Provide a generic helper for setting up an io_uring worker. Returns a
task_struct so that the caller can do whatever setup is needed, then call
wake_up_new_task() to kick it into gear.
Add a kernel_clone_args member, io_thread, which tells copy_process() to
mark the task with PF_IO_WORKER.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently, variables used only within lockdep expressions are flagged as
unused, requiring that these variables' declarations be decorated with
either #ifdef or __maybe_unused. This results in ugly code. This commit
therefore causes the lockdep_tasklist_lock_is_held() function to be
visible even when lockdep is not enabled, thus removing the need for
these decorations. This approach further relies on dead-code elimination
to remove any references to functions or variables that are not available
in non-lockdep kernels.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The old _do_fork() helper doesn't follow naming conventions of in-kernel
helpers for syscalls. The process creation cleanup in [1] didn't change the
name to something more reasonable mainly because _do_fork() was used in quite a
few places. So sending this as a separate series seemed the better strategy.
This commit does two things:
1. renames _do_fork() to kernel_clone() but keeps _do_fork() as a simple static
inline wrapper around kernel_clone().
2. Changes the return type from long to pid_t. This aligns kernel_thread() and
kernel_clone(). Also, the return value from kernel_clone that is surfaced in
fork(), vfork(), clone(), and clone3() is taken from pid_vrn() which returns
a pid_t too.
Follow-up patches will switch each caller of _do_fork() and each place where it
is referenced over to kernel_clone(). After all these changes are done, we can
remove _do_fork() completely and will only be left with kernel_clone().
[1]: 9ba27414f2 ("Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux")
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Link: https://lore.kernel.org/r/20200819104655.436656-2-christian.brauner@ubuntu.com
Add a helper that waits for a pid and stores the status in the passed in
kernel pointer. Use it to fix the usage of kernel_wait4 in
call_usermodehelper_exec_sync that only happens to work due to the
implicit set_fs(KERNEL_DS) for kernel threads.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Link: http://lkml.kernel.org/r/20200721130449.5008-1-hch@lst.de
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXyge/QAKCRCRxhvAZXjc
oildAQCCWpnTeXm6hrIE3VZ36X5npFtbaEthdBVAUJM7mo0FYwEA8+Wbnubg6jCw
mztkXCnTfU7tApUdhKtQzcpEws45/Qk=
=REE/
-----END PGP SIGNATURE-----
Merge tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull fork cleanups from Christian Brauner:
"This is cleanup series from when we reworked a chunk of the process
creation paths in the kernel and switched to struct
{kernel_}clone_args.
High-level this does two main things:
- Remove the double export of both do_fork() and _do_fork() where
do_fork() used the incosistent legacy clone calling convention.
Now we only export _do_fork() which is based on struct
kernel_clone_args.
- Remove the copy_thread_tls()/copy_thread() split making the
architecture specific HAVE_COYP_THREAD_TLS config option obsolete.
This switches all remaining architectures to select
HAVE_COPY_THREAD_TLS and thus to the copy_thread_tls() calling
convention. The current split makes the process creation codepaths
more convoluted than they need to be. Each architecture has their own
copy_thread() function unless it selects HAVE_COPY_THREAD_TLS then it
has a copy_thread_tls() function.
The split is not needed anymore nowadays, all architectures support
CLONE_SETTLS but quite a few of them never bothered to select
HAVE_COPY_THREAD_TLS and instead simply continued to use copy_thread()
and use the old calling convention. Removing this split cleans up the
process creation codepaths and paves the way for implementing clone3()
on such architectures since it requires the copy_thread_tls() calling
convention.
After having made each architectures support copy_thread_tls() this
series simply renames that function back to copy_thread(). It also
switches all architectures that call do_fork() directly over to
_do_fork() and the struct kernel_clone_args calling convention. This
is a corollary of switching the architectures that did not yet support
it over to copy_thread_tls() since do_fork() is conditional on not
supporting copy_thread_tls() (Mostly because it lacks a separate
argument for tls which is trivial to fix but there's no need for this
function to exist.).
The do_fork() removal is in itself already useful as it allows to to
remove the export of both do_fork() and _do_fork() we currently have
in favor of only _do_fork(). This has already been discussed back when
we added clone3(). The legacy clone() calling convention is - as is
probably well-known - somewhat odd:
#
# ABI hall of shame
#
config CLONE_BACKWARDS
config CLONE_BACKWARDS2
config CLONE_BACKWARDS3
that is aggravated by the fact that some architectures such as sparc
follow the CLONE_BACKWARDSx calling convention but don't really select
the corresponding config option since they call do_fork() directly.
So do_fork() enforces a somewhat arbitrary calling convention in the
first place that doesn't really help the individual architectures that
deviate from it. They can thus simply be switched to _do_fork()
enforcing a single calling convention. (I really hope that any new
architectures will __not__ try to implement their own calling
conventions...)
Most architectures already have made a similar switch (m68k comes to
mind).
Overall this removes more code than it adds even with a good portion
of added comments. It simplifies a chunk of arch specific assembly
either by moving the code into C or by simply rewriting the assembly.
Architectures that have been touched in non-trivial ways have all been
actually boot and stress tested: sparc and ia64 have been tested with
Debian 9 images. They are the two architectures which have been
touched the most. All non-trivial changes to architectures have seen
acks from the relevant maintainers. nios2 with a custom built
buildroot image. h8300 I couldn't get something bootable to test on
but the changes have been fairly automatic and I'm sure we'll hear
people yell if I broke something there.
All other architectures that have been touched in trivial ways have
been compile tested for each single patch of the series via git rebase
-x "make ..." v5.8-rc2. arm{64} and x86{_64} have been boot tested
even though they have just been trivially touched (removal of the
HAVE_COPY_THREAD_TLS macro from their Kconfig) because well they are
basically "core architectures" and since it is trivial to get your
hands on a useable image"
* tag 'fork-v5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
arch: rename copy_thread_tls() back to copy_thread()
arch: remove HAVE_COPY_THREAD_TLS
unicore: switch to copy_thread_tls()
sh: switch to copy_thread_tls()
nds32: switch to copy_thread_tls()
microblaze: switch to copy_thread_tls()
hexagon: switch to copy_thread_tls()
c6x: switch to copy_thread_tls()
alpha: switch to copy_thread_tls()
fork: remove do_fork()
h8300: select HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
nios2: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
ia64: enable HAVE_COPY_THREAD_TLS, switch to kernel_clone_args
sparc: unconditionally enable HAVE_COPY_THREAD_TLS
sparc: share process creation helpers between sparc and sparc64
sparc64: enable HAVE_COPY_THREAD_TLS
fork: fold legacy_clone_args_valid() into _do_fork()
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the values
become larger. This is now replaced with more precise arithmetics,
using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oJDURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ixLg//bqWzFlfWirvngTgDxDnplwUTyKXmMCcq
R1IYhlyK2O5FxvhbRmdmW11W3yzyTPvgCs6Q/70negGaPNe2w1OxfxiK9NMKz5eu
M1LoXas7pL5g7Pr/ZxxHk/8VqJLV4t9MkodiiInmV6lTaznT3sU6a/kpYQjJyFnG
Tuu9jd6JhdRKmePDJnNmUBoGQ7JiOQDcX4HtkcQ3OA+An3624tmJzbW1yts+uj7J
ZWo2EY60RfbA9MxQXGPOaR/nAjngWs4Q6tddAh10mftsPq1gR2iFUKju1d31MQt/
RHLdiqJf+AyUC4popKG7a+7ilCKMBwPociSreTJNPyEUQ1X4AM3vUVk4yjUoiDph
k2WdsCF8/JRdhXg0NnrpPUqOaAbQj53EeXnitEb92E7WyTZgLOvAtpV//xZo6utp
2QHerfrQ9SoGQjz/ho78za5vQtV1x25yDhd+X4XV4QEhIy85G9/2JCpC/Kc/TXLf
OO7A4X69XztKTEJhP60g8ldCPUe4N2vbh1vKY6oAD8AFQVVNZ6n7375/Qa//b0/k
++hcYkPc2EK97/aBFdvzDgqb7aUo7Mtn2ibke16sQU4szulaoRuAHQG4jdGKMwbD
dk2VBoxyxeYFXWHsNneSe87+ha3sd0dSN0ul1EB/SlFrVELMvy634YXnMYGW8ima
PzyPB0ezpuA=
=PbO7
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve uclamp performance by using a static key for the fast path
- Add the "sched_util_clamp_min_rt_default" sysctl, to optimize for
better power efficiency of RT tasks on battery powered devices.
(The default is to maximize performance & reduce RT latencies.)
- Improve utime and stime tracking accuracy, which had a fixed boundary
of error, which created larger and larger relative errors as the
values become larger. This is now replaced with more precise
arithmetics, using the new mul_u64_u64_div_u64() helper in math64.h.
- Improve the deadline scheduler, such as making it capacity aware
- Improve frequency-invariant scheduling
- Misc cleanups in energy/power aware scheduling
- Add sched_update_nr_running tracepoint to track changes to nr_running
- Documentation additions and updates
- Misc cleanups and smaller fixes
* tag 'sched-core-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
sched/doc: Factorize bits between sched-energy.rst & sched-capacity.rst
sched/doc: Document capacity aware scheduling
sched: Document arch_scale_*_capacity()
arm, arm64: Fix selection of CONFIG_SCHED_THERMAL_PRESSURE
Documentation/sysctl: Document uclamp sysctl knobs
sched/uclamp: Add a new sysctl to control RT default boost value
sched/uclamp: Fix a deadlock when enabling uclamp static key
sched: Remove duplicated tick_nohz_full_enabled() check
sched: Fix a typo in a comment
sched/uclamp: Remove unnecessary mutex_init()
arm, arm64: Select CONFIG_SCHED_THERMAL_PRESSURE
sched: Cleanup SCHED_THERMAL_PRESSURE kconfig entry
arch_topology, sched/core: Cleanup thermal pressure definition
trace/events/sched.h: fix duplicated word
linux/sched/mm.h: drop duplicated words in comments
smp: Fix a potential usage of stale nr_cpus
sched/fair: update_pick_idlest() Select group with lowest group_util when idle_cpus are equal
sched: nohz: stop passing around unused "ticks" parameter.
sched: Better document ttwu()
sched: Add a tracepoint to track rq->nr_running
...
RT tasks by default run at the highest capacity/performance level. When
uclamp is selected this default behavior is retained by enforcing the
requested uclamp.min (p->uclamp_req[UCLAMP_MIN]) of the RT tasks to be
uclamp_none(UCLAMP_MAX), which is SCHED_CAPACITY_SCALE; the maximum
value.
This is also referred to as 'the default boost value of RT tasks'.
See commit 1a00d99997 ("sched/uclamp: Set default clamps for RT tasks").
On battery powered devices, it is desired to control this default
(currently hardcoded) behavior at runtime to reduce energy consumed by
RT tasks.
For example, a mobile device manufacturer where big.LITTLE architecture
is dominant, the performance of the little cores varies across SoCs, and
on high end ones the big cores could be too power hungry.
Given the diversity of SoCs, the new knob allows manufactures to tune
the best performance/power for RT tasks for the particular hardware they
run on.
They could opt to further tune the value when the user selects
a different power saving mode or when the device is actively charging.
The runtime aspect of it further helps in creating a single kernel image
that can be run on multiple devices that require different tuning.
Keep in mind that a lot of RT tasks in the system are created by the
kernel. On Android for instance I can see over 50 RT tasks, only
a handful of which created by the Android framework.
To control the default behavior globally by system admins and device
integrator, introduce the new sysctl_sched_uclamp_util_min_rt_default
to change the default boost value of the RT tasks.
I anticipate this to be mostly in the form of modifying the init script
of a particular device.
To avoid polluting the fast path with unnecessary code, the approach
taken is to synchronously do the update by traversing all the existing
tasks in the system. This could race with a concurrent fork(), which is
dealt with by introducing sched_post_fork() function which will ensure
the racy fork will get the right update applied.
Tested on Juno-r2 in combination with the RT capacity awareness [1].
By default an RT task will go to the highest capacity CPU and run at the
maximum frequency, which is particularly energy inefficient on high end
mobile devices because the biggest core[s] are 'huge' and power hungry.
With this patch the RT task can be controlled to run anywhere by
default, and doesn't cause the frequency to be maximum all the time.
Yet any task that really needs to be boosted can easily escape this
default behavior by modifying its requested uclamp.min value
(p->uclamp_req[UCLAMP_MIN]) via sched_setattr() syscall.
[1] 804d402fb6f6: ("sched/rt: Make RT capacity-aware")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200716110347.19553-2-qais.yousef@arm.com
put_task_struct_many() is as put_task_struct() but puts several
references at once. Useful to batching it.
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now that HAVE_COPY_THREAD_TLS has been removed, rename copy_thread_tls()
back simply copy_thread(). It's a simpler name, and doesn't imply that only
tls is copied here. This finishes an outstanding chunk of internal process
creation work since we've added clone3().
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>A
Acked-by: Stafford Horne <shorne@gmail.com>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>A
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
All architectures support copy_thread_tls() now, so remove the legacy
copy_thread() function and the HAVE_COPY_THREAD_TLS config option. Everyone
uses the same process creation calling convention based on
copy_thread_tls() and struct kernel_clone_args. This will make it easier to
maintain the core process creation code under kernel/, simplifies the
callpaths and makes the identical for all architectures.
Cc: linux-arch@vger.kernel.org
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Acked-by: Greentime Hu <green.hu@gmail.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Now that all architectures have been switched to use _do_fork() and the new
struct kernel_clone_args calling convention we can remove the legacy
do_fork() helper completely. The calling convention used to be brittle and
do_fork() didn't buy us anything. The only calling convention accepted
should be based on struct kernel_clone_args going forward. It's cleaner and
uniform.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
This separate helper only existed to guarantee the mutual exclusivity of
CLONE_PIDFD and CLONE_PARENT_SETTID for legacy clone since CLONE_PIDFD
abuses the parent_tid field to return the pidfd. But we can actually handle
this uniformely thus removing the helper. For legacy clone we can detect
that CLONE_PIDFD is specified in conjunction with CLONE_PARENT_SETTID
because they will share the same memory which is invalid and for clone3()
setting the separate pidfd and parent_tid fields to the same memory is
bogus as well. So fold that helper directly into _do_fork() by detecting
this case.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: linux-m68k@lists.linux-m68k.org
Cc: x86@kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
This adds support for creating a process in a different cgroup than its
parent. Callers can limit and account processes and threads right from
the moment they are spawned:
- A service manager can directly spawn new services into dedicated
cgroups.
- A process can be directly created in a frozen cgroup and will be
frozen as well.
- The initial accounting jitter experienced by process supervisors and
daemons is eliminated with this.
- Threaded applications or even thread implementations can choose to
create a specific cgroup layout where each thread is spawned
directly into a dedicated cgroup.
This feature is limited to the unified hierarchy. Callers need to pass
a directory file descriptor for the target cgroup. The caller can
choose to pass an O_PATH file descriptor. All usual migration
restrictions apply, i.e. there can be no processes in inner nodes. In
general, creating a process directly in a target cgroup adheres to all
migration restrictions.
One of the biggest advantages of this feature is that CLONE_INTO_GROUP does
not need to grab the write side of the cgroup cgroup_threadgroup_rwsem.
This global lock makes moving tasks/threads around super expensive. With
clone3() this lock is avoided.
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: cgroups@vger.kernel.org
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The main motivation to add set_tid to clone3() is CRIU.
To restore a process with the same PID/TID CRIU currently uses
/proc/sys/kernel/ns_last_pid. It writes the desired (PID - 1) to
ns_last_pid and then (quickly) does a clone(). This works most of the
time, but it is racy. It is also slow as it requires multiple syscalls.
Extending clone3() to support *set_tid makes it possible restore a
process using CRIU without accessing /proc/sys/kernel/ns_last_pid and
race free (as long as the desired PID/TID is available).
This clone3() extension places the same restrictions (CAP_SYS_ADMIN)
on clone3() with *set_tid as they are currently in place for ns_last_pid.
The original version of this change was using a single value for
set_tid. At the 2019 LPC, after presenting set_tid, it was, however,
decided to change set_tid to an array to enable setting the PID of a
process in multiple PID namespaces at the same time. If a process is
created in a PID namespace it is possible to influence the PID inside
and outside of the PID namespace. Details also in the corresponding
selftest.
To create a process with the following PIDs:
PID NS level Requested PID
0 (host) 31496
1 42
2 1
For that example the two newly introduced parameters to struct
clone_args (set_tid and set_tid_size) would need to be:
set_tid[0] = 1;
set_tid[1] = 42;
set_tid[2] = 31496;
set_tid_size = 3;
If only the PIDs of the two innermost nested PID namespaces should be
defined it would look like this:
set_tid[0] = 1;
set_tid[1] = 42;
set_tid_size = 2;
The PID of the newly created process would then be the next available
free PID in the PID namespace level 0 (host) and 42 in the PID namespace
at level 1 and the PID of the process in the innermost PID namespace
would be 1.
The set_tid array is used to specify the PID of a process starting
from the innermost nested PID namespaces up to set_tid_size PID namespaces.
set_tid_size cannot be larger then the current PID namespace level.
Signed-off-by: Adrian Reber <areber@redhat.com>
Reviewed-by: Christian Brauner <christian.brauner@ubuntu.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Dmitry Safonov <0x7f454c46@gmail.com>
Acked-by: Andrei Vagin <avagin@gmail.com>
Link: https://lore.kernel.org/r/20191115123621.142252-1-areber@redhat.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Remove work arounds that were written before there was a grace period
after tasks left the runqueue in finish_task_switch().
In particular now that there tasks exiting the runqueue exprience
a RCU grace period none of the work performed by task_rcu_dereference()
excpet the rcu_dereference() is necessary so replace task_rcu_dereference()
with rcu_dereference().
Remove the code in rcuwait_wait_event() that checks to ensure the current
task has not exited. It is no longer necessary as it is guaranteed
that any running task will experience a RCU grace period after it
leaves the run queueue.
Remove the comment in rcuwait_wake_up() as it is no longer relevant.
Ref: 8f95c90ceb ("sched/wait, RCU: Introduce rcuwait machinery")
Ref: 150593bf86 ("sched/api: Introduce task_rcu_dereference() and try_get_task_struct()")
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87lfurdpk9.fsf_-_@x220.int.ebiederm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a count of the number of RCU users (currently 1) of the task
struct so that we can later add the scheduler case and get rid of the
very subtle task_rcu_dereference(), and just use rcu_dereference().
As suggested by Oleg have the count overlap rcu_head so that no
additional space in task_struct is required.
Inspired-by: Linus Torvalds <torvalds@linux-foundation.org>
Inspired-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Kirill Tkhai <tkhai@yandex.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russell King - ARM Linux admin <linux@armlinux.org.uk>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/87woebdplt.fsf_-_@x220.int.ebiederm.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Returning the pointer that was passed in allows us to write
slightly more idiomatic code. Convert a few users.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190704221323.24290-1-willy@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The introduction of clone3 syscall accidentally broke CLONE_PIDFD
support in traditional clone syscall on compat x86 and those
architectures that use do_fork to implement clone syscall.
This bug was found by strace test suite.
Link: https://strace.io/logs/strace/2019-07-12
Fixes: 7f192e3cd3 ("fork: add clone3")
Bisected-and-tested-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: Dmitry V. Levin <ldv@altlinux.org>
Link: https://lore.kernel.org/r/20190714162047.GB10389@altlinux.org
Signed-off-by: Christian Brauner <christian@brauner.io>
This adds the clone3 system call.
As mentioned several times already (cf. [7], [8]) here's the promised
patchset for clone3().
We recently merged the CLONE_PIDFD patchset (cf. [1]). It took the last
free flag from clone().
Independent of the CLONE_PIDFD patchset a time namespace has been discussed
at Linux Plumber Conference last year and has been sent out and reviewed
(cf. [5]). It is expected that it will go upstream in the not too distant
future. However, it relies on the addition of the CLONE_NEWTIME flag to
clone(). The only other good candidate - CLONE_DETACHED - is currently not
recyclable as we have identified at least two large or widely used
codebases that currently pass this flag (cf. [2], [3], and [4]). Given that
CLONE_PIDFD grabbed the last clone() flag the time namespace is effectively
blocked. clone3() has the advantage that it will unblock this patchset
again. In general, clone3() is extensible and allows for the implementation
of new features.
The idea is to keep clone3() very simple and close to the original clone(),
specifically, to keep on supporting old clone()-based workloads.
We know there have been various creative proposals how a new process
creation syscall or even api is supposed to look like. Some people even
going so far as to argue that the traditional fork()+exec() split should be
abandoned in favor of an in-kernel version of spawn(). Independent of
whether or not we personally think spawn() is a good idea this patchset has
and does not want to have anything to do with this.
One stance we take is that there's no real good alternative to
clone()+exec() and we need and want to support this model going forward;
independent of spawn().
The following requirements guided clone3():
- bump the number of available flags
- move arguments that are currently passed as separate arguments
in clone() into a dedicated struct clone_args
- choose a struct layout that is easy to handle on 32 and on 64 bit
- choose a struct layout that is extensible
- give new flags that currently need to abuse another flag's dedicated
return argument in clone() their own dedicated return argument
(e.g. CLONE_PIDFD)
- use a separate kernel internal struct kernel_clone_args that is
properly typed according to current kernel conventions in fork.c and is
different from the uapi struct clone_args
- port _do_fork() to use kernel_clone_args so that all process creation
syscalls such as fork(), vfork(), clone(), and clone3() behave identical
(Arnd suggested, that we can probably also port do_fork() itself in a
separate patchset.)
- ease of transition for userspace from clone() to clone3()
This very much means that we do *not* remove functionality that userspace
currently relies on as the latter is a good way of creating a syscall
that won't be adopted.
- do not try to be clever or complex: keep clone3() as dumb as possible
In accordance with Linus suggestions (cf. [11]), clone3() has the following
signature:
/* uapi */
struct clone_args {
__aligned_u64 flags;
__aligned_u64 pidfd;
__aligned_u64 child_tid;
__aligned_u64 parent_tid;
__aligned_u64 exit_signal;
__aligned_u64 stack;
__aligned_u64 stack_size;
__aligned_u64 tls;
};
/* kernel internal */
struct kernel_clone_args {
u64 flags;
int __user *pidfd;
int __user *child_tid;
int __user *parent_tid;
int exit_signal;
unsigned long stack;
unsigned long stack_size;
unsigned long tls;
};
long sys_clone3(struct clone_args __user *uargs, size_t size)
clone3() cleanly supports all of the supported flags from clone() and thus
all legacy workloads.
The advantage of sticking close to the old clone() is the low cost for
userspace to switch to this new api. Quite a lot of userspace apis (e.g.
pthreads) are based on the clone() syscall. With the new clone3() syscall
supporting all of the old workloads and opening up the ability to add new
features should make switching to it for userspace more appealing. In
essence, glibc can just write a simple wrapper to switch from clone() to
clone3().
There has been some interest in this patchset already. We have received a
patch from the CRIU corner for clone3() that would set the PID/TID of a
restored process without /proc/sys/kernel/ns_last_pid to eliminate a race.
/* User visible differences to legacy clone() */
- CLONE_DETACHED will cause EINVAL with clone3()
- CSIGNAL is deprecated
It is superseeded by a dedicated "exit_signal" argument in struct
clone_args freeing up space for additional flags.
This is based on a suggestion from Andrei and Linus (cf. [9] and [10])
/* References */
[1]: b3e5838252
[2]: https://dxr.mozilla.org/mozilla-central/source/security/sandbox/linux/SandboxFilter.cpp#343
[3]: https://git.musl-libc.org/cgit/musl/tree/src/thread/pthread_create.c#n233
[4]: https://sources.debian.org/src/blcr/0.8.5-2.3/cr_module/cr_dump_self.c/?hl=740#L740
[5]: https://lore.kernel.org/lkml/20190425161416.26600-1-dima@arista.com/
[6]: https://lore.kernel.org/lkml/20190425161416.26600-2-dima@arista.com/
[7]: https://lore.kernel.org/lkml/CAHrFyr5HxpGXA2YrKza-oB-GGwJCqwPfyhD-Y5wbktWZdt0sGQ@mail.gmail.com/
[8]: https://lore.kernel.org/lkml/20190524102756.qjsjxukuq2f4t6bo@brauner.io/
[9]: https://lore.kernel.org/lkml/20190529222414.GA6492@gmail.com/
[10]: https://lore.kernel.org/lkml/CAHk-=whQP-Ykxi=zSYaV9iXsHsENa+2fdj-zYKwyeyed63Lsfw@mail.gmail.com/
[11]: https://lore.kernel.org/lkml/CAHk-=wieuV4hGwznPsX-8E0G2FKhx3NjZ9X3dTKh5zKd+iqOBw@mail.gmail.com/
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christian Brauner <christian@brauner.io>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Serge Hallyn <serge@hallyn.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Jann Horn <jannh@google.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Adrian Reber <adrian@lisas.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Florian Weimer <fweimer@redhat.com>
Cc: linux-api@vger.kernel.org
Provide a function for copying init_mm. This function will be later used
for setting a temporary mm.
Tested-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-6-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable task_struct.usage is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the task_struct.usage it might make a difference
in following places:
- put_task_struct(): decrement in refcount_dec_and_test() only
provides RELEASE ordering and control dependency on success
vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-5-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We get a warning when building kernel with W=1:
kernel/fork.c:167:13: warning: no previous prototype for `arch_release_thread_stack' [-Wmissing-prototypes]
kernel/fork.c:779:13: warning: no previous prototype for `fork_init' [-Wmissing-prototypes]
Add the missing declaration in head file to fix this.
Also, remove arch_release_thread_stack() completely because no arch
seems to implement it since bb9d81264 (arch: remove tile port).
Link: http://lkml.kernel.org/r/1542170087-23645-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kernel_wait4() expects a userland address for status - it's only
rusage that goes as a kernel one (and needs a copyout afterwards)
[ Also, fix the prototype of kernel_wait4() to have that __user
annotation - Linus ]
Fixes: 92ebce5ac5 ("osf_wait4: switch to kernel_wait4()")
Cc: stable@kernel.org # v4.13+
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While the blocked and saved_sigmask fields of task_struct are copied to
userspace (via sigmask_to_save() and setup_rt_frame()), it is always
copied with a static length (i.e. sizeof(sigset_t)).
The only portion of task_struct that is potentially dynamically sized and
may be copied to userspace is in the architecture-specific thread_struct
at the end of task_struct.
cache object allocation:
kernel/fork.c:
alloc_task_struct_node(...):
return kmem_cache_alloc_node(task_struct_cachep, ...);
dup_task_struct(...):
...
tsk = alloc_task_struct_node(node);
copy_process(...):
...
dup_task_struct(...)
_do_fork(...):
...
copy_process(...)
example usage trace:
arch/x86/kernel/fpu/signal.c:
__fpu__restore_sig(...):
...
struct task_struct *tsk = current;
struct fpu *fpu = &tsk->thread.fpu;
...
__copy_from_user(&fpu->state.xsave, ..., state_size);
fpu__restore_sig(...):
...
return __fpu__restore_sig(...);
arch/x86/kernel/signal.c:
restore_sigcontext(...):
...
fpu__restore_sig(...)
This introduces arch_thread_struct_whitelist() to let an architecture
declare specifically where the whitelist should be within thread_struct.
If undefined, the entire thread_struct field is left whitelisted.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: "Mickaël Salaün" <mic@digikod.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Rik van Riel <riel@redhat.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
init_idle_bootup_task( ) is called in rest_init( ) to switch
the scheduling class of the boot thread to the idle class.
the function only sets:
idle->sched_class = &idle_sched_class;
which has been set in init_idle() called by sched_init():
/*
* The idle tasks have their own, simple scheduling class:
*/
idle->sched_class = &idle_sched_class;
We've already set the boot thread to idle class in
start_kernel()->sched_init()->init_idle()
so it's unnecessary to set it again in
start_kernel()->rest_init()->init_idle_bootup_task()
Signed-off-by: Cheng Jian <cj.chengjian@huawei.com>
Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <huawei.libin@huawei.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1501838377-109720-1-git-send-email-cj.chengjian@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull wait syscall updates from Al Viro:
"Consolidating sys_wait* and compat counterparts.
Gets rid of set_fs()/double-copy mess, simplifies the whole thing
(lifting the copyouts to the syscalls means less headache in the part
that does actual work - fewer failure exits, to start with), gets rid
of the overhead of field-by-field __put_user()"
* 'work.sys_wait' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
osf_wait4: switch to kernel_wait4()
waitid(): switch copyout of siginfo to unsafe_put_user()
wait_task_zombie: consolidate info logics
kill wait_noreap_copyout()
lift getrusage() from wait_noreap_copyout()
waitid(2): leave copyout of siginfo to syscall itself
kernel_wait4()/kernel_waitid(): delay copying status to userland
wait4(2)/waitid(2): separate copying rusage to userland
move compat wait4 and waitid next to native variants
This function was introduced by:
150593bf86 ("sched/api: Introduce task_rcu_dereference() and try_get_task_struct()")
... to allow easier usage of task_rcu_dereference(), however no users
were ever added. Drop the helper.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dave@stgolabs.net
Link: http://lkml.kernel.org/r/20170615023730.22827-1-dave@stgolabs.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
sched_exec() better fits into the task lifetime APIs than into the core scheduler
APIs.
This reduces the size of <linux/sched.h> a bit.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These belong into the task lifetime API header.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
These two functions are task management related, not core scheduler APIs.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The task_lock()/task_unlock() APIs are not realated to core scheduling,
they are task lifetime APIs, i.e. they belong into <linux/sched/task.h>.
Move them.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
'init_task' is really not part of core scheduler APIs but part of
the fork() interface between the scheduler and process management.
So move the declarations.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Move rcu_copy_process() into kernel/fork.c, which is the only
user of this inline function.
This simplifies <linux/sched/task.h> to the level that <linux/sched.h>
does not have to be included in it anymore - which change is done
in a subsequent patch.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's a fair amount of task lifetime management (a.k.a fork()/exit())
related APIs in <linux/sched.h>, but only a small fraction of
the users of the generic sched.h header make use of them.
Move these functions to the <linux/sched/task.h> header.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/task.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/task.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>