Pull epoll updates from Al Viro:
"Deal with epoll loop check/removal races sanely (among other things).
The solution merged last cycle (pinning a bunch of struct file
instances) had been forced by the wrong data structures; untangling
that takes a bunch of preparations, but it's worth doing - control
flow in there is ridiculously overcomplicated. Memory footprint has
also gone down, while we are at it.
This is not all I want to do in the area, but since I didn't get
around to posting the followups they'll have to wait for the next
cycle"
* 'work.epoll' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (27 commits)
epoll: take epitem list out of struct file
epoll: massage the check list insertion
lift rcu_read_lock() into reverse_path_check()
convert ->f_ep_links/->fllink to hlist
ep_insert(): move creation of wakeup source past the fl_ep_links insertion
fold ep_read_events_proc() into the only caller
take the common part of ep_eventpoll_poll() and ep_item_poll() into helper
ep_insert(): we only need tep->mtx around the insertion itself
ep_insert(): don't open-code ep_remove() on failure exits
lift locking/unlocking ep->mtx out of ep_{start,done}_scan()
ep_send_events_proc(): fold into the caller
lift the calls of ep_send_events_proc() into the callers
lift the calls of ep_read_events_proc() into the callers
ep_scan_ready_list(): prepare to splitup
ep_loop_check_proc(): saner calling conventions
get rid of ep_push_nested()
ep_loop_check_proc(): lift pushing the cookie into callers
clean reverse_path_check_proc() a bit
reverse_path_check_proc(): don't bother with cookies
reverse_path_check_proc(): sane arguments
...
Currently, the sock_from_file prototype takes an "err" pointer that is
either not set or set to -ENOTSOCK IFF the returned socket is NULL. This
makes the error redundant and it is ignored by a few callers.
This patch simplifies the API by letting callers deduce the error based
on whether the returned socket is NULL or not.
Suggested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Florent Revest <revest@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: KP Singh <kpsingh@google.com>
Link: https://lore.kernel.org/bpf/20201204113609.1850150-1-revest@google.com
This option lets a user set a per socket NAPI budget for
busy-polling. If the options is not set, it will use the default of 8.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20201130185205.196029-3-bjorn.topel@gmail.com
The existing busy-polling mode, enabled by the SO_BUSY_POLL socket
option or system-wide using the /proc/sys/net/core/busy_read knob, is
an opportunistic. That means that if the NAPI context is not
scheduled, it will poll it. If, after busy-polling, the budget is
exceeded the busy-polling logic will schedule the NAPI onto the
regular softirq handling.
One implication of the behavior above is that a busy/heavy loaded NAPI
context will never enter/allow for busy-polling. Some applications
prefer that most NAPI processing would be done by busy-polling.
This series adds a new socket option, SO_PREFER_BUSY_POLL, that works
in concert with the napi_defer_hard_irqs and gro_flush_timeout
knobs. The napi_defer_hard_irqs and gro_flush_timeout knobs were
introduced in commit 6f8b12d661 ("net: napi: add hard irqs deferral
feature"), and allows for a user to defer interrupts to be enabled and
instead schedule the NAPI context from a watchdog timer. When a user
enables the SO_PREFER_BUSY_POLL, again with the other knobs enabled,
and the NAPI context is being processed by a softirq, the softirq NAPI
processing will exit early to allow the busy-polling to be performed.
If the application stops performing busy-polling via a system call,
the watchdog timer defined by gro_flush_timeout will timeout, and
regular softirq handling will resume.
In summary; Heavy traffic applications that prefer busy-polling over
softirq processing should use this option.
Example usage:
$ echo 2 | sudo tee /sys/class/net/ens785f1/napi_defer_hard_irqs
$ echo 200000 | sudo tee /sys/class/net/ens785f1/gro_flush_timeout
Note that the timeout should be larger than the userspace processing
window, otherwise the watchdog will timeout and fall back to regular
softirq processing.
Enable the SO_BUSY_POLL/SO_PREFER_BUSY_POLL options on your socket.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/bpf/20201130185205.196029-2-bjorn.topel@gmail.com
Move the head of epitem list out of struct file; for epoll ones it's
moved into struct eventpoll (->refs there), for non-epoll - into
the new object (struct epitem_head). In place of ->f_ep_links we
leave a pointer to the list head (->f_ep).
->f_ep is protected by ->f_lock and it's zeroed as soon as the list
of epitems becomes empty (that can happen only in ep_remove() by
now).
The list of files for reverse path check is *not* going through
struct file now - it's a single-linked list going through epitem_head
instances. It's terminated by ERR_PTR(-1) (== EP_UNACTIVE_POINTER),
so the elements of list can be distinguished by head->next != NULL.
epitem_head instances are allocated at ep_insert() time (by
attach_epitem()) and freed either by ep_remove() (if it empties
the set of epitems *and* epitem_head does not belong to the
reverse path check list) or by clear_tfile_check_list() when
the list is emptied (if the set of epitems is empty by that
point). Allocations are done from a separate slab - minimal kmalloc()
size is too large on some architectures.
As the result, we trim struct file _and_ get rid of the games with
temporary file references.
Locking and barriers are interesting (aren't they always); see unlist_file()
and ep_remove() for details. The non-obvious part is that ep_remove() needs
to decide if it will be the one to free the damn thing *before* actually
storing NULL to head->epitems.first - that's what smp_load_acquire is for
in there. unlist_file() lockless path is safe, since we hit it only if
we observe NULL in head->epitems.first and whoever had done that store is
guaranteed to have observed non-NULL in head->next. IOW, their last access
had been the store of NULL into ->epitems.first and we can safely free
the sucker. OTOH, we are under rcu_read_lock() and both epitem and
epitem->file have their freeing RCU-delayed. So if we see non-NULL
->epitems.first, we can grab ->f_lock (all epitems in there share the
same struct file) and safely recheck the emptiness of ->epitems; again,
->next is still non-NULL, so ep_remove() couldn't have freed head yet.
->f_lock serializes us wrt ep_remove(); the rest is trivial.
Note that once head->epitems becomes NULL, nothing can get inserted into
it - the only remaining reference to head after that point is from the
reverse path check list.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
in the "non-epoll target" cases do it in ep_insert() rather than
in do_epoll_ctl(), so that we do it only with some epitem is already
guaranteed to exist.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
That's the beginning of preparations for taking f_ep_links out of struct file.
If insertion might fail, we will need a new failure exit. Having wakeup
source creation done after that point will simplify life there; ep_remove()
can (and commonly does) live with NULL epi->ws, so it can be used for
cleanup after ep_create_wakeup_source() failure. It can't be used before
the rbtree insertion, though, so if we are to unify all old failure exits,
we need to move that thing down. Then we would be free to do simple
kmem_cache_free() on the failure to insert into f_ep_links - no wakeup source
to leak on that failure exit.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only reason why ep_item_poll() can't simply call ep_eventpoll_poll()
(or, better yet, call vfs_poll() in all cases) is that we need to tell
lockdep how deep into the hierarchy of ->mtx we are. So let's add
a variant of ep_eventpoll_poll() that would take depth explicitly
and turn ep_eventpoll_poll() into wrapper for that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We do need ep->mtx (and we are holding it all along), but that's
the lock on the epoll we are inserting into; locking of the
epoll being inserted is not needed for most of that work -
as the matter of fact, we only need it to provide barriers
for the fastpath check (for now).
Move taking and releasing it into ep_insert(). The caller
(do_epoll_ctl()) doesn't need to bother with that at all.
Moreover, that way we kill the kludge in ep_item_poll() - now
it's always called with tep unlocked.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
get rid of depth/ep_locked arguments there and document
the kludge in ep_item_poll() that has lead to ep_locked existence in
the first place
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
... and get rid of struct ep_send_events_data - not needed anymore.
The weird way of passing the arguments in (and real return value
out - nominal return value of ep_send_events_proc() is ignored)
was due to the signature forced on ep_scan_ready_list() callbacks.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Expand the calls of ep_scan_ready_list() that get ep_read_events_proc().
As a side benefit we can pass depth to ep_read_events_proc() by value
and not by address - the latter used to be forced by the signature
expected from ep_scan_ready_list() callback.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
1) 'cookie' argument is unused; kill it.
2) 'priv' one is always an epoll struct file, and we only care
about its associated struct eventpoll; pass that instead.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The only remaining user is loop checking. But there we only need
to check that we have not walked into the epoll we are inserting
into - we are adding an edge to acyclic graph, so any loop being
created will have to pass through the source of that edge.
So we don't need that array of cookies - we have only one eventpoll
to watch out for. RIP ep_push_nested(), along with the cookies
array.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We know there's no loops by the time we call it; the
only thing we care about is too deep reverse paths.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
no need to force its calling conventions to match the callback for
late unlamented ep_call_nested()...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
IOW,
* no locking is needed to protect the list
* the list is actually a stack
* no need to check ->ctx
* it can bloody well be a static 5-element array - nobody is
going to be accessing it in parallel.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
we use it only to indicate allocation failures within queueing
callback back to ep_insert(). Might as well use epq.epi for that
reporting...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We only traverse it once to destroy all associated eppoll_entry at
epitem destruction time. The order of traversal is irrelevant there.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Checking for the lack of epitems refering to the epoll we want to insert into
is not enough; we might have an insertion of that epoll into another one that
has already collected the set of files to recheck for excessive reverse paths,
but hasn't gotten to creating/inserting the epitem for it.
However, any such insertion in progress can be detected - it will update the
generation count in our epoll when it's done looking through it for files
to check. That gets done under ->mtx of our epoll and that allows us to
detect that safely.
We are *not* holding epmutex here, so the generation count is not stable.
However, since both the update of ep->gen by loop check and (later)
insertion into ->f_ep_link are done with ep->mtx held, we are fine -
the sequence is
grab epmutex
bump loop_check_gen
...
grab tep->mtx // 1
tep->gen = loop_check_gen
...
drop tep->mtx // 2
...
grab tep->mtx // 3
...
insert into ->f_ep_link
...
drop tep->mtx // 4
bump loop_check_gen
drop epmutex
and if the fastpath check in another thread happens for that
eventpoll, it can come
* before (1) - in that case fastpath is just fine
* after (4) - we'll see non-empty ->f_ep_link, slow path
taken
* between (2) and (3) - loop_check_gen is stable,
with ->mtx providing barriers and we end up taking slow path.
Note that ->f_ep_link emptiness check is slightly racy - we are protected
against insertions into that list, but removals can happen right under us.
Not a problem - in the worst case we'll end up taking a slow path for
no good reason.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
epoll_loop_check_proc() can run into a file already committed to destruction;
we can't grab a reference on those and don't need to add them to the set for
reverse path check anyway.
Tested-by: Marc Zyngier <maz@kernel.org>
Fixes: a9ed4a6560 ("epoll: Keep a reference on files added to the check list")
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When adding a new fd to an epoll, and that this new fd is an
epoll fd itself, we recursively scan the fds attached to it
to detect cycles, and add non-epool files to a "check list"
that gets subsequently parsed.
However, this check list isn't completely safe when deletions
can happen concurrently. To sidestep the issue, make sure that
a struct file placed on the check list sees its f_count increased,
ensuring that a concurrent deletion won't result in the file
disapearing from under our feet.
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
There is a possible race when ep_scan_ready_list() leaves ->rdllist and
->obflist empty for a short period of time although some events are
pending. It is quite likely that ep_events_available() observes empty
lists and goes to sleep.
Since commit 339ddb53d3 ("fs/epoll: remove unnecessary wakeups of
nested epoll") we are conservative in wakeups (there is only one place
for wakeup and this is ep_poll_callback()), thus ep_events_available()
must always observe correct state of two lists.
The easiest and correct way is to do the final check under the lock.
This does not impact the performance, since lock is taken anyway for
adding a wait entry to the wait queue.
The discussion of the problem can be found here:
https://lore.kernel.org/linux-fsdevel/a2f22c3c-c25a-4bda-8339-a7bdaf17849e@akamai.com/
In this patch barrierless __set_current_state() is used. This is safe
since waitqueue_active() is called under the same lock on wakeup side.
Short-circuit for fatal signals (i.e. fatal_signal_pending() check) is
moved to the line just before actual events harvesting routine. This is
fully compliant to what is said in the comment of the patch where the
actual fatal_signal_pending() check was added: c257a340ed ("fs, epoll:
short circuit fetching events if thread has been killed").
Fixes: 339ddb53d3 ("fs/epoll: remove unnecessary wakeups of nested epoll")
Reported-by: Jason Baron <jbaron@akamai.com>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Baron <jbaron@akamai.com>
Cc: Khazhismel Kumykov <khazhy@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200505145609.1865152-1-rpenyaev@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch does two things:
- fixes a lost wakeup introduced by commit 339ddb53d3 ("fs/epoll:
remove unnecessary wakeups of nested epoll")
- improves performance for events delivery.
The description of the problem is the following: if N (>1) threads are
waiting on ep->wq for new events and M (>1) events come, it is quite
likely that >1 wakeups hit the same wait queue entry, because there is
quite a big window between __add_wait_queue_exclusive() and the
following __remove_wait_queue() calls in ep_poll() function.
This can lead to lost wakeups, because thread, which was woken up, can
handle not all the events in ->rdllist. (in better words the problem is
described here: https://lkml.org/lkml/2019/10/7/905)
The idea of the current patch is to use init_wait() instead of
init_waitqueue_entry().
Internally init_wait() sets autoremove_wake_function as a callback,
which removes the wait entry atomically (under the wq locks) from the
list, thus the next coming wakeup hits the next wait entry in the wait
queue, thus preventing lost wakeups.
Problem is very well reproduced by the epoll60 test case [1].
Wait entry removal on wakeup has also performance benefits, because
there is no need to take a ep->lock and remove wait entry from the queue
after the successful wakeup. Here is the timing output of the epoll60
test case:
With explicit wakeup from ep_scan_ready_list() (the state of the
code prior 339ddb53d3):
real 0m6.970s
user 0m49.786s
sys 0m0.113s
After this patch:
real 0m5.220s
user 0m36.879s
sys 0m0.019s
The other testcase is the stress-epoll [2], where one thread consumes
all the events and other threads produce many events:
With explicit wakeup from ep_scan_ready_list() (the state of the
code prior 339ddb53d3):
threads events/ms run-time ms
8 5427 1474
16 6163 2596
32 6824 4689
64 7060 9064
128 6991 18309
After this patch:
threads events/ms run-time ms
8 5598 1429
16 7073 2262
32 7502 4265
64 7640 8376
128 7634 16767
(number of "events/ms" represents event bandwidth, thus higher is
better; number of "run-time ms" represents overall time spent
doing the benchmark, thus lower is better)
[1] tools/testing/selftests/filesystems/epoll/epoll_wakeup_test.c
[2] https://github.com/rouming/test-tools/blob/master/stress-epoll.c
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Jason Baron <jbaron@akamai.com>
Cc: Khazhismel Kumykov <khazhy@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Heiher <r@hev.cc>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200430130326.1368509-2-rpenyaev@suse.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In the event that we add to ovflist, before commit 339ddb53d3
("fs/epoll: remove unnecessary wakeups of nested epoll") we would be
woken up by ep_scan_ready_list, and did no wakeup in ep_poll_callback.
With that wakeup removed, if we add to ovflist here, we may never wake
up. Rather than adding back the ep_scan_ready_list wakeup - which was
resulting in unnecessary wakeups, trigger a wake-up in ep_poll_callback.
We noticed that one of our workloads was missing wakeups starting with
339ddb53d3 and upon manual inspection, this wakeup seemed missing to me.
With this patch added, we no longer see missing wakeups. I haven't yet
tried to make a small reproducer, but the existing kselftests in
filesystem/epoll passed for me with this patch.
[khazhy@google.com: use if/elif instead of goto + cleanup suggested by Roman]
Link: http://lkml.kernel.org/r/20200424190039.192373-1-khazhy@google.com
Fixes: 339ddb53d3 ("fs/epoll: remove unnecessary wakeups of nested epoll")
Signed-off-by: Khazhismel Kumykov <khazhy@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Penyaev <rpenyaev@suse.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Roman Penyaev <rpenyaev@suse.de>
Cc: Heiher <r@hev.cc>
Cc: Jason Baron <jbaron@akamai.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200424025057.118641-1-khazhy@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Davidlohr Bueso pointed out that when CONFIG_DEBUG_LOCK_ALLOC is set
ep_poll_safewake() can take several non-raw spinlocks after disabling
interrupts. Since a spinlock can block in the -rt kernel, we can't take a
spinlock after disabling interrupts. So let's re-work how we determine
the nesting level such that it plays nicely with the -rt kernel.
Let's introduce a 'nests' field in struct eventpoll that records the
current nesting level during ep_poll_callback(). Then, if we nest again
we can find the previous struct eventpoll that we were called from and
increase our count by 1. The 'nests' field is protected by
ep->poll_wait.lock.
I've also moved the visited field to reduce the size of struct eventpoll
from 184 bytes to 176 bytes on x86_64 for !CONFIG_DEBUG_LOCK_ALLOC, which
is typical for a production config.
Reported-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Roman Penyaev <rpenyaev@suse.de>
Cc: Eric Wong <normalperson@yhbt.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: http://lkml.kernel.org/r/1582739816-13167-1-git-send-email-jbaron@akamai.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This fixes possible lost wakeup introduced by commit a218cc4914.
Originally modifications to ep->wq were serialized by ep->wq.lock, but
in commit a218cc4914 ("epoll: use rwlock in order to reduce
ep_poll_callback() contention") a new rw lock was introduced in order to
relax fd event path, i.e. callers of ep_poll_callback() function.
After the change ep_modify and ep_insert (both are called on epoll_ctl()
path) were switched to ep->lock, but ep_poll (epoll_wait) was using
ep->wq.lock on wqueue list modification.
The bug doesn't lead to any wqueue list corruptions, because wake up
path and list modifications were serialized by ep->wq.lock internally,
but actual waitqueue_active() check prior wake_up() call can be
reordered with modifications of ep ready list, thus wake up can be lost.
And yes, can be healed by explicit smp_mb():
list_add_tail(&epi->rdlink, &ep->rdllist);
smp_mb();
if (waitqueue_active(&ep->wq))
wake_up(&ep->wp);
But let's make it simple, thus current patch replaces ep->wq.lock with
the ep->lock for wqueue modifications, thus wake up path always observes
activeness of the wqueue correcty.
Fixes: a218cc4914 ("epoll: use rwlock in order to reduce ep_poll_callback() contention")
Reported-by: Max Neunhoeffer <max@arangodb.com>
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Tested-by: Max Neunhoeffer <max@arangodb.com>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Christopher Kohlhoff <chris.kohlhoff@clearpool.io>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Jes Sorensen <jes.sorensen@gmail.com>
Cc: <stable@vger.kernel.org> [5.1+]
Link: http://lkml.kernel.org/r/20200214170211.561524-1-rpenyaev@suse.de
References: https://bugzilla.kernel.org/show_bug.cgi?id=205933
Bisected-by: Max Neunhoeffer <max@arangodb.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Also make it available outside of epoll, along with the helper that
decides if we need to copy the passed in epoll_event.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, ep_poll_safewake() in the CONFIG_DEBUG_LOCK_ALLOC case uses
ep_call_nested() in order to pass the correct subclass argument to
spin_lock_irqsave_nested(). However, ep_call_nested() adds unnecessary
checks for epoll depth and loops that are already verified when doing
EPOLL_CTL_ADD. This mirrors a conversion that was done for
!CONFIG_DEBUG_LOCK_ALLOC in: commit 37b5e5212a ("epoll: remove
ep_call_nested() from ep_eventpoll_poll()")
Link: http://lkml.kernel.org/r/1567628549-11501-1-git-send-email-jbaron@akamai.com
Signed-off-by: Jason Baron <jbaron@akamai.com>
Reviewed-by: Roman Penyaev <rpenyaev@suse.de>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Eric Wong <normalperson@yhbt.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add an ID and a device pointer to 'struct wakeup_source'. Use them to to
expose wakeup sources statistics in sysfs under
/sys/class/wakeup/wakeup<ID>/*.
Co-developed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Co-developed-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Tri Vo <trong@android.com>
Tested-by: Kalesh Singh <kaleshsingh@google.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
In the sysctl code the proc_dointvec_minmax() function is often used to
validate the user supplied value between an allowed range. This
function uses the extra1 and extra2 members from struct ctl_table as
minimum and maximum allowed value.
On sysctl handler declaration, in every source file there are some
readonly variables containing just an integer which address is assigned
to the extra1 and extra2 members, so the sysctl range is enforced.
The special values 0, 1 and INT_MAX are very often used as range
boundary, leading duplication of variables like zero=0, one=1,
int_max=INT_MAX in different source files:
$ git grep -E '\.extra[12].*&(zero|one|int_max)' |wc -l
248
Add a const int array containing the most commonly used values, some
macros to refer more easily to the correct array member, and use them
instead of creating a local one for every object file.
This is the bloat-o-meter output comparing the old and new binary
compiled with the default Fedora config:
# scripts/bloat-o-meter -d vmlinux.o.old vmlinux.o
add/remove: 2/2 grow/shrink: 0/2 up/down: 24/-188 (-164)
Data old new delta
sysctl_vals - 12 +12
__kstrtab_sysctl_vals - 12 +12
max 14 10 -4
int_max 16 - -16
one 68 - -68
zero 128 28 -100
Total: Before=20583249, After=20583085, chg -0.00%
[mcroce@redhat.com: tipc: remove two unused variables]
Link: http://lkml.kernel.org/r/20190530091952.4108-1-mcroce@redhat.com
[akpm@linux-foundation.org: fix net/ipv6/sysctl_net_ipv6.c]
[arnd@arndb.de: proc/sysctl: make firmware loader table conditional]
Link: http://lkml.kernel.org/r/20190617130014.1713870-1-arnd@arndb.de
[akpm@linux-foundation.org: fix fs/eventpoll.c]
Link: http://lkml.kernel.org/r/20190430180111.10688-1-mcroce@redhat.com
Signed-off-by: Matteo Croce <mcroce@redhat.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Aaron Tomlin <atomlin@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
task->saved_sigmask and ->restore_sigmask are only used in the ret-from-
syscall paths. This means that set_user_sigmask() can save ->blocked in
->saved_sigmask and do set_restore_sigmask() to indicate that ->blocked
was modified.
This way the callers do not need 2 sigset_t's passed to set/restore and
restore_user_sigmask() renamed to restore_saved_sigmask_unless() turns
into the trivial helper which just calls restore_saved_sigmask().
Link: http://lkml.kernel.org/r/20190606113206.GA9464@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Eric Wong <e@80x24.org>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: David Laight <David.Laight@aculab.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>