQIJYbPH2RRPrJuLIIITjiAv
lPXX1wx/tvz/ktwKJE2OiWTES0JjdH1HlC+7/0L/fLb8DXiKBmFuUHlwhureoL9Y
o//BIQKuaje35kyHITTy2UAJOOqnNtJTaAP2AfkL+eOcj/V/G5rJIfLGs9QtuAR7
sRJ+uhg1EbW/+uO0bULDmG6WUjxFu8mqcw3i6g0VVLVOnXB2EKcZTl3KPrdAXrUp
XtmouERga6OfAUSJyZmTSV136mL+opRB2WFFVeIzjQfLmyItDGbSX/YPS8oJ2pow
v7630F+CMrd4aKpqqtnAhfWpGqd0Xw7cYfZ9MKTJmZPmGzf9a1fQFpmgZosD4Dh3
7MrhboU4TUt9PdXESA7CmE7LkTp99ghfj5/ysKrSV5h3HsH2RbLxJk91Rx3vmAWD
u1xWRYL+GYLH6ZwOLvM1iqBrrLN3mUyrx98SaMgoXuqNzmQmgz9LPeA0Gt09FJbo
uj+ebg4dRwuThjni4xQhl3zL2RQy7nlTDFDdKOz/XoiYk2NUVksss+sxGjNarHj0
b5pCD4HOp57OreGExaOARpBRah5HSNdQtBRsIOnbyEq6f/e1LsIY23Z9nNF0deGO
sZzgsbnsn+zg8bC6T/Gk4UY6XdCcgaS3SL04SVKAE3lO6A4C/Awo8DgD9Bl1zpC1
HQlNkl5fBg==
=iucY
-----END PGP SIGNATURE-----
Merge tag 'for-linus-20190125' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"A collection of fixes for this release. This contains:
- Silence sparse rightfully complaining about non-static wbt
functions (Bart)
- Fixes for the zoned comments/ioctl documentation (Damien)
- direct-io fix that's been lingering for a while (Ernesto)
- cgroup writeback fix (Tejun)
- Set of NVMe patches for nvme-rdma/tcp (Sagi, Hannes, Raju)
- Block recursion tracking fix (Ming)
- Fix debugfs command flag naming for a few flags (Jianchao)"
* tag 'for-linus-20190125' of git://git.kernel.dk/linux-block:
block: Fix comment typo
uapi: fix ioctl documentation
blk-wbt: Declare local functions static
blk-mq: fix the cmd_flag_name array
nvme-multipath: drop optimization for static ANA group IDs
nvmet-rdma: fix null dereference under heavy load
nvme-rdma: rework queue maps handling
nvme-tcp: fix timeout handler
nvme-rdma: fix timeout handler
writeback: synchronize sync(2) against cgroup writeback membership switches
block: cover another queue enter recursion via BIO_QUEUE_ENTERED
direct-io: allow direct writes to empty inodes
This reverts commit 574823bfab.
It turns out that my hope that we could just remove the code that
exposes the cache residency status from mincore() was too optimistic.
There are various random users that want it, and one example would be
the Netflix database cluster maintenance. To quote Josh Snyder:
"For Netflix, losing accurate information from the mincore syscall
would lengthen database cluster maintenance operations from days to
months. We rely on cross-process mincore to migrate the contents of a
page cache from machine to machine, and across reboots.
To do this, I wrote and maintain happycache [1], a page cache
dumper/loader tool. It is quite similar in architecture to pgfincore,
except that it is agnostic to workload. The gist of happycache's
operation is "produce a dump of residence status for each page, do
some operation, then reload exactly the same pages which were present
before." happycache is entirely dependent on accurate reporting of the
in-core status of file-backed pages, as accessed by another process.
We primarily use happycache with Cassandra, which (like Postgres +
pgfincore) relies heavily on OS page cache to reduce disk accesses.
Because our workloads never experience a cold page cache, we are able
to provision hardware for a peak utilization level that is far lower
than the hypothetical "every query is a cache miss" peak.
A database warmed by happycache can be ready for service in seconds
(bounded only by the performance of the drives and the I/O subsystem),
with no period of in-service degradation. By contrast, putting a
database in service without a page cache entails a potentially
unbounded period of degradation (at Netflix, the time to populate a
single node's cache via natural cache misses varies by workload from
hours to weeks). If a single node upgrade were to take weeks, then
upgrading an entire cluster would take months. Since we want to apply
security upgrades (and other things) on a somewhat tighter schedule,
we would have to develop more complex solutions to provide the same
functionality already provided by mincore.
At the bottom line, happycache is designed to benignly exploit the
same information leak documented in the paper [2]. I think it makes
perfect sense to remove cross-process mincore functionality from
unprivileged users, but not to remove it entirely"
We do have an alternate approach that limits the cache residency
reporting only to processes that have write permissions to the file, so
we can fix the original information leak issue that way. It involves
_adding_ code rather than removing it, which is sad, but hey, at least
we haven't found any users that would find the restrictions
unacceptable.
So revert the optimistic first approach to make room for that alternate
fix instead.
Reported-by: Josh Snyder <joshs@netflix.com>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Dominique Martinet <asmadeus@codewreck.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Cyril Hrubis <chrubis@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Daniel Gruss <daniel@gruss.cc>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
sync_inodes_sb() can race against cgwb (cgroup writeback) membership
switches and fail to writeback some inodes. For example, if an inode
switches to another wb while sync_inodes_sb() is in progress, the new
wb might not be visible to bdi_split_work_to_wbs() at all or the inode
might jump from a wb which hasn't issued writebacks yet to one which
already has.
This patch adds backing_dev_info->wb_switch_rwsem to synchronize cgwb
switch path against sync_inodes_sb() so that sync_inodes_sb() is
guaranteed to see all the target wbs and inodes can't jump wbs to
escape syncing.
v2: Fixed misplaced rwsem init. Spotted by Jiufei.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jiufei Xue <xuejiufei@gmail.com>
Link: http://lkml.kernel.org/r/dc694ae2-f07f-61e1-7097-7c8411cee12d@gmail.com
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The conversion to use a structure for mmu_notifier_invalidate_range_*()
unintentionally changed the usage in try_to_unmap_one() to init the
'struct mmu_notifier_range' with vma->vm_start instead of @address,
i.e. it invalidates the wrong address range. Revert to the correct
address range.
Manifests as KVM use-after-free WARNINGs and subsequent "BUG: Bad page
state in process X" errors when reclaiming from a KVM guest due to KVM
removing the wrong pages from its own mappings.
Reported-by: leozinho29_eu@hotmail.com
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-and-tested-by: Adam Borowski <kilobyte@angband.pl>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Pankaj gupta <pagupta@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Fixes: ac46d4f3c4 ("mm/mmu_notifier: use structure for invalidate_range_start/end calls v2")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
syzbot reported the following regression in the latest merge window and
it was confirmed by Qian Cai that a similar bug was visible from a
different context.
======================================================
WARNING: possible circular locking dependency detected
4.20.0+ #297 Not tainted
------------------------------------------------------
syz-executor0/8529 is trying to acquire lock:
000000005e7fb829 (&pgdat->kswapd_wait){....}, at:
__wake_up_common_lock+0x19e/0x330 kernel/sched/wait.c:120
but task is already holding lock:
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: spin_lock
include/linux/spinlock.h:329 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_bulk
mm/page_alloc.c:2548 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: __rmqueue_pcplist
mm/page_alloc.c:3021 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue_pcplist
mm/page_alloc.c:3050 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at: rmqueue
mm/page_alloc.c:3072 [inline]
000000009bb7bae0 (&(&zone->lock)->rlock){-.-.}, at:
get_page_from_freelist+0x1bae/0x52a0 mm/page_alloc.c:3491
It appears to be a false positive in that the only way the lock ordering
should be inverted is if kswapd is waking itself and the wakeup
allocates debugging objects which should already be allocated if it's
kswapd doing the waking. Nevertheless, the possibility exists and so
it's best to avoid the problem.
This patch flags a zone as needing a kswapd using the, surprisingly,
unused zone flag field. The flag is read without the lock held to do
the wakeup. It's possible that the flag setting context is not the same
as the flag clearing context or for small races to occur. However, each
race possibility is harmless and there is no visible degredation in
fragmentation treatment.
While zone->flag could have continued to be unused, there is potential
for moving some existing fields into the flags field instead.
Particularly read-mostly ones like zone->initialized and
zone->contiguous.
Link: http://lkml.kernel.org/r/20190103225712.GJ31517@techsingularity.net
Fixes: 1c30844d2d ("mm: reclaim small amounts of memory when an external fragmentation event occurs")
Reported-by: syzbot+93d94a001cfbce9e60e1@syzkaller.appspotmail.com
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Qian Cai <cai@lca.pw>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts b43a999005
The reverted commit caused issues with migration and poisoning of anon
huge pages. The LTP move_pages12 test will cause an "unable to handle
kernel NULL pointer" BUG would occur with stack similar to:
RIP: 0010:down_write+0x1b/0x40
Call Trace:
migrate_pages+0x81f/0xb90
__ia32_compat_sys_migrate_pages+0x190/0x190
do_move_pages_to_node.isra.53.part.54+0x2a/0x50
kernel_move_pages+0x566/0x7b0
__x64_sys_move_pages+0x24/0x30
do_syscall_64+0x5b/0x180
entry_SYSCALL_64_after_hwframe+0x44/0xa9
The purpose of the reverted patch was to fix some long existing races
with huge pmd sharing. It used i_mmap_rwsem for this purpose with the
idea that this could also be used to address truncate/page fault races
with another patch. Further analysis has determined that i_mmap_rwsem
can not be used to address all these hugetlbfs synchronization issues.
Therefore, revert this patch while working an another approach to the
underlying issues.
Link: http://lkml.kernel.org/r/20190103235452.29335-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts c86aa7bbfd
The reverted commit caused ABBA deadlocks when file migration raced with
file eviction for specific hugetlbfs files. This was discovered with a
modified version of the LTP move_pages12 test.
The purpose of the reverted patch was to close a long existing race
between hugetlbfs file truncation and page faults. After more analysis
of the patch and impacted code, it was determined that i_mmap_rwsem can
not be used for all required synchronization. Therefore, revert this
patch while working an another approach to the underlying issue.
Link: http://lkml.kernel.org/r/20190103235452.29335-1-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
LTP proc01 testcase has been observed to rarely trigger crashes
on arm64:
page_mapped+0x78/0xb4
stable_page_flags+0x27c/0x338
kpageflags_read+0xfc/0x164
proc_reg_read+0x7c/0xb8
__vfs_read+0x58/0x178
vfs_read+0x90/0x14c
SyS_read+0x60/0xc0
The issue is that page_mapped() assumes that if compound page is not
huge, then it must be THP. But if this is 'normal' compound page
(COMPOUND_PAGE_DTOR), then following loop can keep running (for
HPAGE_PMD_NR iterations) until it tries to read from memory that isn't
mapped and triggers a panic:
for (i = 0; i < hpage_nr_pages(page); i++) {
if (atomic_read(&page[i]._mapcount) >= 0)
return true;
}
I could replicate this on x86 (v4.20-rc4-98-g60b548237fed) only
with a custom kernel module [1] which:
- allocates compound page (PAGEC) of order 1
- allocates 2 normal pages (COPY), which are initialized to 0xff (to
satisfy _mapcount >= 0)
- 2 PAGEC page structs are copied to address of first COPY page
- second page of COPY is marked as not present
- call to page_mapped(COPY) now triggers fault on access to 2nd COPY
page at offset 0x30 (_mapcount)
[1] https://github.com/jstancek/reproducers/blob/master/kernel/page_mapped_crash/repro.c
Fix the loop to iterate for "1 << compound_order" pages.
Kirrill said "IIRC, sound subsystem can producuce custom mapped compound
pages".
Link: http://lkml.kernel.org/r/c440d69879e34209feba21e12d236d06bc0a25db.1543577156.git.jstancek@redhat.com
Fixes: e1534ae950 ("mm: differentiate page_mapped() from page_mapcount() for compound pages")
Signed-off-by: Jan Stancek <jstancek@redhat.com>
Debugged-by: Laszlo Ersek <lersek@redhat.com>
Suggested-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the paths in follow_pte_pmd() initialised the mmu_notifier_range
incorrectly.
Link: http://lkml.kernel.org/r/20190103002126.GM6310@bombadil.infradead.org
Fixes: ac46d4f3c4 ("mm/mmu_notifier: use structure for invalidate_range_start/end calls v2")
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now tag-based KASAN can retag the memory that is reallocated via
krealloc and return a differently tagged pointer even if the same slab
object gets used and no reallocated technically happens.
There are a few issues with this approach. One is that krealloc callers
can't rely on comparing the return value with the passed argument to
check whether reallocation happened. Another is that if a caller knows
that no reallocation happened, that it can access object memory through
the old pointer, which leads to false positives. Look at
nf_ct_ext_add() to see an example.
Fix this by keeping the same tag if the memory don't actually gets
reallocated during krealloc.
Link: http://lkml.kernel.org/r/bb2a71d17ed072bcc528cbee46fcbd71a6da3be4.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With CONFIG_HARDENED_USERCOPY enabled __check_heap_object() compares and
then subtracts a potentially tagged pointer with a non-tagged address of
the page that this pointer belongs to, which leads to unexpected
behavior.
Untag the pointer in __check_heap_object() before doing any of these
operations.
Link: http://lkml.kernel.org/r/7e756a298d514c4482f52aea6151db34818d395d.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of changing cache->align to be aligned to KASAN_SHADOW_SCALE_SIZE
in kasan_cache_create() we can reuse the ARCH_SLAB_MINALIGN macro.
Link: http://lkml.kernel.org/r/52ddd881916bcc153a9924c154daacde78522227.1546540962.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Suggested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Liu Bo has experienced a deadlock between memcg (legacy) reclaim and the
ext4 writeback
task1:
wait_on_page_bit+0x82/0xa0
shrink_page_list+0x907/0x960
shrink_inactive_list+0x2c7/0x680
shrink_node_memcg+0x404/0x830
shrink_node+0xd8/0x300
do_try_to_free_pages+0x10d/0x330
try_to_free_mem_cgroup_pages+0xd5/0x1b0
try_charge+0x14d/0x720
memcg_kmem_charge_memcg+0x3c/0xa0
memcg_kmem_charge+0x7e/0xd0
__alloc_pages_nodemask+0x178/0x260
alloc_pages_current+0x95/0x140
pte_alloc_one+0x17/0x40
__pte_alloc+0x1e/0x110
alloc_set_pte+0x5fe/0xc20
do_fault+0x103/0x970
handle_mm_fault+0x61e/0xd10
__do_page_fault+0x252/0x4d0
do_page_fault+0x30/0x80
page_fault+0x28/0x30
task2:
__lock_page+0x86/0xa0
mpage_prepare_extent_to_map+0x2e7/0x310 [ext4]
ext4_writepages+0x479/0xd60
do_writepages+0x1e/0x30
__writeback_single_inode+0x45/0x320
writeback_sb_inodes+0x272/0x600
__writeback_inodes_wb+0x92/0xc0
wb_writeback+0x268/0x300
wb_workfn+0xb4/0x390
process_one_work+0x189/0x420
worker_thread+0x4e/0x4b0
kthread+0xe6/0x100
ret_from_fork+0x41/0x50
He adds
"task1 is waiting for the PageWriteback bit of the page that task2 has
collected in mpd->io_submit->io_bio, and tasks2 is waiting for the
LOCKED bit the page which tasks1 has locked"
More precisely task1 is handling a page fault and it has a page locked
while it charges a new page table to a memcg. That in turn hits a
memory limit reclaim and the memcg reclaim for legacy controller is
waiting on the writeback but that is never going to finish because the
writeback itself is waiting for the page locked in the #PF path. So
this is essentially ABBA deadlock:
lock_page(A)
SetPageWriteback(A)
unlock_page(A)
lock_page(B)
lock_page(B)
pte_alloc_pne
shrink_page_list
wait_on_page_writeback(A)
SetPageWriteback(B)
unlock_page(B)
# flush A, B to clear the writeback
This accumulating of more pages to flush is used by several filesystems
to generate a more optimal IO patterns.
Waiting for the writeback in legacy memcg controller is a workaround for
pre-mature OOM killer invocations because there is no dirty IO
throttling available for the controller. There is no easy way around
that unfortunately. Therefore fix this specific issue by pre-allocating
the page table outside of the page lock. We have that handy
infrastructure for that already so simply reuse the fault-around pattern
which already does this.
There are probably other hidden __GFP_ACCOUNT | GFP_KERNEL allocations
from under a fs page locked but they should be really rare. I am not
aware of a better solution unfortunately.
[akpm@linux-foundation.org: fix mm/memory.c:__do_fault()]
[akpm@linux-foundation.org: coding-style fixes]
[mhocko@kernel.org: enhance comment, per Johannes]
Link: http://lkml.kernel.org/r/20181214084948.GA5624@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20181213092221.27270-1-mhocko@kernel.org
Fixes: c3b94f44fc ("memcg: further prevent OOM with too many dirty pages")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Liu Bo <bo.liu@linux.alibaba.com>
Debugged-by: Liu Bo <bo.liu@linux.alibaba.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Liu Bo <bo.liu@linux.alibaba.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is easy to trigger this with CONFIG_HARDENED_USERCOPY_PAGESPAN=y,
usercopy: Kernel memory overwrite attempt detected to spans multiple pages (offset 0, size 23)!
kernel BUG at mm/usercopy.c:102!
For example,
print_worker_info
char name[WQ_NAME_LEN] = { };
char desc[WORKER_DESC_LEN] = { };
probe_kernel_read(name, wq->name, sizeof(name) - 1);
probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
__copy_from_user_inatomic
check_object_size
check_heap_object
check_page_span
This is because on-stack variables could cross PAGE_SIZE boundary, and
failed this check,
if (likely(((unsigned long)ptr & (unsigned long)PAGE_MASK) ==
((unsigned long)end & (unsigned long)PAGE_MASK)))
ptr = FFFF889007D7EFF8
end = FFFF889007D7F00E
Hence, fix it by checking if it is a stack object first.
[keescook@chromium.org: improve comments after reorder]
Link: http://lkml.kernel.org/r/20190103165151.GA32845@beast
Link: http://lkml.kernel.org/r/20181231030254.99441-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Callers of __alloc_alien() check for NULL. We must do the same check in
__alloc_alien_cache to avoid NULL pointer dereferences on allocation
failures.
Link: http://lkml.kernel.org/r/010001680f42f192-82b4e12e-1565-4ee0-ae1f-1e98974906aa-000000@email.amazonses.com
Fixes: 49dfc304ba ("slab: use the lock on alien_cache, instead of the lock on array_cache")
Fixes: c8522a3a58 ("Slab: introduce alloc_alien")
Signed-off-by: Christoph Lameter <cl@linux.com>
Reported-by: syzbot+d6ed4ec679652b4fd4e4@syzkaller.appspotmail.com
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The semantics of what "in core" means for the mincore() system call are
somewhat unclear, but Linux has always (since 2.3.52, which is when
mincore() was initially done) treated it as "page is available in page
cache" rather than "page is mapped in the mapping".
The problem with that traditional semantic is that it exposes a lot of
system cache state that it really probably shouldn't, and that users
shouldn't really even care about.
So let's try to avoid that information leak by simply changing the
semantics to be that mincore() counts actual mapped pages, not pages
that might be cheaply mapped if they were faulted (note the "might be"
part of the old semantics: being in the cache doesn't actually guarantee
that you can access them without IO anyway, since things like network
filesystems may have to revalidate the cache before use).
In many ways the old semantics were somewhat insane even aside from the
information leak issue. From the very beginning (and that beginning is
a long time ago: 2.3.52 was released in March 2000, I think), the code
had a comment saying
Later we can get more picky about what "in core" means precisely.
and this is that "later". Admittedly it is much later than is really
comfortable.
NOTE! This is a real semantic change, and it is for example known to
change the output of "fincore", since that program literally does a
mmmap without populating it, and then doing "mincore()" on that mapping
that doesn't actually have any pages in it.
I'm hoping that nobody actually has any workflow that cares, and the
info leak is real.
We may have to do something different if it turns out that people have
valid reasons to want the old semantics, and if we can limit the
information leak sanely.
Cc: Kevin Easton <kevin@guarana.org>
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Masatake YAMATO <yamato@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge more updates from Andrew Morton:
- procfs updates
- various misc bits
- lib/ updates
- epoll updates
- autofs
- fatfs
- a few more MM bits
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (58 commits)
mm/page_io.c: fix polled swap page in
checkpatch: add Co-developed-by to signature tags
docs: fix Co-Developed-by docs
drivers/base/platform.c: kmemleak ignore a known leak
fs: don't open code lru_to_page()
fs/: remove caller signal_pending branch predictions
mm/: remove caller signal_pending branch predictions
arch/arc/mm/fault.c: remove caller signal_pending_branch predictions
kernel/sched/: remove caller signal_pending branch predictions
kernel/locking/mutex.c: remove caller signal_pending branch predictions
mm: select HAVE_MOVE_PMD on x86 for faster mremap
mm: speed up mremap by 20x on large regions
mm: treewide: remove unused address argument from pte_alloc functions
initramfs: cleanup incomplete rootfs
scripts/gdb: fix lx-version string output
kernel/kcov.c: mark write_comp_data() as notrace
kernel/sysctl: add panic_print into sysctl
panic: add options to print system info when panic happens
bfs: extra sanity checking and static inode bitmap
exec: separate MM_ANONPAGES and RLIMIT_STACK accounting
...
swap_readpage() wants to do polling to bring in pages if asked to, but
it doesn't mark the bio as being polled. Additionally, the looping
around the blk_poll() check isn't correct - if we get a zero return, we
should call io_schedule(), we can't just assume that the bio has
completed. The regular bio->bi_private check should be used for that.
Link: http://lkml.kernel.org/r/e15243a8-2cdf-c32c-ecee-f289377c8ef9@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Multiple filesystems open code lru_to_page(). Rectify this by moving
the macro from mm_inline (which is specific to lru stuff) to the more
generic mm.h header and start using the macro where appropriate.
No functional changes.
Link: http://lkml.kernel.org/r/20181129104810.23361-1-nborisov@suse.com
Link: https://lkml.kernel.org/r/20181129075301.29087-1-nborisov@suse.com
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Pankaj gupta <pagupta@redhat.com>
Acked-by: "Yan, Zheng" <zyan@redhat.com> [ceph]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is already done for us internally by the signal machinery.
Link: http://lkml.kernel.org/r/20181116002713.8474-5-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Android needs to mremap large regions of memory during memory management
related operations. The mremap system call can be really slow if THP is
not enabled. The bottleneck is move_page_tables, which is copying each
pte at a time, and can be really slow across a large map. Turning on
THP may not be a viable option, and is not for us. This patch speeds up
the performance for non-THP system by copying at the PMD level when
possible.
The speedup is an order of magnitude on x86 (~20x). On a 1GB mremap,
the mremap completion times drops from 3.4-3.6 milliseconds to 144-160
microseconds.
Before:
Total mremap time for 1GB data: 3521942 nanoseconds.
Total mremap time for 1GB data: 3449229 nanoseconds.
Total mremap time for 1GB data: 3488230 nanoseconds.
After:
Total mremap time for 1GB data: 150279 nanoseconds.
Total mremap time for 1GB data: 144665 nanoseconds.
Total mremap time for 1GB data: 158708 nanoseconds.
If THP is enabled the optimization is mostly skipped except in certain
situations.
[joel@joelfernandes.org: fix 'move_normal_pmd' unused function warning]
Link: http://lkml.kernel.org/r/20181108224457.GB209347@google.com
Link: http://lkml.kernel.org/r/20181108181201.88826-3-joelaf@google.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Add support for fast mremap".
This series speeds up the mremap(2) syscall by copying page tables at
the PMD level even for non-THP systems. There is concern that the extra
'address' argument that mremap passes to pte_alloc may do something
subtle architecture related in the future that may make the scheme not
work. Also we find that there is no point in passing the 'address' to
pte_alloc since its unused. This patch therefore removes this argument
tree-wide resulting in a nice negative diff as well. Also ensuring
along the way that the enabled architectures do not do anything funky
with the 'address' argument that goes unnoticed by the optimization.
Build and boot tested on x86-64. Build tested on arm64. The config
enablement patch for arm64 will be posted in the future after more
testing.
The changes were obtained by applying the following Coccinelle script.
(thanks Julia for answering all Coccinelle questions!).
Following fix ups were done manually:
* Removal of address argument from pte_fragment_alloc
* Removal of pte_alloc_one_fast definitions from m68k and microblaze.
// Options: --include-headers --no-includes
// Note: I split the 'identifier fn' line, so if you are manually
// running it, please unsplit it so it runs for you.
virtual patch
@pte_alloc_func_def depends on patch exists@
identifier E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
type T2;
@@
fn(...
- , T2 E2
)
{ ... }
@pte_alloc_func_proto_noarg depends on patch exists@
type T1, T2, T3, T4;
identifier fn =~ "^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1, T2);
+ T3 fn(T1);
|
- T3 fn(T1, T2, T4);
+ T3 fn(T1, T2);
)
@pte_alloc_func_proto depends on patch exists@
identifier E1, E2, E4;
type T1, T2, T3, T4;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
(
- T3 fn(T1 E1, T2 E2);
+ T3 fn(T1 E1);
|
- T3 fn(T1 E1, T2 E2, T4 E4);
+ T3 fn(T1 E1, T2 E2);
)
@pte_alloc_func_call depends on patch exists@
expression E2;
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
@@
fn(...
-, E2
)
@pte_alloc_macro depends on patch exists@
identifier fn =~
"^(__pte_alloc|pte_alloc_one|pte_alloc|__pte_alloc_kernel|pte_alloc_one_kernel)$";
identifier a, b, c;
expression e;
position p;
@@
(
- #define fn(a, b, c) e
+ #define fn(a, b) e
|
- #define fn(a, b) e
+ #define fn(a) e
)
Link: http://lkml.kernel.org/r/20181108181201.88826-2-joelaf@google.com
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Suggested-by: Kirill A. Shutemov <kirill@shutemov.name>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Julia Lawall <Julia.Lawall@lip6.fr>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.
It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access. But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.
A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model. And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.
This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.
There were a couple of notable cases:
- csky still had the old "verify_area()" name as an alias.
- the iter_iov code had magical hardcoded knowledge of the actual
values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
really used it)
- microblaze used the type argument for a debug printout
but other than those oddities this should be a total no-op patch.
I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something. Any missed conversion should be trivially fixable, though.
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This mostly reverts commit 849a370016 ("block: avoid ordered task
state change for polled IO"). It was wrongly claiming that the ordering
wasn't necessary. The memory barrier _is_ necessary.
If something is truly polling and not going to sleep, it's the whole
state setting that is unnecessary, not the memory barrier. Whenever you
set your state to a sleeping state, you absolutely need the memory
barrier.
Note that sometimes the memory barrier can be elsewhere. For example,
the ordering might be provided by an external lock, or by setting the
process state to sleeping before adding yourself to the wait queue list
that is used for waking up (where the wait queue lock itself will
guarantee that any wakeup will correctly see the sleeping state).
But none of those cases were true here.
NOTE! Some of the polling paths may indeed be able to drop the state
setting entirely, at which point the memory barrier also goes away.
(Also note that this doesn't revert the TASK_RUNNING cases: there is no
race between a wakeup and setting the process state to TASK_RUNNING,
since the end result doesn't depend on ordering).
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
document on perf security, more Italian translations, more
improvements to the memory-management docs, improvements to the
pathname lookup documentation, and the usual array of smaller
fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAlwmSPkPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5Y9ZoH/joPnMFykOxS0SmdfI7Z+F4EiJct/ZwF9bHx
T673T0RC30IgnUXGmBl5OtktfWqVh9aGqHOGwgh65ybp2QvzemdP0k6Lu6RtwNk9
6LfkpvuUb8FzaQmCHnSMzMSDmXtZUw3Z/mOjCBcQtfGAsUULNT08xl+Dr+gwWIWt
H+gPEEP+MCXTOQO1jm2dHOHW8NGm6XOijMTpOxp/pkoEY5tUxkVB1T//8EeX7LVh
c1QHzFrufE3bmmubCLtIuyVqZbm/V5l6rHREDQ46fnH/G9fM4gojzsrAL/Y2m4bt
E4y0XJHycjLMRDimAnYhbPm1ryTFAX1lNzHP3M/EF6Heqx8YHAk=
=vtwu
-----END PGP SIGNATURE-----
Merge tag 'docs-5.0' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
"A fairly normal cycle for documentation stuff. We have a new document
on perf security, more Italian translations, more improvements to the
memory-management docs, improvements to the pathname lookup
documentation, and the usual array of smaller fixes.
As is often the case, there are a few reaches outside of
Documentation/ to adjust kerneldoc comments"
* tag 'docs-5.0' of git://git.lwn.net/linux: (38 commits)
docs: improve pathname-lookup document structure
configfs: fix wrong name of struct in documentation
docs/mm-api: link slab_common.c to "The Slab Cache" section
slab: make kmem_cache_create{_usercopy} description proper kernel-doc
doc:process: add links where missing
docs/core-api: make mm-api.rst more structured
x86, boot: documentation whitespace fixup
Documentation: devres: note checking needs when converting
doc🇮🇹 add some process/* translations
doc🇮🇹 fixes in process/1.Intro
Documentation: convert path-lookup from markdown to resturctured text
Documentation/admin-guide: update admin-guide index.rst
Documentation/admin-guide: introduce perf-security.rst file
scripts/kernel-doc: Fix struct and struct field attribute processing
Documentation: dev-tools: Fix typos in index.rst
Correct gen_init_cpio tool's documentation
Document /proc/pid PID reuse behavior
Documentation: update path-lookup.md for parallel lookups
Documentation: Use "while" instead of "whilst"
dmaengine: Add mailing list address to the documentation
...
Pull percpu update from Dennis Zhou:
"Michael Cree noted generic UP Alpha has been broken since v3.18. This
is a small fix for locking in UP percpu code that fixes the issue"
* 'for-4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
percpu: convert spin_lock_irq to spin_lock_irqsave.
Merge misc updates from Andrew Morton:
- large KASAN update to use arm's "software tag-based mode"
- a few misc things
- sh updates
- ocfs2 updates
- just about all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (167 commits)
kernel/fork.c: mark 'stack_vm_area' with __maybe_unused
memcg, oom: notify on oom killer invocation from the charge path
mm, swap: fix swapoff with KSM pages
include/linux/gfp.h: fix typo
mm/hmm: fix memremap.h, move dev_page_fault_t callback to hmm
hugetlbfs: Use i_mmap_rwsem to fix page fault/truncate race
hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization
memory_hotplug: add missing newlines to debugging output
mm: remove __hugepage_set_anon_rmap()
include/linux/vmstat.h: remove unused page state adjustment macro
mm/page_alloc.c: allow error injection
mm: migrate: drop unused argument of migrate_page_move_mapping()
blkdev: avoid migration stalls for blkdev pages
mm: migrate: provide buffer_migrate_page_norefs()
mm: migrate: move migrate_page_lock_buffers()
mm: migrate: lock buffers before migrate_page_move_mapping()
mm: migration: factor out code to compute expected number of page references
mm, page_alloc: enable pcpu_drain with zone capability
kmemleak: add config to select auto scan
mm/page_alloc.c: don't call kasan_free_pages() at deferred mem init
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAlwb7R8QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpjiID/97oDjMhNT7rwpuMbHw855h62j1hEN/m+N3
FI0uxivYoYZLD+eJRnMcBwHlKjrCX8iJQAcv9ffI3ThtFW7dnZT3atUacaZVR/Dt
IrxdymdBP3qsmuaId5NYBug7rJ+AiqFJKjEvCcSPu5X397J4I3SEbzhfvYLJ/aZX
16o0HJlVVIrcbmq1IP4HwiIIOaKXvPaw04L4z4fpeynRSWG7EAi8NLSnhlR4Rxbb
BTiMkCTsjRCFdyO6da4fvNQKWmPGPa3bJkYy3qR99cvJCeIbQjRyCloQlWNJRRgi
3eJpCHVxqFmN0/+DNTJVQEEr4H8o0AVucrLVct1Jc4pessenkpoUniP8vELqwlng
Z2VHLkhTfCEmvFlk82grrYdNvGATRsrbswt/PlP4T7rBfr1IpDk8kXDWF59EL2dy
ly35Sk3wJGHBl8qa+vEPXOAnaWdqJXuVGpwB4ifOIatOls8mOxwfZjiRc7x05/fC
1O4rR2IfLwRqwoYHs0AJ+h6ohOSn1mkGezl2Tch1VSFcJUOHmuYvraTaUi6hblpA
SslaAoEhO39hRBL0HsvsMeqVWM9uzqvFkLDCfNPdiA81H1258CIbo4vF8z6czCIS
eeXnTJxVhPVbZgb3a1a93SPwM6KIDZFoIijyd+NqjpU94thlnhYD0QEcKJIKH7os
2p4aHs6ktw==
=TRdW
-----END PGP SIGNATURE-----
Merge tag 'for-4.21/block-20181221' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"This is the main pull request for block/storage for 4.21.
Larger than usual, it was a busy round with lots of goodies queued up.
Most notable is the removal of the old IO stack, which has been a long
time coming. No new features for a while, everything coming in this
week has all been fixes for things that were previously merged.
This contains:
- Use atomic counters instead of semaphores for mtip32xx (Arnd)
- Cleanup of the mtip32xx request setup (Christoph)
- Fix for circular locking dependency in loop (Jan, Tetsuo)
- bcache (Coly, Guoju, Shenghui)
* Optimizations for writeback caching
* Various fixes and improvements
- nvme (Chaitanya, Christoph, Sagi, Jay, me, Keith)
* host and target support for NVMe over TCP
* Error log page support
* Support for separate read/write/poll queues
* Much improved polling
* discard OOM fallback
* Tracepoint improvements
- lightnvm (Hans, Hua, Igor, Matias, Javier)
* Igor added packed metadata to pblk. Now drives without metadata
per LBA can be used as well.
* Fix from Geert on uninitialized value on chunk metadata reads.
* Fixes from Hans and Javier to pblk recovery and write path.
* Fix from Hua Su to fix a race condition in the pblk recovery
code.
* Scan optimization added to pblk recovery from Zhoujie.
* Small geometry cleanup from me.
- Conversion of the last few drivers that used the legacy path to
blk-mq (me)
- Removal of legacy IO path in SCSI (me, Christoph)
- Removal of legacy IO stack and schedulers (me)
- Support for much better polling, now without interrupts at all.
blk-mq adds support for multiple queue maps, which enables us to
have a map per type. This in turn enables nvme to have separate
completion queues for polling, which can then be interrupt-less.
Also means we're ready for async polled IO, which is hopefully
coming in the next release.
- Killing of (now) unused block exports (Christoph)
- Unification of the blk-rq-qos and blk-wbt wait handling (Josef)
- Support for zoned testing with null_blk (Masato)
- sx8 conversion to per-host tag sets (Christoph)
- IO priority improvements (Damien)
- mq-deadline zoned fix (Damien)
- Ref count blkcg series (Dennis)
- Lots of blk-mq improvements and speedups (me)
- sbitmap scalability improvements (me)
- Make core inflight IO accounting per-cpu (Mikulas)
- Export timeout setting in sysfs (Weiping)
- Cleanup the direct issue path (Jianchao)
- Export blk-wbt internals in block debugfs for easier debugging
(Ming)
- Lots of other fixes and improvements"
* tag 'for-4.21/block-20181221' of git://git.kernel.dk/linux-block: (364 commits)
kyber: use sbitmap add_wait_queue/list_del wait helpers
sbitmap: add helpers for add/del wait queue handling
block: save irq state in blkg_lookup_create()
dm: don't reuse bio for flushes
nvme-pci: trace SQ status on completions
nvme-rdma: implement polling queue map
nvme-fabrics: allow user to pass in nr_poll_queues
nvme-fabrics: allow nvmf_connect_io_queue to poll
nvme-core: optionally poll sync commands
block: make request_to_qc_t public
nvme-tcp: fix spelling mistake "attepmpt" -> "attempt"
nvme-tcp: fix endianess annotations
nvmet-tcp: fix endianess annotations
nvme-pci: refactor nvme_poll_irqdisable to make sparse happy
nvme-pci: only set nr_maps to 2 if poll queues are supported
nvmet: use a macro for default error location
nvmet: fix comparison of a u16 with -1
blk-mq: enable IO poll if .nr_queues of type poll > 0
blk-mq: change blk_mq_queue_busy() to blk_mq_queue_inflight()
blk-mq: skip zero-queue maps in blk_mq_map_swqueue
...
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore. The reason is that 29ef680ae7 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path. While doing so the notification was left behind in
mem_cgroup_oom_synchronize.
Fix the issue by replicating the oom hierarchy locking and the
notification.
Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Burt Holzman <burt@fnal.gov>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
KSM pages may be mapped to the multiple VMAs that cannot be reached from
one anon_vma. So during swapin, a new copy of the page need to be
generated if a different anon_vma is needed, please refer to comments of
ksm_might_need_to_copy() for details.
During swapoff, unuse_vma() uses anon_vma (if available) to locate VMA and
virtual address mapped to the page, so not all mappings to a swapped out
KSM page could be found. So in try_to_unuse(), even if the swap count of
a swap entry isn't zero, the page needs to be deleted from swap cache, so
that, in the next round a new page could be allocated and swapin for the
other mappings of the swapped out KSM page.
But this contradicts with the THP swap support. Where the THP could be
deleted from swap cache only after the swap count of every swap entry in
the huge swap cluster backing the THP has reach 0. So try_to_unuse() is
changed in commit e07098294a ("mm, THP, swap: support to reclaim swap
space for THP swapped out") to check that before delete a page from swap
cache, but this has broken KSM swapoff too.
Fortunately, KSM is for the normal pages only, so the original behavior
for KSM pages could be restored easily via checking PageTransCompound().
That is how this patch works.
The bug is introduced by e07098294a ("mm, THP, swap: support to reclaim
swap space for THP swapped out"), which is merged by v4.14-rc1. So I
think we should backport the fix to from 4.14 on. But Hugh thinks it may
be rare for the KSM pages being in the swap device when swapoff, so nobody
reports the bug so far.
Link: http://lkml.kernel.org/r/20181226051522.28442-1-ying.huang@intel.com
Fixes: e07098294a ("mm, THP, swap: support to reclaim swap space for THP swapped out")
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reported-by: Hugh Dickins <hughd@google.com>
Tested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kbuild robot reported the following on a development branch that used
memremap.h in a new path:
In file included from arch/m68k/include/asm/pgtable_mm.h:148:0,
from arch/m68k/include/asm/pgtable.h:5,
from include/linux/memremap.h:7,
from drivers//dax/bus.c:3:
arch/m68k/include/asm/motorola_pgtable.h: In function 'pgd_offset':
>> arch/m68k/include/asm/motorola_pgtable.h:199:11: error: dereferencing pointer to incomplete type 'const struct mm_struct'
return mm->pgd + pgd_index(address);
^~
The ->page_fault() callback is specific to HMM. Move it to 'struct
hmm_devmem' where the unusual asm/pgtable.h dependency can be contained in
include/linux/hmm.h. Longer term refactoring this dependency out of HMM
is recommended, but in the meantime memremap.h remains generic.
Link: http://lkml.kernel.org/r/154534090899.3120190.6652620807617715272.stgit@dwillia2-desk3.amr.corp.intel.com
Fixes: 5042db43cc ("mm/ZONE_DEVICE: new type of ZONE_DEVICE memory...")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: "Jérôme Glisse" <jglisse@redhat.com>
Cc: Logan Gunthorpe <logang@deltatee.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
hugetlbfs page faults can race with truncate and hole punch operations.
Current code in the page fault path attempts to handle this by 'backing
out' operations if we encounter the race. One obvious omission in the
current code is removing a page newly added to the page cache. This is
pretty straight forward to address, but there is a more subtle and
difficult issue of backing out hugetlb reservations. To handle this
correctly, the 'reservation state' before page allocation needs to be
noted so that it can be properly backed out. There are four distinct
possibilities for reservation state: shared/reserved, shared/no-resv,
private/reserved and private/no-resv. Backing out a reservation may
require memory allocation which could fail so that needs to be taken into
account as well.
Instead of writing the required complicated code for this rare occurrence,
just eliminate the race. i_mmap_rwsem is now held in read mode for the
duration of page fault processing. Hold i_mmap_rwsem longer in truncation
and hold punch code to cover the call to remove_inode_hugepages.
With this modification, code in remove_inode_hugepages checking for races
becomes 'dead' as it can not longer happen. Remove the dead code and
expand comments to explain reasoning. Similarly, checks for races with
truncation in the page fault path can be simplified and removed.
[mike.kravetz@oracle.com: incorporat suggestions from Kirill]
Link: http://lkml.kernel.org/r/20181222223013.22193-3-mike.kravetz@oracle.com
Link: http://lkml.kernel.org/r/20181218223557.5202-3-mike.kravetz@oracle.com
Fixes: ebed4bfc8d ("hugetlb: fix absurd HugePages_Rsvd")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While looking at BUGs associated with invalid huge page map counts, it was
discovered and observed that a huge pte pointer could become 'invalid' and
point to another task's page table. Consider the following:
A task takes a page fault on a shared hugetlbfs file and calls
huge_pte_alloc to get a ptep. Suppose the returned ptep points to a
shared pmd.
Now, another task truncates the hugetlbfs file. As part of truncation, it
unmaps everyone who has the file mapped. If the range being truncated is
covered by a shared pmd, huge_pmd_unshare will be called. For all but the
last user of the shared pmd, huge_pmd_unshare will clear the pud pointing
to the pmd. If the task in the middle of the page fault is not the last
user, the ptep returned by huge_pte_alloc now points to another task's
page table or worse. This leads to bad things such as incorrect page
map/reference counts or invalid memory references.
To fix, expand the use of i_mmap_rwsem as follows:
- i_mmap_rwsem is held in read mode whenever huge_pmd_share is called.
huge_pmd_share is only called via huge_pte_alloc, so callers of
huge_pte_alloc take i_mmap_rwsem before calling. In addition, callers
of huge_pte_alloc continue to hold the semaphore until finished with the
ptep.
- i_mmap_rwsem is held in write mode whenever huge_pmd_unshare is
called.
[mike.kravetz@oracle.com: add explicit check for mapping != null]
Link: http://lkml.kernel.org/r/20181218223557.5202-2-mike.kravetz@oracle.com
Fixes: 39dde65c99 ("shared page table for hugetlb page")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Colin Ian King <colin.king@canonical.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is identical to __page_set_anon_rmap() since the time, when
it was introduced (8 years ago). The patch removes the function, and
makes its users to use __page_set_anon_rmap() instead.
Link: http://lkml.kernel.org/r/154504875359.30235.6237926369392564851.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Model call chain after should_failslab(). Likewise, we can now use a
kprobe to override the return value of should_fail_alloc_page() and inject
allocation failures into alloc_page*().
This will allow injecting allocation failures using the BCC tools even
without building kernel with CONFIG_FAIL_PAGE_ALLOC and booting it with a
fail_page_alloc= parameter, which incurs some overhead even when failures
are not being injected. On the other hand, this patch adds an
unconditional call to should_fail_alloc_page() from page allocation
hotpath. That overhead should be rather negligible with
CONFIG_FAIL_PAGE_ALLOC=n when there's no kprobe attached, though.
[vbabka@suse.cz: changelog addition]
Link: http://lkml.kernel.org/r/20181214074330.18917-1-bpoirier@suse.com
Signed-off-by: Benjamin Poirier <bpoirier@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All callers of migrate_page_move_mapping() now pass NULL for 'head'
argument. Drop it.
Link: http://lkml.kernel.org/r/20181211172143.7358-7-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Provide a variant of buffer_migrate_page() that also checks whether there
are no unexpected references to buffer heads. This function will then be
safe to use for block device pages.
[akpm@linux-foundation.org: remove EXPORT_SYMBOL(buffer_migrate_page_norefs)]
Link: http://lkml.kernel.org/r/20181211172143.7358-5-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
buffer_migrate_page() is the only caller of migrate_page_lock_buffers()
move it close to it and also drop the now unused stub for !CONFIG_BLOCK.
Link: http://lkml.kernel.org/r/20181211172143.7358-4-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lock buffers before calling into migrate_page_move_mapping() so that that
function doesn't have to know about buffers (which is somewhat unexpected
anyway) and all the buffer head logic is in buffer_migrate_page().
Link: http://lkml.kernel.org/r/20181211172143.7358-3-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: migrate: Fix page migration stalls for blkdev pages".
This patchset deals with page migration stalls that were reported by our
customer due to a block device page that had a bufferhead that was in the
bh LRU cache.
The patchset modifies the page migration code so that bufferheads are
completely handled inside buffer_migrate_page() and then provides a new
migration helper for pages with buffer heads that is safe to use even for
block device pages and that also deals with bh lrus.
This patch (of 6):
Factor out function to compute number of expected page references in
migrate_page_move_mapping(). Note that we move hpage_nr_pages() and
page_has_private() checks from under xas_lock_irq() however this is safe
since we hold page lock.
[jack@suse.cz: fix expected_page_refs()]
Link: http://lkml.kernel.org/r/20181217131710.GB8611@quack2.suse.cz
Link: http://lkml.kernel.org/r/20181211172143.7358-2-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
drain_all_pages is documented to drain per-cpu pages for a given zone (if
non-NULL). The current implementation doesn't match the description
though. It will drain all pcp pages for all zones that happen to have
cached pages on the same cpu as the given zone. This will lead to
premature pcp cache draining for zones that are not of any interest to the
caller - e.g. compaction, hwpoison or memory offline.
This forces the page allocator to take locks and potential lock contention
as a result.
There is no real reason for this sub-optimal implementation. Replace
per-cpu work item with a dedicated structure which contains a pointer to
the zone and pass it over to the worker. This will get the zone
information all the way down to the worker function and do the right job.
[akpm@linux-foundation.org: avoid 80-col tricks]
[mhocko@suse.com: refactor the whole changelog]
Link: http://lkml.kernel.org/r/20181212142550.61686-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kmemleak scan can be cpu intensive and can stall user tasks at times. To
prevent this, add config DEBUG_KMEMLEAK_AUTO_SCAN to enable/disable auto
scan on boot up. Also protect first_run with DEBUG_KMEMLEAK_AUTO_SCAN as
this is meant for only first automatic scan.
Link: http://lkml.kernel.org/r/1540231723-7087-1-git-send-email-prpatel@nvidia.com
Signed-off-by: Sri Krishna chowdary <schowdary@nvidia.com>
Signed-off-by: Sachin Nikam <snikam@nvidia.com>
Signed-off-by: Prateek <prpatel@nvidia.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When CONFIG_KASAN is enabled on large memory SMP systems, the deferrred
pages initialization can take a long time. Below were the reported init
times on a 8-socket 96-core 4TB IvyBridge system.
1) Non-debug kernel without CONFIG_KASAN
[ 8.764222] node 1 initialised, 132086516 pages in 7027ms
2) Debug kernel with CONFIG_KASAN
[ 146.288115] node 1 initialised, 132075466 pages in 143052ms
So the page init time in a debug kernel was 20X of the non-debug kernel.
The long init time can be problematic as the page initialization is done
with interrupt disabled. In this particular case, it caused the
appearance of following warning messages as well as NMI backtraces of all
the cores that were doing the initialization.
[ 68.240049] rcu: INFO: rcu_sched detected stalls on CPUs/tasks:
[ 68.241000] rcu: 25-...0: (100 ticks this GP) idle=b72/1/0x4000000000000000 softirq=915/915 fqs=16252
[ 68.241000] rcu: 44-...0: (95 ticks this GP) idle=49a/1/0x4000000000000000 softirq=788/788 fqs=16253
[ 68.241000] rcu: 54-...0: (104 ticks this GP) idle=03a/1/0x4000000000000000 softirq=721/825 fqs=16253
[ 68.241000] rcu: 60-...0: (103 ticks this GP) idle=cbe/1/0x4000000000000000 softirq=637/740 fqs=16253
[ 68.241000] rcu: 72-...0: (105 ticks this GP) idle=786/1/0x4000000000000000 softirq=536/641 fqs=16253
[ 68.241000] rcu: 84-...0: (99 ticks this GP) idle=292/1/0x4000000000000000 softirq=537/537 fqs=16253
[ 68.241000] rcu: 111-...0: (104 ticks this GP) idle=bde/1/0x4000000000000000 softirq=474/476 fqs=16253
[ 68.241000] rcu: (detected by 13, t=65018 jiffies, g=249, q=2)
The long init time was mainly caused by the call to kasan_free_pages() to
poison the newly initialized pages. On a 4TB system, we are talking about
almost 500GB of memory probably on the same node.
In reality, we may not need to poison the newly initialized pages before
they are ever allocated. So KASAN poisoning of freed pages before the
completion of deferred memory initialization is now disabled. Those pages
will be properly poisoned when they are allocated or freed after deferred
pages initialization is done.
With this change, the new page initialization time became:
[ 21.948010] node 1 initialised, 132075466 pages in 18702ms
This was still about double the non-debug kernel time, but was much
better than before.
Link: http://lkml.kernel.org/r/1544459388-8736-1-git-send-email-longman@redhat.com
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pasha Tatashin <Pavel.Tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, NR_PAGEBLOCK_BITS and MIGRATE_TYPES are not associated by code.
If someone adds extra migrate type, then he may forget to enlarge the
NR_PAGEBLOCK_BITS. Hence it requires some way to fix.
NR_PAGEBLOCK_BITS depends on MIGRATE_TYPES, while these macro spread on
two different .h file with reverse dependency, it is a little hard to
refer to MIGRATE_TYPES in pageblock-flag.h. This patch tries to remind
such relation in compiling-time.
Link: http://lkml.kernel.org/r/1544508709-11358-1-git-send-email-kernelfans@gmail.com
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ksm thread unconditionally sleeps in ksm_scan_thread() after each
iteration:
schedule_timeout_interruptible(
msecs_to_jiffies(ksm_thread_sleep_millisecs))
The timeout is configured in /sys/kernel/mm/ksm/sleep_millisecs.
In case of user writes a big value by a mistake, and the thread enters
into schedule_timeout_interruptible(), it's not possible to cancel the
sleep by writing a new smaler value; the thread is just sleeping till
timeout expires.
The patch fixes the problem by waking the thread each time after the value
is updated.
This also may be useful for debug purposes; and also for userspace
daemons, which change sleep_millisecs value in dependence of system load.
Link: http://lkml.kernel.org/r/154454107680.3258.3558002210423531566.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
filemap_map_pages takes a speculative reference to each page in the range
before it tries to lock that page. While this is correct it also can
influence page migration which will bail out when seeing an elevated
reference count. The faultaround code would bail on seeing a locked page
so we can pro-actively check the PageLocked bit before
page_cache_get_speculative and prevent from pointless reference count
churn.
Link: http://lkml.kernel.org/r/20181211142741.2607-4-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Jan Kara <jack@suse.cz>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory migration might fail during offlining and we keep retrying in that
case. This is currently obfuscated by goto retry loop. The code is hard
to follow and as a result it is even suboptimal becase each retry round
scans the full range from start_pfn even though we have successfully
scanned/migrated [start_pfn, pfn] range already. This is all only because
check_pages_isolated failure has to rescan the full range again.
De-obfuscate the migration retry loop by promoting it to a real for loop.
In fact remove the goto altogether by making it a proper double loop
(yeah, gotos are nasty in this specific case). In the end we will get a
slightly more optimal code which is better readable.
[akpm@linux-foundation.org: reflow comments to 80 cols]
Link: http://lkml.kernel.org/r/20181211142741.2607-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "few memory offlining enhancements".
I have been chasing memory offlining not making progress recently. On the
way I have noticed few weird decisions in the code. The migration itself
is restricted without a reasonable justification and the retry loop around
the migration is quite messy. This is addressed by patch 1 and patch 2.
Patch 3 is targeting on the faultaround code which has been a hot
candidate for the initial issue reported upstream [2] and that I am
debugging internally. It turned out to be not the main contributor in the
end but I believe we should address it regardless. See the patch
description for more details.
[1] http://lkml.kernel.org/r/20181120134323.13007-1-mhocko@kernel.org
[2] http://lkml.kernel.org/r/20181114070909.GB2653@MiWiFi-R3L-srv
This patch (of 3):
do_migrate_range has been limiting the number of pages to migrate to 256
for some reason which is not documented. Even if the limit made some
sense back then when it was introduced it doesn't really serve a good
purpose these days. If the range contains huge pages then we break out of
the loop too early and go through LRU and pcp caches draining and
scan_movable_pages is quite suboptimal.
The only reason to limit the number of pages I can think of is to reduce
the potential time to react on the fatal signal. But even then the number
of pages is a questionable metric because even a single page migration
might block in a non-killable state (e.g. __unmap_and_move).
Remove the limit and offline the full requested range (this is one
memblock worth of pages with the current code). Should we ever get a
report that offlining takes too long to react on fatal signal then we
should rather fix the core migration to use killable waits and bailout
on a signal.
Link: http://lkml.kernel.org/r/20181211142741.2607-1-mhocko@kernel.org
Link: http://lkml.kernel.org/r/20181211142741.2607-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Userspace falls short when trying to find out whether a specific memory
range is eligible for THP. There are usecases that would like to know
that
http://lkml.kernel.org/r/alpine.DEB.2.21.1809251248450.50347@chino.kir.corp.google.com
: This is used to identify heap mappings that should be able to fault thp
: but do not, and they normally point to a low-on-memory or fragmentation
: issue.
The only way to deduce this now is to query for hg resp. nh flags and
confronting the state with the global setting. Except that there is also
PR_SET_THP_DISABLE that might change the picture. So the final logic is
not trivial. Moreover the eligibility of the vma depends on the type of
VMA as well. In the past we have supported only anononymous memory VMAs
but things have changed and shmem based vmas are supported as well these
days and the query logic gets even more complicated because the
eligibility depends on the mount option and another global configuration
knob.
Simplify the current state and report the THP eligibility in
/proc/<pid>/smaps for each existing vma. Reuse
transparent_hugepage_enabled for this purpose. The original
implementation of this function assumes that the caller knows that the vma
itself is supported for THP so make the core checks into
__transparent_hugepage_enabled and use it for existing callers.
__show_smap just use the new transparent_hugepage_enabled which also
checks the vma support status (please note that this one has to be out of
line due to include dependency issues).
[mhocko@kernel.org: fix oops with NULL ->f_mapping]
Link: http://lkml.kernel.org/r/20181224185106.GC16738@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20181211143641.3503-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Paul Oppenheimer <bepvte@gmail.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid having to change many call sites everytime we want to add a
parameter use a structure to group all parameters for the mmu_notifier
invalidate_range_start/end cakks. No functional changes with this patch.
[akpm@linux-foundation.org: coding style fixes]
Link: http://lkml.kernel.org/r/20181205053628.3210-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Acked-by: Christian König <christian.koenig@amd.com>
Acked-by: Jan Kara <jack@suse.cz>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Felix Kuehling <felix.kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
From: Jérôme Glisse <jglisse@redhat.com>
Subject: mm/mmu_notifier: use structure for invalidate_range_start/end calls v3
fix build warning in migrate.c when CONFIG_MMU_NOTIFIER=n
Link: http://lkml.kernel.org/r/20181213171330.8489-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>