xfs_dir2_block_compact() is passed a pointer to *blp, and
advances it locally - but nobody uses the pointer (locally)
after that.
This behavior came about as part of prior refactoring,
20f7e9f xfs: factor dir2 block read operations
and looking at the code as it was before, it seems quite clear
that this change introduced a bug; the pre-refactoring code
expects blp to be modified after compaction.
And indeed it did; see this commit which fixed it:
37f1356 xfs: recalculate leaf entry pointer after compacting a dir2 block
So the bug was introduced & resolved in the 3.8 cycle.
Whoops. Well, it's fixed now, and mystery solved; just remove
the now-pointless local increment of the blp pointer.
(I guess we should have run clang earlier!)
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Modify all read & write verifiers to differentiate
between CRC errors and other inconsistencies.
This sets the appropriate error number on bp->b_error,
and then calls xfs_verifier_error() if something went
wrong. That function will issue the appropriate message
to the user.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Many/most callers of xfs_update_cksum() pass bp->b_addr and
BBTOB(bp->b_length) as the first 2 args. Add a helper
which can just accept the bp and the crc offset, and work
it out on its own, for brevity.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Many/most callers of xfs_verify_cksum() pass bp->b_addr and
BBTOB(bp->b_length) as the first 2 args. Add a helper
which can just accept the bp and the crc offset, and work
it out on its own, for brevity.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Many of the vectorised function calls now take no parameters and
return a constant value. There is no reason for these to be vectored
functions, so convert them to constants
Binary sizes:
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
789293 96802 1096 887191 d8997 fs/xfs/xfs.o.p3
789005 96802 1096 886903 d8997 fs/xfs/xfs.o.p4
789061 96802 1096 886959 d88af fs/xfs/xfs.o.p5
789733 96802 1096 887631 d8b4f fs/xfs/xfs.o.p6
791421 96802 1096 889319 d91e7 fs/xfs/xfs.o.p7
791701 96802 1096 889599 d92ff fs/xfs/xfs.o.p8
791205 96802 1096 889103 d91cf fs/xfs/xfs.o.p9
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Conversion from on-disk structures to in-core header structures
currently relies on magic number checks. If the magic number is
wrong, but one of the supported values, we do the wrong thing with
the encode/decode operation. Split these functions so that there are
discrete operations for the specific directory format we are
handling.
In doing this, move all the header encode/decode functions to
xfs_da_format.c as they are directly manipulating the on-disk
format. It should be noted that all the growth in binary size is
from xfs_da_format.c - the rest of the code actaully shrinks.
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
789293 96802 1096 887191 d8997 fs/xfs/xfs.o.p3
789005 96802 1096 886903 d8997 fs/xfs/xfs.o.p4
789061 96802 1096 886959 d88af fs/xfs/xfs.o.p5
789733 96802 1096 887631 d8b4f fs/xfs/xfs.o.p6
791421 96802 1096 889319 d91e7 fs/xfs/xfs.o.p7
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Next step in the vectorisation process is the leaf block
encode/decode operations. Most of the operations on leaves are
handled by the data block vectors, so there are relatively few of
them here.
Because of all the shuffling of code and having to pass more state
to some functions, this patch doesn't directly reduce the size of
the binary. It does open up many more opportunities for factoring
and optimisation, however.
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
789293 96802 1096 887191 d8997 fs/xfs/xfs.o.p3
789005 96802 1096 886903 d8997 fs/xfs/xfs.o.p4
789061 96802 1096 886959 d88af fs/xfs/xfs.o.p5
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Convert the rest of the directory data block encode/decode
operations to vector format.
This further reduces the size of the built binary:
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
789293 96802 1096 887191 d8997 fs/xfs/xfs.o.p3
789005 96802 1096 886903 d8997 fs/xfs/xfs.o.p4
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Following from the initial patches to vectorise the shortform
directory encode/decode operations, convert half the data block
operations to use the vector. The rest will be done in a second
patch.
This further reduces the size of the built binary:
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
789293 96802 1096 887191 d8997 fs/xfs/xfs.o.p3
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Following from the initial patch to introduce the directory
operations vector, convert the rest of the shortform directory
operations to use vectored ops rather than superblock feature
checks. This further reduces the size of the built binary:
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Lots of the dir code now goes through switches to determine what is
the correct on-disk format to parse. It generally involves a
"xfs_sbversion_hasfoo" check, deferencing the superblock version and
feature fields and hence touching several cache lines per operation
in the process. Some operations do multiple checks because they nest
conditional operations and they don't pass the information in a
direct fashion between each other.
Hence, add an ops vector to the xfs_inode structure that is
configured when the inode is initialised to point to all the correct
decode and encoding operations. This will significantly reduce the
branchiness and cacheline footprint of the directory object decoding
and encoding.
This is the first patch in a series of conversion patches. It will
introduce the ops structure, the setup of it and add the first
operation to the vector. Subsequent patches will convert directory
ops one at a time to keep the changes simple and obvious.
Just this patch shows the benefit of such an approach on code size.
Just converting the two shortform dir operations as this patch does
decreases the built binary size by ~1500 bytes:
$ size fs/xfs/xfs.o.orig fs/xfs/xfs.o.p1
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
$
That's a significant decrease in the instruction cache footprint of
the directory code for such a simple change, and indicates that this
approach is definitely worth pursuing further.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.
Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.
The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The on-disk format definitions for the directory and attribute
structures are spread across 3 header files right now, only one of
which is dedicated to defining on-disk structures and their
manipulation (xfs_dir2_format.h). Pull all the format definitions
into a single header file - xfs_da_format.h - and switch all the
code over to point at that.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The determination of whether a directory entry contains a dtype
field originally was dependent on the filesystem having CRCs
enabled. This meant that the format for dtype beign enabled could be
determined by checking the directory block magic number rather than
doing a feature bit check. This was useful in that it meant that we
didn't need to pass a struct xfs_mount around to functions that
were already supplied with a directory block header.
Unfortunately, the introduction of dtype fields into the v4
structure via a feature bit meant this "use the directory block
magic number" method of discriminating the dirent entry sizes is
broken. Hence we need to convert the places that use magic number
checks to use feature bit checks so that they work correctly and not
by chance.
The current code works on v4 filesystems only because the dirent
size roundup covers the extra byte needed by the dtype field in the
places where this problem occurs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add support to propagate and add filetype values into the on-disk
directs. This involves passing the filetype into the xfs_da_args
structure along with the name and namelength for direct operations,
and encoding it into the dirent at the same time we write the inode
number into the dirent.
With write support, add the feature flag to the
XFS_SB_FEAT_INCOMPAT_ALL mask so we can now mount filesystems with
this feature set.
Performance of directory recursion is now much improved. Parallel
walk of ~50 million directory entries across hundreds of directories
improves significantly. Unpatched, no CRCs:
Walking via ls -R
real 3m19.886s
user 6m36.960s
sys 28m19.087s
THis is doing roughly 500 getdents() calls per second, and 250,000
inode lookups per second to determine the inode type at roughly
17,000 read IOPS. CPU usage is 90% kernel space.
With dtype support patched in and the fileset recreated with CRCs
enabled:
Walking via ls -R
real 0m31.316s
user 6m32.975s
sys 0m21.111s
This is doing roughly 3500 getdents() calls per second at 16,000
IOPS. There are no inode lookups at all. CPU usages is almost 100%
userspace.
This is a big win for recursive directory walks that only need to
find file names and file types.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add support for the file type field in directory entries so that
readdir can return the type of the inode the dirent points to to
userspace without first having to read the inode off disk.
The encoding of the type field is a single byte that is added to the
end of the directory entry name length. For all intents and
purposes, it appends a "hidden" byte to the name field which
contains the type information. As the directory entry is already of
dynamic size, helpers are already required to access and decode the
direct entry structures.
Hence the relevent extraction and iteration helpers are updated to
understand the hidden byte. Helpers for reading and writing the
filetype field from the directory entries are also added. Only the
read helpers are used by this patch. It also adds all the code
necessary to read the type information out of the dirents on disk.
Further we add the superblock feature bit and helpers to indicate
that we understand the on-disk format change. This is not a
compatible change - existing kernels cannot read the new format
successfully - so an incompatible feature flag is added. We don't
yet allow filesystems to mount with this flag yet - that will be
added once write support is added.
Finally, the code to take the type from the VFS, convert it to an
XFS on-disk type and put it into the xfs_name structures passed
around is added, but the directory code does not use this field yet.
That will be in the next patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Many of the definitions within xfs_dir2_priv.h are needed in
userspace outside libxfs. Definitions within xfs_dir2_priv.h are
wholly contained within libxfs, so we need to shuffle some of the
definitions around to keep consistency across files shared between
user and kernel space.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The directory readdir code is not used by userspace, but it is
intermingled with files that are shared with userspace. This makes
it difficult to compare the differences between the userspac eand
kernel files are the userspace files don't have the getdents code in
them. Move all the kernel getdents code to a separate file to bring
the shared content between userspace and kernel files closer
together.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
- fix for xfs_fsr returning -EINVAL
- cleanup in xfs_bulkstat
- cleanup in xfs_open_by_handle
- update mount options documentation
- clean up local format handling in xfs_bmapi_write
- fix dquot log reservations which were too small
- fix sgid inheritance for subdirectories when default acls are in use
- add project quota fields to various structures
- fix teardown of quotainfo structures when quotas are turned off
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABAgAGBQJR4FDjAAoJENaLyazVq6ZOhZIQAMLWC4Wz+3PpRLkIlXZ83wdG
LYDNxdYntSVDXNLCrfIhuavgW1yhseLcQZD34g0hgOLQRsmjvUw2ikO6u7qlyoV1
GZZVwdVhsZNicycvuEE0Sva9Jmjgxe0XUOCxJBNAWN0fm5Jzg7w0OGWyzxn2obRX
L4LNPqnQS/phCrtNYfUnXpCuUcy0KbpX4GYrdt5tThIWHm7AcyRnOArEkFvVuwdf
N3OSN/jSMaEF/GsAqmYFYSXhuL9P1vyBSlyFW82YbyFFd4FKZJbRiFbOsrgbFSkA
Ssum7N+rfMc9DCbJsrztgxFaYpj42JR5eCm+jvTejx8nJWKiGjMVtzjq4QtwQQ6e
vby7MzdjZ+l2oJclA0y8hOjeg0R7sPVP7xZziZRuK4PHsjtBH3N2FtCOeBtlGhyW
14LK+z+5YXU/gEwmxV5LaknODb2mxvWycf70jaQ6bvrQRUiFnPNIxYKvgAx8YJxl
jgYSassHHKtLg0S54P/T91tRsyDVOhy5lqgeogzK5uYa+v+xlMloG+fLzb9GmIgS
hXgUIAo+lNlHZkw1FdD4aRgh3OMiUvLQN6woBMbbXfS5XaNpF1UG30YAXeeIqV5e
cLChzY+jQiCsmcktb3YQs9C5yfxEciFFSYmZOaKCTgQRWWnyI4/lAu1gd2KtTYUt
ZfV0niME4wp0kBWZHOEH
=QiZy
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v3.11-rc1-2' of git://oss.sgi.com/xfs/xfs
Pull more xfs updates from Ben Myers:
"Here are a fix for xfs_fsr, a cleanup in bulkstat, a cleanup in
xfs_open_by_handle, updated mount options documentation, a cleanup in
xfs_bmapi_write, a fix for the size of dquot log reservations, a fix
for sgid inheritance when acls are in use, a fix for cleaning up
quotainfo structures, and some more of the work which allows group and
project quotas to be used together.
We had a few more in this last quota category that we might have liked
to get in, but it looks there are still a few items that need to be
addressed.
- fix for xfs_fsr returning -EINVAL
- cleanup in xfs_bulkstat
- cleanup in xfs_open_by_handle
- update mount options documentation
- clean up local format handling in xfs_bmapi_write
- fix dquot log reservations which were too small
- fix sgid inheritance for subdirectories when default acls are in use
- add project quota fields to various structures
- fix teardown of quotainfo structures when quotas are turned off"
* tag 'for-linus-v3.11-rc1-2' of git://oss.sgi.com/xfs/xfs:
xfs: Fix the logic check for all quotas being turned off
xfs: Add pquota fields where gquota is used.
xfs: fix sgid inheritance for subdirectories inheriting default acls [V3]
xfs: dquot log reservations are too small
xfs: remove local fork format handling from xfs_bmapi_write()
xfs: update mount options documentation
xfs: use get_unused_fd_flags(0) instead of get_unused_fd()
xfs: clean up unused codes at xfs_bulkstat()
xfs: use XFS_BMAP_BMDR_SPACE vs. XFS_BROOT_SIZE_ADJ
The conversion from local format to extent format requires
interpretation of the data in the fork being converted, so it cannot
be done in a generic way. It is up to the caller to convert the fork
format to extent format before calling into xfs_bmapi_write() so
format conversion can be done correctly.
The code in xfs_bmapi_write() to convert the format is used
implicitly by the attribute and directory code, but they
specifically zero the fork size so that the conversion does not do
any allocation or manipulation. Move this conversion into the
shortform to leaf functions for the dir/attr code so the conversions
are explicitly controlled by all callers.
Now we can remove the conversion code in xfs_bmapi_write.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The buffer type passed to log recvoery in the buffer log item
overruns the blf_flags field. I had assumed that flags field was a
32 bit value, and it turns out it is a unisgned short. Therefore
having 19 flags doesn't really work.
Convert the buffer type field to numeric value, and use the top 5
bits of the flags field for it. We currently have 17 types of
buffers, so using 5 bits gives us plenty of room for expansion in
future....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add buffer types to the buffer log items so that log recovery can
validate the buffers and calculate CRCs correctly after the buffers
are recovered.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This addition follows the same pattern as the dir2 block CRCs.
Seeing as both LEAF1 and LEAFN types need to changed at the same
time, this is a pretty large amount of change. leaf block headers
need to be abstracted away from the on-disk structures (struct
xfs_dir3_icleaf_hdr), as do the base leaf entry locations.
This header abstract allows the in-core header and leaf entry
location to be passed around instead of the leaf block itself. This
saves a lot of converting individual variables from on-disk format
to host format where they are used, so there's a good chance that
the compiler will be able to produce much more optimal code as it's
not having to byteswap variables all over the place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
This addition follows the same pattern as the dir2 block CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that directory buffers are made from a single struct xfs_buf, we
can add CRC calculation and checking callbacks. While there, add all
the fields to the on disk structures for future functionality such
as d_type support, uuids, block numbers, owner inode, etc.
To distinguish between the different on disk formats, change the
magic numbers for the new format directory blocks.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Dave Jones hit this assert when doing a compile on recent git, with
CONFIG_XFS_DEBUG enabled:
XFS: Assertion failed: (char *)dup - (char *)hdr == be16_to_cpu(*xfs_dir2_data_unused_tag_p(dup)), file: fs/xfs/xfs_dir2_data.c, line: 828
Upon further digging, the tag found by xfs_dir2_data_unused_tag_p(dup)
contained "2" and not the proper offset, and I found that this value was
changed after the memmoves under "Use a stale leaf for our new entry."
in xfs_dir2_block_addname(), i.e.
memmove(&blp[mid + 1], &blp[mid],
(highstale - mid) * sizeof(*blp));
overwrote it.
What has happened is that the previous call to xfs_dir2_block_compact()
has rearranged things; it changes btp->count as well as the
blp array. So after we make that call, we must recalculate the
proper pointer to the leaf entries by making another call to
xfs_dir2_block_leaf_p().
Dave provided a metadump image which led to a simple reproducer
(create a particular filename in the affected directory) and this
resolves the testcase as well as the bug on his live system.
Thanks also to dchinner for looking at this one with me.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Tested-by: Dave Jones <davej@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Metadata buffers that are read from disk have write verifiers
already attached to them, but newly allocated buffers do not. Add
appropriate write verifiers to all new metadata buffers.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
These verifiers are essentially the same code as the read verifiers,
but do not require ioend processing. Hence factor the read verifier
functions and add a new write verifier wrapper that is used as the
callback.
This is done as one large patch for all verifiers rather than one
patch per verifier as the change is largely mechanical. This
includes hooking up the write verifier via the read verifier
function.
Hooking up the write verifier for buffers obtained via
xfs_trans_get_buf() will be done in a separate patch as that touches
code in many different places rather than just the verifier
functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
And add a verifier callback function while there.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a dir2 block format read verifier. To fully verify every block
when read, call xfs_dir2_data_check() on them. Change
xfs_dir2_data_check() to do runtime checking, convert ASSERT()
checks to XFS_WANT_CORRUPTED_RETURN(), which will trigger an ASSERT
failure on debug kernels, but on production kernels will dump an
error to dmesg and return EFSCORRUPTED to the caller.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
In preparation for verifying dir2 block format buffers, factor
the read operations out of the block operations (lookup, addname,
getdents) and some of the additional logic to make it easier to
understand an dmodify the code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The struct xfs_dabuf now only tracks a single xfs_buf and all the
information it holds can be gained directly from the xfs_buf. Hence
we can remove the struct dabuf and pass the xfs_buf around
everywhere.
Kill the struct dabuf and the associated infrastructure.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Replace the current mess of dir2 headers with just three that have a clear
purpose:
- xfs_dir2_format.h for all format definitions, including the inline helpers
to access our variable size structures
- xfs_dir2_priv.h for all prototypes that are internal to the dir2 code
and not needed by anything outside of the directory code. For this
purpose xfs_da_btree.c, and phase6.c in xfs_repair are considered part
of the directory code.
- xfs_dir2.h for the public interface to the directory code
In addition to the reshuffle I have also update the comments to not only
match the new file structure, but also to describe the directory format
better.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Micro-optimize various comparisms by always byteswapping the constant
instead of the variable, which allows to do the swap at compile instead
of runtime.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In most places we can simply pass around and use the struct xfs_dir2_data_hdr,
which is the first and most important member of struct xfs_dir2_data instead
of the full structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Remove the confusing xfs_dir2_block structure. It is supposed to describe
an XFS dir2 block format btree block, but due to the variable sized nature
of almost all elements in it it can't actuall do anything close to that
job. In addition to accessing the fixed offset header structure it was
only used to get a pointer to the first dir or unused entry after it,
which can be trivially replaced by pointer arithmetics on the header
pointer. For most users that is actually more natural anyway, as they
don't use a typed pointer but rather a character pointer for further
arithmetics.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
In most places we can simply pass around and use the struct xfs_dir2_data_hdr,
which is the first and most important member of struct xfs_dir2_block instead
of the full structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The list field of it is never cactually used, so all uses can simply be
replaced with the xfs_dir2_sf_hdr_t type that it has as first member.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Refactor the shortform directory helpers that deal with the 32-bit vs
64-bit wide inode numbers into more sensible helpers, and kill the
xfs_intino_t typedef that is now superflous.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
[hch: dropped a few hunks that need structural changes instead]
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Dmapi support was never merged upstream, but we still have a lot of hooks
bloating XFS for it, all over the fast pathes of the filesystem.
This patch drops over 700 lines of dmapi overhead. If we'll ever get HSM
support in mainline at least the namespace events can be done much saner
in the VFS instead of the individual filesystem, so it's not like this
is much help for future work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
We are now consistently using unsigned char strings for names
so fix up the remaining warnings in the dir2 code to complete
the cleanup.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>