To provide support for ChaCha-Poly cipher we need to define
specific constants and structures.
Signed-off-by: Vadim Fedorenko <vfedorenko@novek.ru>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When an application configures kernel TLS on top of a TCP socket, it's
now possible for inet_diag_handler() to collect information regarding the
protocol version, the cipher type and TX / RX configuration, in case
INET_DIAG_INFO is requested.
Signed-off-by: Davide Caratti <dcaratti@redhat.com>
Reviewed-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Added support for AES128-CCM based record encryption. AES128-CCM is
similar to AES128-GCM. Both of them have same salt/iv/mac size. The
notable difference between the two is that while invoking AES128-CCM
operation, the salt||nonce (which is passed as IV) has to be prefixed
with a hardcoded value '2'. Further, CCM implementation in kernel
requires IV passed in crypto_aead_request() to be full '16' bytes.
Therefore, the record structure 'struct tls_rec' has been modified to
reserve '16' bytes for IV. This works for both GCM and CCM based cipher.
Signed-off-by: Vakul Garg <vakul.garg@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
TLS 1.3 has minor changes from TLS 1.2 at the record layer.
* Header now hardcodes the same version and application content type in
the header.
* The real content type is appended after the data, before encryption (or
after decryption).
* The IV is xored with the sequence number, instead of concatinating four
bytes of IV with the explicit IV.
* Zero-padding: No exlicit length is given, we search backwards from the
end of the decrypted data for the first non-zero byte, which is the
content type. Currently recv supports reading zero-padding, but there
is no way for send to add zero padding.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Wire up support for 256 bit keys from the setsockopt to the crypto
framework
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Based on discussion with Kate Stewart this license is not a
BSD-2-Clause, but is now formally identified as Linux-OpenIB
by SPDX.
The key difference between the licenses is in the 'warranty'
paragraph.
if_infiniband.h refers to the 'OpenIB.org' license, but
does not include the text, instead it links to an obsolete
web site that contains a license that matches the BSD-2-Clause
SPX. There is no 'three clause' version of the OpenIB.org
license.
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Doug Ledford <dledford@redhat.com>
Add rx path for tls software implementation.
recvmsg, splice_read, and poll implemented.
An additional sockopt TLS_RX is added, with the same interface as
TLS_TX. Either TLX_RX or TLX_TX may be provided separately, or
together (with two different setsockopt calls with appropriate keys).
Control messages are passed via CMSG in a similar way to transmit.
If no cmsg buffer is passed, then only application data records
will be passed to userspace, and EIO is returned for other types of
alerts.
EBADMSG is passed for decryption errors, and EMSGSIZE is passed for
framing too big, and EBADMSG for framing too small (matching openssl
semantics). EINVAL is returned for TLS versions that do not match the
original setsockopt call. All are unrecoverable.
strparser is used to parse TLS framing. Decryption is done directly
in to userspace buffers if they are large enough to support it, otherwise
sk_cow_data is called (similar to ipsec), and buffers are decrypted in
place and copied. splice_read always decrypts in place, since no
buffers are provided to decrypt in to.
sk_poll is overridden, and only returns POLLIN if a full TLS message is
received. Otherwise we wait for strparser to finish reading a full frame.
Actual decryption is only done during recvmsg or splice_read calls.
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move inclusion of a private kernel header <net/tcp.h>
from uapi/linux/tls.h to its only user - net/tls.h,
to fix the following linux/tls.h userspace compilation error:
/usr/include/linux/tls.h:41:21: fatal error: net/tcp.h: No such file or directory
As to this point uapi/linux/tls.h was totaly unusuable for userspace,
cleanup this header file further by moving other redundant includes
to net/tls.h.
Fixes: 3c4d755915 ("tls: kernel TLS support")
Cc: <stable@vger.kernel.org> # v4.13+
Signed-off-by: Dmitry V. Levin <ldv@altlinux.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Many user space API headers have licensing information, which is either
incomplete, badly formatted or just a shorthand for referring to the
license under which the file is supposed to be. This makes it hard for
compliance tools to determine the correct license.
Update these files with an SPDX license identifier. The identifier was
chosen based on the license information in the file.
GPL/LGPL licensed headers get the matching GPL/LGPL SPDX license
identifier with the added 'WITH Linux-syscall-note' exception, which is
the officially assigned exception identifier for the kernel syscall
exception:
NOTE! This copyright does *not* cover user programs that use kernel
services by normal system calls - this is merely considered normal use
of the kernel, and does *not* fall under the heading of "derived work".
This exception makes it possible to include GPL headers into non GPL
code, without confusing license compliance tools.
Headers which have either explicit dual licensing or are just licensed
under a non GPL license are updated with the corresponding SPDX
identifier and the GPLv2 with syscall exception identifier. The format
is:
((GPL-2.0 WITH Linux-syscall-note) OR SPDX-ID-OF-OTHER-LICENSE)
SPDX license identifiers are a legally binding shorthand, which can be
used instead of the full boiler plate text. The update does not remove
existing license information as this has to be done on a case by case
basis and the copyright holders might have to be consulted. This will
happen in a separate step.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne. See the previous patch in this series for the
methodology of how this patch was researched.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Software implementation of transport layer security, implemented using ULP
infrastructure. tcp proto_ops are replaced with tls equivalents of sendmsg and
sendpage.
Only symmetric crypto is done in the kernel, keys are passed by setsockopt
after the handshake is complete. All control messages are supported via CMSG
data - the actual symmetric encryption is the same, just the message type needs
to be passed separately.
For user API, please see Documentation patch.
Pieces that can be shared between hw and sw implementation
are in tls_main.c
Signed-off-by: Boris Pismenny <borisp@mellanox.com>
Signed-off-by: Ilya Lesokhin <ilyal@mellanox.com>
Signed-off-by: Aviad Yehezkel <aviadye@mellanox.com>
Signed-off-by: Dave Watson <davejwatson@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>