kernel/sysctl.c is a kitchen sink where everyone leaves their dirty
dishes, this makes it very difficult to maintain.
To help with this maintenance let's start by moving sysctls to places
where they actually belong. The proc sysctl maintainers do not want to
know what sysctl knobs you wish to add for your own piece of code, we
just care about the core logic.
So move the stack_erasing sysctl from kernel/sysctl.c to
kernel/stackleak.c and use register_sysctl() to register the sysctl
interface.
[mcgrof@kernel.org: commit log update]
Link: https://lkml.kernel.org/r/20211124231435.1445213-8-mcgrof@kernel.org
Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Antti Palosaari <crope@iki.fi>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Benjamin LaHaise <bcrl@kvack.org>
Cc: Clemens Ladisch <clemens@ladisch.de>
Cc: David Airlie <airlied@linux.ie>
Cc: Douglas Gilbert <dgilbert@interlog.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: James E.J. Bottomley <jejb@linux.ibm.com>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Julia Lawall <julia.lawall@inria.fr>
Cc: Kees Cook <keescook@chromium.org>
Cc: Lukas Middendorf <kernel@tuxforce.de>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Martin K. Petersen <martin.petersen@oracle.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Phillip Potter <phil@philpotter.co.uk>
Cc: Qing Wang <wangqing@vivo.com>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Stephen Kitt <steve@sk2.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 32927393dc ("sysctl: pass kernel pointers to ->proc_handler")
changed ctl_table.proc_handler to take a kernel pointer. Adjust the
signature of stack_erasing_sysctl to match ctl_table.proc_handler which
fixes the following sparse warning:
kernel/stackleak.c:31:50: warning: incorrect type in argument 3 (different address spaces)
kernel/stackleak.c:31:50: expected void *
kernel/stackleak.c:31:50: got void [noderef] __user *buffer
Fixes: 32927393dc ("sysctl: pass kernel pointers to ->proc_handler")
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Link: https://lkml.kernel.org/r/20200907093253.13656-1-tklauser@distanz.ch
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel code instrumentation in stackleak gcc plugin works in two stages.
At first, stack tracking is added to GIMPLE representation of every function
(except some special cases). And later, when stack frame size info is
available, stack tracking is removed from the RTL representation of the
functions with small stack frame. There is an unwanted side-effect for these
functions: some of them do useless work with caller-saved registers.
As an example of such case, proc_sys_write without() instrumentation:
55 push %rbp
41 b8 01 00 00 00 mov $0x1,%r8d
48 89 e5 mov %rsp,%rbp
e8 11 ff ff ff callq ffffffff81284610 <proc_sys_call_handler>
5d pop %rbp
c3 retq
0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)
66 2e 0f 1f 84 00 00 nopw %cs:0x0(%rax,%rax,1)
00 00 00
proc_sys_write() with instrumentation:
55 push %rbp
48 89 e5 mov %rsp,%rbp
41 56 push %r14
41 55 push %r13
41 54 push %r12
53 push %rbx
49 89 f4 mov %rsi,%r12
48 89 fb mov %rdi,%rbx
49 89 d5 mov %rdx,%r13
49 89 ce mov %rcx,%r14
4c 89 f1 mov %r14,%rcx
4c 89 ea mov %r13,%rdx
4c 89 e6 mov %r12,%rsi
48 89 df mov %rbx,%rdi
41 b8 01 00 00 00 mov $0x1,%r8d
e8 f2 fe ff ff callq ffffffff81298e80 <proc_sys_call_handler>
5b pop %rbx
41 5c pop %r12
41 5d pop %r13
41 5e pop %r14
5d pop %rbp
c3 retq
66 0f 1f 84 00 00 00 nopw 0x0(%rax,%rax,1)
00 00
Let's improve the instrumentation to avoid this:
1. Make stackleak_track_stack() save all register that it works with.
Use no_caller_saved_registers attribute for that function. This attribute
is available for x86_64 and i386 starting from gcc-7.
2. Insert calling stackleak_track_stack() in asm:
asm volatile("call stackleak_track_stack" :: "r" (current_stack_pointer))
Here we use ASM_CALL_CONSTRAINT trick from arch/x86/include/asm/asm.h.
The input constraint is taken into account during gcc shrink-wrapping
optimization. It is needed to be sure that stackleak_track_stack() call is
inserted after the prologue of the containing function, when the stack
frame is prepared.
This work is a deep reengineering of the idea described on grsecurity blog
https://grsecurity.net/resolving_an_unfortunate_stackleak_interaction
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
Link: https://lore.kernel.org/r/20200624123330.83226-5-alex.popov@linux.com
Signed-off-by: Kees Cook <keescook@chromium.org>
Function graph tracing recurses into itself when stackleak is enabled,
causing the ftrace graph selftest to run for up to 90 seconds and
trigger the softlockup watchdog.
Breakpoint 2, ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:200
200 mcount_get_lr_addr x0 // pointer to function's saved lr
(gdb) bt
\#0 ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:200
\#1 0xffffff80081d5280 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:153
\#2 0xffffff8008555484 in stackleak_track_stack () at ../kernel/stackleak.c:106
\#3 0xffffff8008421ff8 in ftrace_ops_test (ops=0xffffff8009eaa840 <graph_ops>, ip=18446743524091297036, regs=<optimized out>) at ../kernel/trace/ftrace.c:1507
\#4 0xffffff8008428770 in __ftrace_ops_list_func (regs=<optimized out>, ignored=<optimized out>, parent_ip=<optimized out>, ip=<optimized out>) at ../kernel/trace/ftrace.c:6286
\#5 ftrace_ops_no_ops (ip=18446743524091297036, parent_ip=18446743524091242824) at ../kernel/trace/ftrace.c:6321
\#6 0xffffff80081d5280 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:153
\#7 0xffffff800832fd10 in irq_find_mapping (domain=0xffffffc03fc4bc80, hwirq=27) at ../kernel/irq/irqdomain.c:876
\#8 0xffffff800832294c in __handle_domain_irq (domain=0xffffffc03fc4bc80, hwirq=27, lookup=true, regs=0xffffff800814b840) at ../kernel/irq/irqdesc.c:650
\#9 0xffffff80081d52b4 in ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:205
Rework so we mark stackleak_track_stack as notrace
Co-developed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Anders Roxell <anders.roxell@linaro.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
The stackleak_erase() function is called on the trampoline stack at the
end of syscall. This stack is not big enough for ftrace and kprobes
operations, e.g. it can be exhausted if we use kprobe_events for
stackleak_erase().
So let's disable function tracing and kprobes of stackleak_erase().
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 10e9ae9fab ("gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack")
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Introduce CONFIG_STACKLEAK_RUNTIME_DISABLE option, which provides
'stack_erasing' sysctl. It can be used in runtime to control kernel
stack erasing for kernels built with CONFIG_GCC_PLUGIN_STACKLEAK.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Introduce CONFIG_STACKLEAK_METRICS providing STACKLEAK information about
tasks via the /proc file system. In particular, /proc/<pid>/stack_depth
shows the maximum kernel stack consumption for the current and previous
syscalls. Although this information is not precise, it can be useful for
estimating the STACKLEAK performance impact for your workloads.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
The STACKLEAK feature erases the kernel stack before returning from
syscalls. That reduces the information which kernel stack leak bugs can
reveal and blocks some uninitialized stack variable attacks.
This commit introduces the STACKLEAK gcc plugin. It is needed for
tracking the lowest border of the kernel stack, which is important
for the code erasing the used part of the kernel stack at the end
of syscalls (comes in a separate commit).
The STACKLEAK feature is ported from grsecurity/PaX. More information at:
https://grsecurity.net/https://pax.grsecurity.net/
This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
The STACKLEAK feature (initially developed by PaX Team) has the following
benefits:
1. Reduces the information that can be revealed through kernel stack leak
bugs. The idea of erasing the thread stack at the end of syscalls is
similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel
crypto, which all comply with FDP_RIP.2 (Full Residual Information
Protection) of the Common Criteria standard.
2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712,
CVE-2010-2963). That kind of bugs should be killed by improving C
compilers in future, which might take a long time.
This commit introduces the code filling the used part of the kernel
stack with a poison value before returning to userspace. Full
STACKLEAK feature also contains the gcc plugin which comes in a
separate commit.
The STACKLEAK feature is ported from grsecurity/PaX. More information at:
https://grsecurity.net/https://pax.grsecurity.net/
This code is modified from Brad Spengler/PaX Team's code in the last
public patch of grsecurity/PaX based on our understanding of the code.
Changes or omissions from the original code are ours and don't reflect
the original grsecurity/PaX code.
Performance impact:
Hardware: Intel Core i7-4770, 16 GB RAM
Test #1: building the Linux kernel on a single core
0.91% slowdown
Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P
4.2% slowdown
So the STACKLEAK description in Kconfig includes: "The tradeoff is the
performance impact: on a single CPU system kernel compilation sees a 1%
slowdown, other systems and workloads may vary and you are advised to
test this feature on your expected workload before deploying it".
Signed-off-by: Alexander Popov <alex.popov@linux.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>