nfit_test needs to use the poison list manipulation code as well. Make
it more generic and in the process rename poison to badrange, and move
all the related helpers to a new file.
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
[vishal: Add badrange.o to nfit_test's Kbuild]
[vishal: add a missed include in bus.c for the new badrange functions]
[vishal: rename all instances of 'be' to 'bre']
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
mmio_flush_range() suffers from a lack of clearly-defined semantics,
and is somewhat ambiguous to port to other architectures where the
scope of the writeback implied by "flush" and ordering might matter,
but MMIO would tend to imply non-cacheable anyway. Per the rationale
in 67a3e8fe90 ("nd_blk: change aperture mapping from WC to WB"), the
only existing use is actually to invalidate clean cache lines for
ARCH_MEMREMAP_PMEM type mappings *without* writeback. Since the recent
cleanup of the pmem API, that also now happens to be the exact purpose
of arch_invalidate_pmem(), which would be a far more well-defined tool
for the job.
Rather than risk potentially inconsistent implementations of
mmio_flush_range() for the sake of one callsite, streamline things by
removing it entirely and instead move the ARCH_MEMREMAP_PMEM related
definitions up to the libnvdimm level, so they can be shared by NFIT
as well. This allows NFIT to be enabled for arm64.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
It is useful to be able to know the position of a DIMM in an
interleave-set. Consider the case where the order of the DIMMs changes
causing a namespace to be invalidated because the interleave-set cookie no
longer matches. If the before and after state of each DIMM position is
known this state debugged by the system owner.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add a bus level dsm_mask to nvdimm_bus_descriptor to allow the passthru
calling mechanism to specify a different mask from the cmd_mask.
Populate bus_dsm_mask and use it to filter dsm calls that user can
make through the pass thru interface.
Signed-off-by: Jerry Hoemann <jerry.hoemann@hpe.com>
[djbw: use command number constants instead of a magic mask value]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The pmem driver attaches to both persistent and volatile memory ranges
advertised by the ACPI NFIT. When the region is volatile it is redundant
to spend cycles flushing caches at fsync(). Check if the hosting region
is volatile and do not set dax_write_cache() if it is.
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that all callers of the pmem api have been converted to dax helpers that
call back to the pmem driver, we can remove include/linux/pmem.h and
asm/pmem.h.
Cc: <x86@kernel.org>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Oliver O'Halloran <oohall@gmail.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The type_guid refers to the "Address Range Type GUID" for the region
backing a namespace as defined the ACPI NFIT (NVDIMM Firmware Interface
Table). This 'type' identifier specifies an access mechanism for the
given namespace. This capability replaces the confusing usage of the
'NSLABEL_FLAG_LOCAL' flag to indicate a block-aperture-mode namespace.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The interleave-set-cookie algorithm is extended to incorporate all the
same components that are used to generate an nvdimm unique-id. For
backwards compatibility we still maintain the old v1.1 definition.
Reported-by: Nicholas Moulin <nicholas.w.moulin@intel.com>
Reported-by: Kaushik Kanetkar <kaushik.a.kanetkar@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
This is a preparation patch for handling locked nvdimm label regions, a
new concept as introduced by the latest DSM document on pmem.io [1]. A
future patch will leverage nvdimm_set_locked() at DIMM probe time to
flag regions that can not be enabled. There should be no functional
difference resulting from this change.
[1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example-V1.3.pdf
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Toshi noticed that the new support for a region-level badblocks missed
the case where errors are cleared due to BTT I/O.
An initial attempt to fix this ran into a "sleeping while atomic"
warning due to taking the nvdimm_bus_lock() in the BTT I/O path to
satisfy the locking requirements of __nvdimm_bus_badblocks_clear().
However, that lock is not needed since we are not acting on any data that
is subject to change under that lock. The badblocks instance has its own
internal lock to handle mutations of the error list.
So, in order to make it clear that we are just acting on region devices,
rename __nvdimm_bus_badblocks_clear() to nvdimm_clear_badblocks_regions().
Eliminate the lock and consolidate all support routines for the new
nvdimm_account_cleared_poison() in drivers/nvdimm/bus.c. Finally, to the
opportunity to cleanup to some unnecessary casts, make the calling
convention of nvdimm_clear_badblocks_regions() clearer by replacing struct
resource with the minimal struct clear_badblocks_context, and use the
DEVICE_ATTR macro.
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Reported-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The following warning results from holding a lane spinlock,
preempt_disable(), or the btt map spinlock and then trying to take the
reconfig_mutex to walk the poison list and potentially add new entries.
BUG: sleeping function called from invalid context at kernel/locking/mutex.
c:747
in_atomic(): 1, irqs_disabled(): 0, pid: 17159, name: dd
[..]
Call Trace:
dump_stack+0x85/0xc8
___might_sleep+0x184/0x250
__might_sleep+0x4a/0x90
__mutex_lock+0x58/0x9b0
? nvdimm_bus_lock+0x21/0x30 [libnvdimm]
? __nvdimm_bus_badblocks_clear+0x2f/0x60 [libnvdimm]
? acpi_nfit_forget_poison+0x79/0x80 [nfit]
? _raw_spin_unlock+0x27/0x40
mutex_lock_nested+0x1b/0x20
nvdimm_bus_lock+0x21/0x30 [libnvdimm]
nvdimm_forget_poison+0x25/0x50 [libnvdimm]
nvdimm_clear_poison+0x106/0x140 [libnvdimm]
nsio_rw_bytes+0x164/0x270 [libnvdimm]
btt_write_pg+0x1de/0x3e0 [nd_btt]
? blk_queue_enter+0x30/0x290
btt_make_request+0x11a/0x310 [nd_btt]
? blk_queue_enter+0xb7/0x290
? blk_queue_enter+0x30/0x290
generic_make_request+0x118/0x3b0
A spinlock is introduced to protect the poison list. This allows us to not
having to acquire the reconfig_mutex for touching the poison list. The
add_poison() function has been broken out into two helper functions. One to
allocate the poison entry and the other to apppend the entry. This allows us
to unlock the poison_lock in non-I/O path and continue to be able to allocate
the poison entry with GFP_KERNEL. We will use GFP_NOWAIT in the I/O path in
order to satisfy being in atomic context.
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Providing mechanism to clear poison list via the ndctl ND_CMD_CLEAR_ERROR
call. We will update the poison list and also the badblocks at region level
if the region is in dax mode or in pmem mode and not active. In other
words we force badblocks to be cleared through write requests if the
address is currently accessed through a block device, otherwise it can
only be done via the ioctl+dsm path.
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The interleave-set cookie is a sum that sanity checks the composition of
an interleave set has not changed from when the namespace was initially
created. The checksum is calculated by sorting the DIMMs by their
location in the interleave-set. The comparison for the sort must be
64-bit wide, not byte-by-byte as performed by memcmp() in the broken
case.
Fix the implementation to accept correct cookie values in addition to
the Linux "memcmp" order cookies, but only allow correct cookies to be
generated going forward. It does mean that namespaces created by
third-party-tooling, or created by newer kernels with this fix, will not
validate on older kernels. However, there are a couple mitigating
conditions:
1/ platforms with namespace-label capable NVDIMMs are not widely
available.
2/ interleave-sets with a single-dimm are by definition not affected
(nothing to sort). This covers the QEMU-KVM NVDIMM emulation case.
The cookie stored in the namespace label will be fixed by any write the
namespace label, the most straightforward way to achieve this is to
write to the "alt_name" attribute of a namespace in sysfs.
Cc: <stable@vger.kernel.org>
Fixes: eaf961536e ("libnvdimm, nfit: add interleave-set state-tracking infrastructure")
Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Tested-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Given ambiguities in the ACPI 6.1 definition of the "Output (Size)"
field of the ARS (Address Range Scrub) Status command, a firmware
implementation may in practice return 0, 4, or 8 to indicate that there
is no output payload to process.
The specification states "Size of Output Buffer in bytes, including this
field.". However, 'Output Buffer' is also the name of the entire
payload, and earlier in the specification it states "Max Query ARS
Status Output Buffer Size: Maximum size of buffer (including the Status
and Extended Status fields)".
Without this fix if the BIOS happens to return 0 it causes memory
corruption as evidenced by this result from the acpi_nfit_ctl() unit
test.
ars_status00000000: 00020000 00000000 ........
BUG: stack guard page was hit at ffffc90001750000 (stack is ffffc9000174c000..ffffc9000174ffff)
kernel stack overflow (page fault): 0000 [#1] SMP DEBUG_PAGEALLOC
task: ffff8803332d2ec0 task.stack: ffffc9000174c000
RIP: 0010:[<ffffffff814cfe72>] [<ffffffff814cfe72>] __memcpy+0x12/0x20
RSP: 0018:ffffc9000174f9a8 EFLAGS: 00010246
RAX: ffffc9000174fab8 RBX: 0000000000000000 RCX: 000000001fffff56
RDX: 0000000000000000 RSI: ffff8803231f5a08 RDI: ffffc90001750000
RBP: ffffc9000174fa88 R08: ffffc9000174fab0 R09: ffff8803231f54b8
R10: 0000000000000008 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000000 R14: 0000000000000003 R15: ffff8803231f54a0
FS: 00007f3a611af640(0000) GS:ffff88033ed00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc90001750000 CR3: 0000000325b20000 CR4: 00000000000406e0
Stack:
ffffffffa00bc60d 0000000000000008 ffffc90000000001 ffffc9000174faac
0000000000000292 ffffffffa00c24e4 ffffffffa00c2914 0000000000000000
0000000000000000 ffffffff00000003 ffff880331ae8ad0 0000000800000246
Call Trace:
[<ffffffffa00bc60d>] ? acpi_nfit_ctl+0x49d/0x750 [nfit]
[<ffffffffa01f4fe0>] nfit_test_probe+0x670/0xb1b [nfit_test]
Cc: <stable@vger.kernel.org>
Fixes: 747ffe11b4 ("libnvdimm, tools/testing/nvdimm: fix 'ars_status' output buffer sizing")
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Before we add more libnvdimm-private fields to nd_mapping make it clear
which parameters are input vs libnvdimm internals. Use struct
nd_mapping_desc instead of struct nd_mapping in nd_region_desc and make
struct nd_mapping private to libnvdimm.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
nvdimm_clear_poison cleared the user-visible badblocks, and sent
commands to the NVDIMM to clear the areas marked as 'poison', but it
neglected to clear the same areas from the internal poison_list which is
used to marshal ARS results before sorting them by namespace. As a
result, once on-demand ARS functionality was added:
37b137f nfit, libnvdimm: allow an ARS scrub to be triggered on demand
A scrub triggered from either sysfs or an MCE was found to be adding
stale entries that had been cleared from gendisk->badblocks, but were
still present in nvdimm_bus->poison_list. Additionally, the stale entries
could be triggered into producing stale disk->badblocks by simply disabling
and re-enabling the namespace or region.
This adds the missing step of clearing poison_list entries when clearing
poison, so that it is always in sync with badblocks.
Fixes: 37b137f ("nfit, libnvdimm: allow an ARS scrub to be triggered on demand")
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Per "ACPI 6.1 Section 9.20.3" NVDIMM devices, children of the ACPI0012
NVDIMM Root device, can receive health event notifications.
Given that these devices are precluded from registering a notification
handler via acpi_driver.acpi_device_ops (due to no _HID), we use
acpi_install_notify_handler() directly. The registered handler,
acpi_nvdimm_notify(), triggers a poll(2) event on the nmemX/nfit/flags
sysfs attribute when a health event notification is received.
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hpe.com>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Reviewed-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Normally, an ARS (Address Range Scrub) only happens at
boot/initialization time. There can however arise situations where a
bus-wide rescan is needed - notably, in the case of discovering a latent
media error, we should do a full rescan to figure out what other sectors
are bad, and thus potentially avoid triggering an mce on them in the
future. Also provide a sysfs trigger to start a bus-wide scrub.
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Let the provider module be explicitly passed in rather than implicitly
assumed by the module that calls nvdimm_bus_register(). This is in
preparation for unifying the nfit and nfit_test driver teardown paths.
Reviewed-by: Lee, Chun-Yi <jlee@suse.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
nvdimm_flush() is a replacement for the x86 'pcommit' instruction. It is
an optional write flushing mechanism that an nvdimm bus can provide for
the pmem driver to consume. In the case of the NFIT nvdimm-bus-provider
nvdimm_flush() is implemented as a series of flush-hint-address [1]
writes to each dimm in the interleave set (region) that backs the
namespace.
The nvdimm_has_flush() routine relies on platform firmware to describe
the flushing capabilities of a platform. It uses the heuristic of
whether an nvdimm bus provider provides flush address data to return a
ternary result:
1: flush addresses defined
0: dimm topology described without flush addresses (assume ADR)
-errno: no topology information, unable to determine flush mechanism
The pmem driver is expected to take the following actions on this ternary
result:
1: nvdimm_flush() in response to REQ_FUA / REQ_FLUSH and shutdown
0: do not set, WC or FUA on the queue, take no further action
-errno: warn and then operate as if nvdimm_has_flush() returned '0'
The caveat of this heuristic is that it can not distinguish the "dimm
does not have flush address" case from the "platform firmware is broken
and failed to describe a flush address". Given we are already
explicitly trusting the NFIT there's not much more we can do beyond
blacklisting broken firmwares if they are ever encountered.
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for triggering flushes of a DIMM's writes-posted-queue
(WPQ) via the pmem driver move mapping of flush hint addresses to the
region driver. Since this uses devm_nvdimm_memremap() the flush
addresses will remain mapped while any region to which the dimm belongs
is active.
We need to communicate more information to the nvdimm core to facilitate
this mapping, namely each dimm object now carries an array of flush hint
address resources.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Now that all shared mappings are handled by devm_nvdimm_memremap() we no
longer need nfit_spa_map() nor do we need to trigger a callback to the
bus provider at region disable time.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
In preparation for generically mapping flush hint addresses for both the
BLK and PMEM use case, provide a generic / reference counted mapping
api. Given the fact that a dimm may belong to multiple regions (PMEM
and BLK), the flush hint addresses need to be held valid as long as any
region associated with the dimm is active. This is similar to the
existing BLK-region case where multiple BLK-regions may share an
aperture mapping. Up-level this shared / reference-counted mapping
capability from the nfit driver to a core nvdimm capability.
This eliminates the need for the nd_blk_region.disable() callback. Note
that the removal of nfit_spa_map() and related infrastructure is
deferred to a later patch.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Clarify the distinction between "commands", the ioctls userspace calls
to request the kernel take some action on a given dimm device, and
"_DSMs", the actual function numbers used in the firmware interface to
the DIMM. _DSMs are ACPI specific whereas commands are Linux kernel
generic.
This is in preparation for breaking the 1:1 implicit relationship
between the kernel ioctl number space and the firmware specific function
numbers.
Cc: Jerry Hoemann <jerry.hoemann@hpe.com>
Cc: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
nd_ioctl() must first read in the fixed sized portion of an ioctl so
that it can then determine the size of the variable part.
Prepare for ND_CMD_CALL calls which have larger fixed portion
envelope.
Signed-off-by: Jerry Hoemann <jerry.hoemann@hpe.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
While the nfit driver is issuing address range scrub commands and
reaping the results do not permit an ars_start command issued from
userspace. The scrub thread assumes that all ars completions are for
scrubs initiated by platform firmware at boot, or by the nfit driver.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Introduce a workqueue that will be used to run address range scrub
asynchronously with the rest of nvdimm device probing.
Userspace still wants notification when probing operations complete, so
introduce a new callback to flush this workqueue when userspace is
awaiting probe completion.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The return value from an 'ndctl_fn' reports the command execution
status, i.e. was the command properly formatted and was it successfully
submitted to the bus provider. The new 'cmd_rc' parameter allows the bus
provider to communicate command specific results, translated into
common error codes.
Convert the ARS commands to this scheme to:
1/ Consolidate status reporting
2/ Prepare for for expanding ars unit test cases
3/ Make the implementation more generic
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The original format of these commands from the "NVDIMM DSM Interface
Example" [1] are superseded by the ACPI 6.1 definition of the "NVDIMM Root
Device _DSMs" [2].
[1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
[2]: http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
"9.20.7 NVDIMM Root Device _DSMs"
Changes include:
1/ New 'restart' fields in ars_status, unfortunately these are
implemented in the middle of the existing definition so this change
is not backwards compatible. The expectation is that shipping
platforms will only ever support the ACPI 6.1 definition.
2/ New status values for ars_start ('busy') and ars_status ('overflow').
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Linda Knippers <linda.knippers@hpe.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Use the output length specified in the command to size the receive
buffer rather than the arbitrary 4K limit.
This bug was hiding the fact that the ndctl implementation of
ndctl_bus_cmd_new_ars_status() was not specifying an output buffer size.
Cc: <stable@vger.kernel.org>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
During region creation, perform Address Range Scrubs (ARS) for the SPA
(System Physical Address) ranges to retrieve known poison locations from
firmware. Add a new data structure 'nd_poison' which is used as a list
in nvdimm_bus to store these poison locations.
When creating a pmem namespace, if there is any known poison associated
with its physical address space, convert the poison ranges to bad sectors
that are exposed using the badblocks interface.
Signed-off-by: Vishal Verma <vishal.l.verma@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The expectation is that the legacy / non-standard pmem discovery method
(e820 type-12) will only ever be used to describe small quantities of
persistent memory. Larger capacities will be described via the ACPI
NFIT. When "allocate struct page from pmem" support is added this default
policy can be overridden by assigning a legacy pmem namespace to a pfn
device, however this would be only be necessary if a platform used the
legacy mechanism to define a very large range.
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Add support of sysfs 'numa_node' to I/O-related NVDIMM devices
under /sys/bus/nd/devices, regionN, namespaceN.0, and bttN.x.
An example of numa_node values on a 2-socket system with a single
NVDIMM range on each socket is shown below.
/sys/bus/nd/devices
|-- btt0.0/numa_node:0
|-- btt1.0/numa_node:1
|-- btt1.1/numa_node:1
|-- namespace0.0/numa_node:0
|-- namespace1.0/numa_node:1
|-- region0/numa_node:0
|-- region1/numa_node:1
These numa_node files are then linked under the block class of
their device names.
/sys/class/block/pmem0/device/numa_node:0
/sys/class/block/pmem1s/device/numa_node:1
This enables numactl(8) to accept 'block:' and 'file:' paths of
pmem and btt devices as shown in the examples below.
numactl --preferred block:pmem0 --show
numactl --preferred file:/dev/pmem1s --show
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
ACPI NFIT table has System Physical Address Range Structure entries that
describe a proximity ID of each range when ACPI_NFIT_PROXIMITY_VALID is
set in the flags.
Change acpi_nfit_register_region() to map a proximity ID to its node ID,
and set it to a new numa_node field of nd_region_desc, which is then
conveyed to the nd_region device.
The device core arranges for btt and namespace devices to inherit their
node from their parent region.
Signed-off-by: Toshi Kani <toshi.kani@hp.com>
[djbw: move set_dev_node() from region.c to bus.c]
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Upon detection of an unarmed dimm in a region, arrange for descendant
BTT, PMEM, or BLK instances to be read-only. A dimm is primarily marked
"unarmed" via flags passed by platform firmware (NFIT).
The flags in the NFIT memory device sub-structure indicate the state of
the data on the nvdimm relative to its energy source or last "flush to
persistence". For the most part there is nothing the driver can do but
advertise the state of these flags in sysfs and emit a message if
firmware indicates that the contents of the device may be corrupted.
However, for the case of ACPI_NFIT_MEM_ARMED, the driver can arrange for
the block devices incorporating that nvdimm to be marked read-only.
This is a safe default as the data is still available and new writes are
held off until the administrator either forces read-write mode, or the
energy source becomes armed.
A 'read_only' attribute is added to REGION devices to allow for
overriding the default read-only policy of all descendant block devices.
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The libnvdimm implementation handles allocating dimm address space (DPA)
between PMEM and BLK mode interfaces. After DPA has been allocated from
a BLK-region to a BLK-namespace the nd_blk driver attaches to handle I/O
as a struct bio based block device. Unlike PMEM, BLK is required to
handle platform specific details like mmio register formats and memory
controller interleave. For this reason the libnvdimm generic nd_blk
driver calls back into the bus provider to carry out the I/O.
This initial implementation handles the BLK interface defined by the
ACPI 6 NFIT [1] and the NVDIMM DSM Interface Example [2] composed from
DCR (dimm control region), BDW (block data window), IDT (interleave
descriptor) NFIT structures and the hardware register format.
[1]: http://www.uefi.org/sites/default/files/resources/ACPI_6.0.pdf
[2]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
BTT stands for Block Translation Table, and is a way to provide power
fail sector atomicity semantics for block devices that have the ability
to perform byte granularity IO. It relies on the capability of libnvdimm
namespace devices to do byte aligned IO.
The BTT works as a stacked blocked device, and reserves a chunk of space
from the backing device for its accounting metadata. It is a bio-based
driver because all IO is done synchronously, and there is no queuing or
asynchronous completions at either the device or the driver level.
The BTT uses 'lanes' to index into various 'on-disk' data structures,
and lanes also act as a synchronization mechanism in case there are more
CPUs than available lanes. We did a comparison between two lane lock
strategies - first where we kept an atomic counter around that tracked
which was the last lane that was used, and 'our' lane was determined by
atomically incrementing that. That way, for the nr_cpus > nr_lanes case,
theoretically, no CPU would be blocked waiting for a lane. The other
strategy was to use the cpu number we're scheduled on to and hash it to
a lane number. Theoretically, this could block an IO that could've
otherwise run using a different, free lane. But some fio workloads
showed that the direct cpu -> lane hash performed faster than tracking
'last lane' - my reasoning is the cache thrash caused by moving the
atomic variable made that approach slower than simply waiting out the
in-progress IO. This supports the conclusion that the driver can be a
very simple bio-based one that does synchronous IOs instead of queuing.
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Neil Brown <neilb@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
[jmoyer: fix nmi watchdog timeout in btt_map_init]
[jmoyer: move btt initialization to module load path]
[jmoyer: fix memory leak in the btt initialization path]
[jmoyer: Don't overwrite corrupted arenas]
Signed-off-by: Vishal Verma <vishal.l.verma@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A blk label set describes a namespace comprised of one or more
discontiguous dpa ranges on a single dimm. They may alias with one or
more pmem interleave sets that include the given dimm.
This is the runtime/volatile configuration infrastructure for sysfs
manipulation of 'alt_name', 'uuid', 'size', and 'sector_size'. A later
patch will make these settings persistent by writing back the label(s).
Unlike pmem namespaces, multiple blk namespaces can be created per
region. Once a blk namespace has been created a new seed device
(unconfigured child of a parent blk region) is instantiated. As long as
a region has 'available_size' != 0 new child namespaces may be created.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A complete label set is a PMEM-label per-dimm per-interleave-set where
all the UUIDs match and the interleave set cookie matches the hosting
interleave set.
Present sysfs attributes for manipulation of a PMEM-namespace's
'alt_name', 'uuid', and 'size' attributes. A later patch will make
these settings persistent by writing back the label.
Note that PMEM allocations grow forwards from the start of an interleave
set (lowest dimm-physical-address (DPA)). BLK-namespaces that alias
with a PMEM interleave set will grow allocations backward from the
highest DPA.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
On platforms that have firmware support for reading/writing per-dimm
label space, a portion of the dimm may be accessible via an interleave
set PMEM mapping in addition to the dimm's BLK (block-data-window
aperture(s)) interface. A label, stored in a "configuration data
region" on the dimm, disambiguates which dimm addresses are accessed
through which exclusive interface.
Add infrastructure that allows the kernel to block modifications to a
label in the set while any member dimm is active. Note that this is
meant only for enforcing "no modifications of active labels" via the
coarse ioctl command. Adding/deleting namespaces from an active
interleave set is always possible via sysfs.
Another aspect of tracking interleave sets is tracking their integrity
when DIMMs in a set are physically re-ordered. For this purpose we
generate an "interleave-set cookie" that can be recorded in a label and
validated against the current configuration. It is the bus provider
implementation's responsibility to calculate the interleave set cookie
and attach it to a given region.
Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The libnvdimm region driver is an intermediary driver that translates
non-volatile "region"s into "namespace" sub-devices that are surfaced by
persistent memory block-device drivers (PMEM and BLK).
ACPI 6 introduces the concept that a given nvdimm may simultaneously
offer multiple access modes to its media through direct PMEM load/store
access, or windowed BLK mode. Existing nvdimms mostly implement a PMEM
interface, some offer a BLK-like mode, but never both as ACPI 6 defines.
If an nvdimm is single interfaced, then there is no need for dimm
metadata labels. For these devices we can take the region boundaries
directly to create a child namespace device (nd_namespace_io).
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A "region" device represents the maximum capacity of a BLK range (mmio
block-data-window(s)), or a PMEM range (DAX-capable persistent memory or
volatile memory), without regard for aliasing. Aliasing, in the
dimm-local address space (DPA), is resolved by metadata on a dimm to
designate which exclusive interface will access the aliased DPA ranges.
Support for the per-dimm metadata/label arrvies is in a subsequent
patch.
The name format of "region" devices is "regionN" where, like dimms, N is
a global ida index assigned at discovery time. This id is not reliable
across reboots nor in the presence of hotplug. Look to attributes of
the region or static id-data of the sub-namespace to generate a
persistent name. However, if the platform configuration does not change
it is reasonable to expect the same region id to be assigned at the next
boot.
"region"s have 2 generic attributes "size", and "mapping"s where:
- size: the BLK accessible capacity or the span of the
system physical address range in the case of PMEM.
- mappingN: a tuple describing a dimm's contribution to the region's
capacity in the format (<nmemX>,<dpa>,<size>). For a PMEM-region
there will be at least one mapping per dimm in the interleave set. For
a BLK-region there is only "mapping0" listing the starting DPA of the
BLK-region and the available DPA capacity of that space (matches "size"
above).
The max number of mappings per "region" is hard coded per the
constraints of sysfs attribute groups. That said the number of mappings
per region should never exceed the maximum number of possible dimms in
the system. If the current number turns out to not be enough then the
"mappings" attribute clarifies how many there are supposed to be. "32
should be enough for anybody...".
Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* Implement the device-model infrastructure for loading modules and
attaching drivers to nvdimm devices. This is a simple association of a
nd-device-type number with a driver that has a bitmask of supported
device types. To facilitate userspace bind/unbind operations 'modalias'
and 'devtype', that also appear in the uevent, are added as generic
sysfs attributes for all nvdimm devices. The reason for the device-type
number is to support sub-types within a given parent devtype, be it a
vendor-specific sub-type or otherwise.
* The first consumer of this infrastructure is the driver
for dimm devices. It simply uses control messages to retrieve and
store the configuration-data image (label set) from each dimm.
Note: nd_device_register() arranges for asynchronous registration of
nvdimm bus devices by default.
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Neil Brown <neilb@suse.de>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Most discovery/configuration of the nvdimm-subsystem is done via sysfs
attributes. However, some nvdimm_bus instances, particularly the
ACPI.NFIT bus, define a small set of messages that can be passed to the
platform. For convenience we derive the initial libnvdimm-ioctl command
formats directly from the NFIT DSM Interface Example formats.
ND_CMD_SMART: media health and diagnostics
ND_CMD_GET_CONFIG_SIZE: size of the label space
ND_CMD_GET_CONFIG_DATA: read label space
ND_CMD_SET_CONFIG_DATA: write label space
ND_CMD_VENDOR: vendor-specific command passthrough
ND_CMD_ARS_CAP: report address-range-scrubbing capabilities
ND_CMD_ARS_START: initiate scrubbing
ND_CMD_ARS_STATUS: report on scrubbing state
ND_CMD_SMART_THRESHOLD: configure alarm thresholds for smart events
If a platform later defines different commands than this set it is
straightforward to extend support to those formats.
Most of the commands target a specific dimm. However, the
address-range-scrubbing commands target the bus. The 'commands'
attribute in sysfs of an nvdimm_bus, or nvdimm, enumerate the supported
commands for that object.
Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reported-by: Nicholas Moulin <nicholas.w.moulin@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Enable nvdimm devices to be registered on a nvdimm_bus. The kernel
assigned device id for nvdimm devicesis dynamic. If userspace needs a
more static identifier it should consult a provider-specific attribute.
In the case where NFIT is the provider, the 'nmemX/nfit/handle' or
'nmemX/nfit/serial' attributes may be used for this purpose.
Cc: Neil Brown <neilb@suse.de>
Cc: <linux-acpi@vger.kernel.org>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The control device for a nvdimm_bus is registered as an "nd" class
device. The expectation is that there will usually only be one "nd" bus
registered under /sys/class/nd. However, we allow for the possibility
of multiple buses and they will listed in discovery order as
ndctl0...ndctlN. This character device hosts the ioctl for passing
control messages. The initial command set has a 1:1 correlation with
the commands listed in the by the "NFIT DSM Example" document [1], but
this scheme is extensible to future command sets.
Note, nd_ioctl() and the backing ->ndctl() implementation are defined in
a subsequent patch. This is simply the initial registrations and sysfs
attributes.
[1]: http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
Cc: Neil Brown <neilb@suse.de>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: <linux-acpi@vger.kernel.org>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
A struct nvdimm_bus is the anchor device for registering nvdimm
resources and interfaces, for example, a character control device,
nvdimm devices, and I/O region devices. The ACPI NFIT (NVDIMM Firmware
Interface Table) is one possible platform description for such
non-volatile memory resources in a system. The nfit.ko driver attaches
to the "ACPI0012" device that indicates the presence of the NFIT and
parses the table to register a struct nvdimm_bus instance.
Cc: <linux-acpi@vger.kernel.org>
Cc: Lv Zheng <lv.zheng@intel.com>
Cc: Robert Moore <robert.moore@intel.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>